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Studying particle-laden oscillatory channel flow constitutes an important step towards
understanding practical application. This study aims to take a step forward in our
understanding of the role of turbulence on fine-particle transport in an oscillatory
channel and the back effect of fine particles on turbulence modulation using an
Eulerian–Eulerian framework. In particular, simulations presented in this study are
selected to investigate wave-induced fine sediment transport processes in a typical
coastal setting. Our modelling framework is based on a simplified two-way coupled
formulation that is accurate for particles of small Stokes number (St). As a first
step, the instantaneous particle velocity is calculated as the superposition of the
local fluid velocity and the particle settling velocity while the higher-order particle
inertia effect neglected. Correspondingly, only the modulation of carrier flow is
due to particle-induced density stratification quantified by the bulk Richardson
number, Ri. In this paper, we fixed the Reynolds number to be Re∆ = 1000 and
varied the bulk Richardson number over a range (Ri = 0, 1 × 10−4, 3 × 10−4 and
6 × 10−4). The simulation results reveal critical processes due to different degrees
of the particle–turbulence interaction. Essentially, four different regimes of particle
transport for the given Re∆ are observed: (i) the regime where virtually no turbulence
modulation in the case of very dilute condition, i.e. Ri ∼ 0; (ii) slightly modified
regime where slight turbulence attenuation is observed near the top of the oscillatory
boundary layer. However, in this regime a significant change can be observed in
the concentration profile with the formation of a lutocline; (iii) regime where flow
laminarization occurs during the peak flow, followed by shear instability during the
flow reversal. A significant reduction in the oscillatory boundary layer thickness is also
observed; (iv) complete laminarization due to strong particle-induced stable density
stratification.
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2 C. E. Ozdemir, T.-J. Hsu and S. Balachandar

1. Introduction
Particle transport in an oscillatory channel has been a topic of interest in many

disciplines of research. Particle transport and deposition through respiratory airways
(Nowak, Kakade & Annapragada 2003), blood transport in arteries (Taylor 1959) and
sediment transport driven by waves and currents are a few example applications in
biomedical and coastal engineering. Wave-induced fine-sediment transport is one of
the major mechanisms shaping the coastal morphodynamics and has a considerable
impact on the fate of terrestrial sediment in the coastal ocean (e.g. Traykovski et al.
2000; Harris, Traykovski & Geyer 2005). Motivated by this application, we aim to
improve our current understanding of the wave-induced turbulence and its interaction
with the fine-sediment transport.

Wave-resolving Reynolds-averaged two-phase models are available for studying the
effect of the wave-induced sediment transport. The effects of the turbulence–particle
interaction (i.e. two-way coupling, Conley et al. 2008; Hsu, Ozdemir & Traykovski
2009) and the particle–particle interaction (four-way coupling, Hsu, Jenkins & Liu
2004; Yu, Hsu & Hanes 2010) have been investigated. However, Reynolds-averaged
models suffer from uncertainties in turbulence closure. For example, semi-empirical
parameters are used in the transport equations and critical assumptions, such as eddy
viscosity, isotropy and similarity relationships are used in the standard two-equation
models. These closure issues become more problematic due to the unsteady nature
of oscillatory flow and intense particle–turbulence interactions. Hence, the underlying
assumptions of Reynolds-averaged closures need to be tested against simulations
where turbulence is fully resolved. On the other hand, existing fully resolved direct
numerical simulation (DNS) studies (Spalart & Baldwin 1989; Vittori & Verzicco
1998; Salon, Armenio & Crise 2007) investigate oscillatory boundary layer without
particles. Scotti & Piomelli (2001) adopted large-eddy simulation (LES) for the
investigation of pulsating flow in a channel at a higher Reynolds number. More
recently, Salon et al. (2007) carried out inter-comparison between LES and DNS at
Reynolds number (Re∆) = 990 (see (1.1)) and LES at Re∆ as high as 1790. The study
of Chang & Scotti (2006) utilizes LES for particle-laden oscillatory boundary layer
with particle phase assumed to be completely passive to carrier turbulent flow. As
discussed in this paper, assuming particles to be completely passive is valid only under
an extremely dilute condition. Even at a low concentration where particle–particle
interaction can be ignored, the back effect of suspended particles on the carrier
phase can be significant. In particular, the magnitude of the carrier-phase turbulence
is modulated and the nature of two-phase flow turbulence, such as the degree of
isotropy and kinetic energy budget, is altered. This change in the carrier-phase
turbulence in turn influences the resulting particle suspension/deposition processes in
an oscillatory flow.

Despite pioneering studies of turbulence modulation by experiments (Rogers &
Eaton 1991; Tanaka & Eaton 2008), point particle simulations (Maxey 1987;
McLaughlin 1989; Elghobashi 1991; Squires & Eaton 1991; Elghobashi & Trusdell
1992, 1993) and fully resolved simulations (Bagchi & Balachandar 2003, 2004;
Burton & Eaton 2005; Zeng et al. 2008; Zeng, Balachandar & Najjar 2010), our
understanding remains incomplete. In general, it is observed that small neutrally
buoyant particles at low concentrations tend to suppress turbulence, while larger
particles contribute to turbulence enhancement. There are several mechanisms that
contribute to the modulation of the carrier-phase turbulence. Added inertia of
the suspended particles, increased dissipation due to hydrodynamic drag on the
particles and enhanced effective viscosity of the suspension are three mechanisms that
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Numerical investigation of fine particle laden flow in an oscillatory channel 3

contribute to the suppression of the carrier-phase turbulence. On the other hand,
if the particle Reynolds number is sufficiently large, carrier-phase turbulence can
be augmented through wake oscillation and vortex shedding. Finally, local vertical
variations in particle concentration can introduce stable or unstable stratification
and contribute to turbulence modulation (e.g. Huppert, Turner & Hallworth 1995;
see Balachandar & Eaton 2010 for a more complete review). Here we consider
a sufficiently dilute transport of fine particles that the particle inertial, enhanced
viscosity and vortex shedding effects are unimportant. Our focus is on the last
mechanism where the effect of particle-induced density stratification on the carrier
flow turbulence is of critical interest.

In the case of fine particles (or floc aggregate) in water, their relative negative
buoyancy results in gravitational settling towards the bottom. Turbulence near the
bottom boundary contributes to resuspension of particles and an effective (turbulent)
diffusion of particles away from the bottom. In a statistically stationary flow, the above
two mechanisms statistically balance each other and determine the vertical variation of
mean particle concentration and the degree of stable density stratification. The earlier
studies addressing this problem are carried out by Vanoni (1946) and Einstein & Chien
(1955). Both these experimental works concluded that the change in the Reynolds-
averaged mean velocity is due to suspended particles, and the modified mean velocity
profile can be parameterized in terms of a reduced value of the von Karman constant.
More importantly, Vanoni (1946) hypothesized that particle-induced stable density
stratification is responsible for the decrease in turbulence, which in turn contributed to
the modification of the mean velocity. Later studies account for the effect of particle-
induced stable density stratification using different parameterizations. Gelfenbaum &
Smith (1986) proposed a reduction factor for eddy viscosity as a function of the
Richardson number. Hino (1963) and Zhou & Ni (1995) evaluated changes to the
von Karman constant in terms of particle concentration. Turner (1973) and Barenblatt
(1953) adopted damping functions for eddy viscosity as a function of the Monin–
Obukhov length scale. The numerical study by Noh & Fernando (1991) utilized
one-equation closure incorporating the effect of particles on turbulent flow due to
density stratification to model particle suspension by an oscillating grid and the
formation of lutocline. More recent numerical study by Winterwerp (2001, 2002),
Hsu, Traykovski & Kineke (2007), Hsu et al. (2009) adopt two-way coupled two-
equation turbulence closures for the fine-sediment transport in the tidal boundary
layer and the wave-current boundary layer, respectively.

The unsteady nature of the oscillatory particulate flow presents a challenge
compared with steady flow or tidal variations. Under ideal sinusoidal forcing, the flow
velocity varies between positive and negative peaks with flow reversal in between.
If the instantaneous flow velocity becomes sufficiently large, then perturbations in
the flow start to grow during the acceleration phase, and depending upon the
extent of the acceleration phase, the flow might become fully turbulent. During
deceleration, the grown perturbations may fully decay and the flow might laminarize.
Or depending on the maximum velocity that the flow reaches, the perturbations
may only partially decay and the flow can remain turbulent throughout the entire
oscillatory cycle. This unsteady nature of the flow has motivated researches to address
the onset of turbulence (Hino, Sawamoto & Takasu 1976) and the evolution of vortex
structures (Sarpkaya 1993). These studies have classified four flow regimes based on
the Reynolds number defined: (i) laminar regime (Re∆ < 200), (ii) disturbed laminar
regime (200 < Re∆ < 400), (iii) intermittently turbulent regime (400 < Re∆ < 1200),
and (iv) fully turbulent regime (Re∆ > 1200). The Reynolds number Re∆ is defined
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4 C. E. Ozdemir, T.-J. Hsu and S. Balachandar

as

Re∆ =
Ũ0∆̃

νf

, (1.1)

where Ũ0 is the dimensional maximum free-stream velocity, ∆̃ is the dimensional
Stokes boundary-layer thickness defined as ∆̃=

√
2νf /ω̃ with ω̃ being the dimensional

angular frequency of oscillatory forcing, and νf is the kinematic viscosity of the fluid.
Alternatively, in many coastal sediment transport studies, the Reynolds number is
defined using the orbital semi-excursion length, ã = Ũ0/ω̃ (see for example Jehnsen,
Sumer & Fredsóe 1989):

Rea =
Ũ0 ã

νf

. (1.2)

After algebraic manipulation the relation between these two Reynolds numbers
defined in (1.1) and (1.2) is obtained as follows:

Rea =
Re2

∆

2
. (1.3)

In the laminar regime, the flow stays laminar over the entire wave cycle, and in
the fully turbulent regime it stays turbulent throughout the wave cycle. In the
perturbed laminar regime, the flow is perturbed during the acceleration phase and
laminarizes during the deceleration without ever becoming fully turbulent. Finally,
in the intermittently turbulent regime, the flow becomes turbulent starting from the
late acceleration phase and tends to decay during the late deceleration phase without
complete laminarization. The signature characteristic of the intermittently turbulent
regime is the formation of bursts at the late stages of deceleration (Hino et al. 1983;
Salon et al. 2007; Ozdemir, Hsu & Balachandar 2010). This burst phenomenon is very
important for suspension/deposition of particles and is therefore revisited in § 3.2.

