Probability in the Engineering and Informational Sciences, 20, 2006, 157-174. Printed in the U.S.A.

CHARACTERIZATION OF STATE
ESTIMATION BIASES

A. P. Saklis MELIoPoULOS AND GEORGE K. STEFOPOULOS

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332
E-mail: sakis.meliopoulos @ ece.gatech.edu; gstefop @ece.gatech.edu

The control and operation of an electric power system is based on the ability to
determine the state of the system in real time. State estimation (SE) has been intro-
duced in the 1960s to achieve this objective. The initial implementation was based
on single-phase measurements and a power system model that was assumed to
operate under single-frequency, balanced conditions, and a symmetric system model.
These assumptions are still prevalent today. The single-frequency, balanced, and
symmetric system assumptions have simplified the implementation but have gen-
erated practical problems. The experience is that the SE problem does not have
100% performance; that is, there are cases and time periods for which the SE algo-
rithm will not converge. There are practical and theoretical reasons for this and
they are explained in the paper. Recent mergers and mandated regional transmis-
sion organizations (RTOs) as well as recent announcements for the formation of
mega-RTOs will result in the application of the SE in systems of unprecedented
size. We believe that these practical and theoretical issues will become of greater
importance. There are scientists who believe that the SE problem is scalable, mean-
ing that it will work for the mega-RTOs the same way that it performs now for
medium-large systems. There are scientists who believe that this is not true. The
fact is that no one has investigated the problem, let alone performed numerical
experiments to prove or disprove any claims. This paper identifies a number of
issues relative to the SE of mega-RTOs and provides some preliminary results from
numerical experiments for the relation between the SE algorithm performance and
the power system size.

1. INTRODUCTION

State estimation (SE) was introduced by Gauss and Legendre (around 1800). The
basic idea was to “fine-tune” state variables by minimizing the sum of the residual
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squares. This is the well-known least squares (LS) method, which has become the
cornerstone of classical statistics. The reasons for its popularity are easy to under-
stand: At the time of its invention, there were no computers, and the fact that the LS
estimator could be computed explicitly from the data (by means of some matrix
algebra) made it the only feasible approach. Even now, most statistical packages
still use the same technique because of tradition and computational speed. Also, for
one-dimensional problems, the LS criterion yields the arithmetic mean of the obser-
vations, which at that time seemed to be the most reasonable estimator. Afterward,
Gauss introduced the Normal (or Gaussian) distribution as the error distribution for
which LS is optimal. Since then, the combination of Gaussian assumptions and LS
has become a standard mechanism for the generation of statistical techniques.

In a real-time environment, SE was applied to power systems by Schweppe
and Wildes in the late 1960s [16]. Over the past 35 years, the basic structure of the
power system SE has remained practically the same: (1) Single-phase model, (2) P,
Q, V measurement set, (3) nonsimultaneousness of measurements, and (4) single-
frequency model. This basic structure of the power system SE implies the follow-
ing assumptions (which, in turn, result in a biased state estimator): (1) All current
and voltage waveforms are pure sinusoids with constant frequency and magnitude,
(2) the system operates under balanced three-phase conditions, and (3) the power
system is a symmetric three-phase system which is fully described by its positive
sequence network. These assumptions introduce deviations between the physical
system and the mathematical model (bias) and have resulted in practical difficulties
manifested by poor numerical reliability of the iterative SE algorithm. Substantial
efforts to fine-tune the mathematical models in actual field implementations are
required. In practice, even for a well-tuned SE, these reasons manifest themselves
by the fact that the SE algorithm occasionally diverges. This “unreliability” of the
state estimator has been reported in the order of 1-5%.

The authors have developed an SE methodology that is based on three-phase
asymmetric models, imbalance system conditions, and Global Positioning System
(GPS) synchronized measurements [14,15]. Significant improvements in the per-
formance of the SE were reported. Hansen and Debs utilized three-phase models
for traditional state estimation and they have reported a dramatic performance
increase as well [5]. Similar results were reported by Zhong and Abur [19]. The
authors have expanded this approach to a hybrid state estimator (i.e., one that uses
both traditional data as well as GPS synchronized measurements) [6]. In this
approach, the sources of the errors in the traditional SE have been investigated.
This paper provides a description and quantification of these errors and biases.

