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SUMMARY

Decision-making processes in agriculture often require reliable crop response models. The Fujian
province of China is a mountainous region where weather aberrations such as typhoons, floods and
droughts threaten rice production. Agricultural management specialists need simple and accurate
estimation techniques to predict rice yields in the planning process. The objectives of the present study
were to: (1) investigate whether artificial neural network (ANN) models could effectively predict
Fujian rice yield for typical climatic conditions of the mountainous region, (2) evaluate ANN model
performance relative to variations of developmental parameters and (3) compare the effectiveness of
multiple linear regression models with ANN models. Models were developed using historical yield
data at multiple locations throughout Fujian. Field-specific rainfall data and the weather variables
(daily sunshine hours, daily solar radiation, daily temperature sum and daily wind speed) were used
for each location. Adjusting ANN parameters such as learning rate and number of hidden nodes
affected the accuracy of rice yield predictions. Optimal learning rates were between 0.71 and 0.90.
Smaller data sets required fewer hidden nodes and lower learning rates in model optimization. ANN
models consistently produced more accurate yield predictions than regression models. ANN rice
grain yield models for Fujian resulted in R2 and RMSE of 0.67 and 891 vs 0.52 and 1977 for linear
regression, respectively. Although more time consuming to develop than multiple linear regression
models, ANN models proved to be superior for accurately predicting rice yields under typical Fujian
climatic conditions.

INTRODUCTION

Rice is vital to more than half of the worlds popu-
lation. It is the most important food grain in the diets
of hundreds of millions of Asians, Africans and Latin
Americans living in the tropics and subtropics
(Yoshida 1981). China represents more than 0.20 of
the worlds population, while its arable land is only
some 0.07 of the global total. There is no doubt that
increased yields must be achieved by improved grain
yield per unit area rather than an increase in total
area.
The Fujian province of China is a mountainous

region where c. 0.5 of the land is hilly; 0.7 of the rice
in the present study was planted on mountain farms.

Fujian has a subtropical climate, warm and humid.
There are distinct differences in the climate between
north and south, coastal and inland regions, and
valleys and mountains. It has an annual temperature
of 17–21 xC and an annual precipitation of
1100–2000 mm, both increasing from northwest to
southeast. Typhoons occur frequently from July to
September. Since 1993, the government has been
carrying out province-wide surveys for crop moni-
toring and for yield forecasting. Yield components
data collected from 48 to 160 random plots across the
province are used to calculate the final yield. Plot
yields are aggregated to project the crop production
of 16 counties making up the coterminous Fujian
province.
Rice production is affected by sets of varietals and

environmental parameters, including genetic charac-
teristics, soil, weather and cultivation management.
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Rice grain yield for a given cultivar is mainly depen-
dent upon local weather conditions such as sunshine
hours, solar radiation and temperature, when plants
are grown with ample nutrients and water. In other
words, the variation in rice production along spatial
and temporal gradients would be attributable to dif-
ferent climates when other conditions are suitable for
plant growth and development. In addition, the dif-
ferent climatic conditions are mostly associated with
either cropping season or crop yield in the same year
for a particular area. For those regions such as the
Yangtze River Valley and its adjacent area, where
there is a single rice cropping system, its rice pro-
duction is different from the Fujian province with its
mountainous terrain and double-cropping system.
Weather and climate affect plant growth and de-

velopment and the fluctuations and occurrences of
climatic extremes, particularly at critical crop growth
stages, may reduce yield significantly (Satake &
Yoshida 1978; Peng et al. 1996). Concern about past,
present and future weather aberrations, climate
trends and their effects on agriculture has continued
to stimulate research as well as public and policy-level
interest in the analysis of climate variability and
agricultural productivity (Matthews et al. 1996;
Houghton et al. 1996). The occurrence of abnormal
weather episodes during the growing season or during
critical development stages may hamper growth pro-
cesses, resulting in yield reduction. This makes cli-
mate variability a threat to food production, with
serious social and economic implications (Geng &
Cady 1991; Hossain 1997). However, a clear under-
standing of the vulnerability of food crops as well as
the agronomic impacts of climate variability in
mountainous areas enables implementation of
adaptive strategies to mitigate the negative effects and
make better yield predictions.
In recent years, crop growth models have become

increasingly important as major components of agri-
culture-related decision-support systems (Jones 1993;
Jame & Cutforth 1996; Stephens & Middleton 2002).
Crop growth and yield models are based on a com-
bination of soil, crop and climatic variables. Sadras &
Calviño (2001) determined that 0.90 of soybean and
0.76 of maize yield variation were linked to water
deficits. Rainfall was deemed to be primarily respon-
sible for yield variability within a region. Crasta &
Cox (1996) determined that temperature did not in-
fluence yields in the northeastern US during years
with adequate rainfall as compared with years with
moderate to severe water stress. According to Bandel
& Heger (1994), differences of growing season length
within Maryland had little influence on yield, but
soil water holding capacity and land capability class
were important factors in the Maryland Agronomic
Soil Capability Assessment Program (MASCAP)
yield predictions. Environmental factors, such as
climatic information, in addition to multiple soil

