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Abstract

This paper presents theoretical investigation of effect of relativistic self-focusing of cosh-Gaussian (ChG) laser beam on
second-harmonic generation in an underdense plasma. Steep transverse density gradients are produced in the plasma by
the electron plasma wave excited by relativistic self-focusing of ChG laser beam. The generated plasma wave interacts
with the pump beam to produce its second harmonics. Following Jeffrey Wentzel Kramers Brillouin (J.W.K.B)
approximation and moment theory the differential equation governing the evolution of spot size of laser beam with
distance of propagation has been derived. The differential equation so obtained has been solved numerically by the
Runge–Kutta method to investigate the effect of decentered parameter, intensity of laser beam as well as density of
plasma on self-focusing of the ChG laser beam, and generation of its second harmonics. It has been observed that the
peak intensity of the laser beam shifts in the transverse direction by changing the decentered parameter and a
noticeable change is observed on focusing of the laser beam as well as on conversion efficiency of second harmonics.
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1. INTRODUCTION

With the advent of high-power lasers, theoretical as well as
experimental investigations of nonlinear interaction of in-
tense laser beams with plasmas are gaining much interest
among researchers due to its widespread importance in a
number of novel applications, including laser-driven particle
accelerators (Tajima & Dawson, 1979; Faure et al., 2004;
Geddes et al., 2004; Mangles et al., 2004), inertial confine-
ment fusion (Deutsch et al., 1996; Hora, 2007), X-ray lasers
(Amendt et al., 1991), harmonic generation (Sturrock et al.,
1965; Bulanov et al., 1994; Lichters et al., 1996; Willes
et al., 1996; Dromey et al., 2009), etc. Propagation of
laser beams through plasmas up to several Rayleigh lengths
is an important prerequisite for successful realization of all
these applications. During the propagation of intense laser
beams through plasmas many nonlinear effects such as fila-
mentation of laser beam, self-phase modulation, group ve-
locity dispersion, relativistic self-focusing, etc. come into
the picture. It is therefore essential to investigate some of
these effects for the in-depth understanding of laser–plasma
interaction physics.

The inertial confinement fusion programs led to construc-
tion of lasers capable of reaching intensities over the range
1018–1020 W/cm2. When such a highly intense laser beam
propagates through the plasma, the quiver velocity of
plasma electrons becomes comparable to that of light in
the vacuum, causing significant increase in their mass.
Owing to the spatial intensity distribution of the laser
beam along its wavefront, electrons will experience mass
change according to their radial position. The mass change
will translate into modification of dielectric properties of
plasma due to which the plasma behave like a convex lens
leading to self-focusing of the laser beam.

Harmonic generation of electromagnetic radiations in the
laser-produced plasmas has become an important field of re-
search due to its number of applications. The process of
higher harmonic generation has strong influence on the
nature of propagation of laser beams through plasmas. It
allows the penetration of laser power to overdense regions
and hence is a promising diagnostic tool for obtaining infor-
mation of plasma parameters such as local electron density,
electrical conductivity, opacity, expansion velocity, as re-
viewed by Teubner and Gibbon (2009). Harmonic genera-
tion can also be used to detect the presence of large
electrical and magnetic fields, plasma waves, and the
electron transport inside the target with the help of
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interferometry or absorption spectroscopy. The second-
harmonic generation is used to track the passage of high-
intensity laser pulses through underdense plasma targets
and also provides information about linear mode conversion
of the laser beam into plasma wave near the critical layer
(Stamper et al., 1985). Owing to their high penetrating
power, harmonic radiations also find applications in material
and biological imaging.
Being already in an ionized state, the plasma is capable of

handling very high electric fields and hence, offers a prom-
ising medium for producing higher harmonic radiations.
There are a number of mechanisms through which one can
generate higher harmonics of laser beams in plasmas.
These mechanisms include resonance absorption (Erokhin
et al., 1969), parametric instabilities (Bobin, 1985), trans-
verse density gradients associated with light filaments
(Stamper et al., 1985), ionization fronts (Brunel, 1990),
and photon acceleration (Wilks et al., 1989), through
plasma wave excitation (Sodha et al., 1978; Parashar &
Pandey, 1992; Singh & Walia, 2011a, b). In the case of
second-harmonic generation, the main mechanism is excita-
tion of the electron plasma wave at pump frequency that in-
teracts with the pump beam to produce its second harmonics.
Harmonic generation in the laser–plasma interaction has

