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In this article, we analyze the large deviations bounds for the nonergodic face-
homogeneous random walk in the positive quadrant+ Under some condition the
value of the local rate function for the path identically equal to zero is found, and an
explicit expression is derived for it+ This makes the computation of its value pos-
sible for specific stochastic networks+ Some numerical examples are given+

1. INTRODUCTION

The sample path large deviations theorem for random walks with boundaries have
been studied in@9,12# +

For linear paths

w : @0,1# r R1
2 with w~t ! 5 x 1 vt,

explicit expressions for the local rate functionL~x, v! for the case that either
xÞ ~0,0! or vÞ ~0,0! have been derived in@9,12# +Clearly, the local rate function for
x 5 ~0,0! and v 5 ~0,0! equals 0 if the process is ergodic+ The determination of
L~0,0! was left as an open problem in@9# for the transient random walk+ In this
article, we derive an explicit expression for a lower bound forL~0,0!, and under an
extra condition, it holds that the lower bound is equal to an upper bound+ Hence, in
this case, the lower bound gives the local rate function+

In @4# , it has been shown for a large class of queueing networks, including the
model of this article, that the large deviations principle holds for local rate function
expressed in terms of a stochastic optimal control problem+ The large deviations
bounds for a Jackson network are obtained in@7#+ In a recent article@8#, the local rate
function is connected with the convergence parameter of associated local transform
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matrices+Both approaches are quite general and hold for a large class of models+The
specific model we consider in this article allows for an expression in terms of the
logarithmic moment-generating functions on the different faces ofR1

2 ; this expres-
sion makes an easy numerical calculation possible+ For specific queueing networks,
explicit expressions are obtained+

We provide a self-contained proof based on the change of measure and the
analysis of the logarithmic moment-generating functions+Almost closed sets play an
essential role in the proof+ In this article we restrict ourselves to the local rate func-
tion for a path identically equal to zero+ The proof for linear paths of the typew~t ! 5
x 1 vt with v Þ ~0,0! can be done with the same type of analysis except that the
analysis of almost closed sets is not needed+ The analysis for the paths not identical
to zero can be found in@9,12# + The combination of these results with ours gives a
complete solution of the sample path large deviations problem in the positive quadrant+

Also, in a recent article@2# , an extensive study has been made for the asymp-
totic behavior of large deviations for Markov chains in the positive quadrant+Precise
asymptotics are obtained for the logarithm of the transition probabilities+

The outline of this article is as follows+ In Section 2 we give the model descrip-
tion and we state our main result, including the expression for the local rate function
for a linear path identically equal to zero+ In Section 3 we first give a complete
description of the local rate function for all linear paths+ In that section we also
summarize the classification of ergodicity, null recurrence, and transience and the
results on almost closed sets we need for our analysis+ For completeness, we briefly
introduce the twisted process and the change-of-measure lemma used in Section 4+
The main part of Section 4 is devoted to the analysis of the logarithmic moment-
generating functions on the different faces ofR1

2 and to the proof of the large devi-
ations lower bound+ With our condition, the proof of the large deviations upper
bound is straightforward+ In Section 5 we illustrate how the expression for the local
rate function can be used to compute the large deviations bounds for a specific
random walk in the quarter-plane+ In a companion article@6# , applications will be
made to stochastic networks that model queueing networks with coupled processors+

2. MODEL DESCRIPTION AND MAIN RESULT

2.1. Model Description

We consider an irreducible and aperiodic Markov chain~MC! M5 $St , t 5 0,1, + + + %
on the state spaceZ1

2 5 $i 5 ~i1, i2! : i1, i2 [ N%, whereN 5 $0,1,2, + + + %+
We assume that the following conditions are satisfied forM+

Condition A: The transition probabilities are

pij 5 P$i r j % 5 5
pj2i

0 if i1 5 0, i2 5 0

pj2i
1 if i1 . 0, i2 5 0

pj2i
2 if i1 5 0, i2 . 0

pj2i
3 if i1 . 0, i2 . 0+

(1)
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Therefore, there are four faces of homogeneity:

L1 5 $i [ Z2 : i1 . 0, i2 5 0%, L2 5 $i [ Z2 : i1 5 0, i2 . 0%,

L3 5 $i [ Z2 : i1 . 0, i2 . 0%, andL0 5 $0%+

By L~i ! we denote the face to which statei belongs+ Then we can write

P$i r j % 5 pj2i
L~i ! +

Condition B~Lower Boundedness of Jumps!:

pj2i
0 5 0 if j1 2 i1 , 0 or j2 2 i2 , 0,

pj2i
1 5 0 if j1 2 i1 , 21 or j2 2 i2 , 0,

pj2i
2 5 0 if j1 2 i1 , 0 or j2 2 i2 , 21,

(2)

pj2i
3 5 0 if j1 2 i1 , 21 or j2 2 i2 , 21+

Condition C~Upper Boundedness of Jumps!: For a faceL we have

pj2i
L 5 0 if j1 2 i1 . d1

1 or j2 2 i2 . d2
1 for some integerd1

1 $ 1,d2
1 $ 1+

The special case whered1 5 d2 5 1 is depicted in Figure 1+

Condition D~Local Irreducibility!: LetM3 be the Markov chain~MC! onZ2 with
transition probabilitiesP$i r j % 5 pj2i

3 +We assume thatM3 is irreducible+

Condition E:

P$L1 r L3% 5
n (

k[Z2:k2.0

pk
1 . 0 and P$L2 r L3% 5

n (
k[Z2:k1.0

pk
2 . 0+ (3)

Figure 1. Transition probabilities on the faces+
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2.2. Main Result

To any faceL there corresponds a jump variablejL 5 ~j1
L ,j2

L! [ Z2 having the
distribution P$jL 5 k% 5 pk

L , k [ Z2 ~see~1!!+ For any faceL we also use the
logarithmic moment-generating functionH L :R2 r R defined by

