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Common modal decomposition techniques for flow-field analysis, data-driven modelling
and flow control, such as proper orthogonal decomposition and dynamic mode
decomposition, are usually performed in an Eulerian (fixed) frame of reference with
snapshots from measurements or evolution equations. The Eulerian description poses
some difficulties, however, when the domain or the mesh deforms with time as, for
example, in fluid–structure interactions. For such cases, we first formulate a Lagrangian
modal analysis (LMA) ansatz by a posteriori transforming the Eulerian flow fields
into Lagrangian flow maps through an orientation and measure-preserving domain
diffeomorphism. The development is then verified for Lagrangian variants of proper
orthogonal decomposition and dynamic mode decomposition using direct numerical
simulations of two canonical flow configurations at Mach 0.5, i.e. the lid-driven cavity
and flow past a cylinder, representing internal and external flows, respectively, at pre-
and post-bifurcation Reynolds numbers. The LMA is demonstrated for several situations
encompassing unsteady flow without and with boundary and mesh deformation as well
as non-uniform base flows that are steady in Eulerian but not in Lagrangian frames.
We show that application of LMA to steady non-uniform base flow yields insights into
flow stability and post-bifurcation dynamics. LMA naturally leads to Lagrangian coherent
flow structures and connections with finite-time Lyapunov exponents. We examine the
mathematical link between finite-time Lyapunov exponents and LMA by considering a
double-gyre flow pattern. Dynamically important flow features in the Lagrangian sense
are recovered by performing LMA with forward and backward (adjoint) time procedures.
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1. Introduction

Flow fields of interest contain a broad range of coherent flow structures undergoing
nonlinear interactions. Recent advances in computational and experimental techniques
have generated high-fidelity representations of these dynamics in the form of enormous
databases. The extraction of knowledge from such high-dimensional fields is greatly
facilitated by modal decomposition, which is playing an increasingly crucial role in
discerning the relevant kinematic and dynamic flow features. Modal decomposition
describes the spatiotemporally varying flow field in terms of spatially correlated, or
coherent, flow features ordered by some property such as energy content or growth rate,
together with their temporal variation.

Some of the commonly used modal decomposition techniques have been recently
reviewed by Rowley & Dawson (2017) and Taira et al. (2017, 2020). Among these,
the most popular are proper orthogonal decomposition (POD) and dynamic mode
decomposition (DMD). In these, data from high-fidelity numerical or experimental efforts
are a posteriori processed to extract a set of (in POD) energetically ranked orthogonal
modes (Kosambi 1943; Karhunen 1946; Loeve 1948) or (in DMD) dynamically significant
modes (Rowley et al. 2009; Schmid, Meyer & Pust 2009; Schmid 2010), each with
associated temporal dynamics. Other ways of assessing these modes include their energies
and growth/decay rates. POD is optimal among all decompositions in terms of the
maximization of energy for a given number of modes (Berkooz, Holmes & Lumley 1993).
The corresponding temporal coefficients are closely linked to the spatial modes, resulting
in a bi-orthogonal decomposition (Aubry, Guyonnet & Lima 1991; Shinde 2020). DMD,
on the other hand, provides modes that are associated with unique frequencies and growth
or decay rates. It is based on Koopman theory (Koopman 1931), whose connection to
aspects of the Koopman operator/modes has been developed in Mezić (2005, 2013) and
to DMD modes as illustrated in Rowley et al. (2009). Although both POD and DMD are
linear procedures, the underlying dynamics of the system that generated the flow fields
may be nonlinear.

Most decomposition techniques are formulated and applied in the Eulerian (fixed) frame
of reference, which complicates their application in deforming or moving domains. An
example is the problem of fluid–structure interactions where structural response causes
boundary shape changes with corresponding mesh deformation. This difficulty has been
recognized in the literature as, for instance, by Mohan, Gaitonde & Visbal (2016) and
Menon & Mittal (2020), who performed DMD of pitching/plunging airfoils. One solution
is to simplify the application by restricting attention to a part of the domain, as in Schmid
(2010), Goza & Colonius (2018) and Shinde et al. (2019b), who used POD and DMD
for fluid–structure interactions. A method that factors mesh deformation is presented by
Shinde et al. (2019a), who obtained POD modes on deforming mesh solutions in the
context of reduced-order modelling of vortex-induced vibration and supersonic flutter.
Nevertheless, a formal mathematical framework for modal decomposition on deforming
and moving domains applicable to fluid flow analysis remains a pressing need. To address
this gap, we develop a Lagrangian modal analysis (LMA) approach that eases application
of modal decomposition techniques to flows involving domain deformation, by recasting
the analysis in a suitably selected moving reference frame. The formulation is couched in
general terms, though, for concreteness, we consider both Lagrangian proper orthogonal
decomposition (LPOD) as well as Lagrangian dynamic mode decomposition (LDMD).

