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Natural conditions are provided that are sufficient to ensure that causality as defined by
approaches that use counterfactual dependence and structural equations will be transi-
tive.

1. Introduction. The question of the transitivity of causality has been the
subject of much debate. As Paul and Hall ð2013, 3Þ say, “Causality seems to
be transitive. IfC causesD andDcausesE, thenC therebycausesE.”Theappeal
to transitivity is quite standard in informal scientific reasoning: we say things
like “the billiards expert hit ball A, causing it to hit ball B, causing it to carom
into ball C, which then drops into the pocket.” It then seems natural to con-
clude then the pool expert’s shot caused ball C to drop into the pocket.

Paul and Hall ð2013, 215Þ suggest that “preserving transitivity is a basic
desideratum for an adequate analysis of causation.” Hall ð2000, 198Þ is even
more insistent, saying, “That causation is, necessarily, a transitive relation
on events seems to many a bedrock datum, one of the few indisputable a
priori insights we have into the workings of the concept.” Lewis ð1986,
2000Þ imposes transitivity in his influential definition of causality, by taking
causality to be the transitive closure ð“ancestral,” in his terminologyÞ of a
one-step causal dependence relation.
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But numerous examples have been presented that cast doubt on transi-
tivity. Paul and Hall ð2013Þ give a sequence of such counterexamples; Hall
ð2000Þ gives others. I review two such examples in the next section. This
leaves us in a somewhat uncomfortable position. It seems so natural to think
of causality as transitive. In light of the examples, should we just give up on
these intuitions? Paul and Hall ð2013, 219Þ suggest that “what’s needed is a
more developed story, according to which the inference from ‘C causes D’
and ‘D causes E’ to ‘C causes E’ is safe provided such-and-such conditions
obtain—where these conditions can typically be assumed to obtain, except
perhaps in odd cases.” The goal of this article is to provide sufficient con-
ditions for causality to be transitive. I formalize this using the structural equa-
tions framework of Halpern and Pearl ð2001, 2005Þ. The properties that I
require suggest that these conditions apply to any definition of causality that
depends on counterfactual dependence and uses structural equations ðsee, e.g.,
Hitchcock 2001, 2007; Woodward 2003; Halpern and Pearl 2005; Glymour
and Wimberly 2007; Hall 2007; Halpern 2015, for examples of such ap-
proachesÞ. These conditions may explain why, although causality is not tran-
sitive in general ðand is not guaranteed to be transitive according to any of the
counterfactual accounts mentioned aboveÞ, we tend to think of causality as
transitive and are surprised when it is not.

2. Defining Causation Using Counterfactuals. In this section, I review
some of the machinery of structural equations needed to define causality.
For definiteness, I use the same formalism as that given by Halpern and
Pearl ð2005Þ.

2.1. Causal Structures. Approaches based on structural equations as-
sume that the world is described in terms of random variables and their
values. Some random variables may have a causal influence on others. This
influence ismodeled by a set of structural equations. It is conceptually useful
to split the random variables into two sets: the exogenous variables, whose
values are determined by factors outside the model, and the endogenous var-
iables,whosevalues areultimatelydeterminedby the exogenousvariables. For
example, in a voting scenario, we could have endogenous variables that de-
scribe what the voters actually do ði.e., which candidate they vote forÞ, ex-
ogenous variables that describe the factors that determine how the voters vote,
and a variable describing the outcome ðwho winsÞ. The structural equations
describe how the outcome is determined ðmajority rules; a candidate wins if
A and at least two of B, C, D, and E vote for him; etc.Þ.

Formally, a causal model M is a pair ðS;ℱÞ, where S is a signature,
which explicitly lists the endogenous and exogenous variables and char-
acterizes their possible values, and ℱ defines a set of modifiable structural
equations, relating the values of the variables. A signature S is a tuple
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ðU;V;ℛÞ, where U is a set of exogenous variables, V is a set of endogenous
variables, and ℛ associates with every variable Y ∈ U ∪ V a nonempty set
ℛðY Þ of possible values for Y ði.e., the set of values over which Y rangesÞ.
For simplicity, I assume here that V is finite, as is ℛðY Þ for every en-
dogenous variable Y ∈ V. The relation ℱ associates with each endogenous
variable X ∈ V a function denoted FX such that FX : ð�U∈ UℛðUÞÞ�
ð�Y∈ V−fXgℛðY ÞÞ→ℛðX Þ. This mathematical notation just makes precise the
fact that FX determines the value of X, given the values of all the other
variables in U ∪V. If there is one exogenous variable U and three endogenous
variables, X, Y, and Z, then FX defines the values of X in terms of the values of
Y, Z, and U. For example, we might have FX ðu; y; zÞ5 u1 y, which is
usually written as X 5 U 1 Y .1 Thus, if Y 5 3 and U 5 2, then X 5 5,
regardless of how Z is set.