H L~a! 5 log~E exp$a1j1
L 1 a2j2

L%!,

wherea 5 ~a1,a2! [ R2 andE denotes the expectation+We have that

H L~a! 5 logS (
k[Z2

pk
L exp$a1k1 1 a2k2%D+

We define two important points inR2:

a1 5 arg min
a

max$H 1~a!,H 3~a!%,

a2 5 arg min
a

max$H 2~a!,H 3~a!%+ (4)

SinceH 1~0! 5 H 2~0! 5 H 3~0!, it follows from the continuity ofH L~a! in a thata1

anda2 exist+ In Section 4, we show that they are finite+ Let

[a 5 arg max$H 3~a1!,H 3~a2!%+ (5)

By 7{7 we denote the Euclidean norm inZ1
2 ~i+e+, 7 i 75M i1

2 1 i2
2!+

Theorem 2.1: If for any faceL 5 0,1,2, we have

H L~ [a! # H 3~ [a!+ (6)

Then the random walk St satisfies the large deviations (LD) theorem with local rate
function

L0 5 H 3~ [a!,

for a path identically equal to zero.
Indeed, the following LD bounds are satisfied:

LD upper bound:For anyd . 0 there exists N~d! such that for all N. N~d!,

PHS0 5 0, sup
t50,{{{, @tN#

7St7 , dNJ # exp$1dN 1 NtL0%+ (7)

LD lower bound:For anyd . 0 andd ' . 0 there exists N~d,d '! such that

PHS0 5 0, sup
t50,{{{, @tN#

7St7 , dNJ $ exp$2d 'N 1 NtL0% (8)

for all N . N~d,d '!.

Remark 2.1:In fact, we prove that the LD lower bound always holds withL0 5
H 3~ [a!+ However, for the proof of the LD upper bound we need~6!+
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Remark 2.2:As we will point out in Section 4, ~6! is always satisfied for null re-
current MC, but it is not always fulfilled for transient MC+ For an ergodic MC, ~6!
does not hold, but for ergodic MC the local rate function is known to be equal to zero+

3. RELATED RESULTS AND MAIN DEFINITIONS

3.1. Large Deviations Theorem

We will not repeat the definition of the LD theorem in this article since it is rather
standard and it can conveniently be found in the literature~see e+g+, @4,9,12# !+ Here
we only give the necessary notations to formulate the LD theorem for our model+

For anyt . 0 consider the metric spaceC~ @0;t# ,R1
2 ! of all continuous functions

w : @0;t# r R1
2 +

It has been shown in@4,12# that the LD theorem holds with a good rate function

Lt :C~ @0;t# ,R1
2 ! r @0,1`# , t . 0+

In @9# it has been proved, under the assumption thatSt is ergodic, that the good
rate function has the following form:

Lt~w! 5 5 E0

t

L~w~t !,w'~t !! dt if the pathw is absolutely continuous

1` otherwise,

(9)

where the local rate function

L~{,{! :Z1
2 3 R2 r R1 ø $1`%

is defined by

L~i, v! 5 5
L3~v1, v2! if i1 . 0, i2 . 0

L2~v2! if i1 5 0, i2 . 0

L1~v1! if i1 . 0, i2 5 0

L0 if i1 5 0, i2 5 0,

(10)

whereL0 5 0 andL1, L2, andL3 are the following Legendre transforms:

L3~v! 5 sup
a

$~a, v! 2 H 3~a!%,

L2~v2! 5 sup
a2

$a2v2 2 H 3~a1~a2!,a2!%,

L1~v1! 5 sup
a1

$a1v1 2 H 3~a2~a1!,a1!%,
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and the functionsa1~{!,a2~{! :R r R are defined as

a1~a2! 5
n

arg min
a1

max$H 3~a1,a2!,H 2~a1,a2!%,

a2~a1! 5
n

arg min
a2

max$H 3~a1,a2!,H 1~a1,a2!%+

(11)

In Section 4 we will prove thata1~a2! anda2~a1! are finite+As a consequence of the
results in@9# or in @12# and the analysis of this article,we have, under the conditions
of Section 2, the following theorem+

Theorem 3.1: If the random walk St is nonergodic, then the LD theorem remains
true with the same L1, L2, and L3, and L0 as in Theorem 2.1.

In this article we focus on the derivation ofL0 and the proof of the bounds~7!
and~8! given~6!+

3.2. Classification: Ergodicity, Null Recurrence, and Transience

Here we recall the criteria for the MCM to be ergodic, null recurrent, or transient in
terms of the mean drift on the faces+ We shall especially use these criteria for the
twisted processes+ Define the vector

M L 5 ~M1
L ,M2

L! [ R2, L 5 0,1,2,3, (12)

as the one-step mean drift from a point, which is an element ofL, by

M1
L 5 E~j1

L! 5 (
k1

k1P$j1
L 5 k1% 5 (

k[Z2

k1 pk
L ,

M2
L 5 E~j2

L! 5 (
k2

k2P$j2
L 5 k2% 5 (

k[Z2

k2 pk
L +

The following lemma is a consequence of Theorems 3+3+1 and 3+3+2 in @5# +

Lemma 3.2: Assume for the MCM that conditions A, B, and C are satisfied. With
the mean drift vectors (12) we define two constants:

V 1 5 M1
3M2

1 2 M2
3M1

1 and V2 5 M2
3M1

2 2 M1
3M2

2+ (13)

Then we have the following:

(a) If M1
3 , 0 and M2

3 , 0, then the MCM is
(i) ergodic iff V1 , 0 and V2 , 0

(ii) null recurrent iff

either
V 2 5 0

V 1 # 0
or

V 1 5 0

V 2 # 0;
(14)

(iii) transient iff V1 . 0 or V 2 . 0.
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(b) If M1
3 $ 0 and M2

3 , 0, then the MCM is

ergodic iff V1 , 0; null recurrent iff V1 5 0; transient iff V1 . 0+

(c) If M1
3 , 0 and M2

3 $ 0, then the MCM is

ergodic iff V2 , 0; null recurrent iff V2 5 0; transient iff V2 . 0.