properties related to crop rooting depth and water
availability, are significant factors for crop yield
models (Huddleston 1984; Gbadegesin 1987; Liang
et al. 1986; Whisler et al. 1986).
Agronomic models are based on mechanistic or

empirical approaches (Poluektov & Topaj 2001).
Mechanistic models use mathematical functions to
represent physical, biological and chemical processes
(Whisler et al. 1986). Although these models are
suitable for areas outside the data range used for de-
velopment, they tend to be complex and require many
input parameters (Basso et al. 2001; Wang et al.
2002). Empirical models attempt to determine func-
tional relationships between crop yield and other
factors using either an existing or a specially designed
agronomic experiment. Regression or correlation
analyses are generally used to characterize the stat-
istical relationship between controlled variables and
crop yield. Technologically, empirical crop growth
models are relatively simple to build or develop, but
these models cannot take account of temporal
changes in crop yields without long-term field ex-
periments (Jame & Cutforth 1996). Furthermore, the
derived functional equation is locally specific, and
it is thus difficult to extrapolate to other areas unless
environmental conditions are similar.
In view of the fact that even the most deterministic

models still rely heavily on empirical functional re-
lationships to varying degrees (Jame & Cutforth
1996), empirical crop growth models may play an
important role as explanatory tools for identifying the
hidden structure of crop growth processes. They may
even offer a more reliable method of investigating
crop response than poorly calibrated process models
when the necessary data are available. The main
limitation of traditional regression-based empirical
models is the lack of non-linear modelling ability,
which is apparent in crop responses to agro-ecological
conditions. This may be the case particularly when
various land management practices are applied under
different scenarios.
Some adaptive and non-parametric models have

been recently introduced in environmental science
for predictive purposes. Artificial neural network
(ANN) models are a powerful empirical modelling
approach and yet relatively simple compared with
mechanistic models. It is felt that ANNmodels offer a
more versatile empirical modelling approach in com-
parison to the linear regression methods used in rice
yield since the rice yield is non-linear and auto-
regressive in nature. Because ANN models allow an
illustration of complex and non-linear relationships
without rigorous assumptions regarding the distri-
bution of samples (Bishop 1995; Breiman et al. 1984),
the method is gaining popularity for research areas
where there is little or incomplete understanding of
the problem to be solved, but where training data are
available.
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Artificial neural networks can be used to develop
empirically based agronomic models. The ANN
structure is based on the human brain’s biological
neural processes. Interrelationships of correlated
variables that symbolically represent the inter-
connected processing neurons or nodes of the human
brain are used to develop models. ANN models find
relationships by observing a large number of input
and output examples to develop a formula that can be
used for predictions (Pachepsky et al. 1996). Non-
linear relationships overlooked by other methods can
be determined with little a priori knowledge of the
functional relationship (Elizondo et al. 1994). A
minimum of three layers is required in an ANN
model : the input, hidden and output layers (Fig. 1).
The input and output layers contain nodes that

correspond to input and output variables, respect-
ively. Data move between layers across weighted
connections. A node accepts data from the pre-
vious layer and calculates a weighted sum of all its
inputs, t :

ti=
Xn

j=1

wijxj (1)

where n is the number of inputs, w is the weight of the
connection between node i and j, and x is the input
from node j. A transfer function is then applied to the
weighted value, t, to calculate the node output, oi.

oi=f (ti) (2)

The most commonly used transfer function is a
sigmoidal function for the hidden and output layers
and a linear transfer function is commonly used for
the input layer.
The number of hidden nodes determines the

number of connections between inputs and outputs
and may vary depending on the specific problem
under study. If too many nodes are used then the

ANN may become over-trained, causing it to mem-
orize the training data and resulting in poor predic-
tions (Lawrence 1994). The learning rate determines
the amount the weights change during a series
of iterations to bring the predicted value within an
acceptable range of the observed value. The training
tolerance refers to the maximum error rate at which
the network must converge during training. Once
the network converges, an approximate function is
developed and utilized for future predictions
(Schmueli 1998). The trained network is then tested
with a separate data set with its output information
omitted.
Agronomic ANN applications include crop devel-

