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In this article we analyze the large deviations bounds for the nonergodic face-
homogeneous random walk in the positive quadraimder some condition the
value of the local rate function for the path identically equal to zero is foand an
explicit expression is derived for.This makes the computation of its value pos-
sible for specific stochastic networkS8ome numerical examples are given

1. INTRODUCTION

The sample path large deviations theorem for random walks with boundaries have
been studied if9,12].
For linear paths

0:[0,1] > R2  with ¢(t) = x + ut,

explicit expressions for the local rate functidrix,v) for the case that either
x# (0,0) orv # (0,0) have been derived {®,12]. Clearly the local rate function for
x = (0,0) andv = (0,0) equals 0 if the process is ergodithe determination of
L(0,0) was left as an open problem [8] for the transient random walkn this
article we derive an explicit expression for a lower boundlf¢®,0), and under an
extra conditionit holds that the lower bound is equal to an upper boutehce in
this casethe lower bound gives the local rate function

In [4], it has been shown for a large class of queueing netwankkiding the
model of this articlethat the large deviations principle holds for local rate function
expressed in terms of a stochastic optimal control problEne large deviations
bounds for a Jackson network are obtainginin a recent articl€8], the local rate
function is connected with the convergence parameter of associated local transform
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matricesBoth approaches are quite general and hold for a large class of mbdels
specific model we consider in this article allows for an expression in terms of the
logarithmic moment-generating functions on the different face®?afthis expres-
sion makes an easy numerical calculation possiie specific queueing networks
explicit expressions are obtained

We provide a self-contained proof based on the change of measure and the
analysis of the logarithmic moment-generating functiéisiost closed sets play an
essential role in the prooln this article we restrict ourselves to the local rate func-
tion for a path identically equal to zerbhe proof for linear paths of the typgt) =
X + vt with v # (0,0) can be done with the same type of analysis except that the
analysis of almost closed sets is not needdnt analysis for the paths not identical
to zero can be found if,12]. The combination of these results with ours gives a
complete solution of the sample path large deviations problem in the positive quadrant

Also, in a recent articl¢2], an extensive study has been made for the asymp-
totic behavior of large deviations for Markov chains in the positive quadPaatise
asymptotics are obtained for the logarithm of the transition probabilities

The outline of this article is as follow# Section 2 we give the model descrip-
tion and we state our main resuficluding the expression for the local rate function
for a linear path identically equal to zertm Section 3 we first give a complete
description of the local rate function for all linear patlhs that section we also
summarize the classification of ergodigityll recurrenceand transience and the
results on almost closed sets we need for our anallysiscompletenessve briefly
introduce the twisted process and the change-of-measure lemma used in Section 4
The main part of Section 4 is devoted to the analysis of the logarithmic moment-
generating functions on the different facesRgf and to the proof of the large devi-
ations lower boundWith our condition the proof of the large deviations upper
bound is straightforwardn Section 5 we illustrate how the expression for the local
rate function can be used to compute the large deviations bounds for a specific
random walk in the quarter-plank a companion articlg6], applications will be
made to stochastic networks that model queueing networks with coupled processors

2. MODEL DESCRIPTION AND MAIN RESULT

2.1. Model Description

We consider an irreducible and aperiodic Markov chéil€) M ={S,t=0,1,...}
on the state spac® = {i = (i, i) :iy,i, € N}, whereN = {0,1,2,...}.
We assume that the following conditions are satisfied¥¢r

Condition A: The transition probabilities are
pjo_i if i1=0,i2=0

p]]L| if |1>O,|2:0
P =PI p?i ifip=0,i,>0 W

P2, ifiy>0,i,> 0.
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Thereforethere are four faces of homogeneity
At ={iez?:i,>0,i, =0}, A2 ={iez?:i,=0,i,> 0},
A ={iez?:i,>0,i,> 0}, andA® = {0}.
By A(i) we denote the face to which statbelongs Then we can write
P{i—j}=p:}.

Condition B(Lower Boundedness of Jumps

pli = ifjs—i1<0o0rj, =i, <0,
pJ];I: |fJ1_|l<_1OrJ2_|2<0,
L o (2)
pri=0 ifj;—i,<0orj,—i,< -1,
Condition C(Upper Boundedness of Jumpdg-or a faceA we have
pi = ifj,—i,>df or j,—i,>dj forsomeinteged; =1,d; =1.

The special case whett” = d~ =1 is depicted in Figure.1

Condition D(Local Irreducibility): Let M2 be the Markov chaiiMC) onZ? with
transition probabilitie®{i — j} = p2;. We assume that13 is irreducible

Condition E:

PNl A= Y pt>0 and P{A25 A3 = > p2>0. (3)

kEZ?:ky>0 kEZ?:k;>0

1) W
A 1 Al

FiGcure 1. Transition probabilities on the faces
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2.2. Main Result

To any faceA there corresponds a jump varialdlé = (£7,£2) € Z? having the
distribution P{¢é* = k} = pl,k € Z? (see(1)). For any faceA we also use the
logarithmic moment-generating functief : R? — R defined by

H*(a) = log(E expla; &1 + azé2}),

wherea = (a4, a,) € R? andE denotes the expectatiow/e have that

HM ) = |Og< > piexplak, + a2k2}>.

kez?