(d) If M1
3 $ 0,M2

3 $ 0, and M1
3 1 M2

3 . 0, then the MCM is transient.

Remark 3.1:If M1
3 5 M2

3 5 0, then the MC can be ergodic, null recurrent, or tran-
sient~see@5# !+

3.3. Almost Closed Sets

For our analysis we need results on almost closed sets+We refer to@3# for an intro-
duction to the theory of almost closed sets+

Consider an irreducible aperiodic and transient MC$zn, n5 0,1, + + +% on a count-
able state space in discrete time+

Definition 3.1: A subset A of the states is called almost closed if

P~øm.0 ùt.m$zn [ A%! 5 P~ùm.0 øt.m$zn [ A%!

and this probability is positive.

The following lemma is a consequence of the results in@10# +

Lemma 3.3: Let

M1
3 . 0, M2

3 . 0,

then the setL3 is almost closed.
Let

M2
3 , 0, V 1 . 0,

then there exists a set A1 # L3 such that the setL1 ø A1 is almost closed.
Let

M1
3 , 0, V 2 . 0,

then there exists a set A2 # L3 such that the setL2 ø A2 is almost closed.
If

M1
3 , 0, M2

3 , 0, V 1 . 0, V 2 . 0, (15)

then the sets A1 and A2 can be taken disjoint.
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4. LARGE DEVIATIONS BOUNDS FOR THE PATH
IDENTICALLY EQUAL TO ZERO

This section is devoted to the proof of our main result~i+e+, the LD bounds as stated
in Theorem 2+1!+ First, we introduce the twisted process and the change of measure
and we analyze theH-functions+Then in Sections 4+4 and 4+5 we prove the LD lower
and upper bounds+

4.1. Twisted Process

First, we recall the well-known twisted MC+ For anya [ R2 we define a MC

M~a! 5 $St
a , t 5 0,1,2, + + + %

on the state spaceZ1
2 with transition probabilities

pij ~a! 5
n

pij exp$~a, j ! 2 ~a, i !%

(
j

pij exp$~a, j ! 2 ~a, i !%
, (16)

where~{,{! is the scalar product inR2+ The MCM~a! is said to be atwisted MC+
Note thatM~0!5M+Clearly, conditions A,B,C, and D of Section 2+1 hold for

the MCM~a! if they are satisfied forM+
By Pa we denote the probability measure for the twisted MCM~a!+Recall that

in Section 2+2 we defined the jumps variablejL+ Hence, we have that

Pa $jL 5 k% 5 pk
L~a!+

By Ea we denote the expectation corresponding toPa+ Similar to ~12!, define
the vector

M L~a! 5 ~M1
L~a!,M2

L~a!! 5
n

Ea ~jL ! 5 (
k

kpk
L~a!+ (17)

By Cova $j1
L ,j2

L% we denote the covariance of the random variablesj1
L andj2

L

with respect toPa; that is,

Cova $j1
L ,j2

L% 5
n

Ea~j1
L j2

L! 2 Ea~j1
L! Ea~j2

L!+

By Vara $j1
L% and Vara $j2

L% we denote the variance ofj1
L andj2

L , respectively,
with respect toPa+ For completeness,we include the following lemma,which might
be well known, but we have no reference for it+

Lemma 4.1: For any faceL we have

M L~a! 5 S ]

]a1

H L~a!,
]

]a2

H L~a!D, Cova $j1
L ,j2

L% 5
]2

]a1]a2

H L~a!,

(18)
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Vara $j1
L% 5

]2

]2a1

H L~a! , Vara $j2
L% 5

]2

]2a2

H L~a!+ (19)

Proof: First, note that from~16! it follows that

pk
L~a! 5 pk

L exp$~a, k! 2 H L~a!%+ (20)

Let us prove first thatM2
L~a! 5 ~]0]a2!H L~a!+ Clearly, the function

H L~a! 5 logS (
k[Z2

pk
L exp$a1k1 1 a2k2%D

is differentiable at any pointa [ R2, and

]

]a2

H L~a! 5 (
k

k2

pk
L exp$a1k1 1 a2k2%

(
k

pk
L exp$a1k1 1 a2k2%

5 (
k

k2 pk
L~a! 5 M2

L~a!+

Now we calculate Cova $j1
L ,j2

L%+We have that

]

]a1

pk
L~a! 5 pk

L exp$~a, k! 2 H L~a!%Sk1 2
]

]a1

H L~a!D
5 k1 pk

L~a! 2 pk
L~a!M1

L~a!+

Hence,

]2

]a1]a2

H L~a! 5
]

]a1

M2
L~a! 5 (

k

k2

]

]a1

pk
L~a!

5 (
k

k1k2 pk
L~a! 2 M1

L~a! (
k

k2 pk
L~a!

5 Ea~j1
L j2

L! 2 M1
L~a!M2

L~a!+

Assertion~19! is a consequence of assertion~18!+ n

4.2. The Change of Measure

Let d . 0 andt . 0+ By IAdN
we denote the indicator of the event

AdN 5 Hv : sup
0#t#@tN#

7St ~v!7 , dNJ+
The following lemma is well known; for completeness, we include a proof+ We
denoteHi ~a! for H L~a! wheni [ L+

Lemma 4.2: For anya and any Borel setV we have

P$AdN ù V% 5 Ea $IAdNùV% expH2~a,S@tN# ! 1 ~a,S0! 1 (
t50

@tN#21

HSt
~a!J + (21)
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Proof: Relation~20! using a different notation is

P$i r j % 5 Pa $i r j %exp$2~a, j ! 1 ~a, i ! 1 Hi ~a!%+ (22)