An important practical difference between the Eulerian and Lagrangian descriptions
lies in the number of variables required to represent the flow (Price 2006). For example,
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a steady non-uniform flow in the Eulerian (fixed-point) representation is time-dependent
in the Lagrangian formulation. The difference between the reference frames manifests
in the definition of acceleration and is related to spatial velocity gradients in the flow.
Thus, the Eulerian (local) acceleration for a steady non-uniform flow is zero, whereas
the Lagrangian (convective) acceleration remains non-zero. In the present work, we
exploit this Lagrangian time dependence of steady non-uniform flows, to pose modal
decompositions in the Lagrangian frame of reference. The significance of Lagrangian
modal analysis of an otherwise steady (Eulerian) base flow is also discussed from the
standpoint of flow stability.

A natural question arises on the connection between LMA and Lagrangian techniques
employed in chaos and mixing studies. In particular, Lyapunov exponents are commonly
used to quantify the divergence or stretching of a filament in time, and are related to
specific stretching rates and mixing efficiencies (Ottino 1989). The relatively popular
finite-time Lyapunov exponent (FTLE) technique invokes a Lagrangian frame of reference
and has been employed for a variety of assessments (Haller & Yuan 2000; Shadden,
Lekien & Marsden 2005; Peacock & Dabiri 2010; Mancho et al. 2013; Samelson
2013; Haller 2015; Nelson & Jacobs 2015; González et al. 2016). The largest such
exponent identifies high-strain regions exhibiting stable/unstable manifolds or hyperbolic
trajectories (Balasuriya, Kalampattel & Ouellette 2016). The present LMA aims to
decompose the stretching of the flow fabric into coherent modes pertaining to the specific
modal decomposition technique (in our case, POD or DMD). Thus, the largest FTLE,
which represents the largest eigenvalue of the right Cauchy–Green strain tensor, is
analogous to the first Lagrangian POD mode. We establish this correspondence in general
terms through a mathematical relation between the FTLE and Lagrangian modal analysis
ansatz.

To demonstrate LPOD and LDMD, we consider two canonical flow configurations,
namely, a lid-driven cavity and flow past a cylinder, representing, respectively, an internal
and an external flow. Direct numerical simulations (DNS) are performed for each in the
Eulerian frame of reference at M∞ = 0.5 by solving the compressible Navier–Stokes
equations. A range of Reynolds numbers is considered for each to encompass steady
(pre-critical) and unsteady (post-critical) regimes. For the lid-driven cavity, the first
Hopf bifurcation occurs at ReL ≈ 10 500, where ReL is the Reynolds numbers based on
the cavity length. Thus the range chosen is 5000 ≤ ReL ≤ 15 000. A suitable surrogate
representing key properties of fluid–structure interactions is constructed by subjecting the
lid-driven cavity to a forced-domain deformation. The flow past a cylinder considers the
Reynolds number (based on the cylinder diameter, D) range between 20 ≤ ReD ≤ 100,
encompassing the first Hopf bifurcation at Rec ≈ 50. A simple analytical model of the
double-gyre flow pattern is used to examine the mathematical link derived between the
FTLE and the LPOD and LDMD modes.

The article is organized as follows. Next, § 2 presents the theoretical framework for the
LMA, which includes (i) transformation of the Eulerian flow fields to the Lagrangian
flow fields, (ii) formulation of the LPOD and LDMD, and (iii) the derivation of the
mathematical link between the FTLE and LMA. The details of the numerical methodology
and case studies are provided in § 3. The results and discussion section (§ 4) presents the
application of LMA to the different flow types, namely, unsteady flow, flow with mesh
deformation, Eulerian steady but Lagrangian unsteady flow, and the double-gyre case
study elucidating the relation with FTLE. Lastly, we provide some concluding remarks
in § 5.
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2. Theory

The Lagrangian (moving) and Eulerian (fixed) descriptions of fluid flow are necessarily
equivalent in terms of the dynamics. Although the Lagrangian perspective offers some
mathematical and conceptual advantages, the lack of direct access to spatial velocity
gradients poses difficulties for the solution of Navier–Stokes equations (Batchelor 2000).
The Eulerian perspective is more convenient, such as, for example, in the comparison with
fixed-point measurements obtained from experiment, and is thus commonly employed for
flow simulations. In the same vein, modal decomposition techniques such as POD and
DMD have been developed for the Eulerian description. In the present work, we retain
the Eulerian approach to simulate the flow, but the data are then recast into a suitable
Lagrangian frame that is more convenient for the application of modal analysis techniques,
even when the domain is deforming.