DNS of the oscillatory channel flow in a clear fluid was initiated by Spalart &
Baldwin (1989) and continued in by Akhavan, Kamm & Shapiro (1991), Vittori &
Verzicco (1998) and Costamagna, Vittori & Blondeaux (2003). Recently, Ozdemir
et al. (2010) performed numerical simulations in the intermittently turbulent regime
for a very dilute particle concentration, where particles can be assumed to be passive
and do not influence the carrier flow. They used a higher-order accurate pseudo-
spectral flow solver and employed the same domain size and resolution as Spalart &
Baldwin (1989) did. These simulations are of high fidelity since they use a large
computational domain, a fine grid resolution and a spectrally accurate numerical
methodology. Ozdemir et al. (2010) observe randomly distributed energetic vortices
present at the maximum free-stream velocity. These vortices start to lose their energy
during the flow reversal and are uplifted towards the upper portions of the channel,
where they manifest themselves as random spikes in decelerating phases shown in
concentration and vorticity iso-contours. These vortices then transform into organized
long streaks at the early stages of acceleration. Correspondingly, the peak turbulent
fluctuation occurs close to the bottom boundary when free-stream velocity reaches
its maximum. Then, turbulent intensity reduces and the peak shifts away from the
bottom boundary.

The two-way coupled effects between sedimenting particles and carrier flow
turbulence were investigated by Cantero et al. (2009b) in the context of a fully
turbulent turbidity current. They used a current-with-a-roof model to consider the
statistically stationary state. Their simulation results revealed a decrease in the turbu-
lent intensity with increasing particle-induced stratification effect, and the variation
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Numerical investigation of fine particle laden flow in an oscillatory channel 5

in the effective von Karman constant is revisited. Most importantly, it was observed
that at a specified particle concentration (correspondingly, a fixed Richardson
number), above a threshold particle settling velocity, the stratification effect becomes
strong enough to kill turbulence and the flow relaminarizes. Under such condition
the particles cannot be kept in suspension and massive deposition from the turbidity
current occurs.

The problem of turbulence modulation by particles in an oscillatory flow is far
more challenging. As discussed above, even in the limit of a clear fluid, depending
on the Reynolds number, turbulence may be limited to only part of the wave
cycle. Correspondingly, the interaction between suspended particles and carrier flow
turbulence can be complex and highly variable over the wave cycle. In this study,
we shall investigate the following issues of fine-particle transport in an oscillatory
boundary layer using two-way coupled numerical simulations and discuss their
relevance to existing field and laboratory observations: (i) The formation of sharp
stable particle concentration gradient, i.e. lutocline, in an oscillatory boundary layer;
(ii) the observation of instability and bursting events during the flow reversal and early
decelerating phases in a stratified turbulent flow; and (iii) complete laminarization
due to particle-induced stratification.

The mathematical formulation of fine-particles transport in the oscillatory channel
flow is discussed in detail in § 2. The Reynolds number in this study is selected to
be Re∆ = 1000 (i.e. Rea = 5 × 105), which is a plausible value under wave conditions
observed during fluid mud events at continental shelf (to be discussed below). On the
basis of this Reynolds number, the non-dimensional particle settling velocity is chosen
to be consistent with typical observed fine-sediment settling velocity. Four simulations
are carried out for a range of bulk Richardson number (Ri = 0, 1 × 10−4, 3 × 10−4

and 6 × 10−4), which covers the entire range of fully developed turbulence to complete
relaminarization. Section 3 is devoted to a detailed analysis of the simulation results
in terms of turbulent structure, mean flow and turbulence statistics, suspension and
deposition processes, and turbulent kinetic energy budget. In § 4, we discuss observed
flow regimes and their relevance to existing field/laboratory observations of fine-
sediment transport in a wave boundary layer. In § 5, we present conclusions and
recommendations for the future work.

2. Mathematical formulation
In this study, we closely follow the mathematical model adopted in the particulate

gravity (Harris, Hogg & Huppert 2001; Necker et al. 2002) and turbidity current
research (Felix 2002; Hall, Meiburg & Kneller 2008; Cantero et al. 2009a; Sequeiros
et al. 2009), where mixing and transport characteristics of the dispersed phase in a two-
phase flow context are similar to our problem. As mentioned in § 1, we present four
different cases over a range of Ri to identify the effect of particle concentration on the
carrier-phase turbulence and particle transport mechanisms. With this motivation, we
keep other non-dimensional parameters constant, i.e. the Reynolds number, Re∆, and
the non-dimensional settling velocity Vs are held fixed. A wide range of dimensional
flow and particle parameters, such as particle size, flow velocity amplitude and wave
period, satisfy the selected combination of Re∆, Vs and Ri. The realistic range of
particle and flow variables that are observed in a typical marine environment falls
within the selected non-dimensional parameters. This can be exemplified in a typical
coastal settling as follows: surface waves at continental shelf have a wave period of
about 10 s and the corresponding Stokes boundary layer thickness is ∆̃= 1.8×10−3 m.
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6 C. E. Ozdemir, T.-J. Hsu and S. Balachandar

Here, a Reynolds number (see (1.1)) of Re∆ =1000 (or Rea =5 × 105) corresponds to
an oscillatory flow velocity amplitude of 0.56 m s−1. This value is similar in magnitude
to that observed at a continental shelf where fluid mud is suspended in the wave
boundary layer (e.g. Traykovski, Wieberg & Geyer 2007; Traykovski et al. 2000).
We consider a suspension of fine silt in marine environment. Typical silt size of
24 × 10−6 m (=24 µm) with a specific gravity of 2.65 results in a still fluid settling
velocity of about 0.5 × 10−3 m s−1. The particle time scale, defined as ρpd2/18µf , can
be computed to be 8.5 × 10−5 s, where ρp is the particle density, d is the particle
diameter and µf is the dynamic viscosity of water. The time scale of the Stokes

layer (∆̃/Ũ0) can be calculated as 3.2 × 10−3 s. Hence, the non-dimensional particle
response time is only 0.0264.

For the current case of Re∆ =1000, as shown below, the flow is turbulent provided
the back effect of the suspended particles is small. The flow thus presents a range of
time scales from the integral to the Kolmogorov scale. The Kolmogorov time scale τ̃l

can be calculated as follows:

τ̃l = (ε̃/νf )−1/2, (2.1)

where ε̃ is the dimensional turbulent dissipation rate. Hence, the non-dimensional
Kolmogorov time scale can be written as

τl = (Re∆ ε)−1/2. (2.2)

We can see that as the turbulent dissipation rate increases, the non-dimensional
Kolmogorov time scale τl decreases and the Stokes number based on the Kolmogorov
time scale (τp/τl) increases. Therefore, the use of the maximum dissipation rate εmax

within the wave cycle of the passive simulation, where there is no turbulence decay,
allows us to estimate the most conservative Stokes number, St. The turbulent kinetic
energy (TKE) budget in the passive case without the particles gives a maximum non-
dimensional ε of 0.0016 (see figure 19). This gives a non-dimensional Kolmogorov
time scale of 0.791. Hence, in this study, the particle Stokes number based on the
Kolmogorov time scale is no more than 0.033, and is often far smaller. It can thus be
established that for this study, particles are sufficiently small that their Stokes number
is far less than 1. As a result, we simply define the non-dimensional particle velocity
UP

i as the sum of the fluid velocity U
f
i and the particle settling velocity Vs as

U
p
i = U

f
i + Vsδi2, (2.3)

where the superscripts f and p stand for the fluid and particle phases, respectively.
Substituting the above algebraic relationship in the Eulerian–Eulerian two-phase
equations and applying the Boussinesq approximation, which is valid for relatively
small concentrations, the resulting governing equations can be greatly simplified (e.g.
Cantero, Balachandar & Garcia 2008). The continuity (2.4) and momentum equations
(2.5) of the fluid–particle mixture can be written as

∇ · Uf =0, (2.4)

DUf

Dt
= − 2

Re∆

cos

(
2

Re∆

t

)
e1 − ∇ P ′ − Ri Ce2 +

1

Re∆

∇2(Uf ). (2.5)

These equations are non-dimensionalized by length, velocity and time scales selected
to be the Stokes boundary layer thickness (∆̃), maximum free-stream velocity (Ũ0) and
∆̃/Ũ0, respectively. Note that e1 and e2 correspond to unit vectors along the streamwise
and wall-normal directions, respectively. Note that the particle volume concentration
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Numerical investigation of fine particle laden flow in an oscillatory channel 7

considered in this study is sufficiently dilute, i.e. O(0.01), and since the particle-to-fluid
density ratio is O(1) the density variations in the flow can be considered small. Hence,
the Boussinesq approximation is appropriate and furthermore makes it possible to
impose incompressibility in the continuity equation.

In this problem of an oscillatory channel flow, the time variation of the dimensional
free-stream velocity is given as follows:

Ũ = Ũ0 cos(ω̃t̃) e1. (2.6)

Far from the bottom boundary, well outside the oscillatory boundary layer, the
momentum equation can be simplified for the inviscid flow to yield the mean
streamwise pressure gradient to be

∂P̃

∂x̃
= −ρf Ũ0ω̃ sin(ω̃t̃). (2.7)

The above equation upon non-dimensionalization, along with the definition of the
Stokes layer thickness and Reynolds number, reduces to the first term on the right-
hand side of (2.5). The second term corresponds to the fluctuating pressure gradient.
The third term on the right-hand side represents the back effect of the particle on the
fluid phase via particle-induced density stratification, which is only effective in the
vertical direction. Here, the bulk Richardson number, Ri, is defined as

Ri =
(ρp − ρf )g∆̃

ρf Ũ 2
0

¯̃C, (2.8)

where ρf is the fluid density and ¯̃C is the volume-averaged concentration over the
entire computational domain, i.e.

¯̃C =

∫
C̃(x, y, z)d∀

∀ . (2.9)

Here, ∀ is the volume of the domain. In the present formulation, concentration

is normalized by ¯̃C. As the particles settle within the fluid, their back-coupling on
the fluid per unit volume is given by the force C̃ρp g, where g is the gravitational

acceleration and C̃ is the non-normalized particle concentration. If combined with the
gravitational force on the fluid phase, (1 − C̃)ρf g, and upon non-dimensionalization,
we obtain the third term in the momentum equation (2.5). This level of two-way
coupling is consistent with the assumption shown in (2.3) that particle velocity is a
superposition of the local fluid velocity and particle settling velocity. This formulation
does not account for the inertial effect of particles on particle motion and hence
processes such as preferential accumulation are not expected in our simulations,
which is appropriate for the present particles of a very small St. Also, correspondingly,
correction to the frictional or drag force arising from particle inertia is neglected in
the momentum equation.