We define two important points iR?:

al = arg minmax{H*(a), H3(a)},

a? = arg minmax{H?(«), H3(a)}. 4)

[e3

SinceH *(0) = H2(0) = H3(0), it follows from the continuity oH*(«) in « thata*
anda? exist In Section 4we show that they are finité.et

@ = arg maxH?3(a*),H3(a?)}. (5)
By |- | we denote the Euclidean norm#t (i.e, |i| = \/lf—+|22)
Turorem 2.1: If for any faceA = 0,1,2, we have
H*(&) = H3(a). (6)

Then the random walk; Satisfies the large deviations (LD) theorem with local rate
function

L0 = H3(a),

for a path identically equal to zero.
Indeed, the following LD bounds are satisfied:

LD upper bound:For anyé > 0 there exists N5) such that for all N> N(§),

P{S, =0, sup |S|< SN} < exp{+5N + N7L°}. 7)
t=0,---,[7N]
LD lower bound:For anyé > 0 andé’ > 0 there exists N8, 5') such that
P{s, =0, sup |S]< 8N} = exp{—&'N + NrL°} (8)
t=0,---,[7N]

forall N > N(§,8").

Remark 2.1:In fact, we prove that the LD lower bound always holds with =
H3(&). However for the proof of the LD upper bound we neé).
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Remark 2.2:As we will point out in Section 4(6) is always satisfied for null re-
current MG but it is not always fulfilled for transient Md~or an ergodic MC(6)
does not holdbut for ergodic MC the local rate function is known to be equal to zero

3. RELATED RESULTS AND MAIN DEFINITIONS
3.1. Large Deviations Theorem

We will not repeat the definition of the LD theorem in this article since it is rather

standard and it can conveniently be found in the literatsee eg., [4,9,12]). Here

we only give the necessary notations to formulate the LD theorem for our model
For anyr > 0 consider the metric spa€&[0; 7], R2 ) of all continuous functions

¢:[0;7] = R2.
It has been shown if4,12] that the LD theorem holds with a good rate function
L.:C([0;7],R2) = [0,+00], 7> 0.
In [9] it has been provedinder the assumption th&tis ergodic that the good

rate function has the following form

f L(gp(t),¢'(t))dt if the pathg is absolutely continuous
L.(p)=197o

+oo otherwise

where the local rate function
L(:,-):Z2 XR? 5 R, U {+o0}
is defined by
L3(vy,v5) if iy >0,i,>0
_ L2(v,) ifi,=0,i,>0
MO ey it > 0= 0 (0
L° ifi;=0,i,=0,

wherelL® = 0 andL?, L2, andL® are the following Legendre transforms

L3(v) = sup{(a,v) — H3(a)},

L?(v2) = sup{asv, — H3(ai(as), az)},

A2

LY(v1) = sup{aav; — H3(aa(aq), 1)},

Ay
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and the functions(-), as(+) : R — R are defined as

ai(ay) = arg minmax{H>3(ay, a,), H?(ay, as)},

(11)
az(ay) = arg minmax{H>3(ay, a,), H' (e, a)}.

@z

In Section 4 we will prove that,(a,) anda,(a,) are finite As a consequence of the
results inf9] or in[12] and the analysis of this artigleze haveunder the conditions
of Section 2the following theorem

Tueorem 3.1: If the random walk Sis nonergodic, then the LD theorem remains
true with the samel L2, and L3, and L° as in Theorem 2.1.

In this article we focus on the derivation bf and the proof of the bound3)
and(8) given(6).
3.2. Classification: Ergodicity, Null Recurrence, and Transience

Here we recall the criteria for the M@®1 to be ergodigcnull recurrentor transient in
terms of the mean drift on the facaale shall especially use these criteria for the
twisted processe®efine the vector

MA = (M{M}) ERL A=0123 (12)

as the one-step mean drift from a powhich is an element of, by

M = E(£)) = D kPLEr = kb= D kepid,
Ky keZ.?

Mé\:E(fé\):kEkzp{fé\:kz}: E Kopg

keZ:2
The following lemma is a consequence of Theoremdsl3and 33.2 in [5].

LemMma 3.2: Assume for the MQU that conditions A, B, and C are satisfied. With
the mean drift vectors (12) we define two constants:

Vi=M;iMI—-M3M{ and V?=M3ZM?Z—- M3MZ. (13)
Then we have the following:

(a) IfM? < 0and M3 < 0, then the MCM is
(i) ergodiciff VI <0OandV?<0
(i) null recurrent iff

VZ=0 V=0
either or (14)

vi=0 V2=0

(ii) transientiff V1 > 0or V2> 0.
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(b) If M2 = 0and M§ < 0, then the MCM is

ergodic iff V! < 0; null recurrent iff V! = 0; transient iff VA > 0.
(c) If ME < 0and M§ = 0, then the MCM is

ergodic iff V2 < 0; null recurrent iff V2 = 0; transient iff V2 > 0.
(d) fMZ=0,M3 =0, and M + M3 > 0, then the MCM is transient.