been investigated extensively both experimentally as well
as theoretically by a number of workers (Kant et al.,
2004a, b, 2011, 2012; Singh & Gupta, 2015; Verma et al.,
2015). Burnett et al. (1977) observed harmonics up to
11th from planar solid targets. Carman et al. (1981a) ob-
served harmonic orders up to 27, and then 49 in a second ex-
periment (Carman et al., 1981b). Hora and Ghatak (1985)
derived and evaluated the second-harmonic resonance for
perpendicular incidence at four times the critical density.
Kant et al. (2004a, b) investigated the second-harmonic
generation of short laser pulse in the plasma by taking into
consideration the effect of pulse slippage. Kaur et al.
(2009) investigated the resonant second-harmonic generation
of Gaussian laser beam in collisional magnetoplasma. Agar-
wal et al. (2001) studied the resonant second-harmonic gen-
eration of a millimeter wave in plasma in the presence of
magnetic wiggler. The wiggler provides an additional mo-
mentum for the generation of harmonic photon. Singh
et al. investigated the effect of self-focusing of the Gaussian
laser beam on second-harmonic generation in collisional
(Singh & Walia, 2011a), collisionless (Singh & Walia,
2011b), and relativistic (Singh & Walia, 2013) plasmas
using the moment theory approach (Lam et al., 1975,
1977). Jha & Aggarwal (2014) investigated the second-
harmonic generation of p-polarized laser beam in under-
dense plasma.
Laser beams with different intensity profiles behave differ-

ently in plasmas (Nanda et al., 2013). Literature review re-
veals the fact that most of the theoretical investigations on
second-harmonic generation have been carried out under the
assumption of uniform laser beam or laser beams having
Gaussian distribution of intensity along their wavefronts. In

contrast to this picture, a new class of laser beams known as
cosh-Gaussian (ChG) laser beams has become the center of
attraction to researchers because these beams possess high-
power and low divergence in comparison to Gaussian
beams. Recently in some publications (Patil et al., 2012;
Nanda & Kant, 2014), self-focusing of ChG laser beams
has been reported with the help of the paraxial theory. The
paraxial theory being local in character overemphasizes the
field close to the beam axis. In ChG laser beams, most of
the energy is concentrated in the off-axial region of wavefront
as compared to the axial region. Moreover, for decentered pa-
rameter b> 1 of the ChG laser beam, maximum intensity ap-
pears in the outer lobes of the wavefront as compared to the
intensity on the axis of the laser beam (cf. Fig. 1). In view
of this, it is not appropriate to the Taylor expand nonlinear
part of the dielectric function about the axis of ChG laser
beam. To overcome this major drawback the moment theory
has been used for the analysis of propagation characteristics
of ChG laser beam in which the entire nonlinear part of the
dielectric function is taken into consideration. The aim of
this paper is to investigate, for the first time, the effect of rel-
ativistic self-focusing of the ChG laser beam in plasma and its
effect on the second-harmonic generation.
The systematic organization of this paper is as follows:
In Section 2, the differential equation describing the evo-

lution of spot size of the laser beam with distance of prop-
agation has been derived. In Section 3, the conditions for
uniform wave-guide propagation of the laser beam have
been obtained. Section 4 describes the generation of electron
plasma wave (EPW) at pump frequency, and in Section 5 the
equation for conversion efficiency of the second harmonics
has been obtained. Lastly in Section 6, the detailed discus-
sion of the results obtained has been presented.