Finally, the particle concentration is calculated by the conservation of particle mass:

∂

∂t
(C) + ∇ · [(Uf + Vse2)C] =

1

Re∆ Sc
∇2C. (2.10)

The term on the right-hand side represents an effective diffusive flux. Here, the
Schmidt number is Sc = νf /κ , where κ is the effective diffusivity of the particles.
The governing equation of particle motion, when applied in the Lagrangian
framework, contains no diffusive effect, i.e. Sc → ∞. However, in the literature of
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X

Y

Z

60∆
~

30∆
~

60∆
~

NSWBC

NSWBC

PBC

PBC

PBC

PBC

Figure 1. Schematic of the computational domain used in the present simulations. No-slip
wall boundary condition (NSWBC) is imposed at the top and bottom planes, and periodic
boundary condition (PBC) is imposed on the streamwise and spanwise ends of the domain.
The size of the computational domain is 60, 30 and 60 times the Stokes boundary layer
thickness along the streamwise, spanwise and wall-normal directions, respectively.

Eulerian–Eulerian simulations of particle-laden gravity and turbidity currents, a
diffusion term is invariably present (Necker et al. 2002; Cantero et al. 2009a; Sequerios
et al. 2009). The rationale of adding particle diffusion term is to account for the
subgrid-scale random motion of particles due to their interaction, which yields a
net particle flux. Following prior simulations, in the present simulations as well a
diffusive term is required not only for numerical stability but also to account for the
sub-scale particle flux. Birman, Martin & Meiburg (2005) show that the effect of Sc
within the range of (0.2, 5.0) is quite insensitive in moderately energetic gravity flows.
Similarly, Bonometti & Balachandar (2008) have investigated the effect of Sc in the
range of [1, ∞) for gravity currents with similar governing equations, and observed
that the Schmidt number effect is small in high-Reynolds-number flows. It is observed
that in vigorous flows, mixing is dominated by advection and the effect of molecular
mixing represented by diffusion is quite small. We have selected Sc to be 0.5 in these
simulations.

The velocity boundary conditions at both the top and bottom boundaries are
no-slip wall boundary conditions. Periodic boundary conditions are imposed at the
lateral boundaries of the computational domain for both the velocity and the particle
concentration (see figure 1). For the particle concentration, the following relation is
imposed at both the top and bottom boundaries of the computational domain:

Vs

∂C

∂y
=

1

Re∆ Sc

∂2C

∂y2
. (2.11)

This boundary condition imposes no net transport of particles across the top and
bottom boundaries. These boundary conditions in turn imply that the total volume of
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Numerical investigation of fine particle laden flow in an oscillatory channel 9

particles remains constant in the domain throughout the computation. This integral
property has been confirmed as a verification test in the present computations.

3. Numerical methodology
The size of the computational domain is 60∆̃ × 60∆̃ × 30∆̃ along the streamwise,

vertical and spanwise directions, respectively. Thus, the distance from the bottom
boundary to the centreplane of the channel is 30 times the Stokes layer thickness. The
selected domain size is exactly the same as that of Spalart & Baldwin (1989) and their
domain is the largest and the most conservative among the different numerical studies.
By examining the two-point correlation function, Ozdemir et al. (2010) showed that
this domain size is sufficiently large to capture the main turbulent characteristics at
Re∆ =1000 in the case of a clear fluid.

The adequacy of spatial resolution is examined in terms of wall units. The friction
velocity in dimensional terms is defined as

Ũ∗ =

√
|τ̃w|
ρf

, (3.1)

where τ̃w is the wall shear stress. In non-dimensional terms, the friction velocity
becomes

U∗ =

√
1

Re∆

∣∣∣∣
〈

∂u

∂y

〉
w

∣∣∣∣, (3.2)

where 〈 · 〉w represents an average over the bottom wall. The time history of the
non-dimensional friction velocity and the corresponding centreline velocity is shown
in figure 2 for the Ri = 0, 1 × 10−4 and 3 × 10−4 cases. Also shown in the figure is
the definition of the phase (φ) adopted in this study. According to this definition,
φ = 0 corresponds to the phase of the maximum positive streamwise velocity, φ = π
corresponds to the maximum negative velocity, and φ = π/2 and 3π/2 correspond
to flow reversals. When Ri = 0 or 1 × 10−4, the flow near the bottom wall remains
turbulent and the friction velocity (correspondingly, wall shear stress) peaks at about
the same time as the velocity maximum. For the case of Ri = 3 × 10−4, as discussed
later, the flow near the bottom wall is laminarized and, as a result, the peak friction
velocity leads the velocity maximum by π/4, in agreement with the expected behaviour
of the laminar oscillatory Stokes layer.

The non-dimensional coordinate in wall units can be expressed as

x+ = U∗,maxRe∆x, (3.3)

where u∗,max is the maximum non-dimensional friction velocity at the bottom wall.
The results reported here were performed with a grid of 192 × 193 × 192 points along
the streamwise, wall-normal and spanwise directions. A uniform grid is used along the
periodic streamwise and spanwise directions, but along the wall-normal direction, a
non-uniform Chebyshev Gauss–Lobatto grid is used (Canuto et al. 1987). In the case
of a clear fluid (Ri = 0), this grid yields a resolution of �x+ =15.6 and �z+ =7.8.
Along the wall-normal direction, the resolution close to the wall is �y+ = 0.2, and
at the channel centre the resolution is �y+ = 24.5. For the other three cases in which
particles attenuate turbulence, the peak friction velocity is lower and as a result the
grid resolution is even better.
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Figure 2. Time series of the friction velocity for (a) the passive, (b) Ri = 1 × 10−4 and
(b) Ri = 3 × 10−4 cases. Also shown for reference (dashed lines) is the oscillatory far-field
velocity at the centre of the channel.

The grid resolution used here is fine enough to capture the entire range of scales,
which can be verified from the power spectrum of the velocity fluctuation. The
adequacy of the present grid for the clear fluid has been established by Spalart &
Baldwin (1989) and Ozdemir et al. (2010). Although we expect turbulence to weaken
in the presence of suspended particles, here we confirm the adequacy of resolution
for the Ri =1 × 10−4 and 3 × 10−4 cases by plotting the corresponding velocity power
spectra in figures 3 and 4. In figure 3, the streamwise and spanwise power spectra
for Ri = 1 × 10−4 for all three components of fluctuating velocities at two different
distances from the bottom wall (y+ =1.8 and y+ =29) are plotted at three different
phases during the wave cycle. For reference, a −5/3 decay rate corresponding to the
inertial range behaviour is shown by a thin straight line in the log–log plot. Owing
to our choice of the modest Reynolds number and weak turbulence, an extended
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Figure 3. Power spectrum of velocity fluctuations for Ri = 1 × 10−4 measured at y+ =1.8 (row a) and y+ = 29 (row b). Solid, dash-dotted and
dashed lines show the power spectra of the streamwise, vertical and spanwise velocity fluctuations, i.e. E〈U ′U ′〉, E〈V ′V ′〉 and E〈W ′W ′〉. Columns 1–3
show the spanwise power spectrum and columns 3–6 show the streamwise power spectrum. In each case, results at three different phases are
shown. The power spectra are obtained by averaging over the phase and horizontal planes.
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Figure 4. Power spectrum of velocity fluctuations for Ri = 3 × 10−4 measured at y+ = 1.8
(row a) and y+ = 29 (row b). Solid, dash-dotted and dashed lines show the power spectra
of the streamwise, vertical and spanwise velocity fluctuations, i.e. E〈U ′U ′〉, E〈V ′V ′〉 and E〈W ′W ′〉.
Results for only φ = 3π/4 are shown. (a1, b1) The spanwise power spectrum and (a2, b2) the
streamwise power spectrum.

inertial range is not observed. The fluctuating velocities are observed to decay by
about 4 to 6 decades in the spanwise and streamwise spectra. The corresponding
spectra for Ri = 3 × 10−4 are plotted only for φ = 3π/4 (figure 4), and again several
decades of decay can be observed in both the streamwise and spanwise spectra.
As discussed later, at this Richardson number the flow near the bottom boundary
laminarizes during part of the wave cycle and φ ≈ 3π/4 presents the highest demand
for resolution. On the basis of the spectral decay, we conclude that the resolution
employed in this study is sufficient for all the cases considered.

The flow field is time-advanced using the Crank–Nicolson scheme for the diffusion
terms. The aliasing errors in the non-advective terms are removed with the Arakawa
method and advanced with a third-order implicit Runge–Kutta scheme due to its low
storage requirement. More details on the implementation of this numerical scheme
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Figure 5. Time series of the plane-averaged particle concentration at y+ =2 for (a)
Ri = 1 × 10−4 and (b) Ri = 3 × 10−4. Also shown for reference (dashed lines) is the oscillatory
far-field velocity at the centre of the channel.

are given by Cortese & Balachandar (1995). The time step chosen for the simulations
is 1/96 000 of the wave period, which maintains the Courant number to be below 0.5.
Thus, each wave is resolved with almost 105 time steps. The simulation was typically
evolved about six cycles or more in order for the initial transients to decay and the
turbulence statistics to reach the stationary state. Figure 5 shows the time history of
the planar-averaged concentration at an elevation very close to the bottom boundary
(y+ = 0.2) for the Ri = 1 × 10−4 and 3 × 10−4 cases. A perfectly periodic variation
is not observed. Some cycle-to-cycle variation is observed, indicating sub-harmonic
component of the disturbance. The time series of other turbulent statistics are similar
in character. Figure 6 shows time evolution of the turbulent kinetic energy averaged
over horizontal planes for the Ri = 1 × 10−4 (at y+ = 154) and 3 × 10−4 (at y+ = 87)
cases. Here, again in the turbulent state, variations between cycles can be observed.
Nevertheless, after a short transient a statistically stationary state can be observed.
The time and phase-averaged statistics presented here were computed by averaging
over the statistically stationary state. For example, for Ri = 1 × 10−4 last four cycles
are used, whereas for Ri =3 × 10−4 last nine cycles were used for averaging.
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Figure 6. Time history of the turbulent kinetic energy for (a) Ri = 1 × 10−4 at y+ = 154 and
(b) Ri = 3 × 10−4 at y+ = 87. Also shown for reference (dashed lines) is the oscillatory far-field
velocity at the centre of the channel.