2.1. Eulerian to Lagrangian transformation
Consider a real Euclidean vector space E of dimension d, with the inner product 〈x, x〉 > 0
for non-zero x, and real norm ‖x‖ = √〈x, x〉. Here, for convenience, we consider E as a
d-dimensional point space with a coordinate system and a frame of reference, on which the
Euclidean space with Rd=3 can be realized by considering an orthonormal basis. A flow
in a suitable closed domain D ⊆ E = R3 may be represented in terms of a vector field u
through the mapping (the mathematical terminology on the Eulerian and Lagrangian flow
descriptions, to some degree, follows Talpaert (2002))

u : D × [0, T ] → R
3 : (x, t) �→ u(x, t) with x ∈ D, (2.1)

where t is an instant from the total time T ⊂ R. In the Eulerian description, all physical
quantities (scalar, vector or tensor) are expressed at each instant and at every fixed spatial
location with respect to the frame of reference. Thus, the fixed spatial coordinates xi of
vector x and time t constitute the Eulerian coordinates with respect to a fixed (Eulerian)
frame of reference of E. The Eulerian description refers to flow fields at an instant t
mapping on another time t + dt, where dt is the time differential.

The Lagrangian description of the flow, on the other hand, identifies a flow state at
an instant with respect to a time-dependent frame of reference. The flow field, U , over a
closed domain D ⊆ E = R3 and time interval [0, T ] ⊂ R may be mapped as

U : D × [0, T ] → R
3 : (χ , τ ) �→ U(χ , τ ) with χ ∈ D, τ ∈ [0, T ]. (2.2)

The flow evolves from a reference state and maps on a deformed geometrical configuration.
Thus, an initial reference configurationΩ0 ∈ D at τ = τ0 and a current configurationΩ ∈
SDiff(D) at τ may be defined, where SDiff(D) is an orientation and measure-preserving
diffeomorphism of D. Mathematically, the flow map can be expressed as

M : D × [0, T ] → SDiff(D) ⊆ E = R3 : (χ , τ ) �→ M(χ , τ ) = (x, t)
and M(χ0, τ0) = identity map.

}
(2.3a,b)

The triple components χi of vector χ and time τ comprise the Lagrangian coordinates,
which can be explicitly expressed using the Eulerian frame of reference as

(xi, t) = Mi(χ , τ ) = Mi(χ1, χ2, χ3, τ ). (2.4)

The Lagrangian flow mapping from an initial configuration Ω0 to a current
configuration Ω must meet the regularity conditions of the transformation, mainly that it
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be injective and M be a bijection. The inverse M−1 exists due to the regularity conditions,
and, by considering the existence of the inverse at any instant τ , we can state

(χ , τ ) = M−1(x, t) ⇐⇒ (x, t) = M(χ , τ ). (2.5)

Consequently, the Jacobian matrix J = ∂(χ , τ )/∂(x, t) is invertible, which plays an
important role in the domain deformations. The vector fields of the Lagrangian and
Eulerian frames of reference are related as

U(χ , τ ) = u(M(χ , τ )) ⇐⇒ u(x, t) = U(M−1(x, t)), (2.6)

which also applies to each physical quantity of the flow.
The total or material derivative of a quantity, e.g. flow velocity vector, in the Lagrangian

frame of reference is simply its partial derivative with respect to time τ , written as

DU
Dτ

= ∂U
∂τ

∣∣∣∣
χ

. (2.7)

On the other hand, the Eulerian frame of reference accounts for the local and convective
rates of change of a quantity. The total derivative from (2.6) is then

Du
Dt

= ∂u
∂t

∣∣∣∣
x
+ ∂u
∂x

· ∂x
∂t

∣∣∣∣
χ

(2.8)

= ∂u
∂t︸︷︷︸

local rate of range

+ (uχ · ∇)u︸ ︷︷ ︸
convective rate of change

. (2.9)

The Eulerian convective flow velocity uχ is the mapping of the vector field from the fixed
spatial coordinates x to x + dx, where dx is the differential of space. The flow velocity
vector fields can be expressed in terms of the total derivative of the space vector fields in
the Eulerian and Lagrangian approaches, respectively, as

u(x, t) = Dx
Dt︸ ︷︷ ︸

Eulerian

and U(χ , τ ) = ∂χ

∂τ

∣∣∣∣
χ︸ ︷︷ ︸

Lagrangian

. (2.10a,b)

Note that the velocity field in the Lagrangian frame of reference is always a function of
time for a non-uniform flow.

2.2. Lagrangian proper orthogonal decomposition (LPOD)
The POD method is based on forming a two-point correlation tensor leading to an
eigenvalue problem (Lumley 1967). The procedure yields an expansion in terms of
orthogonal real basis functions or modes, which are coherent flow structures with
associated modal energies. The technique may be applied in the space or spectral domains
(Lumley 1967; Moin & Moser 1989; Citriniti & George 2000; Towne, Schmidt & Colonius
2018), each with its own advantages. Various mathematical properties of POD, such as
the optimal modal energy representation and spatiotemporal modal dynamics (Lumley
1970; Aubry 1991; Aubry et al. 1991), are instrumental in the popularity of the technique.
The most popular method is that of Sirovich (1987), which uses snapshots gathered from
successive flow instants to form an equivalent two-point correlation tensor, adhering to the
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conventional Eulerian frame of reference. Here we will consider the equivalent Lagrangian
approach; for concreteness, we develop the spatial form of POD, with the understanding
that the correspondence to the spectral form is straightforward.