Remark 3.1:1f M = M3 = 0, then the MC can be ergodioull recurrentor tran-
sient(se€e[5]).

3.3. Almost Closed Sets

For our analysis we need results on almost closed Wétsefer to[ 3] for an intro-
duction to the theory of almost closed sets

Consider anirreducible aperiodic and transient{\MGn=0,1,...} on a count-
able state space in discrete time

DErFINITION 3.1: A subset A of the states is called almost closed if
P(Um=0 Ni=mién € AD) = P(Nin=o Ui=m{ln € A}
and this probability is positive.
The following lemma is a consequence of the resul{s.(j.
LeEmmA 3.3: Let
M3 > 0, M3 > 0,

then the set\® is almost closed.
Let

M3 < 0, V>,

then there exists a settAC A® such that the set* U Al is almost closed.
Let

M3 <0, V2 >0,

then there exists a sefAC A% such that the set? U A? is almost closed.
If

M2 <0, M3 <0, V1>, V2 >0, (15)

then the sets Aand & can be taken disjoint.

https://doi.org/10.1017/50269964803173056 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803173056

376 A. Hordijk and N. Popov

4. LARGE DEVIATIONS BOUNDS FOR THE PATH
IDENTICALLY EQUAL TO ZERO

This section is devoted to the proof of our main resué, the LD bounds as stated

in Theorem 21). First, we introduce the twisted process and the change of measure
and we analyze thid-functions Then in Sections .4 and 45 we prove the LD lower

and upper bounds

4.1. Twisted Process

First, we recall the well-known twisted MGFor anya € R? we define a MC
M(a) ={5,t=0,1,2,...}
on the state spacg? with transition probabilities
pj expl(a,j) — (a,i)}
2 py expie]) - (i)}

i (a) 2 (16)

where(-,-) is the scalar product iR% The MC M («) is said to be awisted MC
Note thatM (0) = M. Clearly conditions A B, C, and D of Section 2 hold for
the MC M («) if they are satisfied forM.
By P, we denote the probability measure for the twisted M@ «). Recall that
in Section 22 we defined the jumps variable'. Hence we have that

P.{éh = Kb = pi(a).
By E, we denote the expectation correspondingjo Similar to (12), define
the vector

M () = (M{(a), M2 (a)) = E, (¢*) = % kpe (). 7

By Cov,{&3', &2} we denote the covariance of the random variableandé2
with respect tdP,; that is

COV, {£1,ED} 2 EL(E2ED) — EL(61) EL(£2).

By Var,{£1} and Var,{£2} we denote the variance ¢f and&2, respectively
with respect td®,,. For completenessve include the following lemmavhich might
be well known but we have no reference for it
LeEmMmA 4.1: For any faceA we have

9 2
o,

ad
M*(a) = < H*(a), - — HA(a)>, Cov.{é1, 65} = H*(a),

8a1 3&2
(18)
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2 2

HYa),  Var,{£3}=

Var, {£)) = H (). (19)

9%, 92

Proor: First, note that from16) it follows that
pe (@) = p exp{(a, k) — H* (a)}. (20)
Let us prove first tham3 (a) = (3/daz)H* («). Clearly the function

HA (o) = Iog< S piexplask, + a2k2}>

kez?

is differentiable at any point € R? and

9 A ex k, + a,k
) = S PRkt askel o) = Ma(a),
daz k E pe explag kg + azky} k
k

Now we calculate Coy &R, €2}, We have that
a A A A a A
5 P (@) = pe exp{(a, k) — H*(a)}| kg — H (@)
aq 8011

= kipic (@) — pi (@) M (a).

Hence
92 d dJ
HA _ MA — k  AA
P (a) P (a) % 2 s P ()
= D kikopi (@) — MM (@) X ko pit (@)
k k

= E.(é1€2) — M (a)MZ ().

Assertion(19) is a consequence of assertidr8). u

4.2. The Change of Measure

Lets > 0 andr > 0. By I, we denote the indicator of the event

Ao = {w: sup [S(w)] < «SN}-

O=t=[7N

The following lemma is well knownfor completenesswe include a proafWe
denoteH;(«) for H(a) wheni € A.

LemmMma 4.2: For any« and any Borel se© we have

[TN]-1

P{Asn N Q} = Ea{|A5Nmn}eXp{_(a, Sy + (a0, S) + go Hs(a)}- (21)
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Proor: Relation(20) using a different notation is
P{i > j} =P{i —jlexp{—(a,j) + (a,i) + Hi(a)}. (22)
Letm=[7N]. Then for anyw € Asy N Q we have

—(a, Sn(@)) + (@, S(w)) = — go (@, §11(w) = (a, S(@)).