Let m5 @tN# + Then for anyv [ AdN ù V we have

2~a,Sm~v!! 1 ~a,S0~v!! 5 2 (
t50

m21

~a,St11~v!! 2 ~a,St ~v!!+

Taking~22! in account we get

P$AdN ù V% 5 (
v[AdNùV

)
t50

m21

P$St ~v! r St11~v!%

5 (
v[AdNùV

)
t50

m21

exp$2~a,St11~v!! 2 ~a,St ~v!! 1 HSt ~v!~a!%

3 Pa $St ~v! r St11~v!%

5 (
v[AdNùV

expH2~a,Sm~v!! 1 ~a,S0~v!! 1 (
t50

m21

HSt ~v!~a!J
3 Pa $St ~v! r St11~v!%

5 Ea $IAdNùV% expH2~a,S@tN# ! 1 ~a,S0! 1 (
t50

@tN#21

HSt
~a!J + n

4.3. Analysis of the H -Functions

Lemma 4.3: The functions HL are convex. The functions HL are strictly convex iff
the probability mass ofjL 5 ~j1

L ,j2
L! is not concentrated on a line+

Proof: For anyt1, t2 [ R, consider the stochastic variable

t1j1
L 1 t2j2

L +

For anya we have that

Vara $t1j1
L 1 t2j2

L% 5 t1
2 Vara $j1

L% 1 2t1 t2 Cova $j1
L ,j2

L% 1 t2
2 Vara $j2

L%+

Then, from Lemma 4+1, it follows for anya that

Vara $t1j1
L 1 t2j2

L% 5 t1
2

]2

]2a1

H L~a! 1 2t1 t2
]2

]a1]a2

H L~a! 1 t2
2

]2

]2a2

H L~a!+
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Since the variance is nonnegative, it follows that the Hessian matrix ofH L~a! ~i+e+,

1
]2

]a1]a1

H L~a!
]2

]a1]a2

H L~a!

]2

]a2]a1

H L~a!
]2

]a2]a2

H L~a!2
is positive semidefinite+Hence, the functionH L~a! is convex~see, e+g+, @11, p+ 448# !+

The variance oft1j1
L 1 t2j2

L is equal to 0 if and only if for some constantc,

P$t1j1
L 1 t2j2

L 5 c% 5 1+

This means that the probability mass oft1j1
L 1 t2j2

L is concentrated on the line
t1x1 1 t2x2 5 c+ Since the Hessian matrix ofH L is positive definite if and only if
H L~a! is strictly convex~see, e+g+, @11, p+ 448# !, the assumption follows+ n

Corrollary 4.4: The function H3~a! is strictly convex.

Proof: By condition D, the MCM3 is irreducible+ Therefore, the probability mass
of j3 is not concentrated on a line+ Hence, by Lemma 4+3, the functionH 3~a! is
strictly convex+ n

By a3 we denote the point where the functionH 3~a! has its global minimum;
that is,

a3 5 arg min
a

H 3~a!+

Lemma 4.5: The pointa3 is finite iff condition D holds.

Proof: By Corollary 4+4, the functionH 3~a! is strictly convex+ Then, it has its
minimum at a finite point iff for any fixeda Þ 0 the functionfa~t ! 5

n
H 3~ta! has a

minimum at a finite point+We have thatfa is strictly convex and

fa~t ! 5 logS (
k:~a, k!,0

pk
3 exp$t~a, k!% 1 (

k:~a, k!$0

pk
3 exp$t~a, k!%D+

Clearly, the functionfa~t ! has its minimum at a finite point iff

(
k:~a, k!,0

pk
3 . 0 and (

k:~a, k!$0

pk
3 . 0+ (23)

By cos~a, k! we denote the cosine between vectorsa, k [ R2; then,

~a, k! 5 7a77k7cos~a, k!+

Hence~23! holds iff there existk, l [ R2 such that

pk
3 . 0,cos~a, k! . 0 and pl

3 . 0,cos~a, l ! , 0+ (24)

Now we will show thatM3 is irreducible iff for anya Þ 0 there existk, l [ Z2

such that~24! is satisfied+Recall that a MC is called irreducible iff every state can be
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reached from any other state with positive probability+Clearly,M3 is not irreducible
if the probability mass is concentrated only in two points+

Let us consider the case where the probability mass is concentrated only at three
points~vectorsk1, k2, andk3!+One can easily check that in Figure 2, the vectorsk1,
k2, andk3 correspond to the irreducible MCM3, and for anyaÞ0, ~24! is satisfied+

By rotating Figures 2a and 2b over 908, 1808, and 2708, one can get all possible
cases,which correspond to irreducibleM3 with probability mass concentrated only
in three points+

Similarly one can consider the other cases, where the probability mass is con-
centrated in more than three points+ n

In analogy to~13!, we define the functionsV 1~a! andV 2~a! as follows:

V 1~a! 5
n

M1
3~a!M2

1~a! 2 M2
3~a!M1

1~a!,

V 2~a! 5
n

M2
3~a!M1

2~a! 2 M1
3~a!M2

2~a!+

Note thatV 1~0! 5 V 1 andV 2~0! 5 V 2+

Lemma 4.6: The pointsa1 anda2 are finite.