The trends in the electric power industry toward larger systems, and especially
the recent government announcement for mega-RTOs (regional transmission orga-
nizations), raise the question: What will be the performance of the SE in these sys-
tems? In this paper, we discuss these problems and offer thoughts on methods to
investigate this problem.

We discuss the biases of the traditional SE problem and project the effect of
these biases as the system size increases. Specifically, the following issues are dis-
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cussed: (1) sources of bias in the traditional SE, (2) effects of system size on bias
error, (3) effects of system size on computational effort, and (4) effects of bias error
on bad data detection. Subsequently, we propose an approach that may mitigate
these problems. Yet, extensive numerical experiments are required to determine
whether the proposed SE will meet the challenge of providing a practical SE for
megasystems.

2. SOURCES OF BIAS IN TRADITIONAL STATE ESTIMATION

The LS SE procedure is an unbiased estimator if and only if the model is accurate
(exact) and the measurement errors are statistically distributed. Both of these con-
ditions may not exist in a practical system. In this section we concentrate on the
bias resulting from model inaccuracies and we discuss the effect of measurement
errors. In particular, model inaccuracies result from (1) unbalanced operating con-
ditions and (2) asymmetries of power system models.

2.1. Balanced Operation

An actual power transmission system operates under near-balanced conditions. The
imbalance may be small or large depending on the design of the system. As an
example, Figure 1 illustrates the three-phase voltages and currents on an actual sys-
tem. Note, for example, a 10% difference in the currents of phases A and B of the
transmission line to GILBOA. The voltage in this case has only a 0.2% difference
between two phases.

Because of imbalance, the measurements may have an error. We represent this
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FIGURE 1. Actual three-phase voltages and currents in the FRASER substation.
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where z, is the true measurement (assuming a balance system), Az is the measure-
ment error due to imbalance, and z is the actual measurement. Application of the LS
SE procedure, assuming no other error sources, yields

x=x,+(H"WH) '"H"WAz, ?2)

where x; is the true state of the system or the unbiased state estimate and the second
term is the bias resulting from the imbalance measurement error. Note that the bias
from an unbalanced operation depends on the level of imbalance as well as the
system parameters (matrix H).

2.2. System Symmetry

An actual power transmission system is never symmetric. Although some power
system elements are designed to be near-symmetric, transmission lines are never
symmetric. The impedance of any phase is different than the impedance of any
other phase. In many cases, this imbalance can be corrected with transposition.
Because of cost, many lines are not transposed.

The asymmetry may be small or large depending on the design of the system.
One power system component that contributes to the asymmetry is the three-phase
untransposed line. As an example, Figure 2 illustrates an actual three-phase line.

For the purpose of quantifying the asymmetry of this line, two asymmetry met-
rics are defined:

S, = 1 ‘Zmax - Zmin| (3)
: 2 |21 ’
1 max  Jmin
5, = L Dmox =il @
2 |31l

where z; is the positive sequence series impedance of the line, 7, and z,,;, are the
max and min series impedances of the individual phases, y, is the positive sequence
shunt admittance of the line, y,,,, and y,,;, are the max and min shunt admittances of
the individual phases.

The above indices provide, in a quantitative manner, the level of asymmetry
among phases of a transmission line. As a numerical example, these metrics have
been computed for the line of Figure 2 and are presented in Figure 3. Note that the
asymmetry is in the order of 5—6%.

Because of the presence of nonsymmetric components, the state estimate using
a single-phase measurement set is biased. An estimate of the bias can be computed
as follows. First, observe that because of power system component asymmetry, the
relationship of a measurement to the system model will have an error. Specifically,

z=h(x)+ Ah(x), Q)
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FIGURE 2. Typical transmission line construction.

where h(x) is the function relating the measurement to the state vector assuming
symmetric power system components and A/ (x) is the difference between the sym-
metric model and the asymmetric model. Now the Jacobian matrix of the measure-
ments becomes

H=H,+ AH, (6)

where H, is the Jacobian matrix assuming symmetric power system elements. Appli-
cation of the LS SE procedure, assuming no other error sources, yields

x = (x, + (HTWH) '"H"WAz)(AH"WH)™!

X (I+2(AH™WH)(HTWH) ") ""(AHTWH), (7)
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FIGURE 3. Line asymmetry indices (line of Fig. 2).

where x; is the state of the system assuming a symmetric model and the other terms
represent the bias resulting from the system asymmetry.