The structural equations define what happens in the presence of external
interventions. Setting the value of some variable X to x in a causal model
M 5 ðS;ℱÞ results in a new causal model, denoted MX 5 x, which is iden-
tical to M, except that the equation for X in ℱ is replaced by X 5 x.

Following Halpern and Pearl ð2005Þ, I restrict attention here to what are
called recursive ðor acyclicÞ models. This is the special case in which there
is some total ordering ≺ of the endogenous variables ðthe ones in VÞ
such that, unless X ≺ Y , Y is independent of X; that is, FY ð : : : ; x; : : :Þ5
FY ð : : : ; x0; : : :Þ for all x; x0∈ℛðX Þ. I write X ≺ Y if X ≺ Y and X ≠ Y . If
X ≺ Y , then the value of X may affect the value of Y, but the value of Y
cannot affect the value of X. It should be clear that if M is an acyclic causal
model, then given a context, that is, a setting~u for the exogenous variables
in U, there is a unique solution for all the equations. We simply solve for the
variables in the order given by ≺. The value of the variables that come first
in the order, that is, the variables X such that there is no variable Y such that
Y≺ X , depends only on the exogenous variables, so their value is imme-
diately determined by the values of the exogenous variables. The values of
variables later in the order can be determined once we have determined the
values of all the variables earlier in the order.

It is sometimes helpful to represent a causal model graphically. Each
node in the graph corresponds to one variable in the model. An arrow from
one node to another indicates that the former variable figures as a nontrivial
argument in the equation for the latter. The graphical representation is useful
for visualizing causal models, and will be used in the next section.

1. The fact that X is assigned U 1 Y ði.e., the value of X is the sum of the values of U
and YÞ does not imply that Y is assigned X − U ; i.e., FY ðU ;X ;ZÞ5 X − U does not
necessarily hold.
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2.2. A Language for Reasoning about Causality. To define causality
carefully, it is useful to have a language to reason about causality. Given a
signature S 5 ðU;V;ℛÞ, a primitive event is a formula of the form X 5 x,
for X ∈ V and x ∈ ℛðX Þ. A causal formula ðover SÞ is one of the form
½Y1 ← y1; : : : ; Yk ← yk �φ, where

• φ is a Boolean combination of primitive events,
• Y1; : : : ; Yk are distinct variables in V, and
• yi ∈ ℛðYiÞ.

Such a formula is abbreviated as ½~Y←~y�φ. The special case in which k 5 0
is abbreviated as φ. Intuitively, ½Y1 ← y1; : : : ; Yk ← yk �φ says that φ would
hold if Yi were set to yi, for i5 1; : : : ; k.

A causal formula ψ is true or false in a causal model, given a context. As
usual, I write ðM ; ~uÞ ⊨ ψ if the causal formula ψ is true in causal model M
given context~u. The ⊨ relation is defined inductively. If the variable X has
value x in the unique ðsince we are dealing with acyclic modelsÞ solution to
the equations in M in context ~u ði.e., the unique vector of values for the
exogenous variables that simultaneously satisfies all equations inMwith the
variables in U set to~uÞ, then ðM ;~uÞ ⊨ X 5 x. The truth of conjunctions and
negations is defined in the standard way. Finally, ðM ;~uÞ ⊨ ½~Y←~y�φ if
ðM~Y5~y ;~uÞ ⊨ φ.

2.3. Defining Causality. The basic intuition behind counterfactual def-
initions of causality is that A is a cause of B if there is counterfactual de-
pendence between A and B: if A had not occurred ðalthough it didÞ, then B
would not have occurred. It is well known that the counterfactual depen-
dence does not completely capture causality; there are many examples in the
literature where people say that A is a cause of B despite the fact that B does
not counterfactually depend on A ðat least, not in this simple senseÞ. Nev-
ertheless, all the counterfactual definitions of causality ðas well as people’s
causality ascriptionsÞ agree that this simple type of counterfactual depen-
dence gives a sufficient condition for causality. For the purposes of this ar-
ticle, I consider only cases in which this counterfactual dependence holds.