Taking (22) in account we get

PlANNQ = S TIPS - Sea(o)

wEA;NNQ t=0

S T expl— (@ Sua(@)) — (S (@) + H o (a)}

©EA;NQ t=0

X P {S(@) = Sii(o)}

= > exp{—(a,sn(w))Jr(a,S)(w))JfE)st)(a)}

WwEA;NNQ

X Po{S(w) = Sii(w)}

[TN]-1
= Ea{|A5Nmn}eXp{_(01, Sy + (0, S) + E Hs(“)}- u
t=0

4.3. Analysis of the H-Functions

LemMma 4.3: The functions H are convex. The functionsHare strictly convex iff
the probability mass of * = (£7, £2') is not concentrated on a line

Proor: For anyt,t, € R, consider the stochastic variable
tlé:ijl\ + t2§é\
For anya we have that
Var {t1£3 + 1,65} = tf Var {&1'} + 2t,t, Cov, (&1, 2} + t3 Var, {£7}.

Then from Lemma 41, it follows for any « that

2 2 2

HA (@) + 215t HA (@) + t2
azal (a) 1 aalaaz (a) 2 32012

Var, {t; &1 + &5} = tf HA (a).
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Since the variance is nonnegatjit€follows that the Hessian matrix ¢ («) (i.e.,

82 2
HA(a) HA(a)
aalaal 60118012
2 2
HA HA
80128011 (a) 80128012 (a)

is positive semidefiniteHencethe functionH* («) is convex(sege.g., [11, p. 448)).
The variance of, &7 + t,£2 is equal to 0 if and only if for some constamt

P{t.ér + 62 =cf=1

This means that the probability masstef;* + t,£2 is concentrated on the line
t1 X1 + t,X, = c. Since the Hessian matrix &f* is positive definite if and only if
H2 () is strictly convex(seg e.qg., [11, p. 448]), the assumption follows u

CoRROLLARY 4.4: The function H(«) is strictly convex.

Proor: By condition D the MC M3 is irreducible Thereforethe probability mass
of £3 is not concentrated on a linelence by Lemma 43, the functionH 3(«) is
strictly convex n

By a* we denote the point where the functibif(«) has its global minimum
that is

a® = arg minH3(a).

«

LeEmMA 4.5: The pointa® is finite iff condition D holds.

Proor: By Corollary 44, the functionH?3(«) is strictly convex Then it has its
minimum at a finite point iff for any fixedr # 0 the functiorf,(t) = H3(ta) has a
minimum at a finite pointWe have that, is strictly convex and

fa<t>=log( S plexplt(a )+ X pfexp{t(a,k)}>.

k:(a, k)<O k:(a, k)=0

Clearly, the functionf,(t) has its minimum at a finite point iff

> pi>0 and D> pi>o0. (23)

k:(a, k)<O k:(a, k)=0
By cod a, k) we denote the cosine between vecterk € R?; then
(a, k) = |af[klcos(e, k).
Hence(23) holds iff there exisk, | € R? such that
pE > 0,cos(a,k) >0 and p?> 0,coqa,l) <O. (24)

Now we will show thatM 2 is irreducible iff for anya # 0 there exisk, | € 7?2
such that24) is satisfiedRecall that a MC is called irreducible iff every state can be
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k3
(a) (b)

FIGURE 2. The probability mass related to the irreducible Markov ch&d.

reached from any other state with positive probahi@garly M2 is notirreducible
if the probability mass is concentrated only in two points

Let us consider the case where the probability mass is concentrated only at three
points(vectorsk?, k2, andk?). One can easily check that in FigurgtBe vectorsc?,
k2, andk® correspond to the irreducible M®&( 3, and for anyw # 0, (24) is satisfied

By rotating Figures 2a and 2b over®9@8C, and 270, one can get all possible
caseswhich correspond to irreducibl&1® with probability mass concentrated only
in three points

Similarly one can consider the other casglere the probability mass is con-
centrated in more than three points |

In analogy to(13), we define the function¥ *(«) andV?(«) as follows
Vi(a) = MP(a)M3(a) — M3(a)Mi(a),
V2(a) = M3(a)MZ(a) — M (a)M3(a).
Note thatv*(0) = V! andV?(0) = V2

LeEmMA 4.6: The pointsa® anda? are finite.

1. Either H'(a?) = H3(al),M3(a') = 0 or a! is the unique solution of the
system

HY(a) = H3(a), Vi(a)=0, M3(a) < O. (25)

2. Either H*(a?) = H3(a?),M3(a?) = 0 or «? is the unique solution of the
system

H%(a) = H3(a), VZ(a) =0, M3(a) <O. (26)

Proor: By Corollary 44, the functionH 3(«) is strictly convexand by Lemma 4,
it has its minimum at a finite poinHencethe sefa : H3(a) = C} with C > H3(a®)
is a compact seBinceH *(0) = H?(0) = H3(0) = 0, we have that

ata? € {a:H3(a) =0

Hence o' anda? are finite
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Let us analyze the poirt? For anya,, define

af = a%(a,) = arg minH3(ay, ay).