4. Results
In the literature of two-phase flow research, the turbulence modulation is affected by

particle volume fraction, mass loading, response time of particles and settling velocity
(see Balachandar & Eaton 2010 for a complete review), apart from parameters
controlling the carrier phase. In the present simplified formulation, since the particle
Stokes number is considered to be small, the two-phase flow can be collectively
represented by four key parameters: the Reynolds number (Re∆), the bulk Richardson
number (Ri), the non-dimensional settling velocity (Vs) and the Schmidt number (Sc).
The turbulent nature of the flow is dictated by the Reynolds number with the
intensity of turbulence increasing with increasing Re∆. The stabilizing effect on the
flow turbulence is due to particle-induced density stratification. It can be deduced
that turbulence modulation is effected by two parameters: Ri and settling velocity
(Vs). Settling velocity determines the vertical variation of the particle concentration
profile, while Ri can be thought of as a proxy for the volume-averaged particle
concentration, which directly affects the carrier flow in the momentum equation. As a
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Case Re∆ Rea Ri Vs Sc

1 1000 500 000 0 9 × 10−4 0.5
2 1000 500 000 1 × 10−4 9 × 10−4 0.5
3 1000 500 000 3 × 10−4 9 × 10−4 0.5
4 1000 500 000 6 × 10−4 9 × 10−4 0.5

Table 1. Simulations performed in this study. In all these simulations, the particle settling
velocity, Vs , the Schmidt number, Sc, the Reynolds numbers Re∆ and Rea are kept constant,
while the bulk Richardson number, Ri, is variable to identify the flow behaviour under different
volume-averaged concentrations.

first step, in this study we focus on an oscillatory boundary layer of Re∆ = 1000, and
the non-dimensional settling velocity is held constant at Vs = 9 × 10−4. Four different
values of the bulk Richardson number are considered (Ri = 0, 1 × 10−4, 3 × 10−4 and
6 × 10−4) in this study. The list of parameters employed in the simulations is given
in table 1. As discussed below, the clear fluid (Ri = 0) is in the turbulent regime,
while the fluid is fully laminarized at Ri = 6 × 10−4 and thus a range of behaviour is
encountered.

4.1. Laminar solution

The role of the above-defined parameters can be explored in the laminar solution.
The momentum equation (2.5) can be solved under the laminar flow condition, and
in the limit of channel half-height being much larger than the Stokes layer thickness,
the non-dimensional streamwise velocity in the bottom half of the channel is

U (y, t) = sin

(
2 t

Re∆

)
+ e−y sin

(
y − 2 t

Re∆

)
. (4.1)

The laminar solution shown above satisfies no-slip boundary condition at the
bottom boundary (y = 0) and exponentially approaches the free-stream oscillatory
flow. From the choice of the length scale, the non-dimensional thickness of the
laminar boundary layer is unity. The laminar concentration profile is independent of
the laminar velocity and is

C(y, t) = CW exp(−VsRe∆Sc y), (4.2)

where the non-dimensional concentration at the wall is

CW = (60VsRe∆Sc)[1 − exp(−60VsRe∆Sc)]−1. (4.3)

For a sufficiently deep channel (i.e. 60VsRe∆Sc � 1), the wall concentration
becomes CW ≈ 60VsRe∆Sc. Note that the laminar concentration profile is independent
of the bulk Richardson number and for the present choice of parameters, the
wall concentration is 27 times the volume-averaged concentration. The laminar
concentration also decays exponentially away from the bottom boundary and the
concentration boundary layer thickness, (VsRe∆Sc)−1, is 2.22 times the Stokes layer
thickness. Note that in the laminar flow, sediment particles are suspended by shear-
induced drag and lift forces in addition to the non-turbulent fluctuating motion of
particles. The suspension process described is parameterized by a diffusion process
(Fickian diffusion), where the diffusion coefficient is set proportional to the kinematic
viscosity, νf . Note also that the volumetric concentration is O(0.01), and it is safe to
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assume that the change in the fluid viscosity due to suspension is minimal (∼1 %)
and does not affect the laminar velocity profile.

From its definition shown in (2.9), the bulk Richardson number can be rewritten
as

Ri = 18
Vs

Re∆

(
∆̃

d

)2

¯̃C. (4.4)

Thus, for a given oscillatory flow condition and particle properties (i.e. fixed settling
velocity, Reynolds number and ∆̃/d), the Richardson number becomes a measure of

the volume-averaged particle concentration, ¯̃C, in the domain. It is of interest here to
investigate the critical values of the particle concentration (or Ri) at which turbulent
flow and particle transport dynamics become drastically distinctive. For example, we
are interested in establishing the critical concentration where the effect of particle
density stratification is negligibly small on the carrier flow. Also, it is of practical
interest to evaluate the critical concentration (or Ricrit ) that causes flow laminarization
and complete suppression of turbulence and mixing. The results presented here follow
this objective. In § 4.2, the results are first qualitatively observed in terms of turbulent
vortical flow structures and iso-surfaces of concentration. Mean flow quantities and
turbulent intensities are presented in § 4.3 to examine the relationship between carrier
mean flow, particle concentration and second-order turbulent statistics. The instability
mechanisms are analysed in § 4.4 and the flux and gradient Richardson numbers are
presented in § 4.5. In § 4.6, turbulence modulation is further analysed through the
TKE budget equation.

4.2. Turbulent structures

Simulation results for the four different particle concentrations (Ri =0, 1 × 10−4,

3 × 10−4, 6 × 10−4) present rather different outcomes of the particle–turbulence
interaction, which shall be qualitatively identified and described in terms of iso-
surfaces of swirling strength (figure 7) and particle concentration (figure 8). Swirling
strength (λci) is the imaginary part of the complex eigenvalue pair of the local velocity
gradient tensor. If all three eigenvalues of the velocity gradient tensor are real, then
the local swirling strength is zero. The swirling strength is able to discriminate against
regions of shear and extract only coherent vortex structures in turbulent flows (Zhou
et al. 1999; Chakraborty, Balachandar & Adrian 2005). Turbulent structures shown
here do not include the case of Ri = 6 × 10−4 as the turbulence is fully suppressed by
the suspended particles. Hence, the flow is completely laminarized and there are no
vortex structures.

The effect of increasing particle-induced density stratification is observed in figure 7,
where the iso-surface of the constant swirling strength is shown at six different phases
spanning half a wave cycle. For the case of Ri = 0 (see figure 7a), particles do not
affect the carrier phase and thus turbulence corresponds to that of the clear fluid
discussed by Spalart & Baldwin (1989). Let us first discuss the clear fluid limit. At
φ = π/6, the far field (in this case the mid-channel) is just past its peak forward
velocity and a dense pack of near-wall vortical structures can be observed close to the
bottom boundary. The vortex structures observed at φ = π, when the far-field reverse
flow reaches its peak, are qualitatively similar. Owing to temporal periodicity, vortex
structures at φ = 0 can be expected to be statistically similar to those observed at
φ = π, but with a reversed orientation along the streamwise direction, and thus are
consistent with those observed at φ =0. As the free stream decelerates (φ = π/3), the
vortex structures thin out and move away from the bottom boundary. This process
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Figure 7. Turbulent vortical structures extracted in terms of iso-surfaces of the swirling
strength (λci). For a better view, y = 0 to y ≈ 25 is focused, which is not indicated in the figure.
The contour level chosen is λci = (0.1 ∼ 0.2) × max(λci). Vortical structures are shown at six
different phases, from φ = π/6 to π for cases (a) Ri = 0, (b) Ri = 1 × 10−4 and (c) Ri = 3 × 10−4.

of outward migration continues during the flow reversal (φ = π/2) and even past flow
reversal (φ = 2π/3). Clear signatures of typical shear layer turbulent structures, such
as quasi-streamwise vortices and hairpin vortices, are observed. At φ = 5π/6 when the
reverse flow is accelerating in strength, only few streaky vortical structures can be
observed. These streaky vortices are close to the bottom boundary and it appears that
between φ = 2π/3 and φ =5π/6 the turbulence observed away from the boundary
at φ = 2π/3 decays rapidly, and the near-wall structures observed at φ =5π/6 grow
rapidly into fully developed turbulence when the reverse flow peaks at φ = π. The
observed behaviour is similar to that observed by Salon et al. (2007). The iso-contours
of the concentration for the passive particle case (Ri = 0) shown in figure 8(a) depict a
similar picture. Strong turbulent near-wall fluctuations can be seen during (φ = π) and
immediately following the peak velocity (φ = π/6). The intensity of these fluctuations
somewhat decreases during the deceleration phase, but persists even slightly after the
flow reversal. The impact of the near-wall streaky vortical structures on the particle
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Figure 8. Turbulent vortical structures extracted in terms of iso-surfaces of particle
concentration. For a better view, y =0 to y ≈ 25 is focused, which is not indicated in the
figure. Concentration iso-contours are shown at six different phases, from φ = π/6 to π for
cases (a) Ri = 0, showing C =1.65, (b) Ri = 1 × 10−4 showing C = 2.0 and (c) Ri = 3 × 10−4

showing C = 10.0.

concentration can be clearly observed at φ = 5π/6. The turbulent bursts, which are
the signature of an intermittent turbulent flow, can be clearly observed at phases
φ = π/2 to φ =2π/3.

The vortex structures for the case of Ri = 1 × 10−4 shown in figure 7(b) are
statistically similar to those for the passive case. Similar observations can be made
for the iso-surface of particle concentration (figure 8b), with the exception that the
iso-surface level for Ri = 1 × 10−4 is chosen to be two times the volume-averaged
concentration, which is slightly higher than that for the passive case. As discussed
in detail when presenting the mean concentration profiles, increasing the Richardson
number from 0 to 1 × 10−4 has a strong influence on the mean particle concentration.
Since particle concentration in the bottom half of the channel increases substantially,
a correspondingly higher contour level must be chosen to extract similar turbulent
structures.
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For the case of Ri = 3 × 10−4, vortex structures show a drastically different
behaviour than that observed in the passive and Ri =1 × 10−4 cases. First, there is no
turbulent vortical structure observed in figure 7(c) at peak flow (φ = π) and during
the entire deceleration phase (see φ = π/6 and φ = π/3). This can be explained by
turbulence suppression due to particle-induced stable density stratification. Although
at flow reversal (φ = π/2 in figure 7c) coherent vortex structures are not observed, the
effect of incipient instability in terms of small-amplitude waves can be observed in
the iso-surface of particle concentration in figure 8(c). These instabilities tend to grow
from an earlier near-laminar condition (φ = π/6, π/3) and reach peak amplitudes
in the early acceleration phase around φ = 2π/3. The instability appears as well-
organized spanwise vortex rollers formed as a result of shear instability. The signature
of the secondary instability can be seen as spanwise waviness of the vortex rollers
(see φ = 2π/3 in figure 8c). While relatively clean, small amplitude and nearly two-
dimensional waves can be observed at φ = π/2, a short time later at φ = 2π/3 a
more complex wave train with spanwise disturbances resembling wave-breaking
formation is observed. At later stages of acceleration (φ =5π/6), both the vortex
structure (figure 7c) and the iso-surface of concentration (figure 8c) show decay of
the instabilities, and only a remnant of the vortex structure and its impact on particle
concentration can be observed. Interestingly, at the end of the acceleration when the
flow reaches the peak reverse flow (φ = π), all disturbances seem to have decayed
and the flow appears to be in a laminar state. Note that the concentration contour
shown in figure 8(c) is 10 times the volume-averaged concentration, which is much
higher than that of previous cases of lower Ri. As seen in § 3.3, for Ri = 3 × 10−4 the
flow largely laminarizes and, as a result, the mean particle concentration close to the
bottom wall significantly increases. In order to extract the effect of instability, which
is located close to the bottom wall, it is necessary to choose a larger concentration
value for the iso-surface of concentration field.