More formally, say that X 5 x is a but-for cause of φ in ðM ;~uÞ ðwhere φ
is a Boolean combination of primitive eventsÞ if ðM ;~uÞ ⊨ X 5 x ∧ φ ðso
both X 5 x and φ hold in context ~uÞ and there exists some x0 such that
ðM ;~uÞ ⊨ ½X←x0�:φ. Thus, with a but-for cause, changing the value of X to
something other than x changes the truth value of φ; that is, φ counter-
factually depends on X.

All the complications in counterfactual approaches to causality arise in
how they deal with cases of causality that are not but-for causality. Roughly
speaking, the idea is that X 5 x is a cause of Y 5 y if the outcome Y 5 y
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counterfactually depends on X under the appropriate contingency ði.e., hold-
ing some other variables fixed at certain valuesÞ. While the various approaches
to defining causality differ in exactly how this is done, they all agree that a but-
for cause should count as a cause. So, for simplicity in this article, I consider
only but-for causality and do not both to give a general definition of causality.

3. Sufficient Conditions for Transitivity. In this section I present two dif-
ferent sets of conditions sufficient for transitivity. Before doing that, I give
two counterexamples to transitivity, since these motivate the conditions.
The first example is taken from ðan early version ofÞHall ð2004Þ and is also
considered by Halpern and Pearl ð2005Þ.

Example 1. Consider the following scenario:

Billy contracts a serious but nonfatal disease, so he is hospitalized. Suppose
that Monday’s doctor is reliable and administers the medicine first thing in
the morning, so that Billy is fully recovered by Tuesday afternoon. Tues-
day’s doctor is also reliable and would have treated Billy if Monday’s doctor
had failed to. Given that Monday’s doctor treated Billy, it’s a good thing that
Tuesday’s doctor did not treat him: one dose of medication is harmless, but
two doses are lethal.

Suppose that we are interested in Billy’s medical condition on Wednesday.
We can represent this using a causal model MB with three variables:

• MT for Monday’s treatment ð1 if Billy was treated Monday; 0 otherwiseÞ;
• TT for Tuesday’s treatment ð1 if Billy was treated Tuesday; 0 otherwiseÞ;
and

• BMC for Billy’s medical condition ð0 if Billy feels fine on Wednesday; 1
if Billy feels sick on Wednesday; 2 if Billy is dead on WednesdayÞ.

We can then describe Billy’s condition as a function of the four possible
combinations of treatment/nontreatment on Monday and Tuesday. I omit
the obvious structural equations corresponding to this discussion; the
causal graph is shown in figure 1.

In the context in which Billy is sick and Monday’s doctor treats him,
MT 5 1 is a but-for cause of TT 5 0—because Billy is treated Monday, he
is not treated on Tuesday morning. And TT 5 0 is a but-for cause of Billy’s
being alive ðBMC 5 0 ∨ BMC 5 1Þ. However, MT 5 1 is not a cause of
Billy’s being alive. It is clearly not a but-for cause; Billy will still be alive if
MT is set to 0. Indeed, it is not even a cause under the more general def-
initions of causality, according to all the approaches mentioned above; no
setting of the other variables will lead to a counterfactual dependence be-
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tween MT and BMC ≠ 2. This shows that causality is not transitive ac-
cording to these approaches. Although MT 5 1 is a cause of TT 5 0 and
TT 5 0 is a cause of BMC 5 0 ∨ BMC 5 1, MT 5 1 is not a cause of
BMC 5 0 ∨ BMC 5 1. ðOf course, according to Lewis ½1986, 2000�, who
takes the transitive closure of the one-step dependence relation,MT 5 1 is a
cause of BMC 5 0 ∨ BMC 5 1.Þ QED

Although this example may seem somewhat forced, there are many quite re-
alistic examples of lack of transitivity with exactly the same structure. Consider
the body’s homeostatic system. An increase in external temperature causes a
short-term increase in core body temperature, which in turn causes the ho-
meostatic system to kick in and return the body to normal core body temper-
ature shortly thereafter. But if we say that the increase in external temperature
happened at time 0 and the return to normal core body temperature happened at
time 1, we certainly would not want to say that the increase in external tem-
perature at time 0 caused the body temperature to be normal at time 1.2

There is another reason that causality is intransitive, which is illustrated
by the following example, due to McDermott ð1995Þ.

Example 2. Suppose that a dog bites Jim’s right hand. Jim was planning to
detonate a bomb, which he normally would do by pressing the button with
his right forefinger. Because of the dog bite, he presses the button with his
left forefinger. The bomb still goes off.