a1

From condition D it follows that

> 2p>0 and > > pi>0

ki<0 ky ki>0 Ky

Then for any fixeda,, the function

oo az) = log 5 oS ptert) + 3 ent(Spren )|

k<0 ko k;=0 ko

is strictly monotone decreasingdn on the interval—oo, «?) and itis strictly mono-
tone increasing i, on the intervala?,+c0). From condition Eit follows for any
fixed a, that the function

H2(aq, ap) = Iog{ > eukiy pfe"ZKZ},
Ko

k;=0
is strictly monotone increasing in,. Hence for each fixeda,, we have two cases
Case 1:

H 2(01?(012), az) >H 3(“8(0’2), (12)-
Then H? andH 2 as functions ofy; intersect on{—oo, a{(«,)) at

ay(ay) = arg minmax{H?(ay, a,), H3(ay, as)}.
g

This case is depicted in Figure.3inceH 3( a4, a,) is strictly monotone decreasing
in a; on(—oo,a?], thenM3(a,(a,), as) < 0.
Case 2:

H2(a?(ay), @) = H3(aP(ay), ay).

Thena(a,) = ai(ay), and we have thaWl3(a(a,), a,) = 0. This case is depicted
in Figure 3b
Since either Case 1 or Case 2 holds for eagfthen either

H?(a?) = H3(a?),M3(a?) <0 or H?(a?)=H3%(a?),Mia?)=0.
From Case 1 and Case 2 it also follows that

H3(a?) = rrlinH3(oz1(a2),a2). 27
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(a) (b}

Ficure 3. Two cases for each fixed,: (a) Case 1 andb) Case 2

Now let us show that eithev?(«?) = 0 or M3(a?) = 0. Since(27) holds it
follows that

d .
— H3(ay(ay),az) = 0 iff VZ(ay(az),az) = 0 orM3(ay(ay), ay) = 0.

da2
Here we give a geometrical pradf H3(a®) = H?(«?®), thena? = o2 and
clearly M3(a®) = 0. Suppose that 3(a®) < H?(«®). Then for anyC > 0, let us
consider the set
Ke ={a:H3%(a)=C}N{a:H?(a) =C} (28)
Since theH-functions are convexve have that the sets
{a:H3*(a) =C} and {a:H?(a)=C}

are convex as wellf K is not emptythenK is a compact convex set and € K.
Hence

a’e ) Kec.

C:Kc#d

Moreover for any two levelsC, < C,, we haveK¢, C Kc,. Therefore the
intersection of all nonempi¥ sets is compac8ince maxH ?(«), H3(a)} is strictly
convex this intersection is a single poiritence a2 is uniquely definedMoreover
it is the point where the functiortd? andH® have a point of contact
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Note thatM?(«?) is a normal to the level linda: H3(a) = H?(a?)}, and
M3(a?) is a normal to the level linfn : H3(a) = H3(«?)}. This means tha¥12 and
M3 have opposite directions af’; that is

Mf(a?)  MP(a?)
M2(a?)  M3(a?)

and so
VZ(a?)=0.
This completes the proof @6). The proof of(25) is similar. |
LeEmMa 4.7: If M 3(&) # Othen the twisted MGV (&) is null recurrent or transient.
Proor: Suppose that = oL If M3(a?) # 0 then by Lemma 4 we obtain
M3(el) <0 and Vi(al)=0. (29)

If in addition to(29) we have thaM3(a?) = 0, then by Lemma 2 the twisted MC
M(at)is null recurrentSuppose tha¥1$(a') < 0 in addition to(29); then by the
same lemmgahe twisted MCM (at) is null recurrent itV2(at) = 0; it is transient
if V2(al) > 0.

The same analysis holds for the cdse a2 u
LeEmMmA 4.8: If the MC M is null recurrent, therx = 0.

Proor: Let the MC M be null recurrentSuppose thaki *(0) = 0; thena® = 0.
SinceH*(0) = 0 for any faceA, a® =& (i.e., @ = 0).

Suppose that13(0) # 0. From Lemma 2, it follows that one of the following
cases is satisfied

V1(0) =0, M3(0) <0 (see parts aand b of Lemma&3  (30)
VZ2(0) =0, M3(0) <0 (see parts aand c of Lemm&3  (31)
Then by Lemma 4 we have that* = 0 if (30) holds anda? = 0 if (31) holds Since
a=a'ora=a? we getthatv = 0. [ |

Remark 4.1:From Lemma 4B, it follows for a null recurrentM thatH* (&) =
H%(0) = 0 for anyA. Hence in this case(6) is fulfilled. In Section 5 we present
some transient models for whi¢6) is satisfiedbut also a transient MC for which it
is not true In[6] we show that coupled processor models do satisfy the condition
generalan ergodic MC does not satisfy iiut for these modeJ$he local rate func-
tionL° = 0.

4.4. Proof of the LD Lower Bound

The proof of the LD lower bound is rather involvethe assertion of Lemma@tis
the relation(8) in adequate notatiofror the proof of Lemma .4 we need two more
lemmas(4.10 and 411). In these lemmaslmost closed sets play an essential role
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LeEMmMA 4.9: For anyé > 0andd’ > 0 we have that
P{Asn} = exp{NTH3(a) — 6'N} (32)
for all sufficiently large N.