These instability features for the case of Ri = 3 × 10−4 observed in figures 7(c)
and 8(c) resemble the shear instability noted by Strang & Fernando (2001). They
investigate the behaviour of these interfacial shear instabilities with respect to changes
in the bulk Richardson number. While for a small bulk Richardson number they
observe pure Kelvin–Helmholtz (KH) billows, with the increase in Ri they observe
a combination of KH billows plus Hőlmbőe waves. In the present problem, it is
difficult to separate the exact characteristic of these structures and the associated
instabilities as they occur in a transient manner over only a short duration near the
flow reversal. This is unlike the case considered in Strang & Fernando (2001), where
the instabilities occur in a quasi-steady manner and the effect of stratification can be
considered almost constant.

4.3. Mean quantities and turbulent intensity

In this section, the interaction between the carrier flow and particles for
Ri = 0, 1 × 10−4 and 3 × 10−4 is further analysed in terms of the statistically averaged
particle concentration and velocity statistics. Statistics are obtained by averaging over
horizontal planes and also over time instants of an identical phase. These averages are
referred to as ‘phase-average’ and denoted by angle brackets. Note that the statistics
during the forward flow (−π/2 < φ < π/2) are related to statistics during the reversed
flow (π/2 < φ < 3π/2) as follows:

〈C〉, Urms, Vrms, Wrms(y, t = φ) = 〈C〉, Urms, Vrms, Wrms(y, t = φ + π), (4.5a)

〈U〉, 〈UV 〉, 〈UC〉, (y, t = φ) = −〈U〉, −〈UV 〉, −〈UC〉(y, t = φ + π). (4.5b)
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Figure 9. Mean concentration profiles for Ri = 0, 1 × 10−4 and 3 × 10−4 (refer to the upper
axis for Ri = 3 × 10−4). (a–f ) Six different phases during half a wave cycle are shown and the
results for the other half of the wave cycle can be obtained from symmetry.

These symmetries are used to further enhance the statistics. Figures 9 and 10 show
the averaged concentration and streamwise velocity profiles at six different distinct
phases during the wave cycle for the Ri =0, 1 × 10−4 and 3 × 10−4 cases. Note that the
concentration scale for the Ri = 3 × 10−4 case is different from that of the other two
cases in order to accommodate the rapid increase in the concentration towards the
bottom wall. The averaged streamwise velocity profiles for Ri = 0 and 1 × 10−4 are
almost identical (compare triangles and solid curves in figure 10). The corresponding
root-mean-square (r.m.s.) turbulent velocities in the streamwise, wall-normal
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Figure 10. Mean streamwise velocity profiles for Ri = 0, 1 × 10−4 and 3 × 10−4. (a–f ) Six
different phases during half a wave cycle are shown and the results for the other half of the
wave cycle can be obtained from symmetry.

and spanwise directions at the six different phases are presented in figure 11. Again,
it can be observed that the turbulent intensities for the Ri =0 and 1 × 10−4 cases
are of similar magnitude over much of the channel. In particular, there is little
difference in turbulent intensities close to the bed between y =0 and y = 10. However,
closer to the mid-channel (from y ≈ 12 to y ≈ 30), although the overall magnitude of
turbulent intensities becomes small, the turbulence intensity for Ri = 1 × 10−4 ranges
only between 10 and 50 % of that for the Ri = 0 case.

The effect of reduced turbulence above y ≈ 15 can be clearly seen in the mean
concentration profiles shown in figure 9. For the passive case, the concentration
profiles are more or less linear and particles are well-mixed over the entire channel,
except for a thin layer of large concentration gradient very close to the bottom.
On the other hand, for the Ri = 1 × 10−4 case, it can be observed that the particles
are entrapped in the lower half of the domain and the concentration profile shows
a clear feature of ‘lutocline’ (sharp negative concentration gradient). This shoulder-
shaped concentration profile is predicted by Noh & Fernando (1991) for fine particles
suspended in an oscillating grid flow due to the damping of turbulence kinetic
energy by the particle-induced stable density stratification. It is also observed in the
laboratory experiment with a similar oscillating grid set-up (Huppert et al. 1995). In
the present simulation, the formation of lutocline can be clearly seen for fine-particle
transport in the oscillatory boundary layer. Closer to the mid-channel, turbulence and
mixing are suppressed due to the stabilizing effect of the large concentration gradient.
Suppressed turbulence further prevents upward migration of particles, which would
otherwise occur driven by turbulence. In this case, since the suppression of turbulence
occurs near the mid-channel where the overall magnitude of turbulent kinetic energy
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Figure 11. Turbulent r.m.s. velocity fluctuations along the (a) streamwise, (b) wall-normal and (c) spanwise directions. Six different phases
during half a wave cycle are shown for Ri = 0, 1 × 10−4 and 3 × 10−4.
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is already small, turbulence modulation does not make a significant difference in
the mean velocity profile. We shall discuss more field evidence of lutocline for the
wave-driven fluid mud transport in § 4.

The characteristic of lutocline in an oscillatory boundary layer can be further
investigated by closely examining the second quarter of the domain from the bottom
boundary (y = 15 ∼ 30). Figure 12 shows the iso-surface of concentration for the
Ri = 0 and 1 × 10−4 cases at C = 1.3 for both cases to capture the turbulent structures
in the region where turbulence is suppressed. A more quiescent behaviour can be
observed for Ri = 1 × 10−4 compared with the passive case. Only larger wavelength
undulations at a reduced amplitude can be seen for Ri = 1 × 10−4. Thus, as the
Richardson number is increased from 0 to 1 × 10−4, particle concentration is more
noticeably affected than turbulent vortices. Examining the iso-surface of the swirling
strength in the second quarter from the bottom wall (not shown here) also suggests
that the turbulent structures below y = 23 are statistically similar for both Ri = 0 and
1 × 10−4. Some reduction in vertical structures can be observed only closer to the
mid-channel.

On the other hand, for the case of Ri =3 × 10−4, we observe a significant difference
in averaged mean velocity profiles (see figure 10) as compared to those for Ri =0
or 1 × 10−4. The velocity and particle concentration profiles in the bottom half of
the channel are very close to the laminar profiles given in (4.1) and (4.2), which
are also plotted in figures 9 and 10. The turbulent intensity in the wall-normal and
spanwise components is nearly zero at time instants of velocity maximum (figure 11,
φ = π) and during the deceleration phase (φ = π/6 and π/3). The r.m.s. streamwise
fluctuation is also quite small close to the bottom boundary and appears to decay
during the deceleration phase. However, starting from the flow reversal (φ = π/2),
the r.m.s. velocity components begin to grow during the acceleration phase in the
region close to the bottom boundary (0 � y � 9). The fluctuation magnitudes appear
to reach a peak around φ = 2π/3 and then start to decay. During the entire period
the r.m.s. velocity fluctuations for the case of Ri = 3 × 10−4 in the bottom half of the
channel are substantially lower than those for the Ri =0 and 1 × 10−4 cases. This
reduction in turbulence is consistent with the vortical turbulent structures presented in
figure 7.

The travelling wave character of the Stokes solution can be observed in both the
laminar and turbulent streamwise velocity profiles. In figure 10, the variation of the
averaged streamwise velocity along the vertical direction at all phases shows multiple
local maxima and minima. From (4.1), it can be seen that for the laminar solution, a
local minimum starts at the bottom boundary at φ = π/4 and travels upward away
from the bottom wall as the phase increases from π/4. The linear migration of the
location of this minimum for the laminar solution is given by ymin,lam = φ + (π/4)
and can be clearly followed during the acceleration phase from φ = π/2 to φ = π. In
fact, in figure 10 the location of this minimum can be tracked further by switching
to the lowest local velocity maximum at φ = π/6 (owing to the left–right reflectional
symmetry of the streamwise velocity profile). This qualitative behaviour of the Stokes
solution can be observed in the turbulent velocity profile as well. Figure 13 shows
the vertical location of the velocity extrema for both the turbulent (Ri = 1 × 10−4)
and laminar cases (Ri = 3 × 10−4) as a function of the phase. In the turbulent case,
a local minimum again forms at the bottom boundary slightly before φ = π/2, but it
travels away from the bottom boundary at a faster rate. In effect, at Re∆ = 1000 the
turbulent Stokes boundary layer is about 4.5 times thicker than the corresponding
laminar solution. The travelling wave character of the averaged solution is important,
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Figure 12. Iso-surfaces of the concentration at six different phases from π/6 to π for cases
(a) Ri = 0 showing C =1.3, (b) Ri = 1 × 10−4 showing C = 1.3. Note that only the middle third
of the bottom half of the channel from y = 15 to y = 30 is shown.

since it implies inflection points in the velocity profile and can contribute to the onset
of inviscid instability.

4.4. Flow instability

The clear appearance of coherent vortical structures in figure 7(c) and their temporal
growth over part of the wave cycle, as implied in the iso-surface of concentration in
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Figure 13. Time variation of extremum velocity for Ri = 1×10−4 and Ri = 3×10−4. Note that
there exist phase slots where two extremum points are observed for both cases. Also shown
for reference (dashed lines) is the oscillatory far-field velocity at the centre of the channel.

figure 8(c), raise interesting questions regarding this instability. A better understanding
of this instability shall shed more light on the origins of fully developed turbulence
in oscillatory boundary layers, with and without stratification. In this section, we are
primarily concerned with the instability of the laminar profile.

4.4.1. Stability of stokes layer

The instability of the oscillatory Stokes layer and the transition to turbulence has not
been fully understood even in the absence of particle concentration gradient induced
stratification effects. A large discrepancy exists between experimental/computational
observations and the results of the stability analysis (Blennerhassett & Bassom
2006). Initial attempts (Hall 1978) have not been fully successful in identifying
unstable modes that could explain experimentally observed disturbances. A recent
Floquet stability analysis of an oscillatory Stokes layer of semi-infinite extent by
Blennerhassett & Bassom (2002) has yielded growing stationary and travelling mode
disturbances with a critical Reynolds number of Re∆,crit ≈ 1416. They observed that
the critical Reynolds number somewhat decreases with the presence of an upper
boundary, but for the present half-channel height of 30 Stokes layer thickness,
the effect on the critical Reynolds number is minimal. In contrast to the above
theoretical result of the stability analysis, the present and prior simulations of the
oscillatory Stokes layer show fully developed turbulence even at Re∆ =1000 both
in the decelerating and accelerating phases, close to φ = 0 and φ = π. As pointed
out by Blennerhassett & Bassom (2006), this disagreement between theory and
experiments/computations remains unexplained.