2.3. Measurement Errors

State estimators are based on the assumption that measurement errors are statisti-
cally distributed with zero mean. The traditional implementation of SE uses sensors
of V (magnitude), P, and Q. When the sensors are properly calibrated, the measure-
ment error is very close to meeting the requirements of SE. However, recent trends
resulted in the use of sensorless technology for power system measurements. Sen-
sorless technology refers to the use of A/D converter technology to sample the
voltage and current waveforms. Once the sampled waveforms are available, the
required measurements can be retrieved with numerical computations.

Independent of the technology used for measurements, it is important to exam-
ine whether there is bias in the measurements. This can be best achieved by exam-
ining the entire measurement channel of a typical power system instrumentation
[15]. The major sources of error (see Fig. 4) are (1) the instrument transformers,
(2) the cables connecting the instrument transformers to the sensors or A /D con-
verters, and (3) the sensors or A /D converters. Figure 5 illustrates the transfer func-
tions of a typical instrument transformer. It can be observed that the characteristics
of instrument transformers near the power frequency are flat. One can conclude that
for power frequency measurements, there is no appreciable measurement bias from
instrument transformers. However, for measurements at harmonic frequencies, a
substantial measurement bias can occur. Another source of measurement bias may
result from A /D converters. Figure 6 illustrates the transfer function of a specific
A/D converter (Crystal Semiconductor, 16 bit). Note the magnitude and phase bias
even at power frequency. It is important to note that the measurement bias is depen-
dent on the design of the A/D converter. The measurement bias resulting from
control cables is variable, depending on the total length of the cables.
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F1GURE 4. Components of a typical voltage and current instrumentation channel.

The measurement bias can be corrected with software. Such methods have been
developed [19], but their use in SE is very limited. It is important to note that the
above sources of error cannot be corrected with better (more accurate) instrumen-
tation. To avoid these sources of error, three-phase measurements and a three-phase
system model is required. Such a system has been developed and it is described
next.

3. EFFECTS OF SYSTEM SIZE AND BIAS ERROR

The effect of bias error in SE has been studied only on a limited basis. The size of
this error as the size of the system increases is an unknown. There are scientists
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FIGURE 5. Magnitude and phase of frequency response of a 200-kV/115 potential
transformer.
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FIGURE 6. Magnitude and phase of frequency response of the PMU-1620 unit.

who believe that this error will remain constant as the system size grows. Others
believe that this may not be true. It is important to design numerical experiments
that will allow the study of the bias error size as a function of system size. The
purpose of this paper is to suggest some numerical experiments that can be used to
study this issue and to provide some initial numerical results for the behavior of the
SE errors in relation to the power system size.

3.1. Design of Numerical Experiments

The procedure is based on data provided by simulated system conditions. These
data are used instead of actual measurements and are the input of the SE algorithm.
However, the system model used for the simulations differs from the equivalent
circuit-based model that is used in the SE algorithm. The elements of the power
system are represented by physically based models that take into account the actual
structure of each element and the possible asymmetries and imbalances that may
appear; for example, a transmission line that is one of the most asymmetric power
system elements is not represented by its sequence equivalent circuits, but by a
physical model that takes into account the geometry of the line. The same holds for
all the other elements. In addition, the system is simulated using full three-phase
analysis. So, the asymmetries of the components and the imbalances are in fact
taken into consideration and appear in the simulation results. We may, therefore,
assume that the models represent the actual power system in great detail. Further-
more, the simulation results represent, with great accuracy, the actual quantities
that would be measured in an actual power system. Finally, the use of such data
ensures that no other sources of error, like measurement noise or bad data, except
for the model inaccuracies are present. Therefore, a basic assumption of the exper-
iments is that the data that are used as measurements are assumed to be free of
errors, so the only source of bias is the inaccuracies of the mathematical model used
by the SE algorithm.
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Using the bus voltage magnitudes and the line flows obtained by the simula-
tion as measurements, the classical SE algorithm is executed. Measurements of volt-
age magnitude and active and reactive power flow are considered. Power injection
measurements are not used. The state estimator uses the typical single-phase equiv-
alent circuit representation of the system. The state vector x consists of the phase
angles of the voltage at each bus, except for the slack bus, and the voltage magni-
tude at every bus. The measurement equations that relate the measured data to the
state vector are of the form

Z=h(x)+v, (€]

where Z is the measurement vector consisting of voltage and active and reactive
power flow measurements, i(x) is the vector function that relates the measure-
ments to the state vector, and v is the noise vector. The mathematical form of these
equations depends on the system model.