opment modelling (Elizondo et al. 1994), pesticide
and nutrient loss assessments (Yang et al. 1997), soil-
water retention estimations (Schaap & Bouten 1996),
and disease prediction (Batchelor et al. 1997).
Pachepsky et al. (1996) reported an ANN model’s
estimated soil-water content based on soil physical
properties better than regression techniques. Starrett
et al. (1997) reported that an ANN model performed
better (R2=0.984) than a regression model (R2=
0.780) when predicting applied-nitrogen leaking be-
low the root zone of turf grass. According to
Batchelor et al. (1997), ANN models produced better
results than traditional statistical methods when pre-
dicting soybean rust.
The objective of the present study was to develop

simple rice yield prediction models with readily
available data that could be easily applied by an end
user. The specific objectives were to: (1) investigate if
artificial neural network (ANN) models could effec-
tively predict Fujian rice yield for typical mountain-
ous climatic conditions; using field-specific rainfall,
field-specific weather variables (daily sunshine hours,
daily solar radiation, daily temperature sum and daily
wind speed) values, and historic yield data; (2) note
changes of model performance with variations of
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Fig. 1. Layers and connections of a feed-forward back-propagating artificial neural network.
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ANN model parameters ; and (3) compare the effec-
tiveness of multiple linear regression models with
ANN models for predicting Fujian rice yields.

MATERIALS AND METHODS

Data

Historical (1993–2003) Fujian rice yield data from
the Hybrid Variety Performance trials Fujian
Agricultural Administration were accessed. The rice
data included 16 locations and seven different soil
types (Fig. 2; Table 1). The location-specific rainfall
data and the weather variables (daily sunshine hours,
daily solar radiation and daily temperature sum) were
obtained from weather stations in each location.

The mean yield of all hybrids at a test location was
used to reduce the inherent variability associated with
individual hybrids when approximating expected
yields for Fujian. Hybrid variety data included early,
mid and late season maturing rice. Varieties are
grouped based on the number of days needed from
planting to maturity. These rice maturity groups
represent the most commonly used groupings planted
on Fujian and the majority of China agricultural
land. The t test for early-mid, mid-late and early-late
rice maturity group comparisons of mean yield re-
sulted in P values of 0.54, 0.66 and 0.86, respectively.
Thus, maturity group data sets could be combined for
developing yield prediction models.
Precipitation data were obtained from weather

station records from each location. Monthly rainfall

Wuyishan

Shaowu

Jianou

Jiangle

Youxi

Ninghua

Liancheng

zhangping

Yongding

Zhangpu

Quanzhou

Putian

Fuzhou

Nide

Fuding

Pucheng

Fig. 2. Locations within Fujian province where rice yields, soil fertility level means, precipitation, sunshine hours,
solar radiation, temperature sum, wind speed information were obtained and used for the development of yield prediction
models.
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means from February to November were used.
Locations with mean seasonal rainfall outside of one
standard deviation of the 20-year mean rainfall dur-
ing February–November were used to ensure that
models would be developed for typical weather con-
ditions representing Fujian rice-growing seasons.
Solar radiation and temperature vary significantly

in mountainous areas because they are controlled by
various factors and the spatial variation is expected
to vary substantially even within a location. Thus,
daily sunshine hours, daily solar radiation, daily
temperature sum and daily wind speed were recorded
at an agricultural experiment station situated at the
study area.
Additional data included were the field conditions.

Soil was collected from the cropped and adjacent
areas to evaluate the amount of organic N as a result
of soil fertility level. The data included 5 years of soil
fertility level means in each location, obtained from
the Fujian soil survey database. The fields consisted
of seven soil types (Table 1).

Artificial neural network model development

The ANN method was first used in artificial intelli-
gence research that attempted to mimic the capacity
to learn through biological neural systems. Many
different types of neural nets are available and their
structure is described in Bishop (1995), Ripley (1996)
and Principe et al. (2000). The ANN structure used in
the present paper is a feed-forward back-propagating
ANN model, the structure of which is illustrated in
Fig. 1. The feed-forward network is a common ANN
architecture that requires relatively little memory and
is generally fast (Lawrence 1994). Data move through
the layers in one direction, from the input through the
hidden to the output layers without loops, in contrast
to feedback networks.
Feed-forward networks may be based on linear or

non-linear transfer functions that affect the output
from the input and hidden layers. Non-linear net-
works may be trained using supervised learning,
learning by example with outputs, or unsupervised
learning, self-organizing without outputs. Supervised

learning uses known outputs to train the ANN and is
more commonly used than unsupervised learning.
Back-propagation is a form of supervised learning
where the error rate is sent back through the network
to alter the weights to improve prediction and de-
crease error.
The general process to build a neural network

model including the creation of data sets for training
and testing, training multiple networks with varied
parameters, analysing network results, and testing the
models (Broner & Comstock 1997). Training sets
used to develop models included field-specific rainfall,
solar radiation, temperature and wind speed as inputs
with associated yields as outputs. The monthly means
of the sunshine hours, solar radiation, temperature
sum and wind speed from February through to
November and 10-day sunshine hours means for
June, July and August were used (Table 2).
Because the assignment of connection weights in