Nevertheless, here we will use results from the Floquet analysis of Blennerhassett &
Bassom (2002) to better understand the unstable vortical structures observed for the
case of Ri = 3 × 10−4. From their analysis, the critical streamwise wavelength can be
estimated to be 16.77∆̃. Although the growth rate of the Floquet disturbance has
not been fully mapped out over the Reynolds number and wavenumber parametric
space, the streamwise wavelength of the most unstable disturbance can be estimated
to be similar at other Re∆. The four spanwise-oriented vortex rolls observed in figure
7(c), combined with the periodic streamwise extent of the computational domain,
yield a wavelength of 15∆̃. Of course, in the present simulation, since the streamwise
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Figure 14. (a) Investigation of the onset of instability observed through contours of the
span-averaged spanwise vorticity at (φ = 2π/3). Dark regions indicate negative vorticity and
roll-up of the negative vorticity into spanwise rollers can be observed. (b) The time history of
the maximum and minimum vorticity observed in the aforementioned region. Also shown for
reference (thin line) is the oscillatory far-field velocity at the centre of the channel.

length of the computational domain is chosen to be 60∆̃, the possible disturbance
wavelengths are limited to discrete choices.

An alternate view of the instability at Ri =3 × 10−4 is presented in figure 14(a),
where contours of the span-averaged spanwise perturbation vorticity are shown on
the x–y plane at φ = 2π/3. A periodic vortex roll-up can be observed and vortex
structures are centred about y ≈ 3. From figure 10, it can be observed that this
location reasonably coincides with the inflection point of the mean velocity profile.
The eigenfunction obtained by Blennerhassett & Bassom (2002) shows the disturbance
to be located around y ≈ 5 and occurs during the acceleration phase of the wave cycle.
Shown in figure 14(b) are the time history of the peak perturbation spanwise vorticity
(note both the positive and negative perturbations are plotted). A rapid increase in
the perturbation vorticity during the flow reversal and the subsequent slow decay can
be seen.

Despite the reasonable qualitative agreement we need to exercise caution in
comparing the present simulation results with the Floquet stability analysis. First, the
disturbances observed in figure 7(c) for Ri = 3 × 10−4 cannot be considered as unstable
in the framework of the Floquet analysis. This disturbance only grew over part of
the wave cycle, but decayed over the rest of the wave period. These disturbances were
observed in the simulation at every cycle; however, as shown in figure 14(b), where the
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peak spanwise vorticity was plotted as a function of time, the disturbance evolution
was not strictly periodic. Second, although laminarization of the flow at Ri =3 × 10−4

results in an oscillatory Stokes boundary layer and facilitates comparison with the
Floquet stability analysis, the presence of the strong stable density stratification has
not been accounted in the stability analysis of Blennerhassett & Bassom (2002).
Clearly, the density gradient will contribute to the stability of the flow.

4.4.2. Effect of density stratification

The study on the effect of density stratification on the stability of shear layers
dates back to the pioneering work of Taylor (1931). Miles (1961) and Howard (1961)
established the condition that the gradient Richardson number, defined in terms of
the present non-dimensional variables as

Rig = Ri
∂C

∂y

/(
∂U

∂y

)2

, (4.6)

greater than 0.25 everywhere in the flow is the sufficient condition for stability.
Thus, Rig < 0.25 somewhere in the flow would indicate instability. On the basis of
the laminar velocity and concentration profiles given in (4.1) and (4.2), the gradient
Richardson number as a function of distance from the bottom wall can be computed
using the maximum value of the velocity gradient at that location during the wave
cycle as (note that laminar concentration gradient is independent of time)

Ri g,laminar = Ri H V 2
p Re2Sc2 exp[(2 − Vp Re Sc)y]. (4.7)

In the present set of simulations, VsReSc = 0.45 and, as a result, the minimum
value of the gradient Richardson number occurs at the bottom wall and is linearly
dependent on the bulk Richardson number: Ri g,laminar (y → 0) = 6.075Ri. Thus, for all
values of Ri considered in this study, the gradient Richardson number at the wall is
much smaller than 0.25. Since Ri g,laminar as defined above exponentially increases with
y, only a layer close to the bottom boundary satisfies the condition Ri g,laminar � 0.25.

At Ri =1 × 10−4 and 3 × 10−4, the layer of the fluid given by y � 3.88 and y � 3.18
satisfies the condition for instability. The difference in the thickness of the unstable
layer, as given by the gradient Richardson number, is only 20 %, but the resulting
change in the character of the flow (see figure 7b versus figure 7c) is dramatic.

Of course, the condition Rig < 0.25 arises from an inviscid analysis and thus its
relevance for the stability of a layer close to a solid boundary can be questioned. More
importantly, the analysis of Miles (1961) and Howard (1961) is for a steady base flow
and its applicability for the present oscillatory flow becomes relevant only if the time
scale of the instability growth is much faster than the period of oscillation. It can
be conjectured that at Re∆ = 1000 with a decreasing stratification effect (decreasing
Ri) the growth rate of instability (seen in figure 7c) can increase dramatically to
trigger the onset of turbulence quickly within part of the wave cycle. Thus, nonlinear
effects can be expected to set in rapidly, and a Floquet analysis that assumes a linear
behaviour for the disturbance over the entire wave cycle may not capture this fast
transition to turbulence. Clearly, further investigation is needed on the instability
mechanisms of an oscillatory boundary layer and the effect of stable stratification.

4.5. Flux and gradient Richardson numbers

Particle settling leads to density stratification, which attenuates boundary layer
turbulence and the suppressed turbulence further encourages particle settling.
According to such paradigm, it is believed that there exists a critical level of particle
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concentration for a given turbulent flow such that major collapse of turbulence and
particle settling may occur. Such behaviour in a steady flow has been well described
by the flux and gradient Richardson numbers (e.g. Winterwerp 2001). Note that in
this study, the forcing of the flow varies in time, which means that the competition
between these mechanisms also varies over time. Therefore, the interrelation among
particle settling flux, turbulent suspension flux and turbulence production is more
complex. Nevertheless, we examine the role of particle-induced density stratification
on the turbulence modulation through the gradient Richardson number, Rig , and the
flux Richardson number, RiF . For the present case of the non-stationary turbulent
flow, Rig and RiF are defined in terms of phase-averaged flow quantities as follows:

Rig = Ri

∂〈C〉
∂y(

∂〈U〉
∂y

)2
, (4.8)

RiF = −Ri
〈C ′V ′〉

〈U ′V ′〉 ∂U
∂y

, (4.9)

where primes indicate perturbation from the phase average. Both Ri g and RiF

are measures of turbulence attenuation due to stable density stratification versus
turbulence production. Under the gradient diffusion assumption, the Reynolds stress
and turbulent flux in the vertical direction can be written as follows:

〈U ′V ′〉 = −νt

∂〈U〉
∂y

, 〈C ′V ′〉 =
νt

Sc t

∂C

∂y
, (4.10)

where νt is the turbulent viscosity and Sc t is the turbulent Schmidt number, which is
the ratio between the turbulent viscosity to turbulent diffusivity of particles. Hence,
it can be shown that these two Richardson numbers are qualitatively equivalent.
Although the gradient Richardson number, Ri g , relies on the validity of the gradient
diffusion assumption, it is a commonly used parameter in the stratified flow literature
because it is easier to measure in laboratory and field experiments. In addition, in
the literature of stratified flows for the thermal field, it has been observed that at a
moderately stratified condition the gradient diffusion assumption holds true and the
turbulent Prandtl number, Pr t , is more or less constant. Pr t plays the role of Sc t in
thermally stratified flows (Ivey & Imberger 1991; Schumann & Gerz 1995; Armenio &
Sarkar 2002). We shall examine this issue in more detail for fine particle-laden flows
below.

Both Ri g and RiF are presented for the Ri = 1 × 10−4 and Ri = 3 × 10−4 cases at
six different phases during the wave cycle (see figure 15). For the case of Ri = 1 × 10−4

(figure 15a), there are sharp jumps observed both in Ri g and RiF due to velocity
peaks near the top of the oscillatory boundary layer which make both Ri g and RiF

show a singular-like behaviour. The velocity peaks can be clearly observed in figures
10 and 13. Nevertheless, our interpretations are based on the overall trend of Ri g and
RiF . The magnitudes of Ri g and RiF are generally small below y = 12 ∼ 18 (the thin
vertical line represents the critical value of 0.25 to be used as a reference). The small
values of the Richardson numbers suggest that in the lower portion (y < 12 ∼ 18)
of the particle-laden oscillatory boundary layer, the flow remains turbulent. The
domination of turbulence is in accordance with the turbulent intensities discussed
in § 3.3. On the other hand, between y = 12 and y = 18, both Ri g and RiF increase
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Figure 15. Plot of the flux and gradient Richardson number at six different phases for (a) Ri = 1 × 10−4 and (b) Ri =3 × 10−4 in the log scale.
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considerably, suggesting damping of turbulence due to stable density stratification.
This regime also coincides more or less with the location of lutocline where a large
negative particle concentration gradient exists (see figure 9).

Between y =15 and 24, RiF sometimes takes values that cannot be plotted on a
log–log scale, which can be seen as gaps in the plots at these elevations (see figure
15b). Such out-of-range values of RiF obtained here are due to negative (or near zero)
particle suspension flux 〈C ′V ′〉. The ratio of particle suspension flux to the settling flux
is shown in figure 16(a). This ratio, by definition, is identically zero at the bottom wall.
It quickly increases away from the wall and roughly reaches a constant O(1) in the
lower portion of the boundary layer during the deceleration phase (φ = π, π/6, π/3).
At φ = π this layer is somewhat narrow and extends from the wall to only about
y < 4.5. During the deceleration and flow reversal (φ = π/6, φ = π/3 and φ = π/2),
the thickness of this layer, where the particle–turbulent concentration flux nearly
counterbalances the settling flux, increases and extends to about y < 18. Immediately
following the flow reversal, turbulent flux decreases in the acceleration phase. Once
again, only at the end of the acceleration phase (φ = π) does the turbulent flux within
the layer close to the wall substantially increase. This cyclical waxing and waning
of turbulent flux is consistent with the intensity of turbulent structures shown in
figure 7.