2. EVOLUTION OF SPOT SIZE OF LASER BEAM

Consider the propagation of an intense, circularly polarized
laser beam having an electric field vector

E(r, z, t) = E0(r, z)eι(ω0t−k0z)(ex + ιey) (1)

Fig. 1. Variation of the normalized intensity E0.E∗
0 |z=0/E

2
00

( )
with normal-

ized radial distance r/r0 for different values of b viz.
b= 0, 0.5, 1.0, 1.25
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through an underdense plasma having the dielectric constant

e = 1− ω2
p

ω2
0

, (2)

where ex and ey are the unit vectors along the x- and y-axes,
respectively, E0(r,z) is the slowly varying complex ampli-
tude of the electric field of the laser beam and

ω2
p =

4πe2n0
m

(3)

is the plasma frequency in the presence of laser beam; n0 is
the electron density; e and m, respectively, are the charge
and effective mass of the electron.
Owing to the circular polarization of the field of laser beam,

the plasma electrons move along the circular orbits with fre-
quency ω0 and due to high field associated with the laser
beam the quiver speed of the electrons becomes comparable
to that of light in the vacuum. Hence, the effective mass m
of the electrons in Eq. (3) gets replaced by m0γ, where m0 is
the rest mass of the electrons and γ is the relativistic Lorentz
factor. Following Akhiezer and Polovin (1956), at equilibrium

− eE0 = mvω0

from which we get

γ = (1+ βE0E
∗
0 )1/2, (4)

where

β = e2

m2
0c

2ω2
0

(5)

is the coefficient of the relativistic nonlinearity. Hence, the ef-
fective dielectric function of the plasma can be written as

e = 1− ω2
p0

ω2
0

(1+ βE0E
∗
0 )−1/2, (6)

where

ω2
p0 =

4πe2n0
m0

(7)

is the plasma frequency in the absence of laser beam. Equation
(6) can be written as

e = e0 + f(E0E
∗
0 ), (8)

where

e0 = 1− ω2
p0

ω2
0

(9)

is the linear part of the dielectric function, and

f(E0E
∗
0) =

ω2
p0

ω2
0

1− 1
γ

( )
(10)

is the nonlinear dielectric response of the plasma to the field of
incident laser beam.

The electric field vector E of the laser beam satisfy the
electromagnetic wave equation

∇2E−∇(∇.E) + ω2
0

c2
eE = 0. (11)

Even, if E has the longitudinal components, the polarization
term ∇(∇.E) of Eq. (11) can be neglected provided c2/ω2

0

(1/ε)∇2 ln e
∣∣ ∣∣≪1. This will be valid if ∇⊥ (1/e)∇⊥e

( )
≪

k20,that is, the transverse gradient of the dielectric function is
smaller as compared with the laser wavelength which im-
plies that either the transverse dielectric variation is weak
or the plasma is significantly underdense. We need only to
stress that Eq. (11) is the nonlinear wave equation, since e
depends on field amplitude E0 via Eq. (6). Under this ap-
proximation, Eq. (11) can be written as

ι
dE0

dz
= 1

2k0
∇2

⊥E0 + k0
2ε0

f(E0E
∗
0)E0. (12)

In deriving Eq. (12), the term d2E0/dz
2 has been neglected

under the assumption that the wave-amplitude scale length
along the longitudinal direction is much larger as compared
to the characteristic scale in the transverse direction. Equation
(12) is the well-known nonlinear Schrödinger wave equation
and possesses a number of conserved quantities due to its
symmetry properties. Among them two most important are:

I0 =
∫2π
0

∫∞
0
E0E

∗
0rdrdθ, (13)

I2 =
∫2π
0

∫∞
0

1

2k20
(|∇⊥E0|2 − F)rdrdθ, (14)

where

F(E0E
∗
0 ) =

1
2e0

∫E0E∗
0

0
f(E0E

∗
0 )d(E0E

∗
0 ). (15)

The first invariant I0, which is a consequence of Gauge invari-
ance, is merely a statement of conservation of energy of the
laser beam and second invariant I2 relates the wavefront cur-
vature of the laser beam to plasma nonlinearity.

Now, from the definition of the second-order spatial
moment of intensity distribution of the laser beam along
its wave front, the mean-square radius of the laser beam is
given by

〈R2(z)〉 = 1
I0

∫2π
0

∫∞
0
r2E0E

∗
0rdrdθ. (16)

Following the procedure of Lam et al. (1975, 1977), we get
the following quasi-optic equation governing the evolution
of mean-square radius of the laser beam with the distance
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of propagation.

d2〈R2〉
dz2

= 4I2
I0

− 4
I0

∫2π
0

∫∞
0
Q(E0E

∗
0)rdrdθ, (17)

where

Q(E0E
∗
0) =

E0E∗
0f(E0E∗

0)
2e0

− 2F(E0E
∗
0)

[ ]
.