Let us consider a real matrix X ∈ Rm×n that comprises Lagrangian flow fields in discrete
form, where m and n are the space and time dimensions, respectively. The Lagrangian
flow-field matrix X can be redefined accounting for the weight tensor as Y = wTX ∈ Rm×n.
For a given Lagrangian flow field, the objective of POD is to distil out functions Φ l ∈ Rm,
such that

λl = arg max

{
ΦT

l YYTΦ l

ΦT
l Φ l

}
. (2.11)

The LPOD spatial modes Φ l are the eigenfunctions of the eigenvalue problem,

YYTΦ l = λlΦ l, (2.12)

where the matrix YYT is symmetric positive semidefinite, ensuring a set of orthonormal
eigenvectors and corresponding eigenvalues: {Φ l, λl}l∈{1,...,m} ordered as λl ≥ λl+1 ≥ 0.
The matrix of these eigenvectors Φ ∈ Rm×m with ΦTΦ = I forms a complete orthonormal
basis of Rm. Here I ∈ Rm×m is an identity matrix. The Lagrangian flow fields can be
expressed as

X = ΦΛ1/2Ψ T, (2.13)

where Λ = diag{λ1, . . . , λm} and Ψ ∈ Rn×m are the LPOD temporal coefficients which
are associated with the LPOD spatial modes Φ. The LPOD time coefficient can be
obtained as

Ψ = YTw−1ΦΛ−1/2. (2.14)

The LPOD temporal coefficients matrix is also orthonormal, i.e. Ψ TΨ = I, forming
another set of basis functions. Thus, the eigenvalue problem of (2.12) can be alternatively
stated as

YTYΨ = Ψ Λ̃ with Φ = w−TYΨ Λ̃−1/2 = XΨ Λ̃−1/2, (2.15)

where Λ̃ = diag{λ1, . . . , λn}. Typically, the LPOD procedure via (2.15) is much more
efficient compared to (2.12) due to the fewer degrees of freedom that arise in the time
discretization as opposed to the spatial discretization, i.e. n � m, which is the key aspect
underlying the method of snapshots (Sirovich 1987).

2.3. Lagrangian dynamic mode decomposition (LDMD)
The popularity of DMD has grown recently as a complementary approach to POD.
DMD extracts coherent features based on the Koopman operator and may be applied to
snapshots, which usually represent progress in time, though spatially evolving features
can also be extracted if desired (Rowley et al. 2009; Schmid 2010). When the snapshots
represent time progression, the DMD modes represent spatially coherent structures
evolving in time with unique frequencies and growth/decay rates. For a linearized flow
about a steady state (in Eulerian frame of reference), the DMD modes are equivalent to
global stability modes (Schmid 2010). As noted earlier, the Lagrangian formulation is
inherently unsteady for non-uniform flows; thus the Lagrangian DMD may be performed
directly on a (non-uniform Eulerian) steady base flow, leading to modal information
pertinent to the stability of the base flow.
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Typically, DMD derives a mapping between suitably constructed sequences of
flow states. It then solves for the basis functions (eigenvectors) of a reduced-order
representation of the mapping. The equivalent in a Lagrangian frame of reference may
be developed as follows. We consider X and Y as tensors whose elements are the
Lagrangian flow fields, e.g. the velocity vector U(χ , τ ), where time τ ∈ [0, T ], such
that τ = {τ1, τ2, . . . , τn} for X and τ = {τ2, τ3, . . . , τn+1} for Y. Similarly, the Lagrangian
space coordinate vector χ is considered to be discrete of size m, thus X,Y ∈ Rm×n. The
aim of the DMD procedure is to find A ∈ Rm×m such that

AX = Y or A = YX+, (2.16)

where X+ is the Moore–Penrose pseudoinverse of X. As in the traditional Eulerian
approach, in practice m � n, which complicates the use of (2.16). A low-order
representation of A is sought through the compact singular value decomposition of X:

X = UΣVT. (2.17)

This leads to an approximate representation of A as

Ã = UTAU = UTYVΣ−1 ∈ R
n×n, (2.18)

where U ∈ Rm×n and V ∈ Rn×n are orthogonal matrices, while Σ is a diagonal matrix
of size n × n with non-zero real singular values. Lastly, the Lagrangian DMD modes,
φl ∈ Cm, are obtained by

φl = Uvl, (2.19)

where the lth eigenvector vl ∈ Cn is a solution of the eigenvalue problem

Ãvl = κlvl, (2.20)

with the corresponding eigenvalue κl ∈ C. The growth rate and angular frequency of
the LDMD mode are ln |κl|/δτ and arg(κl)/δτ , respectively, where δτ is the Lagrangian
uniform time discretization.