The transmission lines are modeled using the positive sequence pi-equivalent
circuit, as presented in Figure 7. The active power flow through the line can be
computed as a function of the state vector x by

Pij(-x) = Viz(gg,' + gxij) - ViVjaij ®

and the reactive flow as

Q;(x) = =V2(b; + by) = V,V; By, (10)
where
a; = g;cos(8; —8;) + b;sin(8, — §;) (11)
and
B = g;jcos(8; — 8;) — b;sin(5; — 5;). 12)

The transformers are modeled similarly, but use only a series admittance, as
presented in Figure 8.

Bus i Vi=gj+bj Bus j
° 1
I — |

Ysij = Gsij + b Ysij = Gsij + Dsij

FIGURE 7. Pi-equivalent transmission line model.
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The active power flow through the transformer can be computed as a function
of the state vector x by

Pij(x) = Vizgij - Vivjaij (13)
and the reactive flow as
Qij(x) = _Vizbij_ V,V;,BU, (14)

where a;; and B;; are defined as in (11) and (12). These are the equations that con-
nect the flow measurements with the unknown state vector. The equations for the
voltage magnitude measurements are simply

Vi(x) =V, s)

where V; is the corresponding voltage magnitude measurement at bus i.

Assuming that the voltage magnitude is measured at every one of the n system
buses, and power flows are measured at every one of the m circuit branches, at both
ends of each branch, the measurement set consists of the following:

* n voltage measurements
e 2m active power flow measurements
e 2m reactive power flow measurements

The total number of measurements is M = n + 4m and the size of the state vector
isN=2n—-1.

After the estimation algorithm has converged and an estimation of the system
voltages and angles is available, an estimation of the measurements can be obtained
through the measurement equations. A comparison of the measurement estimation
and the actual measurements provides the estimation error for each measurement
¢; = z; — Z;. The weighted sum of the squares of these errors, where the weights
are considered to be the inverse of the variance of each measurement, is J(X) =
Ej”i, éjz /a'jz. If the noise of each measurement is normally distributed, then J ()
follows the x? distribution with M — N degrees of freedom. Using the value of
J (%), the confidence level of the estimation can be evaluated. By considering var-
ious test cases with increasing system sizes, it is possible to study the behavior of
the SE bias due to model inaccuracies as the size of the system increases.

The test cases used for the study of the SE errors are based on a rather simple
system configuration. The basic system module used consists of two main load buses.
A constant power and constant impedance load are connected on each bus, and each

bus is connected to a generator through a step-up transformer. The two load buses
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FIGURE 9. Two-bus test system.

are connected through an overhead transmission line. The system contains all of the
basic elements that are typical to a power system. The diagram of the basic two-bus
module is presented in Figure 9.

Based on this configuration, the size of the system is increased by repeating
this module in a radial way and, therefore, increasing the number of buses that exist
on the system. As an example, the four-bus system is shown in Figure 10. Using the
simulation results as a measurement, the SE results are obtained for each system
and the errors are calculated. In this way the SE performance relative to the system
size can be evaluated. The behavior of the errors as the system size increases is also
an indication of the performance of the SE algorithm as the system size increases.

The quantities that are considered system measurements are the voltage mag-
nitudes at each bus and the active and reactive power flows at each network branch.
The flows are measured at both ends of each branch. Three measurement scenarios
are considered:

Scenario 1: The typical single-phase measurement approach, which is com-
monly used and assumes symmetry and balanced loading, is assumed. The volt-
age magnitude of phase A is considered and only the power flows of phase A
are measured and the total line flow is calculated by multiplying this measure-
ment by 3.

Scenario 2: The second measurement scenario is the same as the first one with
the exception that the data from phase B are used as measurements instead of
phase A.

OJFCEOA

@y ey ey %

;g““ g Ep—E gy

FIGURE 10. Four-bus test system.
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Scenario 3: The third scenario assumes again voltage measurements of a single
phase, phase A, but three-phase measurements of active and reactive power
flows. So, the power measurements provided to the SE algorithms are the sum
of the measurements for all three phases.