The intensity distribution of ChG laser beam along its wave
front, at the plane of incidence (z= 0) is given by (Lu et al.,
1999; Konar et al., 2007; Patil et al., 2012)

E0E
∗
0 = E2

00e
−r2/r20 cosh2

b

r0
r

( )
, (18)

where r0 is the spot size of the laser beam at z= 0, E00 is the
axial amplitude of the electric field of the laser beam, b/r0 is
the parameter associated with the cosh function, also called
Cosh factor. For b= 0, the intensity distribution attains the
usual Gaussian distribution. Equation (18) can be written as

E0E
∗
0 = E00

4
eb

2

e− (r/r0)+b( )2 + e− (r/r0)−b( )2 + 2e− (r2/r20 )+b2( )[ ]
,

which implies that the ChG beam can be produced simply in
the laboratory by superposition of two decentered Gaussian
beams with same spot size and in phase, whose centers are
located at the positions (b/2, 0) and (−b/2, 0), respectively.
For z> 0, energy-conserving ansatz for the intensity dis-

tribution of ChG laser beam propagating along the z-axis is
given by

E0E
∗
0 = E2

00

f 2
e−r2/r20 f

2
cosh2

b

r0f
r

( )
, (19)

where r0f is the instantaneous spot size of the laser beam.
Hence, the function f is termed as the dimensionless beam
width parameter which is measure of both axial intensity
and spot size of the laser beam. Using Eqs (10), (15), (16),
and (19) in Eq. (17) we get the following differential equa-
tion governing the evolution of spot size of ChG laser beam
with dimensionless distance of propagation ξ = z/k0r20

( )
.

d2f

dξ2
+ 1

f

df

dξ

( )2

= 1+ e−b2 (1− b2)
2(1+ b2)

( )
1
f 3

− e−b2

1+ b2

( )

×
βE2

00

f 2

( )
ω2
p0r

2
0

c2

( )
(T1 − bT2), (20)

where

T1 =
∫∞
0
x3 1+ βE2

00

f 2
e−x2 cosh2(bx)

{ }−3/2

e−2x2 cosh4(bx)dr,

T2 =
∫∞
0
x2e−2x2 1+ βE2

00

f 2
e−x2 cosh2(bx)

{ }−3/2

cosh3(bx)sinh(bx)dr,

x = r

r0f
.

For an initially plane wavefront, Eq. (20) is subjected to the
boundary conditions f= 1 and df/dξ= 0 at ξ= 0.

3. UNIFORM WAVEGUIDE PROPAGATION

For an initially plane wavefront f= 1 and df/dξ= 0 at ξ= 0,
the condition d2f/dξ2= 0 leads to the propagation of the
ChG beam in uniform waveguide mode. The condition
under which this occurs is termed as critical condition. By
substituting df/dξ= d2f/dξ2= 0 into Eq. (20), we obtain
the following relation between the dimensionless equilibrium
beam width re= ωp0r0/c and critical beam intensity βE2

00

re = 1− b2 + eb
2

4βE2
00

( )1/2
1����������

T ′
1 − bT ′

2

√ , (21)

where

re = ωp0r0
c

,

T ′
1 =

∫∞
0
x3 1+ βE2

00e
−x2 cosh2(bx)

{ }−3/2
e−2x2 cosh4(bx)dr,

T2′ =
∫∞
0
x2e−2x2 1+ βE2

00e
−x2 cosh2(bx)

{ }−3/2
cosh3(bx)sinh(bx)dr.