The LDMD formulation naturally connects to the Lagrangian flow map, which
may comprise fixed points, periodic orbits, stable and unstable manifolds, and chaotic
attractors (Ottino 1989; Shadden et al. 2005; Wiggins 2005; Lekien, Shadden & Marsden
2007; Haller 2015). Indeed, the LDMD matrix Ã, which is an approximation for A,
seeks properties of the Lagrangian flow map M(χ , τ ) (of (2.3a,b)) in terms of the
Lagrangian flow fields X (see figure 1). These properties include eigenvalues, eigenvectors,
energy amplification and resonance behaviour (Schmid 2010), which reveal the dynamic
characteristics of the process that is governing the flow map. The Lagrangian flow fields
at any time instant τ can be expressed as

Xτ = φ exp(κτ)a with a = φ+Xτ1 . (2.21)

Here φ = {φl}l∈{1,...,n} ∈ Cm×n is a complex set of LDMD modes, while κ =
diag{κ1, . . . , κn} are the eigenvalues (also Ritz values). The initial conditions a ∈ Cn are
obtained by means of the pseudoinverse φ+ and the identity map Xτ1 = M(χ0, τ0).
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0

τ1

X1

τ2

X2

τn

Xn

ΩΩ0

T

XM

U(X0)U(X0)

X0

Figure 1. Schematic representation of a fluid element in the Lagrangian frame of reference, where the
deforming flow trajectories lead to Lyapunov exponents and a data matrix for LMA over a finite time.

2.4. Lyapunov exponents and Lagrangian modal analysis ansatz
The Lagrangian flow map M(χ, τ ) of (2.3a,b) represents a dynamical system, evolving
from an initial state, i.e. from the identity map M(χ0, τ0). Lyapunov exponents
characterize the rate of separation between two points on the manifold SDiff(D), with
divergence between the points being constrained to the linear approximation; in addition,
the Lyapunov exponent spectrum is analogous to the eigenvalue spectrum of the linearized
stability equations at steady state (Goldhirsch, Sulem & Orszag 1987; Vastano & Moser
1991). For a d-dimensional state space, there are d number of Lyapunov exponents;
however, among these, the largest is significant in determining the system behaviour. If
δχ0 and δχ τ are the separations between any two points at an initial time τ0 and a later
time τ , respectively, then the maximum Lyapunov exponent is given by

λLE = lim
τ→∞ lim

|δχ0|→0

1
τ

ln
|δχ τ |
|δχ0|

, (2.22)

where the limits τ → ∞ and |δχ0| → 0 ensure time asymptotic and linear considerations,
respectively. The Lyapunov exponents provide insights into a vector space that is tangent
to the state space. The Jacobian matrix J governs the evolution of the small separation
δχ0 as

δχ τ = exp
(∫ τ

0
J (τ ′) dτ ′

)
δχ0. (2.23)

A matrix X , defined as (Oseledets 1968)

X = lim
τ→∞

1
τ

ln
√
δχ τ δχ

T
τ , (2.24)

provides the Lyapunov exponent spectrum in terms of its eigenvalues, giving the average
exponential growth rates of the separation at time τ . Furthermore, in the time limit
τ → ∞, the Lyapunov spectrum offers a global measure of the strange attractor of the
dynamical system (Yoden & Nomura 1993).

Alternatively, Lyapunov exponents may be estimated locally (in the limit τ → 0) or
for a finite time (for τ ∈ [0, T ]) in order to investigate the local dynamics of the system
(Goldhirsch et al. 1987; Thiffeault & Boozer 2001; Nolan, Serra & Ross 2020). The FTLEs
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for τ ∈ [0, T ] are estimated as

λLE
d = 1

T ln
√
λd(C), (2.25)

where λd(C) denotes the dth eigenvalue of the right Cauchy–Green strain tensor,

C = J TJ = ∇MT∇M. (2.26)

The maximum Lyapunov exponent is expressed in terms of the maximum eigenvalue of C
as

λLE = 1
T ln
√
λmax(C). (2.27)

Here, λmax(C) identifies flow regions with high shear, which are further illuminated by the
maximum FTLE field due to the logarithmic definition (Haller 2002).