Consider the causal model MD with variables DB ðthe dog bites, with
values 0 and 1Þ, P ðthe press of the button, with values 0, 1, and 2, depending

2. I thank Richard Scheines ðpersonal communication, 2013Þ for this example.

Figure 1. Billy’s medical condition.
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on whether the button is not pressed at all, pressed with the right hand, or
pressed with the left handÞ, and B ðthe bomb goes off Þ. We have the obvious
equations: DB is determined by the context, P5 DB1 1, and B5 1 if P is
either 1 or 2. In the context in which DB5 1, it is clear that DB5 1 is a but-
for cause of P5 2 ðif the dog had not bitten, P would have been 1Þ, and
P5 2 is a but-for cause of B5 1 ðif P were 0, then B would be 0Þ, but
DB5 1 is not a but-for cause of B5 1. And again, DB5 1 is not a cause of
B5 1, even under a more general notion of causation. Whether or not the
dog had bitten Jim, the button would have been pressed, and the bomb
would have detonated. QED

As I said, I believe that we feel that causality is transitive because, in typical
settings, it is. My belief is based mainly on introspection here and informal
polling of colleagues. Even when told that causality is not transitive, people
seem to find it hard to construct counterexamples. This suggests that when they
think about their everyday experience of causality, they come up with examples
in which causality is transitive. If there were many counterexamples available
in everyday life, it would be easier to generate them.

I now give two sets of simple conditions that are sufficient to guarantee
transitivity. Specifically, I give conditions to guarantee that if X1 5 x1 is a
but-for cause of X2 5 x2 in ðM ;~uÞ and X2 5 x2 is a but-for cause of X3 5 x3
in ðM ;~uÞ, then X1 5 x1 is a but-for cause of X3 5 x3 in ðM ;~uÞ.

The first set of conditions assumes that X1, X2, and X3 each has a default
setting. We can think of the default setting as the result of doing nothing.
This makes sense, for example, in the billiards example at the beginning of
the article, where we can take the default setting for the shot to be the expert
doing nothing and the default setting for the balls to be that they are not in
motion. Let the default setting be denoted by the value 0.

PROPOSITION 1. Suppose that ðaÞ X1 5 x1 is a but-for cause of X2 5 x2
in ðM ;~uÞ, ðbÞ X2 5 x2 is a but-for cause of X3 5 x3 in ðM ;~uÞ, ðcÞ x3 ≠ 0,
ðdÞ ðM ;~uÞ ⊨ ½X1 ← 0�ðX2 5 0Þ, and ðeÞ ðM ;~uÞ ⊨ ½X1 ← 0;X2 ← 0�ðX3 50Þ.
Then X1 5 x1 is a but-for cause of X3 5 x3 in ðM ;~uÞ.

Proof. If X2 5 0 in the unique solution to the equations in the causal model
MX1←0 in context ~u and X3 5 0 in the unique solution to the equations in
MX1←0;X2←0 in context ~u, then it is immediate that X3 5 0 in the unique
solution to the equations in MX1←0 in context ~u. That is, ðM ;~uÞ ⊨
½X1 ← 0�ðX3 5 0Þ. It follows from assumption a that ðM ;~uÞ ⊨ X1 5 x1. We
must thus have x1 ≠ 0, since otherwise ðM ;~uÞ ⊨ X1 5 0 ∧ ½X1 ← 0�ðX3 50Þ,
so ðM ;~uÞ ⊨ X3 5 0, which contradicts assumptions b and c. Thus, X1 5 x1
is a but-for cause of X3 5 x3, since the value of X3 depends counterfactually
on that of X1. QED
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Although the conditions of proposition 1 are clearly rather specialized, they
arise often in practice. Conditions d and e say that if X1 remains in its default
state, then so will X2, and if both X1 and X2 remain in their default states, then so
will X3. ðThese assumptions are very much in the spirit of the assumptions that
make a causal network self-contained, in the sense defined by Hitchcock
½2007�.Þ Put another way, this says that the reason for X2 not being in its default
state is X1 not being in its default state, and the reason for X3 not being in its
default state is X1 and X2 both not being in their default states. The billiard
example can be viewed as a paradigmatic example of when these conditions
apply. It seems reasonable to assume that if the expert does not shoot, then ball
A does not move, and if the expert does not shoot and ball A does not move ðin
the context of interestÞ, then ball B does not move, and so on.