an ANN model is sensitive to differences in the
magnitude of input variables, yield values were scaled
to range from 0 to 1 so that the values were within
a similar numerical range as other input values.
Multiple combinations of monthly mean rainfall,
sunshine hours, solar radiation, temperature and
wind speed inputs were used during training to de-
termine critical periods for model development. It
was necessary to include soil fertility level as an input
for all models containing multiple soils types to ob-
tain convergence. Both training and testing data sets
contained data from all locations and were random-
ized before model development. Training data con-
sisted of 290 rice observations of a total of 399 rice
observations. The remaining data were used to test
the models.
Yield prediction models were developed at the

province, regional and local levels. Province level
models included all locations, and regional models
were based on the coastal plain (Fuding, Nide,
Fuzhou, Putian, Quanzhou and Zhangpu) and Wuyi
mountain regions (other locations in Fig. 2) within
the Fujian province. Local level models were devel-
oped for each location.
Adjustment of ANN parameters included the

number of hidden nodes, learning rate and training
tolerance. The number of hidden nodes selected per
model was equal to one-half the total number of in-
puts plus outputs. The number of nodes were then
increased and decreased by one to improve model
performance. The learning rate was adjusted between
0.71 and 0.90. Preliminary trials indicated that lower
learning rates produced poorly developed models.
During early trials, the training tolerance was set at
0.1. Better results were found when the training tol-
erance was initially set higher and decreased linearly
as the network trained. Thus, the training tolerance
was generally set at 0.4 and decreased to 0.1 as the
network’s performance improved.

Table 1. Different soil types (United States Soil Types,
USST) of the test sites in Fijian province

Soil types Test sites

Typic Haplohumults Fuding, Nide
Typic Palehumults Fuzhou, Putian
Humic Dystrudepts Quanzhou, Zhangpu
Typic Hapludults Pucheng, Wuyishan, Shaowu
Histic Humuaquepts Jianou, Jiangle, Youxi
Typic Humuaquepts Liancheng, Ninghua
Typic Dystrudepts Youding, Zhangping
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Regression model development

Multiple linear regression models were developed
and tested with the same data sets used for ANN de-
velopment. This regression method was selected, since
it served as a direct technique in Hybrid Variety Per-
formance trials Fujian Agricultural Administration.
Field-specific rainfalls, sunshine hours, solar radi-
ation, temperature sum, wind speed and soil fertility
level were independent variables and yield was the
dependent variable (Table 2). Thus, independent and
dependent variables correspond to ANN input and
output variables, respectively.
Raw rice yield was scaled to range from 0 to 1 so

that values were within a similar numerical range as
the other input variables. The regression equations
that were developed are referred to as trained models.
These models were then validated with the same data
sets used to test the ANN models, thus making the
results comparable, and are referred to as validated
models. The validated models are indicative of the
models’ capabilities to predict yield, since the testing
data are independent of the data used for model de-
velopment. Specific comparisons were based on
RMSE and R2 of the validated regression model re-
sults and the ANN model results.

RESULTS

Over 270 ANN yield prediction models were devel-
oped and tested for at the province, regional and local
spatial levels. Discussion of ANN model results refer
to the tested models. At all spatial levels, models that
used monthly means of rainfall and wind speed for
February–November in addition to the soil fertility
level means failed to converge during training, in-
dicating that the ANN was unable to develop a yield
prediction function (Table 3). The lack of conver-
gence also indicated that use of monthly rainfall and
wind speed means for February–November did not
adequately account for rice yield variability.

Rice prediction at the province level

At the province level, models that used monthly
means of sunshine hours (R2=0.73), solar radiation
(R2=0.70), and temperature sum (R2=0.68) from
February–November for inputs did not predict yield
as well as models using 10-day sunshine hours means
for June, July and August (R2=0.76) in addition to
soil fertility level means (Table 3). The model that
combined 10-day sunshine hours means for June, July
and August and soil fertility level means with monthly
means of rainfall for May–September predicted yield
more accurately (R2=0.79) than models that com-
bined them with monthly means of solar radiation
(R2=0.77), (R2=0.76) and wind speed (R2=0.78) for
May–September.