Equation (21) can be depicted on the (βE2
00, re) plane and is

generally referred to as the critical power curve or, simply
the critical curve. If the initial value of βE2

00 and re of the
laser beam are such that the point (βE2

00, re) lies on the crit-
ical curve, then the value of d2f/dξ2 will vanish at ξ= 0.
Since the initial value of df/dξ (in the case of plane wave-
front) is zero, the value of df/dξ continues to be zero as
the beam propagates through the plasma. Hence, the value
of f, which is unity (=1) at ξ= 0, will remain unchanged.
The beam thus propagates without any change in its
width. This regime is known as uniform waveguide
propagation.
If the point (βE2

00, re), corresponding to initial normalized
beam intensity and beam radius, lies below the critical
curve, then d2f/dξ2 >0 and hence the spot size of the
laser beam increases as it propagates through the plasma;
whereas if the point (βE2

00, re) lie above the critical curve,
then d2f/dξ2 <0 and hence the spot size of the laser beam
decreases with the distance of propagation.
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4. PLASMA WAVE GENERATION

In the dynamics of excitation of EPW, it must be mentioned
here that the contribution of ions is negligible because they
only provide a static positive background, that is, only
plasma electrons are responsible for the excitation of
EPW. The background plasma density is modified via rela-
tivistic electron mass variation. Therefore, the amplitude of
the EPW that depends on the background electron density
gets strongly coupled to the laser beam.
The generated EPW is governed by the equation of conti-

nuity, equation of motion, equation of state, and Poisson’s
equation

∂n
∂t

+∇(nv) = 0, (22)

∂(nv)
∂t

+∇(nv2) + 1
m
∇Pe + neE

m
= 0, (23)

Pe

n3
= constant, (24)

∇E = 4π(ZN0i − n)e, (25)

where n is the total electron density, that is, sum of the equi-
librium plasma density and density perturbation associated
with EPW, E is the sum of electric field vectors of the
laser beam and self-consistent field associated with plasma
wave, v is the velocity of electron fluid, Pe is the hydrody-
namic pressure of the electron fluid, Z is the charge state
of ions. Using the linear perturbation theory it can be
shown that the plasma wave is governed by

− ω2
0n

′ + v2th∇
2n′ + ω2

pn
′ = e

m
n0∇E0, (26)

where v2th = 2K0T0/m0 is the thermal velocity of electrons
and n′ is the density perturbation associated with the
plasma wave.
Taking

n′ = n1e
ι(k0z−ω0t),

we get the following source term for the second-harmonic
generation

n1 = en0
m

E00

f

e−r2/2r20 f
2

(ω2
0 − k20v

2
th − ω2

p)

×
r

r20 f
2
− b

r0f
tanh

b

r0f
r

( ){ }
cosh2

b

r0f
r

( )
,

(27)

where n1(r, z) is the amplitude of the plasma wave.

5. SECOND-HARMONIC GENERATION

The wave equation governing the electric field E2 of the
second harmonic is given by (Singh et al., 2011a, b, 2013)

∇2E2 + ω2
2

c2
e2(ω2)E2 =

ω2
p0

c2
n1
n0

E0, (28)

where ω2= 2ω0 is the frequency of the second harmonic and
e2 is the effective dielectric constant at second-harmonic fre-
quency. From the above equation we get the expression for
field E2 of second harmonic as

E2 =
ω2
p0

c2
n1
n0

E0

(k22 − 4k20)
. (29)

Now the second-harmonic power can be written as

P2 =
∫2π
0

∫∞
0
E2E

∗
2rdrdθ (30)

also the power of the initial pump beam is given by

P0 =
∫2π
0

∫∞
0
E0E

∗
0rdrdθ. (31)

Defining the second-harmonic yield as

Y2 = P2

P0
,

Y2 = 2
9

ω2
0r

2
0

c2

( )
βE2

00

f 4

( )
e−b2H, (32)

where

H =
∫∞
0
e−2x2 (x− btanh(bx))2cosh4(bx)

ω2
0r

2
0

c2
− e0

v2th
c2

ω2
0r

2
0

c2
− ω2

p0r
2
0

c2

{

× 1+ βE2
00

f 2
e−x2 cosh2(bx)

( )−1/2
}2

dx. (33)

6. DISCUSSION

Equations (20) and (32) respectively describe the variation of
dimensionless beam width parameter f and the conversion
efficiency η2% of second harmonics of an intense ChG laser
beam with dimensionless distance of propagation ξ, in an
underdense plasma. These equations have been solved numer-
ically for the following critical set of laser–plasma parameters:

ω0= 1.78 × 1015 rad/s, λ= 1.06 μm, r0= μm, and equi-
librium plasma temperature T0= 106 K to analyze the effect
of decentered parameter, intensity of laser beam as well as
plasma density on relativistic self-focusing, and further its
effect on conversion efficiency η2% of second harmonics.