Of course, the conditions on proposition 1 do not apply in either example 1
or example 2. The obvious default values in example 1 are MT 5 TT 5 0,
but the equations say that in all contexts~u of the causal model MB for this
example, we have ðMB;~uÞ ⊨ ½MT ← 0�ðTT 5 1Þ. In the second example, if
we take DB5 0 and P5 0 to be the default values of DB and P, then in all
contexts~u of the causal model MD, we have ðMD;~uÞ ⊨ ½DB← 0�ðP5 1Þ.

While proposition 1 is useful, there are many examples in which there is
no obvious default value. When considering the body’s homeostatic system,
even if there is arguably a default value for core body temperature, what is
the default value for the external temperature? But it turns out that the key
ideas of the proof of proposition 1 apply even if there is no default value.
Suppose that X1 5 x1 is a but-for cause of X2 5 x2 in ðM ;~uÞ and X2 5 x2 is
a but-for cause of X3 5 x3 in ðM ;~uÞ. Then to get transitivity, it suffices to
find values x01, x

0
2, and x03 such that x3 ≠ x03, ðM ;~uÞ ⊨ ½X1 ← x01�ðX2 5 x02Þ,

and ðM ;~uÞ ⊨ ½X1 ← x01;X2 ← x02�ðX3 5 x03Þ. The argument in the proof of
proposition 1 then shows that ðM ;~uÞ ⊨ ½X1 ← x01�ðX3 5 x03Þ.3 It then follows
that X1 5 x1 is a but-for cause of X3 5 x3 in ðM ;~uÞ. In proposition 1, x01, x02,
and x03 were all 0, but there is nothing special about the fact that 0 is a default
value here. As long as we can find some values x01, x

0
2, and x03, these con-

ditions apply. I formalize this as proposition 2, which is a straightforward
generalization of proposition 1.

PROPOSITION 2. Suppose that there exist values x01, x
0
2, and x03 such that

ðaÞ X1 5 x1 is a but-for cause of X2 5 x2 in ðM ;~uÞ, ðbÞ X2 5 x2 is a but-for
cause of X3 5 x3 in ðM ;~uÞ, ðcÞ x3 ≠ x03, ðdÞ ðM ;~uÞ ⊨ ½X1 ← x01�ðX2 5 x02Þ,

3. The analogous statement is also valid in standard conditional logic. That is, taking
A > B to represent “if Awere the case then B would be the case,” using standard closest-
world semantics ðLewis 1973Þ, ðA > BÞ ∧ ððA ∧ BÞ > CÞ ⇒ ðA > CÞ is valid. I thank
two of the anonymous reviewers of this article for encouraging me both to note that this
idea is the key argument of the article and to relate it to the Lewis approach.
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and ðeÞ ðM ;~uÞ ⊨ ½X1 ← x01;X2 ← x02�ðX3 5 x03Þ. Then X1 5 x1 is a but-for
cause of X3 5 x3 in ðM ;~uÞ.

To see how these ideas apply, suppose that a student receive an A1 in a course,
which causes her to be accepted at Cornell University ðher top choice, of
courseÞ, which in turn causes her to move to Ithaca. Further suppose that if she
had received an A in the course she would have gone to university U1 and as a
result moved to city C1, and if she gotten anything else, she would have gone to
university at U2 and moved to city C2. This story can be captured by a causal
model with three variables: G for her grade, U for the university she goes to,
and C for the city she moves to. There are no obvious default values for any of
these three variables. Nevertheless, we have transitivity here: the student’s A1
was a cause of her being accepted at Cornell, and being accepted at Cornell was
a cause of her move to Ithaca; it seems like a reasonable conclusion that
the student’s A1 was a cause of her move to Ithaca. And, indeed, transitivity
follows from proposition 2. We can take the student getting an A to be x01, the
student being accepted at university U1 to be x02, and the student moving to C1

to be x03 ðassuming that U1 is not Cornell and that C1 is not Ithaca, of courseÞ.
The conditions provided in proposition 2 are not only sufficient for cau-

sality to be transitive, they are necessary as well, as the following result
shows.

PROPOSITION 3. If X1 5 x1 is a but-for cause of X3 5 x3 in ðM ;~uÞ, then there
exist values x01, x

0
2, and x03 such that x3 ≠ x03, ðM ;~uÞ ⊨ ½X1 ← x01�ðX2 5 x02Þ,

and ðM ;~uÞ ⊨ ½X1 ← x01;X2 ← x02�ðX3 5 x03Þ.