Table 2. Inputs used for development of rice yield
prediction models

Input
number Description

1 February mean rainfall
2 March mean rainfall
3 April mean rainfall
4 May mean rainfall
5 June mean rainfall
6 July mean rainfall
7 August mean rainfall
8 September mean rainfall
9 October mean rainfall

10 November mean rainfall
11 February mean sunshine hours
12 March mean sunshine hours
13 April mean sunshine hours
14 May mean sunshine hours
15 June mean sunshine hours
16 July mean sunshine hours
17 August mean sunshine hours
18 September mean sunshine hours
19 October mean sunshine hours
20 November mean sunshine hours
21 February mean solar radiation
22 March mean solar radiation
23 April mean solar radiation
24 May mean solar radiation
25 June mean solar radiation
26 July mean solar radiation
27 August mean solar radiation
28 September mean solar radiation
29 October mean solar radiation
30 November mean solar radiation
31 February mean temperature sum
32 March mean temperature sum
33 April mean temperature sum
34 May mean temperature sum
35 June mean temperature sum
36 July mean temperature sum
37 August mean temperature sum
38 September mean temperature sum
39 October mean temperature sum
40 November mean temperature sum
41 February mean wind speed
42 March mean wind speed
43 April mean wind speed
44 May mean wind speed
45 June mean wind speed
46 July mean wind speed
47 August mean wind speed
48 September mean wind speed
49 October mean wind speed
50 November mean wind speed
51 1–10 June mean sunshine hours
52 11–20 June mean sunshine hours
53 21–30 June mean sunshine hours
54 1–10 July mean sunshine hours
55 11–20 July mean sunshine hours
56 21–31 July mean sunshine hours
57 1–10 August mean sunshine hours
58 11–20 August mean sunshine hours
59 21–31 August mean sunshine hours
60 Soil fertility level means
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Table 3. Results of tested artificial neural network (ANN ) rice yield prediction models with varying model inputs
and ANN parameters

Inputs *

Optimum

RMSE
(kg/ha) R2

No. of hidden
nodes Learning rate

Province-level

1–10, 60 Did not converge
11–20, 60 5 0.83 1213 0.73
21–30, 60 5 0.85 1245 0.70
31–40, 60 5 0.81 1350 0.68
41–50, 60 Did not converge
51–60 5 0.86 1243 0.76
4–8, 51–60 8 0.84 1212 0.79
24–28, 51–60 8 0.80 1289 0.77
34–38, 51–60 8 0.81 1256 0.76
44–48, 51–60 8 0.82 1225 0.78
4–8, 24–28, 51–60 9 0.85 967 0.81
4–8, 34–38, 51–60 9 0.87 1123 0.80
4–8, 44–48, 51–60 9 0.86 954 0.82
4–8, 24–28, 34–48, 51–60 9 0.84 998 0.84
4–8, 24–28, 44–48, 51–50 9 0.85 989 0.85
4–8, 34–38, 44–48, 51–60 9 0.88 891 0.87
24–28, 34–38, 44–48, 51–60 9 0.83 950 0.85
4–8, 24–28, 34–38, 44–48, 51–60 10 0.82 1251 0.79

Region level

Coastal plain
51–60 5 0.81 1345 0.61
4–8, 51–60 7 0.83 1322 0.62
4–8, 44–48, 51–60 7 0.85 1314 0.65
4–8, 34–38, 44–48, 51–60 9 0.86 1221 0.70

Wuyi mountain
51–60 5 0.85 1243 0.76
4–8, 51–60 7 0.86 1212 0.79
4–8, 44–48, 51–60 7 0.87 954 0.87
4–8, 34–38, 44–48, 51–60 9 0.89 871 0.90

Local level

Fuding
51–60 5 0.81 1375 0.62
4–8, 51–60 6 0.84 1342 0.64
4–8, 44–48, 51–60 6 0.87 1304 0.67
4–8, 34–38, 44–48, 51–60 7 0.88 1213 0.70

Nide
51–60 5 0.81 1385 0.63
4–8, 51–60 6 0.82 1362 0.65
4–8, 44–48, 51–60 6 0.85 1334 0.68
4–8, 34–38, 44–48, 51–60 7 0.87 1201 0.70

Fuzhou
51–60 5 0.71 1355 0.63
4–8, 51–60 6 0.77 1342 0.65
4–8, 44–48, 51–60 6 0.74 1414 0.62
4–8, 34–38, 44–48, 51–60 7 0.76 1421 0.60

Putian
51–60 5 0.72 1335 0.61
4–8, 51–60 6 0.78 1312 0.68
4–8, 44–48, 51–60 6 0.75 1444 0.62
4–8, 34–38, 44–48, 51–60 7 0.75 1431 0.61
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Table 3 (cont.)