It is further mentioned that the right-hand side of Eq. (20)
contains several terms, each representing some physical
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mechanism responsible for the evolution of beam during its
propagation through plasma. First term on the right-hand
side has its origin in the Laplacian (∇2

⊥) in the nonlinear
Schrödinger wave Eq. (12) and is responsible for diffraction
divergence of the laser beam as it propagates through the
medium, whereas the second term that arises under the
effect of relativistic nonlinearity, is responsible for the conver-
gence of the beam due to nonlinear refraction. This nonlinear
term opposes the phenomenon of diffraction and depending
on its numerical value as compared with the diffractive
term, one can observe focusing/defocusing of the laser
beam. It is the relative competition of various terms that ulti-
mately determines the fate of spot size of the laser beam.
Figure 1 illustrates the normalized intensity profile

(E0.E∗
0 |z=0/E

2
00) versus r/r0 of ChG laser beam for different

values of decentered parameter b. For b= 0, the intensity pro-
file of the ChG beam is similar to the Gaussian distribution
and with increasing b (=0.5, 1.0) the profile becomes flat-
topped. Moreover, with further increase in b (=1.25) a central
dip appears in the intensity profile. Hence, it is observed from
Figure 1 that with a suitable choice of decentered parameter b
the intensity profile of ChG beam resembles to that of Gauss-
ian, flat-topped, and dark hollow Gaussian laser beams.
Figure 2 illustrates normalized intensity of the ChG laser

beam with normalized distance of propagation ξ and normal-
ized radial distance r/r0 for different values of decentered
parameter b= 0, 0.50, 1.0, 1.50, respectively, in the absence
of nonlinear refraction. The plots in Figure 2 depict that with
an increase in the value of decentered parameter b the
vacuum diffraction of the ChG laser beam decreases. This
is solely due to the fact that for a given spot size r0, the
ChG laser beam with larger value of b possesses larger

root mean square (r.m.s) beam width and hence diffract
less, which supports the results of Konar et al. (2007).
Figures 3 and 4 show normalized intensity of the ChG

laser beam in the plasma with normalized distance of
propagation ξ and normalized radial distance r/r0. It is ob-
served that as the laser beam propagates through the
plasma it gets filamented due to laser–plasma coupling
through relativistic nonlinearity of electron mass. Figure 3
shows the generated filaments of the laser beam by taking
fixed values of plasma density ω2

p0r
2
0/c

2 = 12.0, laser inten-
sity βE2

00 = 3.0, and varying decentered parameter b= 0,
0.25, 0.50, 0.75. The plots in Figure 3(a)–(d) depict that
an increase in the value of decentered parameter b from 0
toward 1 leads to enhanced localization of the filaments,
that is, the generated filaments become more and more in-
tense with an increase in the value of decentered parameter.
This is due to the fact that for 0< b< 1 the intensity profile
of the ChG laser beam resembles to that of flat-topped beam
(cf. Fig. 1) as a result of which nonlinear refraction of most
of the transverse part of the wavefront of the laser beam op-
poses the diffraction divergence. Hence, an increase in the
value of b from 0 to 1 leads to localization of laser filaments.
Hence, it is concluded from the present analysis that as we
increase the value of decentered parameter for 0≤ b< 1
the refractive term in Eq. (20) dominates the diffractive
term and the refractive term is more pronounced in the
case of flat-topped laser beams as compared to that of
Gaussian beams. Figure 4 shows the generated filaments
of the laser beam by taking fixed values of plasma density
ω2
p0r

2
0/c

2 = 12.0, laser intensity βE2
00 = 3.0, and varying

decentered parameter b= 1.0, 1.25, 1.50, 1.75. The plots
in Figures 4(a)–(d) depict that for b> 1, with an increase

Fig. 2. Variation of the normalized laser beam intensity with normalized dis-
tance of propagation ξ and radial distance r/r0, in the absence of nonlinear re-
fraction, at different values of decentered parameter, (a) b= 0, (b) b= 0.50,
(c) b= 1.0, and (d) b= 1.50, respectively.