To establish the relation between the Lyapunov exponents and LMA, we express the
Lagrangian velocity of (2.10a,b) as

U(χ , τ ) = ∂M(χ , τ )

∂τ
= ∂M(χ, τ )

∂χ0

∂χ0

∂τ
= ∇MU(χ0, τ ). (2.28)

Reconsider the real matrix X ∈ Rm×n utilized in the formulation of LPOD and LDMD.
Here X comprises the Lagrangian flow fields of the absolute velocity ‖U(χ , τ )‖. For a
time instant τ with n = 1, we can write

diag{XXT} = ‖U(χ , τ )‖2 = UT(χ , τ )U(χ , τ ) (2.29)

= UT(χ0, τ ){∇MT∇M}U(χ0, τ ) (2.30)

= UT(χ0, τ )C U(χ0, τ ), (2.31)

where C ∈ Rd×d is the right Cauchy–Green strain tensor of (2.26). The alignment between
U(χ0, τ ) and the eigenvectors of C manifests in the value of diag{XXT}. For a finite time
τ ∈ [0, T ], we can rewrite (2.31) as

diag{(XXT)d} = ‖Ud(χ0, τ )‖2λd(C) (2.32)

= ‖Ud(χ0, τ )‖2 exp(2T λLE
d ). (2.33)

The (maximum) FTLE relates to the maximum of diag{(XXT)d} for a specific argument d,
which corresponds to the alignment of U(χ0, τ ) and the eigenvector of C with the largest
eigenvalue λmax(C), as

λLE = 1
T ln

√
diag
{

max
d

{(XXT)d}
}
. (2.34)

The FTLE field represents the local maxima of

diag
{

max
d

{(XXT)d}
}

= diag
{

max
d

{(ΦΛΦT)d}
}

(2.35)

= diag

{
max

d

{( m∑
l=1

Φ lλlΦ
T
l

)
d

}}
, (2.36)

whereas LPOD provides the global eigenfunctions Φ l and associated energies ordered
as λl ≥ λl+1 ≥ 0. In addition to the real symmetry and positive semidefiniteness, the
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autocorrelation tensor XXT is also diagonally dominant, which is a consequence of
the rearrangement inequality (Hardy, Littlewood & Pólya 1952, chap. X). Thus, the
maximum Lyapunov exponent field closely relates to the first eigenmode (LPOD mode
with maximum λl) of the autocorrelation tensor of the velocity magnitude.

A key feature of the FTLE field is that it is objective, i.e. independent of the observer’s
frame of reference. This is due to the functional dependence of Lyapunov exponents on
the invariants of the right Cauchy–Green strain tensor, which satisfy the principle of
material frame independence (Truesdell & Noll 2004). In general, the objectivity in terms
of Euclidean measures is ensured for an observer transformation from (χ , τ ) to (χ∗, τ ∗)
as

χ∗ = Qχ + c, τ ∗ = τ + b, (2.37a,b)

where b is an arbitrary constant, c is a time-dependent vector and Q is a time-dependent
proper orthogonal tensor. The scalar, vector and tensor fields are objective if, respectively,

β∗ =β, b∗ = Qb and B∗ = QBQT. (2.38a–c)

Let us now consider the orthonormal basis Φ = {Φ l}l∈{1,...,m}, and a second
orthonormal basis Φ∗ = {QΦ l}l∈{1,...,m}. For a frame-independent vector b in the basis
Φ, an equivalent b∗ in the basis Φ∗ is

b∗
l = b∗TQΦ l = bTQTQΦ l = bTΦ l = bl, (2.39)

i.e. the components of b∗ in basis Φ∗ and b in basis Φ are identical. Similarly, an objective
tensor B in the basis Φ can be expressed as Bkl = ΦT

k BΦ l, while the components of a
second tensor B∗ in the basis Φ∗ are

B∗
kl = (QΦk)

TB∗(QΦ l) = ΦT
k QTQBQTQΦ l = ΦT

k BΦ l = Bkl, (2.40)

leading to exactly the same tensor. Thus, the objectivity of the flow fields, including scalar,
vector and tensor fields, is preserved under LMA, ensuring the principle of material frame
independence.

The FTLE and Lagrangian DMD relate through the well-documented connections
between the POD and DMD in the literature (Schmid et al. 2009; Schmid 2010). As noted
before, the POD optimally extracts the most energetic coherent flow structures, whereas
the DMD focuses on the coherent structures with unique frequency and growth/decay
rate. In the LMA ansatz, the dominant LPOD modes are the coherent flow structures
that comprise maximum stretching of the flow fields, while the LDMD modes are the
coherent flow structures that evolve at unique frequencies. The relation between the
FTLE and Lagrangian POD/DMD modes is illustrated in § 4.4 by considering the simple
mathematical model comprising the double-gyre pattern.

3. Numerical methods and case studies

Two canonical configurations, namely lid-driven cavity and flow past a cylinder, are
considered for the application of the Lagrangian modal analysis. For both configurations,
DNS are performed in two-dimensional compressible but shock-free settings. The
governing flow equations and simulation set-ups are presented in the following
subsections.
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3.1. Flow governing equations and numerical methods
The flow fields are governed by the full compressible Navier–Stokes equations, which are
solved in non-dimensional form using curvilinear coordinates:

∂

∂τ

(
S
J

)
+ ∂F
∂ξ1

+ ∂G
∂ξ2

+ ∂H
∂ξ3

= 1
Re

[
∂F̂
∂ξ1

+ ∂Ĝ
∂ξ2

+ ∂Ĥ
∂ξ3

]
, (3.1)

where S = [ρ, ρu, ρE]T is the conserved solution vector. The flow variables are
non-dimensionalized by their reference (∞) values, except for pressure, which is
normalized by using the reference density and reference velocity. Here, u is the
velocity vector, while ρ and E are the density and internal energy, respectively. The
non-dimensionalized flow variables are defined by

ρ = ρ∗

ρ∗∞
, u = u∗

u∗∞
, p = p∗

ρ∗∞u∗2∞
, T = T∗

T∗∞
, x = x∗

L∗
ref

and t = t∗u∗∞
L∗

ref
,

(3.2a–f )

where L∗
ref is a dimensional reference length and the asterisk denotes a dimensional

quantity. The non-dimensional Reynolds and Mach numbers are then

Re ≡
ρ∗∞u∗∞L∗

ref

μ∗∞
and M∞ ≡ u∗∞√

γ p∗∞/ρ∗∞
. (3.3a,b)

The Jacobian, denoted by J, of the Cartesian-to-curvilinear coordinate transformation
(x, t) → (ξ , τ ) is given by J = ∂(ξ , τ )/∂(x, t). The inviscid and viscous fluxes, for
instance F and F̂ , respectively, are given as

F = 1
J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρU1

ρu1U1 + ∂ξ1

∂x1
p

ρu2U1 + ∂ξ1

∂x2
p

ρu3U1 + ∂ξ1

∂x3
p

(ρE + p)U1 − ∂ξ1

∂t
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F̂ = 1

J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∂ξ1

∂xi
σ1i

∂ξ1

∂xi
σ2i

∂ξ1

∂xi
σ3i

∂ξ1

∂xi
(u jσij −Θi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.4a,b)

where i and j are summation indices. Here, Ui is the contravariant velocity component,
which is expressed by using a summation index j as

Ui = ∂ξi

∂t
+ ∂ξi

∂xj
uj. (3.5)

The internal energy is given by

E = T
γ (γ − 1)M2∞

+ 1
2
‖u‖2, (3.6)

where T , γ and M∞ are the temperature, the ratio of specific heats and the reference
Mach number, respectively. The fluid is assumed to be a perfect gas, with pressure
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p = ρT/γM2∞. The ratio of specific heats for air, γ , is assumed to be 1.4. The components
of the stress tensor and the heat flux vector are given by, respectively,

σij = μ

(
∂ξk

∂xj

∂ui

∂ξk
+ ∂ξk

∂xi

∂uj

∂ξk
− 2

3
∂ξl

∂xk

∂uk

∂ξl
δij

)
(3.7)

and

Θi = − μ/Pr
(γ − 1)M2∞

∂ξj

∂xi

∂T
∂ξj
. (3.8)

The Prandtl number is set to Pr = 0.72. Here,μ denotes the dynamic viscosity of the fluid,
while the bulk viscosity is −2μ/3, assuming the Stokes’ hypothesis. The fluid viscosity
change due to the temperature is modelled using Sutherland’s law, given as

μ = T3/2
(

1 + C1

T + C1

)
, (3.9)

where C1 = 0.37 is the non-dimensionalized Sutherland’s constant.
The second-order implicit time marching scheme of Beam & Warming (1978) is

adopted, with two Newton-like sub-iterations to reduce factorization and explicit boundary
condition application errors. Further details on the time scheme are provided in Visbal
& Gordnier (2004). The spatial derivatives are discretized using a sixth-order compact
finite difference scheme with the central difference, ensuring no dissipation error. An
eighth-order implicit low-pass Padé-type filtering, with αf = 0.4, is used to provide
dissipation at high spatial wavenumbers. Detailed validation studies may be found in
Visbal & Gaitonde (1999), Gaitonde & Visbal (2000) and Visbal & Gaitonde (2002).

3.2. Two-dimensional lid-driven cavity
The first test case considers a compressible two-dimensional lid-driven cavity flow.
The flow inside a lid-driven cavity exhibits relatively complex vortex dynamics with
increasing Reynolds number, including the onset of Hopf bifurcation, making it one of the
classical configurations for flow stability and transition (Ghia, Ghia & Shin 1982; Shen
1991; Ramanan & Homsy 1994). Although three-dimensionality and endwall effects are
significant for the flow physics (Koseff et al. 1983; Sheu & Tsai 2002; Albensoeder &
Kuhlmann 2005; Lopez et al. 2017), high-fidelity two-dimensional numerical simulations
continue to be canonical benchmarks (Bruneau & Saad 2006), in situations such as the
present. For generality, the effects of compressibility are retained by considering a Mach
number of M∞ = 0.5, where the flow stability and dynamics of the lid-driven cavity
have been discussed by Bergamo et al. (2015), Ohmichi & Suzuki (2017) and Ranjan,
Unnikrishnan & Gaitonde (2020). Simulations were performed at Reynolds numbers based
on cavity size L ranging from ReL = 5000 to ReL = 15 000 at intervals of 2000. The
flow remains steady until ReL = 9000 but becomes unsteady at ReL = 11 000, consistent
with the critical Reynolds number Rec = 10 500 at this Mach number Ohmichi & Suzuki
(2017). Details on the geometry and grid convergence are provided in Appendix B. For
concreteness, the Lagrangian modal analysis is discussed for ReL = 7000 (steady) and
ReL = 15 000 (unsteady).