1. Either H1~a1! # H 3~a1!,M 3~a1! 5 0 or a1 is the unique solution of the
system

H 1~a! 5 H 3~a!, V 1~a! 5 0, M2
3~a! , 0+ (25)

2. Either H2~a2! # H 3~a2!,M 3~a2! 5 0 or a2 is the unique solution of the
system

H 2~a! 5 H 3~a!, V 2~a! 5 0, M1
3~a! , 0+ (26)

Proof: By Corollary 4+4, the functionH 3~a! is strictly convex, and by Lemma 4+5,
it has its minimum at a finite point+Hence, the set$a :H 3~a! # C% with C. H 3~a3!
is a compact set+ SinceH 1~0! 5 H 2~0! 5 H 3~0! 5 0, we have that

a1,a2 [ $a :H 3~a! # 0%+

Hence, a1 anda2 are finite+

Figure 2. The probability mass related to the irreducible Markov chainM3+
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Let us analyze the pointa2+ For anya2, define

a1
0 5 a1

0~a2! 5
n

arg min
a1

H 3~a1,a2!+

From condition D it follows that

(
k1,0

(
k2

pk
3 . 0 and (

k1.0
(
k2

pk
3 . 0+

Then, for any fixeda2, the function

H 3~a1,a2! 5 logH (
k1,0

ea1k1S(
k2

pk
3ea2k2D1 (

k1$0

ea1k1S(
k2

pk
3ea2k2DJ

is strictly monotone decreasing ina1 on the interval~2`,a1
0! and it is strictly mono-

tone increasing ina1 on the interval~a1
0,1`!+ From condition E, it follows for any

fixed a2 that the function

H 2~a1,a2! 5 logH (
k1$0

ea1k1 (
k2

pk
2ea2k2J ,

is strictly monotone increasing ina1+ Hence, for each fixeda2, we have two cases+

Case 1:

H 2~a1
0~a2!,a2! . H 3~a1

0~a2!,a2!+

Then, H 2 andH 3 as functions ofa1 intersect on~2`,a1
0~a2!! at

a1~a2! 5 arg min
a1

max$H 2~a1,a2!,H 3~a1,a2!%+

This case is depicted in Figure 3a+ SinceH 3~a1,a2! is strictly monotone decreasing
in a1 on ~2`,a1

0# , thenM1
3~a1~a2!,a2! , 0+

Case 2:

H 2~a1
0~a2!,a2! # H 3~a1

0~a2!,a2!+

Thena1
0~a2! 5 a1~a2!, and we have thatM1

3~a1
0~a2!,a2! 5 0+ This case is depicted

in Figure 3b+
Since either Case 1 or Case 2 holds for eacha2, then either

H 2~a2! 5 H 3~a2!,M1
3~a2! , 0 or H 2~a2! # H 3~a2!,M1

3~a2! 5 0+

From Case 1 and Case 2 it also follows that

H 3~a2! 5 min
a2

H 3~a1~a2!,a2!+ (27)
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Now let us show that eitherV 2~a2! 5 0 or M2
3~a2! 5 0+ Since~27! holds, it

follows that

d

da2

H 3~a1~a2!,a2! 5 0 iff V 2~a1~a2!,a2! 5 0 or M 3~a1~a2!,a2! 5 0+

Here we give a geometrical proof+ If H 3~a3! $ H 2~a3!, thena2 5 a3 and,
clearly, M 3~a3! 5 0+ Suppose thatH 3~a3! , H 2~a3!+ Then, for anyC . 0, let us
consider the set

KC 5 $a :H 3~a! # C% ù $a :H 2~a! # C%+ (28)

Since theH-functions are convex, we have that the sets

$a :H 3~a! # C% and $a :H 2~a! # C%

are convex as well+ If KC is not empty, thenKC is a compact convex set anda2 [ KC+
Hence,

a2 [ ù
C :KCÞB

KC +

Moreover, for any two levelsC1 , C2, we haveKC1
, KC2

+ Therefore, the
intersection of all nonemptyKC sets is compact+Since max$H 2~a!,H 3~a!% is strictly
convex, this intersection is a single point; hence, a2 is uniquely defined+Moreover,
it is the point where the functionsH 2 andH 3 have a point of contact+

Figure 3. Two cases for each fixeda2: ~a! Case 1 and~b! Case 2+
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Note thatM 2~a2! is a normal to the level line$a :H 2~a! 5 H 2~a2!% , and
M 3~a2! is a normal to the level line$a :H 3~a! 5 H 3~a2!%+ This means thatM 2 and
M 3 have opposite directions ata2; that is,

M1
2~a2!

M2
2~a2!

5
M1

3~a2!

M2
3~a2!

and so

V 2~a2! 5 0+

This completes the proof of~26!+ The proof of~25! is similar+ n

Lemma 4.7: If M 3~ [a! Þ 0 then the twisted MCM~ [a! is null recurrent or transient.

Proof: Suppose that[a 5 a1+ If M 3~a1! Þ 0 then by Lemma 4+6 we obtain

M2
3~a1! , 0 and V 1~a1! 5 0+ (29)

If in addition to~29! we have thatM1
3~a1! $ 0, then by Lemma 3+2 the twisted MC

M~a1! is null recurrent+ Suppose thatM1
3~a1! , 0 in addition to~29!; then, by the

same lemma, the twisted MCM~a1! is null recurrent ifV 2~a1! # 0; it is transient
if V 2~a1! . 0+

The same analysis holds for the case[a 5 a2+ n

Lemma 4.8: If the MCM is null recurrent, then [a 5 0.

Proof: Let the MCM be null recurrent+ Suppose thatM 3~0! 5 0; thena3 5 0+
SinceH L~0! 5 0 for any faceL, a3 5 [a ~i+e+, [a 5 0!+

Suppose thatM 3~0! Þ 0+ From Lemma 3+2, it follows that one of the following
cases is satisfied:

V 1~0! 5 0, M2
3~0! , 0 ~see parts a and b of Lemma 3+2! , (30)

V 2~0! 5 0, M1
3~0! , 0 ~see parts a and c of Lemma 3+2!+ (31)

Then by Lemma 4+6 we have thata150 if ~30! holds, anda250 if ~31! holds+Since
[a 5 a1 or [a 5 a2, we get that [a 5 0+ n

Remark 4.1:From Lemma 4+8, it follows for a null recurrentM that H L~ [a! 5
H L~0! 5 0 for anyL+ Hence, in this case, ~6! is fulfilled+ In Section 5 we present
some transient models for which~6! is satisfied, but also a transient MC for which it
is not true+ In @6# we show that coupled processor models do satisfy the condition+ In
general, an ergodic MC does not satisfy it, but for these models, the local rate func-
tion L0 5 0+

4.4. Proof of the LD Lower Bound

The proof of the LD lower bound is rather involved+ The assertion of Lemma 4+9 is
the relation~8! in adequate notation+ For the proof of Lemma 4+9 we need two more
lemmas~4+10 and 4+11!+ In these lemmas, almost closed sets play an essential role+
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Lemma 4.9: For anyd . 0 andd ' . 0 we have that

P$AdN % $ exp$NtH 3~ [a! 2 d 'N% (32)

for all sufficiently large N.