Fig. 3. Variation of the normalized laser beam intensity with normalized
distance of propagation ξ and radial distance r/r0, keeping (ωp0r0/c)

2= 12,
βE2

00 = 3 fixed and at different values of decentered parameter, (a) b= 0,
(b) b= 0.25, (c) b= 0.50, (d) b= 0.75, respectively.
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in the value of b localization of the filaments decreases. It is
observed from Figure 4 that as the value of decentered pa-
rameter b increases from 1 onwards up to 1.50, the diffrac-
tive term relatively dominates the refractive term but still
maintaining the focusing character of the laser beam. As
the value of b becomes more than 1.50 (or b> 1.50) the dif-
fractive term completely dominates over the refractive term
leading to complete defocusing of the laser beam.
Figure 5 shows the normalized intensity of the ChG laser

beam in the plasma with normalized distance of propagation

ξ and normalized radial distance r/r0 for fixed values of de-
centered parameter b= 0.25, plasma density ω2

p0r
2
0/c

2 = 12,
and at varying values of laser intensity βE2

00 = 3.0, 3.50,
4.0, 4.50. It is observed from Figure 5 that an increase in the
laser intensity leads to enhanced intensity of the laser fila-
ments. This is due to the fact that with an increase in the
laser intensity the relativistic nonlinearity of electron mass
also increases which leads to enhanced focusing of the
laser beam.

Figure 6 shows the normalized intensity of the ChG laser
beam in the plasma with normalized distance of propagation
ξ and normalized radial distance r/r0 for fixed values of decen-
tered parameter b= 0.25, laser intensity βE2

00 = 3.0, and at
varying values of plasma density ω2

p0r
2
0/c

2 = 12, 13, 14, 15.
It is observed from Figure 6 that an increase in the plasma den-
sity leads to increase in the intensity of laser filaments. This is
due to the fact that with an increase in plasma density the
number of electrons contributing to self-focusing of the laser
beam also increases.

Figure 7 describes the variation of equilibrium beam
width re against the normalized intensity βE2

00 for different
values of decentered parameter b viz. b= 0, 0.50, 0.75,
1.0. It is observed from Figure 7 that for uniform waveguide
propagation of ChG laser beam corresponding to the fixed
value of equilibrium beam radius re, low-power lasers are re-
quired as we increase the value of decentered parameter for
0≤ b< 1. So it is obvious from Figure 7 that highest laser
power is required for the Gaussian laser beam to propagate
in the uniform waveguide mode. Therefore, it is concluded
that the flat-topped laser beams are more suitable for propa-
gation in uniform waveguide mode at lowest laser power.

Fig. 4. Variation of the normalized laser beam intensity with normalized
distance of propagation ξ and radial distance r/r0, keeping (ωp0r0/c)

2= 12,
βE2

00 = 3 fixed and at different values of decentered parameter, (a) b=
1.0, (b) b= 1.25, (c) b= 1.50, and (d) b= 1.75, respectively.

Fig. 5. Variation of the normalized laser beam intensity with normalized
distance of propagation ξ and radial distance r/r0, keeping (ωp0r0/c)

2 =
12, b= 0.25 fixed and at different laser beam intensities, (a)
βE2

00 = 3.0, (b) βE2
00 = 3.50, (c) βE2

00 = 4.0, and (d) βE2
00 = 4.50,

respectively.