The purpose of these three cases is to capture the effects of the asymmetries in the
system on the performance of the SE algorithm. In fact the system operates under
balanced loading conditions, but the main source of asymmetry is the transmission
line structure. The type of transmission line pole used is presented in Figure 11.
There is significant asymmetry at the structure and phase A is expected to be dif-
ferently loaded than phases B or C.

The simplest system consists of 2 buses and the rest of them consist of 4, 8, and
16 buses. It should be mentioned that the numbers refer to high-voltage load buses,
which are connected through transmission lines, and the generation buses are not
taken into account. However, this implies that the actual number of buses is double
in each one of the cases; that is, each case contains 4, 8, 16, and 32 buses, respec-
tively. Based on the radial structure of the test networks, if n is the number of buses,
then the number of branches is n — 1, and therefore the total number of measure-
ments is Sn — 4. Since the number of states is 2n — 1, the measurement redundancy
is 3n — 3, and this is also the number of degrees of freedom in each case, and the
redundancy index is r = (5n — 4)/(2n — 1). As the system size increases (i.e., as
n— o0), r—5/2=25.

3.2. Numerical Test Results

The results of the SE algorithm reveal the fact that the estimation errors due to the
model inaccuracies tend to increase as the system size increases. Figure 12 presents

1. 481 &

(=]

1.8 feat

FIGURE 11. Transmission line pole structure.
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FIGURE 12. Maximum absolute errors versus system size for (a) voltage magni-
tude, (b) active power flow, and (c) reactive power flow.
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the maximum absolute errors for voltage magnitude, active power flow, and reac-
tive power flow, respectively.

It should be stated again that since simulation data are used, there are no other
sources of error except for model inaccuracies in each case. So, the increase in the
estimation errors is solely due to the increasing model inaccuracies because of the
system asymmetries as the system size increases. It is therefore projected that if
the system size becomes extremely large, the results of the classical state estimator
will eventually become unreliable and the errors very large. Numerical experiments
for much larger systems are to be carried out to verify these conclusions. The increase
in the error is much greater in the voltage magnitude, rather than in the power mea-
surements, where it seems that the error tends to stabilize. In an actual situation,
where other sources of bias are also present, this will make the SE results impractical.

Although the errors seem to increase in the case of using single-phase power
measurements, this does not seem to be the case in Scenario 3, where the sum of the
flows of all three phases is used as measurement. In this case, the estimation error
is much lower and it remains almost constant as the system size grows.

To further investigate the issue, the confidence level of the estimation is cal-
culated for every case. The results are produced parametrically for various values
of standard deviation o of the measurements. Every measurement is assumed to
follow a Gaussian distribution with the same variance o 2. All the measurements
are assumed to have the same weight.

The confidence level of the estimation for various system sizes is presented in
Figure 13 for the measurement data of Scenario 1. The plot is parametric for vari-
ous values of the standard deviation.

Based on the plot, it can be concluded that for values of o lower than 0.02, the
confidence level of the estimation is low and decreases very rapidly as the system
size increases, and the estimation becomes unreliable. However, for values of o
greater than 0.02, the confidence of the estimation is very high and increases with
the system size, approaching 1.00. This can be explained based on the chi-square
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FIGURE 13. Confidence level of estimation versus system size for different values
of the standard deviation for scenario 1.
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FiGURE 14. Confidence level of estimation versus system size for different values
of the standard deviation for scenario 3.

distribution used to calculate the values of the confidence level. More specifically,
the value of the objective function J(X) = _?il é7 /o increases with the system
size, but as explained previously, the measurement redundancy, which is equal to
the degrees of freedom, also increases linearly with the system size. So, as the sys-
tem grows, the redundancy of measurements also increases and this provides a bet-
ter confidence level of the estimation. However, since the redundancy index tends
to stabilize quickly as n increases, this behavior may not continue to be the same for
extremely large systems and the confidence level may start to deteriorate for a very
large number of buses.

The confidence levels for Scenario 3, for the same values of measurement vari-
ance, are presented in Figure 14. The behavior in this case is similar; however, the
confidence level is much higher for the same values of o than in the previous case.
This indicates that using the measurements from all three phases for the power flows,
a high confidence level of estimation can be achieved for lower values of measure-
ment variance, which may be as low as approximately 0.006, whereas in the single-
phase measurements case, the best that could be achieved was a standard deviation
of approximately 0.02.