Proof:

Case 1: Let M 3~ [a! 5 0+ It means that

H 3~ [a! 5 min
a

H 3~a!+ (33)

We have that

P$AdN % . P$AdN ù Vm
3 %,

where

Vm
3 5 $v :St ~v! [ L3 for all t . m%+

From Lemma 4+2, by the change of measure, it follows for anya that

P$AdN ù Vm
3 % 5 Ea HexpH2~a,S@tN# ! 1 ~a,S0! 1 (

t50

@tN#21

H St ~a!J IAdN ù Vm
3 J +

(34)

First, note that7S@tN#~v!7# dN for anyv [ AdN + Hence, 6~a,StN !6# 7a7dN+
Second, St~v! [ L3, t . m, for anyv [ Vm

3 + Then, for anya, we get

(
t50

@tN#21

H St ~v! ~a! 5 @tN#H 3~a! 1 (
t50

m

~H St ~v! ~a! 2 H 3~a!!+ (35)

Clearly, for any givena, m . 0, andd ' . 0, there existsN~a,m,d '! such that

(
t50

m

~H St ~v! ~a! 2 H 3~a!! . 2d 'N (36)

for all N . N~a,m,d '!+ Recall thatH 3~a! $ H 3~ [a! by ~33!+ Then, from ~35! and
~36!, it follows for anyv [ Vm

3 and all largeN that

(
t50

@tN#21

H St ~v! ~a! $ @tN#H 3~ [a! 2 d 'N+

Now, using~34!, we obtain that

P$AdN ù Vm
3 % $ exp$NtH 3~a3! 2 7a7dN 2 d 'N%Pa $AdN ù Vm

3 % (37)

for anya, d, andd ' and for all sufficiently largeN+

384 A. Hordijk and N. Popov

https://doi.org/10.1017/S0269964803173056 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964803173056


Recall thatM 3~ [a!50+Since the functionH 3~a! is strictly convex, then for any
d . 0, we can findad close to [a such that

M1
3~ad! . 0, M2

3~ad! . 0, and t7M 3~ad!7 , d+ (38)

We conclude the proof of Lemma 4+9 for Case 1 by proving the following lemma+
Indeed, ~37! together with~39! implies~32!+

Lemma 4.10: There exists a positive constant q. 0 such that

Pad
$AdN ù Vm

3 % . q (39)

for all sufficiently large N.

Proof of Lemma 4.10: First, note that

Pad
$AdN ù Vm

3 % $ Pad
$AdN 6Vm

3 %Pad
$Vm

3 %+

SinceM1
3~ad! . 0 andM2

3~ad! . 0 by ~38!, then by Lemma 3+3 the setL3 is almost
closed and soPad

$øm.0Vm
3 % . 0+ Recall that

Vm
3 , Vm11

3 , øm.0Vm
3

and, therefore, there exists a positiveqm such that

Pad
$øm.0V3% . Pad

$Vm
3 % . qm

for all sufficiently largem+
On other hand,

M 3~ad! 5 Ead
$St11 2 St 6St [ L3%

and, therefore, it follows from Kolmogorov’s inequality that for anye . 0,

Pad
$AdN 6Vm

3 % 5 Pad H sup
0#t#@tN#

7St 2 tM 3~ad!7 , eN6Vm
3J r 1+

By the same relation~38!, we can takee small enough such that

t7M 3~ad!7 , d 2 e+

Then

H sup
0#t#@tN#

7St
ad 2 tM 3~ad!7 , eNJ , AdN 5 H sup

0#t#@tN#
7St

ad7 , dNJ+
It implies that

Pad
$AdN 6Vm

3 % r 1,

which completes the proof of~39!+ n
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Case 2: Suppose thata1 5 [a andM 3~ [a! Þ 0+We have that

P$AdN % . P$AdN ù Vm
1 %,

where

Vm
1 5 $v :St ~v! [ L1 ø L3 for all t . m%+

From Lemma 4+2 by the change of measure, it follows for anya that

P$AdN ù Vm
1 % 5 Ea HexpH2~a,S@tN# ! 1 ~a,S0! 1 (

t50

@tN#21

H St ~a!J IAdNùVm
1 J +

(40)

By Lemma 4+6 we have

H 1~a1! 5 H 3~a1!, V 1~a1! 5 0, M2
3~a1! , 0+

Recall thatM2
1~a! . 0 for all a by condition E+ Hence, for anyd . 0 andd ' . 0 we

can findad close toa1 such that

M2
3~ad! , 0, 0 ,

V 1~ad!

M2
1~ad! 2 M2

3~ad!
, d (41)

and

H 1~ad! . H 3~a1! 2 d ', H 3~ad! . H 3~a1! 2 d '+ (42)

Note that conditions D and E exclude the case thatV 1 [ 0+
We haveSt~v! [ L1 ø L3 for anyv [ Vm

1 and allt . m+ This means that for any
t . m

eitherH St ~v! ~ad! 5 H 1~ad! or H St ~v! ~ad! 5 H 3~ad!+

Then, using~42!, we get

(
t.m

@tN#21

H St ~v! ~ad! . (
t.m

@tN#21

~H 3~a1! 2 d ' !+

Therefore, for any givenm. 0, d . 0, andd ' . 0, there existsN~m,d,d '! such that

(
t50

@tN#21

H St ~v! ~ad! $ @tN#H 3~a1! 2 d 'N

for all N . N~m,d,d '!+ Then, using~40!, we get

P$AdN ù Vm
1 % $ exp$NtH 3~a1! 2 7ad7dN 2 d 'N%Pad

$AdN ù Vm
1 %+

In order to complete the proof of Lemma 4+9 for Case 2, we need to show the fol-
lowing lemma+
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Lemma 4.11: There exists a positive constant q such that

Pad
$AdN ù Vm

1 % $ q

for all sufficiently large N.