Proof. Since X1 5 x1 is a but-for cause of X3 5 x3 in ðM ;~uÞ, there must ex-
ist values x01 ≠ x1 and x3 ≠ x03 such that ðM ;~uÞ ⊨ ½X1 ← x01�ðX3 5 x03Þ. Let x02
be such that ðM ;~uÞ ⊨ ½X1←x01�ðX2 5 x02Þ. Since ðM ;~uÞ ⊨ ½X1 ← x01�ðX2 5 x02
∧ X3 5 x03Þ, it easily follows that ðM ;~uÞ ⊨ ½X1 ← x01;X2 5 x02�ðX3 5 x03Þ. QED

In light of propositions 2 and 3, understanding why causality is so often taken
to be transitive comes down to finding sufficient conditions to guarantee the
assumptions of proposition 2. I now present another set of conditions sufficient
to guarantee the assumptions of proposition 2 ðand thus sufficient to make
causality transitiveÞ, motivated by the two examples showing that causality is
not transitive. To deal with the problem in example 2, I require that for every
value x02 in the range of X2, there is a value x01 in the range of X1 such that
ðM ;~uÞ ⊨ ½X1 ← x01�ðX2 5 x02Þ. This requirement holds in many cases of interest;
it is guaranteed to hold if X1 5 x1 is a but-for cause of X2 5 x2 and X2 is a
binary variable ði.e., takes on only two valuesÞ, since but-for causality requires
that two different values of X1 result in different values of X2. But this re-
quirement does not hold in example 2; no setting of DB can force P to be 0.
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Imposing this requirement still does not dealwith the problem in example 1.
To do that, we need one more condition. Say that a variable Y depends on X
if there is some setting of all the variables in U ∪ V other than X and Y such
that varying the value of X in that setting results in Y’s value varying; that is,
there is a setting~z of the variables other than X and Y and values x and x0 of
X such that FY ðx;~zÞ ≠ FY ðx0;~zÞ.

Up to now I have used the phrase “causal path” informally; I now make it
more precise. A causal path in a causal modelM is a sequence ðY1; : : : ;YkÞ
of variables such that Yj1 1 depends on Yj for j5 1; : : : ; k − 1. Since there is
an edge between Yj and Yj1 1 in the causal graph for M exactly if Yj1 1

depends on Yj, a causal path is just a path in the causal graph. A causal path
from X1 to X2 is just a causal path whose first node is X1 and whose last node
is X2. Finally, Y lies on a causal path from X1 to X2 if Y is a node ðpossibly X1

or X2Þ on a directed path from X1 to X2.
The additional condition that I require for transitivity is that X2 must lie

on every causal path from X1 to X3. Roughly speaking, this says that all the
influence of X1 on X3 goes through X2. This condition does not hold in
example 1; as figure 1 shows, there is a direct causal path fromMT to BMC
that does not include TT. However, this condition does hold in many ex-
amples of interest. Going back to the example of the student’s grade, the
only way that the student’s grade can influence which city the student
moves to is via the university that accepts the student.

The following result summarizes the second set of conditions sufficient
for transitivity.

PROPOSITION 4. Suppose that X1 5 x1 is a but-for cause of X2 5 x2 in the
causal setting ðM ;~uÞ, X2 5 x2 is a but-for cause of X3 5 x3 in ðM ;~uÞ, and
the following two conditions hold:

aÞ for every value x02 ∈ ℛðX2Þ, there exists a value x01 ∈ ℛðX1Þ such that
ðM ;~uÞ ⊨ ½X1← x01�ðX2 5 x02Þ;

bÞ X2 is on every causal path from X1 to X3.

Then X1 5 x1 is a but-for cause of X3 5 x3.

The proof of proposition 4 is not hard, although we must be careful to get all the
details right. The high-level idea of the proof is easy to explain, though. Sup-
pose that X2 5 x2 is a but-for cause of X3 5 x3 in ðM ;~uÞ. Then there must be
some values x2 ≠ x02 and x3 ≠ x03 such that ðM ;~uÞ ⊨ ½X2 ← x02�ðX3 5 x03Þ. By as-
sumption, there exists a value x01 ∈ ℛðX1Þ such that ðM ;~uÞ ⊨ ½X1 ← x01�ðX2 5x02Þ.
The requirement that X2 is on every causal path from X1 to X3 guarantees
that ½X2←x02�ðX3 5 X3Þ implies ½X1←x01;X2←x02�ðX3 5 X3Þ in ðM ;~uÞ. Roughly
speaking, X2 “screens off ” the effect of X1 on X3, since it is on every causal
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path from X1 to X3. Now we can apply proposition 2. I defer the formal ar-
gument to the appendix.