4. EFFECT OF BIAS ERROR ON BAD DATA DETECTION

The value of the SE is its promise to detect and identify bad data. This ability is best
when the system model is not biased. In the presence of model bias, the ability to
detect and identify bad data is compromised. Again, on a theoretical or practical
basis, we know very little on the subject; that is, how the performance of the bad
data detection and identification will be affected in megasystems.

5. EFFECT OF TIME SCEWNESS ON SE ACCURACY

The traditional SE is based on measurements that do not need to be fully synchro-
nized. Specifically, it relies on the measurement of quantities that are constant under
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the assumption of steady state operation [i.e., V (magnitude), P, and Q]. In practice,
each measurement is taken from others and at different times (within a short time
interval) and transmitted to a central location. Thus, the measurements (data) are
not all taken at the same time. Since the system is always in transition, there will be
a discrepancy between the system model and the collected data resulting from the
time skewness of the data. It is very difficult to quantify this discrepancy, which is
dependent on the system and on how fast the system transits from one operating
condition to another. This issue can be resolved with present technology (GPS) that
provides practically absolute time (precision better than 1 um).

6. EFFECT OF SYSTEM SIZE ON COMPUTATIONAL EFFORT

The traditional SE problem is based on a quasi-Newton algorithm. The direction of
the Newton method is computed by inverting a matrix with size equal to the num-
ber of states. Sparsity techniques provide efficient algorithms for the solution and
update for the state variables at each iteration. Numerical experiments for medium-
size power systems indicate that the computational effort depends on the system
topology and are proportional to a factor of nexp(a), where n is the number of
states and a is an exponent that is system dependent. If we assume that the exponent
is approximately 1.7, then one can project the computational effort for megasys-
tems, assuming that the observations for medium-size systems are valid for mega-
systems as well. The fear is that for megasystems, the sparsity properties of the
equations may deteriorate (number of fill-ins may increase disportionately with sys-
tem size). The last issue not withstanding, a 10-fold increase in system size will
result in a 50-fold increase in computational effort. Another issue that we do not
have data for is the number of iterations that the SE will need for convergence, in
the case of megasystems. All of this points to the need for proper numerical exper-
iments that will provide information for this topic.

The above discussion assumes that we simply apply the traditional SE to the
megasystems. There are alternative approaches while we maintain the traditional
SE formulation. For example, the system may be partitioned and diakoptical tech-
niques could be applied for the solution. Computational issues and convergence
issues will remain the same, but this approach will allow scheduling of the compu-
tations on a distributed computer system.

7. PROPOSED DIRECTIONS TO MEET THE CHALLENGE

To alleviate the sources of error, new measurement systems and estimation meth-
ods are needed. For example, the first assumption (stated in Section 1) can be met
by utilizing synchronized measurements [13]. Synchronization is achieved via a
GPS, which provides the synchronizing signal an accuracy of 1 us. Assumption 2
can be met by utilizing three-phase measurements. Finally, assumption 3 can be
met by employing full three-phase models.

As shown from the numerical examples, even by simply using three-phase mea-
surements of the power flows, the improvement in the estimation quality is sub-
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stantial, even though the model remained the same and only the measurement set
was improved using data from all three phases. Therefore, it is expected that if, in
addition to three-phase measurement sets, synchronized measurements and three-
phase models are used, the performance of the SE algorithm will be very sufficient
and reliable even for extremely large systems.

The SE based on the previous assumptions is not subject to the usual biases of
the traditional state estimation. The SE can be formulated as a linear SE problem
that has a direct solution. This takes care of the uncertainty of how many iterations
will be needed for convergence in case of megasystems. It is expected that this
system, because of lack of biases, will have better bad data detection and identifi-
cation. It is important, however, to add that the proposed system will need a new
infrastructure that presently is not there. It is recognized that the industry is moving
toward the sensorless technology, at least in new substations. The step to take from
sensorless technology to synchronized measurements is economically very short.
Thus, we believe that it may happen in the near future.

7. CONCLUSION

The conventional SE has inherent biases resulting from biases in the measurements
and biases in the power system model (imbalance and asymmetry of component
models). We presented equations for quantifying the biases in the conventional SE
and have discussed the effects of these biases on the SE as the size of the system
increases. Many questions remain unanswered regarding the applicability of the
traditional SE to megasystems. We argue that appropriately designed numerical
experiments will provide insight into these problems.
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