Proof: SinceV 1~ad! . 0 andM2
3~ad! , 0 by ~41!, then from Lemma 3+3 we find

that the setL1 ø L3 is almost closed+ Hence, Pad
$øm.0Vm

1 % . 0, and since

Vm
1 , Vm11

1 , øm.0Vm
1 ,

there exist positiveqm such that

Pad
$øm.0Vm

1 % . Pad
$Vm

1 % . qm (43)

andqm , qm11+
Suppose, for simplicity of notation, thatt 5 1+ Let

v~a! 5 S V 1~a!

M2
1~a! 2 M2

3~a!
, 0D+

It follows from ~41! that7v~ad!7 , d+ Then, for any positivee with

2e , d 2 7v~ad!7,

we have that

AdN 5 HS0 5 0, sup
0#t#N

7St7 , dNJ . H sup
0#t#N

7St 2 tv~ad!7 , 2eNJ+ (44)

By Mt~a! we denote the mean drift ofSt
a at timet; that is,

Mt ~a! 5 Ea $St11 2 St 6Sl ,0 # l # t %+

We introduce two events:

AdN
1 5 H sup

0#t#N**St 2 (
l50

t21

Ml ~ad!** , eNJ ,
AdN

2 5 H sup
0#t#N** tv~ad! 2 (

l50

t21

Ml ~ad!** , eNJ +
Then from~44! it follows for anyN that

AdN . AdN
1 ù AdN

2 + (45)

Now we will give lower bounds for the probabilitiesPad
$AdN

1 % andPad
$AdN

2 ù
Vm

1 %+ Let

ht 5
n

St 2 S0 2 (
l50

t21

Ml , h0 5 0+
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We have that

ht11 2 ht 5 St11 2 St 2 Mt for all t . 0+

SinceSt has bounded jumps, ht also has bounded jumps; say for some constant
D . 0 that we have7ht11 2 ht7# D+ Moreover, for anya,

Ea $ht11 2 ht 6hl , 0 # l # t % 5 Ea $St11 2 St 6Sl , 0 # l # t %

2 Ea $Mt 6Sl , 0 # l # t % 5 0+

This means thatht is a zero-mean martingale withh0 5 0+ From the Azuma–
Hoeffding inequality~see@13, p+ 237# !, it follows for anye . 0 anda that

Pa $AdN
1 % 5 PaH sup

0#t#N
7ht7# eNJ $ 1 2 expH2 1

2D2 eNJ +
Hence,

Pa $AdN
1 % r 1 asN r 1`+ (46)

Now we estimate the probabilityPad
$AdN

2 6Vm
1 %+ Let

Bt 5 H**(
l.0

t

~v~a! 2 Ml ~a!!** . etJ , e . 0+

Then for anya we have

Pa $AdN
2 6Vm

1 % $ 12 Pa $øt.0
N Bt 6Vm

1 %+

Clearly, for any sufficiently largeN, there existstN 5 o~N! such that for anyv,

sup
0#t#tN

** tv~a! 2 (
l50

t21

Ml ~a!** , eN+

Then

Pa $AdN
2 6Vm

1 % . 12 (
t.tN

N

Pa $Bt %+ (47)

For anyv [ Vm
1 , eitherMt~a! 5 M 1~a! or Mt~a! 5 M 3~a! for all t . m+ Note

that

v~a! 5 p0~a!M 1~a! 1 ~12 p0~a!!M 3~a!, p0~a! 5
2M2

3~a!

M2
1~a! 2 M2

3~a!
,

where p0~a! is the stationary probability that the first component of the
twisted processSt

a is equal to zero, conditioned on the sample path setV1, where
V1 5 ømVm

1 +
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If M2
3~a! , 0, then 0, p0~a! , 1, and from the results of@1# it follows that for

anye . 0 there existsC . 0 andb . 0 such that

Pa $Bt 6Vm
1 % , C exp$2bt%, (48)

for all sufficiently larget+We have thatM2
3~ad! , 0+So~48! holds fora5ad as well+

Then it follows from~47! and~48! that

Pad
$AdN

2 6Vm
1 % . 12 C (

t.tN

1`

exp$2bt%+

Since the series(t exp$2bt% is convergent andtN r 1`, we get that

Pad
$AdN

2 6Vm
1 % r 1 asN r 1`+ (49)

Now, the assertion of Lemma 4+11 follows from~43!, ~45!, ~46!, and~49!+ n

The proof of the casea2 5 [a is similar+This completes the proof of Lemma 4+9+
n

4.5. Proof of the LD Upper Bound

The proof of the LD upper bound is a straightforward consequence of~6!+ It is
proved in the following lemma+

Lemma 4.12: Let (6) be satisfied. Then, for anyd . 0, we have

P$AdN % # exp$NtH 3~ [a! 1 dN%

for all sufficiently large N.