Inputs *

Optimum

RMSE
(kg/ha) R2

No. of hidden
nodes Learning rate

Quanzhou
51–60 5 0.71 1345 0.60
4–8, 51–60 6 0.73 1322 0.62
4–8, 44–48, 51–60 6 0.75 1614 0.55
4–8, 34–38, 44–48, 51–60 7 0.76 2221 0.40

Zhangpu
51–60 5 0.74 1315 0.61
4–8, 51–60 6 0.76 1202 0.69
4–8, 44–48, 51–60 6 0.75 1514 0.59
4–8, 34–38, 44–48, 51–60 7 0.76 2321 0.41

Pucheng
51–60 5 0.81 1223 0.74
4–8, 51–60 6 0.82 1202 0.79
4–8, 44–48, 51–60 6 0.85 1094 0.84
4–8, 34–38, 44–48, 51–60 7 0.87 831 0.86

Wuyishan
51–60 5 0.81 1234 0.77
4–8, 51–60 6 0.82 1162 0.80
4–8, 44–48, 51–60 6 0.85 934 0.86
4–8, 34–38, 44–48, 51–60 7 0.90 721 0.90

Shaowu
51–60 5 0.82 1233 0.76
4–8, 51–60 6 0.84 1205 0.79
4–8, 44–48, 51–60 6 0.86 956 0.87
4–8, 34–38, 44–48, 51–60 7 0.89 706 0.90

Jianou
51–60 5 0.80 1221 0.74
4–8, 51–60 6 0.82 1200 0.76
4–8, 44–48, 51–60 6 0.85 1154 0.80
4–8, 34–38, 44–48, 51–60 7 0.86 810 0.86

Jiangle
51–60 5 0.81 1237 0.76
4–8, 51–60 6 0.82 1214 0.77
4–8, 44–48, 51–60 6 0.85 967 0.81
4–8, 34–38, 44–48, 51–60 7 0.89 829 0.87

Youxi
51–60 5 0.80 1238 0.75
4–8, 51–60 6 0.83 1219 0.78
4–8, 44–48, 51–60 6 0.84 923 0.82
4–8, 34–38, 44–48, 51–60 7 0.89 817 0.87

Ninghua
51–60 5 0.80 1235 0.74
4–8, 51–60 6 0.83 1201 0.78
4–8, 44–48, 51–60 6 0.84 1156 0.79
4–8, 34–38, 44–48, 51–60 7 0.86 817 0.86

Liancheng
51–60 5 0.80 1233 0.74
4–8, 51–60 6 0.81 1202 0.77
4–8, 44–48, 51–60 6 0.85 944 0.86
4–8, 34–38, 44–48, 51–60 7 0.88 710 0.90
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The model that combined monthly means of rain-
fall, 10-day sunshine hours means for June, July and
August and soil fertility level means with monthly
means of wind speed for May–September predicted
yield more accurately (R2=0.82) than models that
combined them with monthly means of solar radi-
ation (R2=0.81), temperature sum (R2=0.80) for
May–September. The model that included monthly
means of rainfall, wind speed, and temperature sum
for May–September, 10-day sunshine hours means
for June, July and August and soil fertility level
means resulted in the best fit of predicted to measured
yield for the state (R2=0.67, RMSE=891; Fig. 3).

Rice prediction at the region level

The coastal plain region and Wuyi mountain region
rice yield prediction models with the highest R2 (0.70
and 0.90, respectively) and lowest RMSE (1221 and
871, respectively) included soil fertility level means,
monthly means of rainfall, wind speed and tempera-
ture sum for May–September, and 10-day sunshine
hours means for June, July and August (Table 3). The
coastal plain models did not predict yield as well as
the Wuyi mountain models. The disparity in the ac-
curacy of yield prediction between regions may have
been the result of different soil fertility level means,
rainfall, wind speed, sunshine hours and temperature
in each region. The coastal plain region included six
locations, while the Wuyi mountain region included
10 locations. The coastal plain region had highly
productive soils. The standard deviation for soil fer-
tility level means values in this region was 0.09 and
the mean was 0.87. The Wuyi mountain region had
more variable cropping conditions than the coastal
plain region with a fertility level means standard de-
viation of 0.23 and a mean of 0.56.

Table 3 (cont.)

Inputs *

Optimum

RMSE
(kg/ha) R2

No. of hidden
nodes Learning rate

Zhangping
51–60 5 0.81 1233 0.74
4–8, 51–60 6 0.84 1202 0.77
4–8, 44–48, 51–60 6 0.87 1174 0.80
4–8, 34–38, 44–48, 51–60 7 0.88 800 0.87

Yongding
51–60 5 0.82 1237 0.74
4–8, 51–60 6 0.83 1233 0.76
4–8, 44–48, 51–60 6 0.85 931 0.80
4–8, 34–38, 44–48, 51–60 7 0.89 803 0.87