Fig. 6. Variation of the normalized laser beam intensity with normalized
distance of propagation ξ and radial distance r/r0, keeping βE2

00 = 3.0,
b= 0.25 fixed and at different plasma densities, (a) (ωp0r0/c)

2= 12.0, (b)
(ωp0r0/c)

2= 13.0, (c) (ωp0r0/c)
2= 14.0, and (d) (ωp0r0/c)

2= 15.0,
respectively.
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Figures 8 and 9 describe the variation of the second-
harmonic conversion efficiency η2% against normalized dis-
tance of propagation ξ for fixed laser intensity βE2

00 = 3.0,
plasma density ω2

p0r
2
0/c

2 = 12.0, and at varying values of
the decentered parameter b= 0, 0.25, 0.50, 0.75 and 1.0,
1.25, 1.50, 1.75, respectively. It is seen that the conversion
efficiency η2% of the second harmonic oscillates as the
laser beam propagates through the plasma and maximum
conversion efficiency occurs at the focal regions. This is
due to the fact that intensity gradients are very steep in the

focal regions and hence, the plasma wave gets localized in
these regions and consequently, the second-harmonic con-
version efficiency is also more in these regions. The plots
in Figures 8 and 9 depict that as the value of decentered pa-
rameter b increases from 0 to 1 there is substantial increase in
the conversion efficiency η2% of the second harmonics and
with further increase of b from 1 onwards there is decrease in
the conversion efficiency. This is due to the sensitiveness of
conversion efficiency to the extent of localization of laser
filaments. Greater is the localization of laser filaments,
higher is the transverse density gradient in the focal region
and hence higher is the harmonic yield and vice versa.
Figure 10 describes the variation of the second-harmonic

conversion efficiency η2% against the normalized distance of
propagation ξ for fixed values of decentered parameter b=
0.25, plasma density ω2

p0r
2
0/c

2 = 12.0, and at varying values
of laser intensity βE2

00 = 3.0, 3.50, 4.0, 4.50. It is observed
that with an increase in the intensity of the laser beam there
is an increase in the conversion efficiency η2%. This is due
to the fact that the increase in the intensity of the incident
laser beam enhances the intensity of laser filaments which fur-
ther enhances the second-harmonic conversion efficiency η2%.
Figure 11 describes the variation of the second-harmonic

conversion efficiency η2% against the normalized distance
of propagation ξ for fixed values of decentered parameter
b= 0.25, laser intensity βE2

00 = 3.0, and at varying values
of plasma density viz. ω2

p0r
2
0/c

2 = 12, 13, 14, 15. It is ob-
served that with an increase in the plasma density there is
an increase in the second-harmonic conversion efficiency
η2%. This is due to the fact that an increase in plasma den-
sity leads to the enhanced intensity of laser filaments and
therefore the transverse density gradient becomes very
steep in the focal region, which leads to an increase in the
amplitude of the plasma wave and hence the conversion ef-
ficiency η2%.

Fig. 7. Variation of the equilibrium beam width re against the normalized
intensity βE2

00 for different values of decentered parameter b viz. b= 0,
0.50, 0.75, 1.0.

Fig. 8. Variation of the second-harmonic conversion efficiency η2% against
the normalized distance of propagation ξ for different values of decentered
parameter b viz. b= 0, 0.25, 0.50, 0.75 at fixed laser intensity βE2

00 = 3.0
and plasma density (ωp0r0/c)

2= 12.

Fig. 9. Variation of the second-harmonic conversion efficiency η2% against
the normalized distance of propagation ξ for different values of decentered
parameter b viz. b= 1.0, 1.25, 1.50, 1.75 at fixed laser intensity βE2

00 = 3.0
and plasma density (ωp0r0/c)

2= 12.
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7. CONCLUSIONS

The present work delineates the effect of relativistic self-
focusing of an intenseChG laser beamon the second-harmonic
generation in underdense plasmas. Following important
conclusions have been drawn from the present analysis:

• With an increase in decentered parameter for 0≤ b≤ 1,
there is an increase in extent of self-focusing of the
laser beam as well as of harmonic yield.

• With an increase in decentered parameter for b> 1,
there is a decrease in extent of self-focusing of the
laser beam as well as of harmonic yield.

These results are relevant to various contexts of laser–-
plasma interaction physics. Besides its obvious relevance
to the inertial confinement fusion, these results can also be
helpful in other applications requiring laser beams with lo-
calized energy. The present results may serve as a guide
for both experimental and theoretical investigations of la-
ser–plasma interactions.
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