The behaviour for y > 18 is different. During substantial portion of the wave
cycle, the turbulent particle flux is quite small and in fact 〈C ′V ′〉 at times becomes
negative. In this region, the turbulence effect is considerably weaker and particle
motion is dictated by the instantaneous local downward advective motion, especially
immediately after the flow reversal. As a result, the net plane-averaged concentration
flux in the vertical direction is negative. Clearly, such a downward advection cannot
be described by the gradient diffusion assumption. The above observation implies
that the turbulence production is significant only over the region 0 <y < 18. Note
that from the averaged streamwise velocity profile (figure 10), it can be seen that
for Ri = 1 × 10−4, y ≈ 18 is the approximate upper edge of the oscillatory boundary
layer, above which the velocity remains nearly a constant. In the literature on highly
stratified steady flows, negative RiF is observed with the increase in Ri g (Ivey &
Imberger 1991; Schuman & Gerz 1995; Armenio & Sarkar 2002). This behaviour
can also be observed in Sc t (see figure 17a). Starting from the bottom at y = 20, Sc t

remains constant, apart from the jumps due to very small velocity gradient. This also
suggests an increase in RiF from O(0.01) to O(1) with respect to Ri g . From y = 20
until the mid-channel, Ri g increases to O(100) and a negative flux is observed for
phases φ = π/6, π/3 and π/2, which can be seen as negative Sc t values. For the phase
φ = 5π/6, Sc t is observed to be highly fluctuating above y = 20. From these results we
can clearly observe that the gradient diffusion assumptions hold true from y = 0 to
y = 20. The deviation starting from y = 20 stems from the small values of the velocity
gradient.

For the case of Ri = 3 × 10−4, it can be seen that the regime of small Ri g and RiF

exists only very close to the bed (y = 0 ∼ 3). The sharp increases in the Richardson
numbers for Ri = 3 × 10−4 are due to local averaged velocity gradients becoming zero
rapidly away from the bed. The velocity gradients become zero where the averaged
streamwise velocity reaches maximum and minimum values. As discussed in § 3.3, the
initiation of a velocity minimum at the wall around φ = π/4 and its migration away
from the bottom wall with time can be clearly followed in figure 15(b) in terms of
the location of the sharp peaks. As seen in the averaged streamwise velocity profiles,
such maxima and minima are also observed for Ri = 1 × 10−4; however, owing to a
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Figure 16. The ratio of the turbulent particle suspension flux over the settling flux for (a) Ri = 1 × 10−4 and (b) Ri =3 × 10−4.
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Figure 17. Variation of Sct/Sc between y = 0 ∼ 30 at six different phases for (a) Ri = 1 × 10−4 and (b) Ri = 3 × 10−4. The perpendicular line is
Sct /Sc = 1 and shown as a reference. For Ri = 1 × 10−4, shown in row (a) starting from a point at 0< y < 1 to y ≈ 20, the value of Sct /Sc varies
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behaviour again due to velocity gradient.
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stronger turbulent mixing near the bed, the regime of sharp increase of Ri g is located
farther away from the bed.

Above y ≈ 3, both Ri g and RiF maintain their large magnitudes (Ri g and
RiF � 0.25) for the case of Ri = 3 × 10−4. Again, this is consistent with the location
of a large negative concentration gradient observed near the bed (see figure 9). In
figure 7(c), we have observed shear instability generated during the flow reversal
(φ = π/2), which intensifies at early acceleration (φ = 3π/2) with a subsequent decay
till peak velocity (φ = 5π/6, π). This interesting time-dependent feature cannot be
observed in the gradient Richardson number profiles as they are qualitatively dictated
by the laminar profiles at all phases. This is because the fluctuation level is not strong
enough to create major change in the statistically averaged quantities. On the other
hand, the flux Richardson number profiles show a slightly better picture of the
instantaneous mixing process. Velocity fluctuations appear to have a greater effect
as shear instability intermittently enhances perturbations during the flow reversal.
However, the overall level of velocity fluctuation is relatively low in this case.
The laminar boundary-layer thickness is very small compared with its turbulent
counterpart and the velocity reaches a constant value over most of the domain.
Therefore, both Ri g and RiF , which are dependent on the mean velocity profiles, take
large values. This further translates to large seemingly random fluctuations in Sct (see
figure 17b). Therefore, both Ri g and RiF are not very effective parameters to identify
shear instability. On the other hand, we observe that the ratio of particle suspension
flux to settling flux provides better information to identify shear instability during the
flow reversal (see figure 16b). The suspension flux is very small across the channel
over much of the wave cycle when compared with the settling flux. At flow reversal
and during the acceleration phase, the suspension flux becomes large near the bed
and in fact at φ = 2π/3 the ratio of particle suspension flux to settling flux reaches
0.75 at y ≈ 2.5. The vertical location of this increased suspension flux corresponds
well with the location of the vortex structures seen in figure 14.

4.6. TKE budget

Simulation results presented so far identify several critical phenomena, such as the
formation of lutocline and occurrence of instability during the flow reversal, as Ri (i.e.
particle concentration) increases. It is clear that these phenomena are due to different
degrees of particle–turbulence interaction in the oscillatory boundary layer. In this
section, we demonstrate that the mechanisms causing these critical phenomena can
be explained via the budget of the TKE, denoted as k in this study. The TKE budget
equation for the present problem can be written as

∂k

∂t
= −∂ 〈ui〉

∂xj

〈
u′

iu
′
j

〉
− 1

Re∆

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
−Ri 〈C ′u′

i〉 δi2

−
〈

∂P ′

∂xi

u′
i

〉
− ∂

∂xj

〈
1

2
u′

iu
′
iu

′
j

〉
+

1

Re∆

∂2

∂x2
j

〈
1

2
u′

iu
′
i

〉
. (4.11)

The term on the left-hand side is the time derivative of the TKE. The six terms on the
right-hand side are the turbulent production, turbulent dissipation, particle-induced
buoyancy dissipation/production, pressure transport, turbulent advection and viscous
diffusion, respectively. For convenience, pressure transport, turbulent advection, and
viscous diffusion (the last three terms on the right-hand side of (4.11)) are collectively
presented as total transport in the TKE budget presentation (see figures 18–21).
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For the case of Ri =0, where particles are passive to the carrier flow, the leading
contributions are from turbulent production and turbulent dissipation within the
oscillatory boundary layer (see figure 18 for y =0 ∼ 12). Production and dissipation
are more or less in balance with each other except within y < 1 (corresponds to
within 50 wall units), where total transport becomes comparable especially during
and after the flow reversal (φ = π/2, 2π/3, 5π/6). The time rate of change in the
TKE (i.e. ∂k/∂t) is relatively unimportant within the oscillatory boundary layer. The
temporal flow characteristics of the oscillatory flow can be observed from turbulence
production which correlates with the mean velocity gradient. From the flow reversal
(φ = π/2) to during the accelerating phase (φ =2π/3, 5π/6, π), the production term
increases significantly (by three order of magnitudes) close to the bottom wall and
fades away moving away from the wall. On the other hand, during deceleration
(φ = π/6, π/3, π/2), turbulent production near the bed almost decays completely
(Hino et al. 1983). Near the top and above the oscillatory boundary layer (see
figure 19a for y = 15 ∼ 25), a very different TKE budget balance can be observed.
First, the intensities of these terms are two to three orders of magnitudes smaller than
those within the oscillatory boundary layer. Moreover, turbulent production is of less
importance due to lower shear above the oscillatory boundary layer and hence we
start to observe increasing importance of total transport that entrains turbulent kinetic
energy from the lower oscillatory boundary layer to balance turbulent dissipation.
The time rate of change in the TKE is also of more importance in this regime.

For Ri =1 × 10−4, the TKE budget is similar to that of Ri =0 within the oscillatory
boundary layer (see figure 20 for y =0 ∼ 12). This is consistent with the results shown
in figure 10 that the averaged velocity profiles for Ri = 0 and 1 × 10−4 are almost
identical. The particle-induced buoyancy dissipation term is negligible in the TKE
budget in this regime. On the other hand, the TKE budget becomes very different
near the top and above the oscillatory boundary layer (see figure 19b for y = 15 ∼ 25).
Particle-induced buoyancy dissipation contributes to about 20 % to 50 % of the
turbulent dissipation. Comparing to Ri = 0 (figure 19a), the overall intensities of
these terms are smaller. Most noticeably, for a thickness extending from y =15
upwards, the turbulent production for the Ri =1 × 10−4 case is about 40 % to several
factors smaller than that of Ri =0. This thickness, �y, is as small as 1 at φ = π/2
and as large as 4.5 at φ = π/6 which closely follows the depth of lutocline through
the wave cycle. Also, between y =15 ∼ 25 the production term penetrates towards the
mid-channel more than the case of Ri = 0. This reduction in the turbulence production
explains the observed reduction in the turbulent fluctuation (see figure 11) and more
importantly the formation of lutocline near the top of the oscillatory boundary layer.
It is emphasized here that for the case of Ri = 1 × 10−4, because the region where
turbulent production is significantly reduced is already of a very small magnitude
compared with that near the bed, the total turbulence production in the entire domain
is almost unchanged. Hence, the averaged velocity profiles for Ri = 0 and 1 × 10−4 are
similar. Another observation on the production term is the change in the sign along
the vertical direction when Ri = 1 × 10−4. For example, at the phases φ = π/6 and
φ = 5π/6 between y = 18 to y = 22 negative production is observed. This is different
from the production results for Ri = 0, where the production stays positive along the
vertical direction at all the phases. This means the phase and the planar-averaged
derivative of the mean flow along the vertical direction and the Reynolds stresses is
of the same sign between y = 18 ∼ 22 at the phases φ = π/6 and φ = 5π/6.

In the case of Ri = 3 × 10−4, a different picture in the TKE budget is observed
(see figure 21) throughout the entire domain as compared with the other two cases.
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First, the magnitudes of all terms in the TKE budget are significantly smaller at all
the phases due to suppression of turbulence by strong particle-induced stable density
stratification. However, at the onset of instability during the flow reversal (φ = π/2),
turbulent production is observed to occur around y =1 ∼ 3, which is consistent with
the location of instability shown in figure 20. Because of such abrupt generation of
turbulence, the time rate of change in the TKE and total transport become more
important terms (than turbulent dissipation) to balance production. Such feature
also triggers the upward particle burst observed during the flow instability. Note
also that particle-induced buoyancy loss in the TKE becomes comparable to viscous
dissipation with the onset of instability which falls between φ = π/2 and φ = 2π/3.
Another observation is that peak dissipation due to particle buoyancy moves with the
suspended particles in the vertical direction from the point where KH billows are first
observed. Finally, because turbulent production is significantly reduced throughout
the entire domain, the flow tends to laminarize (see averaged velocity shown in
figure 10) and mixing is suppressed.

5. Flow regimes and field interpretations
Numerical simulations presented here qualitatively identify several regimes of fine-

particle transport and their corresponding dynamics in an oscillatory channel flow.
These regimes are consistent with prior laboratory and field studies on the fine-
sediment transport in a wave boundary layer. Hence, this section provides a summary
of flow regimes revealed by our numerical results and their field implications. It is
illuminating here to convert, at least qualitatively, the bulk Richardson number (Ri) to
the near-bed sediment mass concentration in the wave boundary layer. As mentioned,
the present Re∆ = 1000 gives an amplitude of the oscillatory velocity of 0.56 m s−1

and the Stokes boundary layer thickness of 0.0018 m. Using Ri given in (2.8) and
a sediment density of ρp = 2650 kgm−3, the volume-averaged concentrations for
the Ri = 1 × 10−4 and 3 × 10−4 cases can be deduced to be ¯̃C = 0.0011 and 0.0033,
respectively. The volume-averaged concentration is used to normalize the particle
concentration in the calculations. Hence, according to the averaged concentration
profiles presented in figure 9, the near-bed sediment mass concentration for
Ri = 1 × 10−4 and 3 × 10−4 can be estimated to be ¯̃C = 10 and 50 g l−1, respectively.