* Inputs are defined in Table 1.
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Fig. 3. Scatter plots displaying results of artificial neural
network (a) and multiple regression (b) predicted versus ob-
served rice yields for Fujian from the validation data set. The
line represents a least-squares linear regression of predicted
versus observed rice yields.
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In the coastal plain region, tropical cyclones,
usually characterized by strong high winds, little
sunshine, reduced temperature and heavy rainfall are
destructive to annual rice. Damage to rice may range
from negligible to total destruction depending on the
intensity and duration of the storm event, as well as
the prevailing rice growth stage during the occurrence
of the cyclone. However, the damage to rice may be
decreased by hillsides in mountainous regions, thus,
the models in mountainous regions predicted yield
more accurately than models in the coastal plain.
The Quanzhou location model, located in the

coastal plain, had the poorest yield predictions as
measured by R2 (0.40–0.60) and RMSE (2221–1322),
indicating a level of variability that was not ad-
equately explained by the chosen input variables.
Including this location in the coastal plain model
probably increased the amount of variability and may
have resulted in decreased performance of the coastal
plain regional model.

Rice prediction at the local level

With the exception of the locations in coastal plain,
local level models predicted yield more accurately
(R2o0.86 and RMSEf831) than region and state
models. The inputs used to develop the most accurate
local-level rice yield prediction model for each
location are similar. The best predictive models were
obtained for all locations that utilized monthly means
of rainfall, wind speed and temperature sum for
May–September, 10-day sunshine hours means for
June, July and August and soil fertility level means.
The range of soil fertility level means values de-

creased as the size of the spatial area being modelled
decreased. This result was expected since soil fertility
level means values indicate soil and land character-
istics and the range of characteristic values decreased
with smaller spatial areas.
The timing of sunshine hours inputs for all models

is consistent with rice growing season. Peak rice
growth occurs during May–September, while plants
are in the productive stages of development. Since
monthly sunshine hours means for May–September
provided insufficient information to predict rice yield,
and 10-day sunshine hours means during the same
months did provide useful information, it is evident
that the models are sensitive to the timing of precipi-
tation as an important factor for rice development.

Comparison of ANN and regression models

ANN parameters were optimized for each combi-
nation of sunshine hours, rainfall, temperature sum,
wind speed and soil fertility level means inputs. These
parameters included training tolerance, number of
hidden nodes, learning rate and presentation of data.
Adjusting these parameters facilitated the ability

of the network to develop an optimal function to
predict crop yield. The learning rate and number
of hidden nodes had a large effect on model behav-
iour. Generally, fewer hidden nodes were required as
the quantity of data decreased (Table 3). The best
models had fewer hidden nodes than the starting
number of nodes. ANN models with more nodes may
have memorized the input and output connections
instead of learning their relationships (Batchelor
et al. 1997).
The regression models resulted in lower R2 and

higher RMSE than ANN models (Table 4). Although
the non-validated regression results were generally
better than the validated results, the validated models
are indicative of the capability of the models to pre-
dict yield with new data. Discussion of regression
models will refer to the validated models unless
otherwise indicated.
At the state level, the same input groupings were

used to develop ANN and regression models that
resulted in the most accurate yield predictions. As
seen in Fig. 3, yield predictions from regression
models (R2=0.52, RMSE=1977) were not a good fit
to observed yields when compared with ANN yield
prediction (R2=0.67, RMSE=891). Comparisons of
observed versus predicted yields for multiple re-
gression models resulted in a least squares linear
regression line with a slope of 0.14 and y-intercept of
9827, while the ANN model comparisons resulted
in a line with a slope of 0.71 and y-intercept 1532. The
Wuyi mountain region regression model gave the
best predictions (R2=0.84, RMSE=893) of all
rice regression models and performed similarly to
maize ANN yield models developed for the Wuyi
mountains.

DISCUSSION

The government of the Fujian province has been
carrying out a province-wide survey for crop moni-
toring and for yield forecasting. It has led to a need
for simple and accurate techniques to estimate crop
yields. Previous efforts resulted in the development of
a multiple regression product based solely on soil
properties, which did not adequately account for
the variability associated with observed yields. The
present paper describes the development of artificial
neural network models as an alternate and more
accurate technique for yield prediction in Fujian
province.
As an empirical crop prediction model ANN pro-

duced consistently higher R2 and lower RMSE values
than multiple linear regression-based yield models.
The R2 values for validated regressions were lower
than those of the non-validated regressions, indicat-
ing that testing regression equations with independent
data is critical for the evaluation of regression-based
rice yield prediction models.
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The complex initial parameterization procedures of
ANN networks need further attention. Furthermore,
it is necessary to reserve certain portions of the data
for procedures to avoid over fitting, which is not
a desirable characteristic for an empirical model-
building tool. However, the sensitivity procedure for
identifying causal relationships for crop yield offers
the most robust interpretability regarding important
input factors for crop response.
Park & Vlek (2002) found the topography to be a