It is easy to construct examples showing that the conditions of propo-
sition 4 are not necessary for causality to be transitive. Suppose that X1 5 x1
causes X2 5 x2, X2 5 x2 causes X3 5 x3, and there are several causal paths
from X1 to X3. Roughly speaking, the reason that X1 5 x1 may not be a but-
for cause of X3 5 x3 is that the effects of X1 on X3 may “cancel out” along
the various causal paths. This is what happens in the homeostasis example.
If X2 is on all the causal paths from X1 to X3, then, as we have seen, all the
effect of X1 on X3 is mediated by X2, so the effect of X1 on X3 on different
causal paths cannot “cancel out.” But even if X2 is not on all the causal paths
from X1 to X3, the effects of X1 on X3 may not cancel out along the causal
paths, and X1 5 x1 may still be a cause of X3 5 x3. That said, it seems
difficult to find a weakening of the condition in proposition 4 that is simple
to state and suffices for causality to be transitive.

Appendix

A Proof of Proposition 4

To prove proposition 4, I need a preliminary result, which states a key ðand
obviousÞ property of causal paths: if there is no causal path from X to Y, then
changing the value of X cannot change the value of Y. Although it is intu-
itively obvious, proving it carefully requires a little bit of work.

LEMMA 1. If Y and all the variables in ~X are endogenous, Y ∉ ~X , and there
is no causal path from a variable in ~X to Y, then for all sets ~W of variables
disjoint from ~X and Yand all settings~x and~x0 for ~X , y for Y, and~w for ~W , we
have

ðM ;~u Þ ⊨ ½~X ←~x; ~W←~w�ðY 5 yÞ iff ðM ;~uÞ ⊨ ½~X←~x 0; ~W←~w�ðY 5 yÞ

and

ðM ;~u Þ ⊨ ½~X←~x�ðY 5 yÞ iff ðM ;~uÞ ⊨ Y 5 y:

Proof. Define the maximum distance of a variable Y in a causal model M,
denoted maxdistðY Þ, to be the length of the longest causal path from an
exogenous variable to Y. We prove the result by induction on maxdistðY Þ. If
maxdistðY Þ5 1, then the value of Y depends only on the values of the
exogenous variables, so the result trivially holds. If maxdistðY Þ > 1, let
Z1; : : : ; Zk be the endogenous variables on which Y depends. These are the
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endogenous parents of Y in the causal graph ði.e., these are exactly the
endogenous variables Z such that there is an edge from Z to Y in the causal
graphÞ. For each Z ∈ fZ1; : : : ; Zkg, maxdistðZÞ <maxdistðY Þ: for each path
from an exogenous variable to Z, there is a longer path to Y, namely, the one
formed by adding the edge from Z to Y. Moreover, there is no path from a
variable in ~X to any of Z1; : : : ; Zk , nor is any of Z1; : : : ; Zk in ~X ðfor other-
wise there would be a path from a variable in ~X to Y, contradicting the as-
sumption of the lemmaÞ. Thus, the inductive hypothesis holds for each of
Z1; : : : ; Zk . Since the value of each of Z1; : : : ; Zk does not change when we
change the setting of ~X from~x to~x0, and the value of Y depends only on the
values of Z1; : : : ; Zk and~u ði.e., the values of the exogenous variablesÞ, the
value of Y cannot change either. QED

I can now prove proposition 4. I restate it here for the convenience of the reader.

PROPOSITION 4. Suppose that X1 5 x1 is a but-for cause of X2 5 x2 in the
causal setting ðM ;~uÞ, X2 5 x2 is a but-for cause of X3 5 x3 in ðM ;~uÞ, and
the following two conditions hold:

aÞ for every value x02 ∈ ℛðX2Þ, there exists a value x01 ∈ ℛðX1Þ such that
ðM ;~uÞ ⊨ ½X1←x01�ðX2 5 x02Þ;

bÞ X2 is on every causal path from X1 to X3.

Then X1 5 x1 is a but-for cause of X3 5 x3.