PRrROOF:

Case 1:LetM3(&) = 0. It means that
H3(&) = minH3(a). (33)

We have that
P{Asn} > P{Asn N Q3
where
Q% ={w:S(w) € A3forallt > mj.

From Lemma 4, by the change of measuyiefollows for any « that

[TN]—1
P{Axn N Q3 =E, {exp{—(a, Sy + (@, S) + Z%) Hst(a)} Las moﬁn}

(34)

First, note that| §,nj(w)| = 6N for anyw € Asy. Hence |(a, Sn)| = [lal|6N.
SecondS(w) € A3t > m, for anyw € Q2. Then for anya, we get
[TN]—1 m
> HY@(a) = [rN]H3(a) + 3 (HS“)(a) — H3(a)). (35)
t=0

t=0

Clearly, for any givena, m > 0, andé’ > 0, there existdN(a, m,6’) such that
> (H8@ (@) —H3(a)) > —§'N (36)
t=0

for all N > N(a,m,8"). Recall thatH3(a) = H3(&) by (33). Then from (35) and
(36), it follows for anyw € Q32 and all largeN that

[7N]—1
E HS@ (o) = [rN]H3(&) — 6'N.
t=0
Now, using(34), we obtain that
P{Asn N O3} = exp{NtH3(a®) — | a|SN — §'N}P, {Asy N O3} (37)

for anya, 6, andé’ and for all sufficiently largeN.
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Recall thatv 3(&) = 0. Since the functiod 3(«) is strictly convexthen for any
6 > 0, we can finda, close toa such that

Mi(as) >0,  Mi(a;) >0, and 7[M3(a,)| <. (38)

We conclude the proof of Lemma3ffor Case 1 by proving the following lemma
Indeed (37) together with(39) implies(32).

LemmMma 4.10: There exists a positive constantgq0 such that
P, {Asn N Q3 >q (39)
for all sufficiently large N.
Proor orF LEMMA 4.10: First note that
P, {Asn N Oy = Po, {Asn | Q?ﬂ}PaS{Q%}'

SinceM$(a;) > 0 andM3(a;s) > 0 by (38), then by Lemma 3 the set\® is almost
closed and s®, {Un-oQ%} > 0. Recall that

03 C 01 C Um0 O,
and thereforethere exists a positivg,, such that
PQE{Um>OQ3} > Paﬁ{Q?n} > qm

for all sufficiently largem.
On other hand

M3(a5) = Eas{SH - St|St € A3}
and thereforeit follows from Kolmogorov's inequality that for ang > O,

Po {Asn [ Q3 = Pas{ sup ]IIS — tM3 ()] < eNmﬁa} -1

O=t=[7N
By the same relatioB8), we can take small enough such that

7[M3(a;)] <6 —e.

Then
[ sup 157~ tM2(a)| <N} C Ay = { sup | <N}
o=t=[7N] o=t=[7N]
It implies that
PDKS{AﬁN 03— 1,
which completes the proof ¢89). u

https://doi.org/10.1017/50269964803173056 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803173056

386 A. Hordijk and N. Popov

Case 2: Suppose thar* = &4 andM3(&) # 0. We have that
P{Asn} > P{Asn N Qnl,
where
O ={w:S(w) € At U A% for all t > m}.

From Lemma £ by the change of measyiefollows for any« that

[TN]-1
P{Asn N Qn} = E, {exp{—(a, Sy + (a0, S) + % Hs(a)} |A5NHQ%1}'

(40)
By Lemma 46 we have
Hi(a!) =H3), Via)=0, M3(a®)<O.
Recall thatM2(«) > 0 for all « by condition E Hence for anys > 0 ands’ > 0 we
can finda; close toa! such that
Vias)

M3 <0, 0< ) 41
2(2s) ME(ay) — MZ(ay) (41)

and
H(as) > H3(al) — & H3(as) > H3(al) — & (42)

Note that conditions D and E exclude the case thaE 0.
We haveS (w) € A* U A2 for anyw € O} and allt > m. This means that for any
t>m

eitherHS@ (az) = H(as) or HR@(az) = H3(a;).

Then using(42), we get

[TN]-1 [TN]-1
> H3W(a;)> > (H3(ah) -8
t>m t>m

Thereforefor any givenm> 0, § > 0, ands’ > 0, there existdN(m, §,5") such that
[TN]—1
> HS@(a;) = [7N]H3(a®) = 8'N
t=0
for all N > N(m,8,5’). Then using(40), we get
P{AgN ﬂ Q}n} = eXp{NTH3(al) - HCY§H5N - BIN}PQS{A(sN ﬂ Q]rh}

In order to complete the proof of Lemmad4for Case 2we need to show the fol-
lowing lemma
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LemMA 4.11: There exists a positive constant g such that
P, {Asn N O =q
for all sufficiently large N.