predominant predictor for spatial distribution with
marginal contributions from vegetation patterns. The
distribution of soil properties shows a clear linear
response to the water-energy-mass flow processes
governed by surface topography, even though this
generalization strongly depends on measured soil
attributes (Odeh et al. 1994; Park & Vlek 2002).
Many previous regression models have already shown
that the response of crops to a single given soil nu-
trient is already complex enough, and should be

modelled as cubic or quadratic functions (e.g. Tejeda
et al. 1980; Campbell et al. 1988). In contrast, crop
yield shows more complex, non-linear dynamics
among yield responses and soil-management inputs.
The combination of these soil nutrient factors in
addition to climatic conditions, water variability and
land management practices results in complex causal
responses (Bouman et al. 1996).
Rainfall inputs required for the ANN model cor-

respond to crop developmental phases. Although
rainfall during May–September tends to be the most
critical for rice growth and development, monthly
rainfall means during these months were inadequate
for effective crop yield prediction. Weekly rainfall
during June–August was necessary to account for the
variability associated with rice yield.
The soil fertility values provided a concise and

effective method for including many soil and land
characteristics related to crop yield. The soil fertility
value was a critical input variable for ANN model

Table 4. Results of multiple regression rice yield prediction models with varying model inputs

Input *

Training Validation

RMSE
(kg/ha) R2

RMSE
(kg/ha) R2

Province-level

11–20, 60 2120 0.44 1213 0.33
21–30, 60 2131 0.42 1245 0.40
31–40, 60 2132 0.42 1350 0.38
51–60 2100 0.49 1143 0.43
4–8, 51–60 2102 0.48 1112 0.44
24–28, 51–60 2198 0.44 1289 0.37
34–38, 51–60 2124 0.43 1256 0.36
44–48, 51–60 2137 0.42 1225 0.38
4–8, 24–28, 51–60 2127 0.45 1267 0.41
4–8, 34–38, 51–60 2109 0.47 1123 0.40
4–8, 44–48, 51–60 2112 0.46 1154 0.44
4–8, 24–28, 34–48, 51–60 2129 0.44 1198 0.41
4–8, 24–28, 44–48, 51–50 2127 0.45 1134 0.42
4–8, 34–38, 44–48, 51–60 1977 0.52 1149 0.45
24–28, 34–38, 44–48, 51–60 2122 0.43 1250 0.35
4–8, 24–28, 34–38, 44–48, 51–60 2147 0.42 1251 0.39

Region level

Coastal plain
51–60 2425 0.41 1345 0.41
4–8, 51–60 2312 0.43 1322 0.42
4–8, 44–48, 51–60 2244 0.45 1314 0.45
4–8, 34–38, 44–48, 51–60 2121 0.46 1221 0.50

Wuyi mountain
51–60 1155 0.75 1043 0.76
4–8, 51–60 1027 0.76 1032 0.79
4–8, 44–48, 51–60 1014 0.77 954 0.87
4–8, 34–38, 44–48, 51–60 1021 0.79 893 0.84

The validated results are indicative of the model’s capability to predict yield, since the validation data are independent of the
training data used for model development.
* Inputs are defined in Table 1.
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convergence. Models developed for areas with mul-
tiple soil types were especially reliant on soil fertility
level means to improve yield prediction accuracy.
Yield predictions using both ANN and regression

models improved as the geographic area being mod-
elled decreased. Larger spatial levels included more
locations and, therefore, more variability of cropping
conditions. With one exception, for rice, local level
models predicted yield more accurately than region
and province models. ANN models, like regression
models, are applicable only to the conditions for
which they were developed. The models reported
here are appropriate for predicting rice yields in
Fujian province in China for average climatic con-
ditions and for the specific soil types used to develop
the models.
Since there is no set methodology for ANN devel-

opment, the approach differs for specific problems
and thus requires more time for development than
regression models. The learning rate, number of hid-
den nodes, and the training tolerance had an effect on
model development and the accuracy of ANN crop
yield predictions. As the quantity of data being
modelled decreased due to smaller spatial levels,
fewer hidden nodes were required. As the number of
hidden nodes decreased, the optimum learning rate

decreased, with optimum learning rates falling be-
tween 0.71 and 0.90. As the number of nodes de-
creased, ANN training tended to be slower and
required smaller increments of change in the assign-
ments of weights which is reflected by the assigned
learning rate. Improved ANN models were produced
with training tolerances set high and gradually low-
ered as the networks trained.
These ANN models show promise as a more accu-

rate technique and have the potential to be useful for
the Fujian government’s crop monitoring and yield
forecasting. With additional information of the soil
types, cropping system, crop management should
broaden the usefulness, and possibly increase the
predictive capabilities of ANN-based yield prediction
in mountain areas.
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