According to the simulation results, we observe four flow regimes as the bulk
Richardson number increases from the clear fluid condition (Ri =0).

(i) Regime I describes a condition of very dilute sediment concentration (i.e. Ri → 0,
while ¯̃C → 0). The effect of sediment-induced density stratification is negligible and
sediment is passive to the carrier flow. The sediment concentration profile is more
or less well-mixed in and above the wave boundary layer. Simulation results suggest
sediment concentration for this regime to be much smaller than 10 g l−1. In fact,
field observations identify such regime as low concentration mud suspension (e.g.
Winterwerp & van Kesteren 2004) where the near-bed concentration is no more than
O(1) g l−1.

(ii) Regime II describes a moderate interaction between the sediment and the
carrier flow as the sediment concentration near the bed exceeds several grams per litre.
Sediment-induced stable density stratification attenuates the carrier flow turbulence
near the top of the wave boundary layer. Hence, the associated turbulent mixing
of the sediment is significantly suppressed causing a pronounced ‘shoulder-shape’
concentration profile, characterized by a rapid decrease in the concentration near
the top of the wave boundary layer. On the other hand, because the magnitudes
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of turbulent production and turbulent kinetic energy around the top of the wave
boundary layer are already small comparing with those within the wave boundary
layer, the averaged flow velocity and turbulent intensity are only slightly modulated.
The sharp gradient point in the concentration profile, called lutocline, exist not only
for the fine-sediment suspension in the oscillating grid (Huppert et al. 1995), steady
current or tidal flow (Trowbridge & Kineke 1994; Winterwerp 2001) but also observed
in the field and laboratory during the wave-driven fine-sediment transport with a near-
bed concentration of more than 10 g l−1 (e.g. Ross & Mehta 1989; Traykovski et al.
2000, 2007; Lamb, D’Asaro & Parsons 2004). Our simulation results are consistent
with these observations on the wave-induced fluid mud transport.

(iii) In regime III, the near-bed sediment concentration is around several tens to
100 g l−1, where strong coupling between the carrier flow and the sediment transport
due to particle-induced density stratification is observed. Because of increasing effect
of the stable sediment concentration gradient that directly suppresses turbulent
production in the wave boundary layer, mean flow velocity tends to laminarize
and causes a smaller wave boundary layer thickness. This feature of the carrier flow
is quite different from that of regime II. Moreover, as the turbulent suspension of
sediment in the wave boundary layer is shut down during a portion of the wave
period, flow destabilizes during the flow reversal and episodic sediment bursts and
increase in turbulence level occurs via flow instability. Subsequently, during the rest of
the wave cycle the instability decays and a quiescent laminar flow is observed. From
a comparison of the averaged velocity and concentration profiles with the laminar
counterparts, we observe that they are nearly identical. It is not completely clear
if such occurrence of instability during the flow reversal has been observed in the
field or laboratory under the flow and sediment conditions considered in this study.
Similarly, Foster, Beach & Holman (2006) observed that similar episodic near-bed
sediment burst events occur only during the flow reversal in a sandy beach surf
zone of 2 m flow depth. However, both the Reynolds number (Re∆ ∼ 2000) and the
non-dimensional settling velocity (Vs = 2 × 10−3) are about 2 − 3 times larger than
the conditions considered in this study. One might argue that the larger Reynolds
number contributes to enhanced turbulence and as a result a larger particle settling
velocity (or larger concentration) is required to establish the condition of instability
during the flow reversal. The effect of increased particle settling velocity at a fixed
bulk Richardson number on turbulent suppression and laminarization has been
discussed by Cantero et al. (2009a) and Cantero, Balachandar & Parker (2009b) in
the context of turbidity currents. Conley & Inman (1992) report field observations
on sandy beaches under near-breaking waves. They measure intense sand suspension
events, characterized by the development of rolling and pluming regimes, only during
the passage of a wave crest. It is noted here that the wave shape in the study
of Conley & Inman (1992) is quite skewed (e.g. velocity amplitude is significantly
larger during the wave crest) and the grain size is considerably larger ( ∼ 150 µm in
diameter) than that considered in this study. P. Traykovski (personal communication,
2009) has observed lutocline waves during wave-driven fluid mud events. These
lutocline waves had wavelengths much smaller than the surface wavelength. However,
the near-bed sediment concentration observed is of a few hundred grams per litre
and hence the measured lutocline wave may be mostly controlled by rheological
stresses and associated non-Newtonian flow effects, which are not incorporated in this
study.

(iv) In regime IV, where the near-bed sediment concentration is greater than
O(100) g l−1, sediment-induced stable density stratification is severe enough that it
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further suppresses the instability observed in regime III and the flow remains laminar
at all times. Complete laminarization of the turbulent wave boundary layer due to
sediment-induced stable density stratification has been hypothesized in many models
to study wave dissipation over a muddy seabed. In such study, the wave boundary
layer is calculated based on a laminar formulation with an enhanced effective viscosity
or non-Newtonian (e.g. Bingham-plastic) viscosity that further damps the wave energy
(e.g. Dalrymple & Liu 1978; Mei & Liu 1987). Our simulation results discussed here
support such a laminar flow assumption. In a laboratory study of fine sediment
transport in an oscillatory tunnel, Lamb et al. (2004) report that as the wave velocity
amplitude increases, wave boundary layer thickness also increases and more sediment
is suspended from the bed. However, a critical wave velocity amplitude seems to exist
such that when the wave amplitude is further increased, the wave boundary layer
turbulence eventually collapses and the wave boundary layer thickness decreases. This
observation of the carrier flow behaviour is consistent with our simulation results
shown here.

In many coastal modelling applications, the effects of wave boundary layer are
parameterized by a friction factor (or by a drag coefficient). It is well known that
when the presence of sediment attenuates the carrier flow turbulence, the friction
factor experienced by overlaying hydrodynamics is reduced (e.g. Glenn & Grant
1987; Styles & Glenn 2000). Our simulation results suggest such a paradigm for
fine sediment may need to be refined for the wave-induced fine sediment transport.
Sediment-induced stable density stratification affects sediment suspension and carrier
flow in wave boundary layer in two different levels. For a milder concentration, there
exists a regime (regime II) of weak turbulence attenuation where sediment mixing is
suppressed only at the top of the wave boundary layer to form a lutocline. However,
the mean flow field is intact and hence there is no need to revise the friction factor
associated with the mean flow energy dissipation. Only at higher concentration, such
as regimes III and IV, is turbulence significantly attenuated and friction factor must
be reduced. In most field studies on wave propagation over a muddy seabed (e.g.
Forristal & Reece 1985; Sheremet & Stone 2003; Elgar & Raubenheimer 2008), there
are mostly reports on increased energy dissipation due to the presence of mud in the
wave boundary layer instead of drag reduction. Our simulation results here imply
the presence of a lower concentration of the fluid mud may not reduce the friction
factor (e.g. regime II). As the sediment concentration further increases such that
sediment-induced stable density stratification directly reduces turbulent production,
the mean flow laminarizes. In the meantime, rheological stress may further become
effective due to high sediment concentration to attenuate wave energy. Hence, it is
likely that the range of the sediment concentration in the wave boundary layer that
attenuates turbulence and causes reduction of friction is limited.

6. Conclusions
Highly accurate numerical simulations have been carried out for fine-particle

transport in an oscillatory boundary layer. Two-way coupled simulations adopting a
simplified Eulerian–Eulerian model are used to simplify particle phase formulation
appropriate for the small particle response time. In this study, we further neglect
higher-order particle inertia terms and the resulting turbulence modulation is only
due to particle-induced density stratification. Flow turbulence is fully resolved at a
Reynolds number of Re∆ = 1000. We present four cases with a non-dimensional
particle settling velocity of Vs = 9 × 10−4 at different bulk Richardson numbers,
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i.e. Ri = 0, 1 × 10−4, 3 × 10−4 and 6 × 10−4, representing various degrees of particle-
induced stable density stratification.

At Ri = 1 × 10−4, which corresponds to a near-bed sediment concentration of
10 g l−1 for the Reynolds number and settling velocity selected, sediment-induced
stable density stratification attenuates flow turbulence and reduces mixing of the
sediment near the top of the wave boundary layer, which gives the formation of
a sharp concentration gradient, i.e. lutocline. This test case also gives a qualitative
estimate on the minimum concentration for which particle cannot be considered as
passive to the carrier flow turbulence. On the other hand, turbulence near the bed
is not affected by the sediment and the mean flow velocity is almost identical to
the clear fluid condition. At Ri = 3 × 10−4 (near-bed concentration about 50 g l−1),
particle-induced density stratification is strong enough to attenuate turbulence in the
entire wave boundary layer. The flow tends to be laminarized and the mean flow
velocity and concentration profiles become similar to the laminar solution. However,
flow instability, which can be clearly seen both in the coherent vortical structure and
instantaneous particle concentration, occurs during the flow reversal which triggers
large fluctuation production and particle suspension that last about one-third of the
wave period. Finally, at Ri = 6 × 10−4 (near-bed concentration more than 100 g l−1),
an oscillatory boundary layer flow becomes completely laminarized at all times due
to intense sediment-induced stable density stratification.

At Ri = 3 × 10−4 or greater, turbulence is attenuated across the entire oscillatory
boundary layer and hence the oscillatory boundary layer thickness and friction are
reduced due to particle-induced stable density stratification. In most cohesive sediment
transport studies, when sediment concentration is greater than O(100) g l−1, rheological
stresses caused by interactions among the floc aggregates and interstitial water need to
be considered. Rheological stress gives an enhanced effective viscosity that can further
increase energy dissipation and friction factor. These non-Newtonian flow features
shall be studied in the future work. This study identifies several distinct regimes of
the particle-laden oscillatory boundary layer according to different magnitudes of the
bulk Richardson number (or sediment concentration). Although the exact value of
Ri for these regimes must depend on the Reynolds number and the settling velocity,
the characteristics of these regimes are useful to explain the wave-driven cohesive
sediment transport process in coastal environments. Future work shall be devoted
to explore these characteristics for different settling velocity and Reynolds number.
Finally, more detailed laboratory and field measurements shall be carried out to verify
several interesting observations revealed by the present numerical simulations, such
as flow instability that occurs during the flow reversal.
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