Proor: SinceV(a;) > 0 andM3(as) < 0 by (41), then from Lemma 3 we find
that the set\' U A? is almost closedHence P, {U -0 Qf} > 0, and since

Q75 C Qs C Umso O,
there exist positive,, such that

Po,{Um=0Qm} > Po, {Q} > Oy (43)

andgm < Qmy1-
Supposefor simplicity of notation that7 = 1. Let

(@)= L@
YT\ ME(a) - M2a) )
It follows from (41) that|v(ays)| < 8. Then for any positivee with
26 < 5 - HU(CY@)”,

we have that

Asn = {so =0, sup |S] < BN} ) { sup S — to(a,)] < 2eN}. (44)
6} 0=t=N

=t=N
By M,(a) we denote the mean drift & at timet; that is
Mi(a@) = E.{S+1— S1S,0=1=t}

We introduce two evenis

t—1
Ajn = { sup S — X M(as) <€N},
O0=t=N 1=0
t—1
A%N = { Sup tU(ag) - E M|(C(5) < EN}.
0=t=N 1=0

Then from(44) it follows for any N that

Now we will give lower bounds for the probabiliti€s, { A3y} andP, {A5y N
QLh Let

t—1

H=S—SS— 2 M, m=0.
1=0

https://doi.org/10.1017/50269964803173056 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803173056

388 A. Hordijk and N. Popov

We have that
N1~ =S —S— M, forallt>0.

Since § has bounded jumps), also has bounded jumpsay for some constant
D > 0 that we havén.,, — n:| = D. Moreover for anya,

Enins—mm,0=1=t}=E,{S., - SIS,0=I=t)
~E.{M/S,0=I=t}=0.

This means thay, is a zero-mean martingale withy = 0. From the Azuma—
Hoeffding inequality(see[13, p. 237]), it follows for anye > 0 and« that

1
P.{Ab) = P.{ sup [l = en| =1~ exp| 5o eN].
0=t=N 2D

Hence
P.{Ak} —>1 asN— +oo. (46)

Now we estimate the probabilify, { A3y | Q). Let

.|

Then for anya we have

> (@) = M(a))

1>0

>et}, e>0.

Pa{A§N|Qr:'Ln} =1- Pa{U{\I>OBt|Q%’1}'

Clearly for any sufficiently largeN, there existdy = o(N) such that for anyv,

t—1

sup [[tv(a) — X M(a)|| <eN.
O=t=ty 1=0
Then
N
P.{A QN > 1- X P,{B}. (47)

t>ty

For anyw € Q1, eitherM;(a) = M*(a) or M;(a) = M3(a) for all t > m. Note
that
—M3(a)

v(a) = 7%a)M(a) + (1—7°%a))M3(a), 7% a) = m,

where 7% ) is the stationary probability that the first component of the
twisted proces§® is equal to zerpconditioned on the sample path $&t where
0 = U,0L,
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If M3(a) < 0, then 0< 7°(&) < 1, and from the results ¢fL] it follows that for
anye > 0 there exist > 0 andb > 0 such that

P.{B,| Q}} < Cexp{—bt}, (48)
for all sufficiently larget. We have tham3(a;) < 0. So(48) holds fora = a5 as well
Then it follows from(47) and(48) that

“+oo
P, {A%N| Q8 > 1—C > exp{—bt}.

t>ty
Since the serie¥; exp{—bt} is convergent antl, — +oo0, we get that
P AN QO > 1 asN — +oo. (49)
Now, the assertion of LemmaH1 follows from(43), (45), (46), and(49). u

The proof of the case? = & is similat This completes the proof of Lemmad4
|

4.5. Proof of the LD Upper Bound

The proof of the LD upper bound is a straightforward consequendé@)oft is
proved in the following lemma

LeEmMa 4.12: Let (6) be satisfied. Then, for ady> 0, we have
for all sufficiently large N.

Proor: By (6), we have that

[TN]-1
26 HS@ (&) = [rN]H3(&).
Thereforefrom (21), it follows that
P{Asn} = Esxlexp{—(&, S + (&%) + [TN]H3 (&)} (50)
SinceS, = 0 and||S(w)| = 6N for anyw € Asy andt = [7N], then
[(&, S§onpll = [l & oN.
It implies immediately that
P{As} = exp{|a||6N + rNH3(&)},

which proves the lemma u

https://doi.org/10.1017/50269964803173056 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803173056

390 A. Hordijk and N. Popov

5. APPLICATIONS AND NUMERICAL EXAMPLES

In this section we demonstrate how the local rate functidean be computed for
specific modelgthe computations have been done with Maple the subsequent
article[6] we show how the large deviation theorem$ and 31 can be applied in
a coupled processors system

5.1. Numerical Examples

In this subsectioywe present a couple of models for whi@) is satisfied(i.e., the
LD bounds hold. First, recall that

Pk, = Plin,i2) = (i1,i2) + (K, ko)) with (ig,i5) € AL

Model 1: Let the transition probabilitieg? have the values shown in Figure 4
Figure 5 shows the level lines of tiefunctions at level OWe have

MZ>0M3<0 and M{>O0Mi>0.