Proof. Since X2 5 x2 is a but-for cause of X3 5 x3 in ðM ;~uÞ, there must
exist x02 ≠ x2 and x03 ≠ x3 such that ðM ;~uÞ ⊨ ½X2←x02�ðX3 5 x03Þ. By as-
sumption, there exists a value x01 such that ðM ;~uÞ ⊨ ½X1←x01�ðX2 5 x02Þ. I
claim that ðM ;~uÞ ⊨ ½X1←x01�ðX3 5 x03Þ. This follows from a more general
claim. I show that if Y is on a causal path from X2 to X3, then

ðM ;~u Þ⊨½X1 ← x
0
1�ðY 5 yÞ iff ðM ;~uÞ⊨½X2 ← x

0
2�ðY 5 yÞ: ðA1Þ

Although it is not obvious, this is essentially the argument sketched in the
main part of the text. Literally the same argument as that given below for the
proof of ðA1Þ also shows that

ðM ;~u Þ ⊨ ½X1 ← x
0
1�ðY 5 yÞ iff ðM ;~uÞ ⊨ ½X1 ← x

0
1 ∧ X2 ← x

0
2�ðY 5 yÞ:

Define a partial order ≺ on endogenous variables that lie on a causal path
from X2 to X3 by taking Y1 ≺ Y2 if Y1 precedes Y2 on some causal path from
X2 to X3. Since M is a recursive model, if Y1 ≺ Y2, we cannot have Y2 ≺ Y1
ðotherwise there would be a cycleÞ. I prove ðA1Þ by induction on the ≺
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ordering. The least element in this ordering is clearly X2; X2 must come
before every other variable on a causal path from X2 to X3. By assumption,
ðM ;~uÞ ⊨ ½X1 ← x01�ðX25 x02Þ,and clearly ðM ;~uÞ ⊨ ½X2 ← x02�ðX25x02Þ. Thus,ðA1Þ holds for X2. This completes the base case of the induction.

For the inductive step, let Y be a variable that lies on a causal path from
X2 and X3, and suppose that ðA1Þ holds for all variables Y 0 such that Y 0≺ Y .
Let Z1; : : : ; Zk be the endogenous variables that Y depends on inM. For each
of these variables Zi, either there is a causal path from X1 to Zi or there is
not. If there is, then the path from X1 to Zi can be extended to a directed path
P from X1 to X3, by going from X1 to Zi, from Zi to Y, and from Y to X3

ðsince Y lies on a causal path from X2 to X3Þ. Since, by assumption, X2 lies
on every causal path from X1 to X3, X2 must lie on P. Moreover, X2 must
precede Y on P. ðProof: Since Y lies on a path P 0 from X2 to X3, X2 must
precede Yon P 0. If Y precedes X2 on P, then there is a cycle, which is a con-
tradiction.Þ Since Zi precedes Yon P, it follows that Zi ≺ Y , so by the inductive
hypothesis, ðM ;~uÞ ⊨ ½X1 ← x01�ðZi 5 ziÞ iff ðM ;~uÞ ⊨ ½X2 ← x02�ðZi 5 ziÞ.

Now if there is no causal path from X1 to Zi, then there also cannot be a
causal path P from X2 to Zi ðotherwise there would be a causal path from X1

to Zi formed by appending P to a causal path from X1 to X2, which must
exist since, if not, it easily follows from lemma 1 that X1 5 x1 would not be
a cause of X2 5 x2Þ. Since there is no causal path from X1 to Zi, by lemma 1,
we must have that ðM ;~uÞ ⊨ ½X1←x01�ðZi 5 ziÞ iff ðM ;~uÞ ⊨ Zi 5 zi iff
ðM ;~uÞ ⊨ ½X2←x02�ðZi 5 ziÞ.

Since the value of Y depends only on the values of Z1; : : : ; Zk and ~u,
and I have just shown that ðM ;~uÞ ⊨ ½X1←x01�ðZ1 5 z1 ∧ : : : ∧ Zk 5 zkÞ
iff ðM ;~uÞ ⊨ ½X2 ← x02�ðZ1 5 z1 ∧ : : : ∧ Zk 5 zkÞ, it follows that ðM ;~uÞ ⊨
½X1 ← x01�ðY 5 yÞ iff ðM ;~uÞ ⊨ ½X2 ← x02�ðY 5 yÞ. This completes the proof
of the induction step. Since X3 is on a causal path from X2 to X3, it follows
that ðM ;~uÞ ⊨ ½X1 ← x01�ðX3 5 x03Þ iff ðM ;~uÞ ⊨ ½X2 ← x02�ðX3 5 x03Þ. Since
ðM ;~uÞ ⊨ ½X2←x02�ðX3 5 x03Þ by construction, we have that ðM ;~uÞ ⊨
½X1 ← x01�ðX3 5 x03Þ, as desired. Thus, X1 5 x1 is a but-for cause for X3 5 x3.
QED
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