Proof: By ~6!, we have that

(
t50

@tN#21

H St ~v! ~ [a! # @tN#H 3~ [a!+

Therefore, from ~21!, it follows that

P$AdN % # E [a $exp$2~ [a,S@tN# ! 1 ~ [a,S0! 1 @tN#H 3~ [a!%%+ (50)

SinceS0 5 0 and7St~v!7# dN for anyv [ AdN andt # @tN# , then

7~ [a,S@tN# !7 # 7 [a7dN+

It implies immediately that

P$AdN % # exp$7 [a7dN 1 tNH3~ [a!%,

which proves the lemma+ n
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5. APPLICATIONS AND NUMERICAL EXAMPLES

In this section we demonstrate how the local rate functionL0 can be computed for
specific models~the computations have been done with Maple!+ In the subsequent
article@6# we show how the large deviation theorems 2+1 and 3+1 can be applied in
a coupled processors system+

5.1. Numerical Examples

In this subsection, we present a couple of models for which~6! is satisfied~i+e+, the
LD bounds hold!+ First, recall that

pk1k2

L 5 P$~i1, i2! r ~i1, i2! 1 ~k1, k2!% with ~i1, i2! [ L+

Model 1: Let the transition probabilitiespk
L have the values shown in Figure 4+

Figure 5 shows the level lines of theH-functions at level 0+We have

M1
3 . 0,M2

3 , 0 and M1
1 . 0,M2

1 . 0+

ThenV 1 . 0 and, therefore, by Lemma 3+2, the MCM ~at a 5 0! is transient+
In Figure 6 we have theH-functions level lines at the level equal toH 3~ [a!+

Here,

H 3~ [a! 5 H 2~ [a! with [a 5 a2 ' ~20+27,0+1!+

We have

M1
3~ [a! , 0,M2

3~ [a! , 0 and V 1~ [a! . 0,V 2~ [a! 5 0+

Then by Lemma 3+2, the MCM~ [a! is transient+
Note thatH 0~ [a! # H 3~ [a! andH 1~ [a! # H 3~ [a! ~i+e+, ~6! is satisfied!+Hence, by

Theorem 2+1, the LD bounds hold withL0 5 H 3~ [a! ' 20+009+

Figure 4. Model 1 transition probabilities+
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In Figure 7, the linesV 1~a! 5 0 andV 2~a! 5 0 intersect each other in two
points:

a3 ' ~20+21,0+3! and Ta ' ~20+7,20+7!+

Starting from the pointTa and forward in the southwest direction, these lines form a
cone-shaped region+We call this region theergodicregion+ The interior of this re-
gion contains the pointsa for whichM~a! is ergodic+Outside of the ergodic region,
we have the points for whichM~a! is transient+ The boundary~the linesV 1~a! 5 0
andV 2~a! 5 0! correspond to null recurrent MCM~a!+ In Figure 7 also, the level
line H 3~a! 5 H 3~ [a! is depicted; the intersection withV 2~a! 5 0 gives [a+

Figure 5. The H-function level lines
at level 0+

Figure 6. The H-function level lines
at levelH 3~ [a!+

Figure 7. The linesV 1 5 0, V 2 5 0, H 3 5 0+
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Model 2: Next, we give a model with [a 5 a2 and MCM~ [a! is null recurrent+ Let
the transition probabilities have the values as shown in Figure 8+

Figure 9 shows the level lines of theH-functions at level 0+We have

M1
3 , 0,M2

3 . 0 and M2
2 5 0,M1

2 . 0+

Then, V 2 . 0 and, therefore, by Lemma 3+2, the MCM ~at a 5 0! is transient+
In Figure 10 we have theH-functions level lines at the level equal toH 3~ [a! with

[a 5 a2 ' ~20+05,20+27!+We have that

M1
3~ [a! , 0,M2

3~ [a! . 0, and V 2~ [a! 5 0+

Figure 8. Model 2 transition probabilities+

Figure 9. The H-function level lines
at level 0+

Figure 10. TheH-function level lines
at levelH 3~ [a!+
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By Lemma 3+2 the MCM~ [a! is null recurrent+ It is easily checked thatH 0~ [a! ,
H 3~ [a! andH 1~ [a! # H 3~ [a! ~i+e+, ~6! of Theorem 2+1 is satisfied!+Hence, also for this
model, the LD theorem holds withL0 5 H 3~ [a! ' 20+0078+

Figure 11 shows the ergodic region+ Here the level linesV 1~a! 5 0 and
V 2~a! 5 0 intersect ata3 ' ~0+21,20+32!+

5.2. Open Problem

The numerical examples of Section 5+1 satisfy~6! of Theorem 2+1 and, hence, the
local rate functionL0 is found+ In model 3,M is transient and~6! is not satisfied+ It
is our conjecture that also in this case the LD lower bound is tight~i+e+, the local rate
function is equal toH 3~ [a!!+

Figure 11. The level linesV 1 5 0, V 2 5 0

Figure 12. Model 3 transition probabilities+
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Model 3: Let the transition probabilitiespk
L have the values shown in Figure 12+

This model is interesting because of the following property: For eacha Þ 0,

eitherH 1~a! # H 3~a! , H 2~a! or H 2~a! # H 3~a! , H 1~a!+ (51)

Hence, ~6! is not satisfied+The level linesH 1~a!50,H 2~a!50, andH 3~a!50 are
depicted in Figure 13+ In this model,

a1 ' ~20+1,0+2! anda2 ' ~0+1,20+2!+

Moreover,H 3~a1! 5 H 3~a2! since the transition probabilities are symmetric+Thus,
we can take [a 5 a1 or [a 5 a2+

Figure 13. The lines H 1 5 H 2 5
H 3 5 0+

Figure 14. The H-function lines at
level H 3~ [a!+

Figure 15. The level linesV 1 5 0,V 2 5 0+
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Figure 14 shows the level lines of the functionsH 1~a!, H 2~a!, andH 3~a! at
level H 3~ [a! ' 20+015+ In Figure 15, the level linesV 1~a! 5 0 andV 2~a! 5 0
intersect at two points:

Ta ' ~21+3,21+3! and a3 ' ~0+3,0+3!+

Starting from the pointTa, these lines give the ergodic region+ Clearly, the pointsa1

anda2 do not belong to the ergodic region+ Hence, the twisted MCM~ [a! is tran-
sient, and from~51!, we have that~6! is not satisfied+
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