ThenV?! > 0 and therefore by Lemma 32, the MC M (ata = 0) is transient
In Figure 6 we have thél-functions level lines at the level equal k*(a).
Here

H3(&a) = H?(&) with & = a?~(—0.27,0.1).
We have
M3(a) <0O,M3(a) <0 and V(a)>0V3a)=0.

Then by Lemma 2, the MC M (&) is transient
Note thatH°(&) = H3(a) andH(a) = H3(a) (i.e, (6) is satisfied. Hence by
Theorem 21, the LD bounds hold with.° = H3(&) ~ —0.009

12 1 1 2 1
16 16 64 64 64
1 2 3
16 64 4

2 2 2 4
16 64 64 64

3 1 2 1 1
8 8 16 i6 16
31 u

8 16 16

FiGuURE 4. Model 1 transition probabilities
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0.6
-0\5
0.4

-1.5/ -1 - 0.5

/ o2
0.

-12 -1 -08-0.6-04-02

Fi1GURE 5. The H-function level lines FIGURE 6. The H-function level lines
at level Q at levelH3(&).

In Figure 7 the linesV1(a) = 0 andV?(a) = 0 intersect each other in two
points

a®~(-0.21,03) and @~ (-0.7,-0.7).

Starting from the poin& and forward in the southwest directidhese lines form a
cone-shaped regioliVe call this region thergodicregion The interior of this re-
gion contains the pointsfor which M («) is ergodic Outside of the ergodic region
we have the points for whicM (@) is transientThe boundarythe linesvi(a) =0
andV?(a) = 0) correspond to null recurrent M@ («). In Figure 7 alspthe level
line H3(a) = H3(&) is depicteclthe intersection with/2(«) = 0 givesa.

-1.5

-2

Ficure 7. The linesV'=0,V2=0,H%=0.
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1 2 4 2 2
8 8 64 64 64
3 47
P0=6_4
1 1 3 2
8 ] 64
1 2 1 2 1
8 8 64 64 64
3 1 2 2 2
8 8 8 3 3
1 3 1 L
8 8 s 0 8

FiGcure 8. Model 2 transition probabilities

Model 2: Next, we give a model withr = «? and MC.M (&) is null recurrentLet
the transition probabilities have the values as shown in Figure 8
Figure 9 shows the level lines of tih&functions at level OWe have

ME<O,M$>0 and M2=0,M2>0.

Then V2 > 0 and thereforg by Lemma 32, the MC M (ata = 0) is transient
In Figure 10 we have thid-functions level lines at the level equalkid (&) with
& = a®~ (—0.05,—0.27). We have that

M3(&) < 0,M$(&4) >0, and V2(&)=0.

0.8
0.6

0.4

0.2

WZ

Fi1GuURE 9. The H-function level lines Ficure 10. TheH-function level lines
at level Q at levelH3(&).
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-2

FIGURE 11. The level linesv!=0,V2=0

By Lemma 32 the MC M (&) is null recurrentlt is easily checked that °(a) <
H3(&)andH(&) =H3(&) (i.e., (6) of Theorem 21 is satisfied. Hence also for this
mode] the LD theorem holds with® = H3(&) ~ —0.0078

Figure 11 shows the ergodic regioHere the level lines/'(a) = 0 and
V?(a) = 0 intersect atr® ~ (0.21,—0.32).

5.2. Open Problem

The numerical examples of SectiorlSatisfy(6) of Theorem 21 and hence the
local rate functiorlL® is found In model 3 M is transient and6) is not satisfiedIt

is our conjecture that also in this case the LD lower bound is tigis the local rate
function is equal td43(&)).

12 3 1 1
16 32 16 8
1
16
1 5
16 16
0
3 1 5 1
2 16 16 16
3 1 3 1 3
8 8 3 i6 32
12
3 12
4 0
3 16

FiGure 12. Model 3 transition probabilities
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0.5
2 45 A = 05
t10.5
-15
FIGURE 13. The linesH! = H? = Ficure 14. The H-function lines at
H3=0. levelH3(&).

Model 3: Let the transition probabilitiepy have the values shown in Figure.12
This model is interesting because of the following propefyr eachy # 0,

eitherH* (@) = H3(a) <HZ?(a) or H?(a)=H3(a) <HYa). (51)

Hence (6) is not satisfiedThe level linedH*(«) =0, H?(a) =0, andH 3(a) = 0 are
depicted in Figure 13n this mode)

al~ (—0.1,0.2) anda? ~ (0.1,—0.2).

Moreover H3(at) = H3(«?) since the transition probabilities are symmetfibus
we can takex = a' or & = a2

—4

-5

FiGurE 15. The level linesv! =0,v? = 0.
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Figure 14 shows the level lines of the functidd$(«), H?(a), andH?3(«) at
level H3(&) =~ —0.015 In Figure 15 the level linesV(a) = 0 andV?(a) = 0
intersect at two points

a~(—13,-13) and «®=~(0.3,0.3).

Starting from the poin&, these lines give the ergodic regiddiearly, the pointsa*
anda? do not belong to the ergodic regiodence the twisted MCM (&) is tran-

sient and from(51), we have that6) is not satisfied
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