Figure 2(a) displays the steady pre-critical Reynolds number flow at ReL = 7000 in
terms of the absolute flow velocity u and select flow streamlines. Several recirculation
regions are apparent: in addition to the large central feature, three smaller regions are
evident near the top-left, bottom-left and bottom-right corners of the cavity. On the other
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Figure 2. Flow recirculation patterns inside the lid-driven cavity at Mach number M∞ = 0.5 and pre- and
post-critical Reynolds numbers. (a) Steady flow velocity |u| at ReL = 7000 and (b) time-averaged flow velocity
|ū| at ReL = 15 000. Streamlines display the flow recirculation patterns.

hand, at the post-critical Reynolds number of ReL = 15 000, the flow is unsteady. The
pattern of figure 2(b) shows the time-averaged absolute flow velocity ū at ReL = 15 000;
the mean streamlines in this case indicate additional flow recirculation patterns near the
lower corners. Furthermore, the skin-friction coefficient (B3) estimated along the bottom
wall (figure 15b) also indicates the regions of recirculation, corresponding to the flow
pattern of figure 2(b).

3.3. Two-dimensional lid-driven cavity with mesh deformation
To construct a prototypical problem representing a flow with a deforming mesh, the bottom
surface of the cavity is subjected to forced deformation, keeping the other flow conditions
and simulation parameters the same. The deformation is governed by an analytical function
expressed as

χ1 = x1,

χ2(τ ) = a(1 − x2)x2
1(1 − x1)

2 sin(πnx1) sin(2πStf t),

}
(3.10)

where a and n are the deformation amplitude and mode number, respectively. The
non-dimensional frequency of mesh deformation is Stf . The velocity of the mesh
deformation, UG(χ , τ ), is then given as

∂χ1

∂τ
= 0,

∂χ2

∂τ
= a(1 − x2)x2

1(1 − x1)
2 sin(πnx1) cos(2πStf t)2πStf .

⎫⎪⎬⎪⎭ (3.11)

The choice of parameters, a = 0.1, n = 10 and Stf = 1, is based on obtaining a case
that adequately tests the LMA development. The flow velocity in the Lagrangian
(moving-mesh) frame of reference can be given by

U(χ , τ ) = u(M(χ , τ ))− UG(χ , τ ), (3.12)

where M is the mapping of form (2.3a,b). The flow solver accounts for the
Eulerian–Lagrangian effect by enforcing the geometric conservation law (Thomas &
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Figure 3. Lid-driven cavity flow at M∞ = 0.5 and ReL = 15 000 with forced bottom surface/mesh
deformation. (a) Instantaneous flow velocity magnitude with contours on a deformed domain. The inset shows
a closer view of the deformed domain (χ). (b) Skin-friction coefficient on the bottom surface with/without
deformation.

Lombard 1979; Gordnier & Visbal 2002), which governs the spatial volume element under
arbitrary mapping. The deformed computational domain (G3) at an arbitrary instant is
shown in the inset of figure 3(a). In addition, the figure displays the absolute velocity
magnitude, |U(χ , τ )|, on the moving mesh at that instant.

The lid-driven cavity with bottom surface deflection exhibits many of the main flow
features of the baseline (no boundary motion) flow including the large central region
and smaller recirculation regions near the no-slip walls. The domain deformation affects
the motions of these flow features, of course, particularly the smaller recirculation
regions near the bottom wall. In addition to the near-wall undulations on the velocity
contours in figure 3(a), the entire flow is modified to some degree due to the surface
deformation. Figure 3(b) displays the skin-friction coefficient (B3) on the deforming
bottom wall, indicating a discernible increase at χ1 ≈ 0.7. The Lagrangian averaged flow
field, estimated by accounting for the moving mesh, is largely similar to the Eulerian
time-averaged flow field of figure 2(b), where the small differences can be attributed to
the mild domain deformation.

3.4. Two-dimensional flow past a cylinder
The second flow considered is that past a circular cylinder, which is also a classical
problem of engineering significance. The configuration highlights the fluid dynamics
around bluff bodies, and encompasses many fundamental phenomena, including steady
or unsteady separation, transition and wake vortex shedding (Williamson 1996), for all
of which a large body of experimental and numerical data are available for validation.
The problem is also a popular testbed for studies on flow stability, control, fluid–structure
interaction, reduced-order modelling (Shinde et al. 2016, 2019a) and compressibility
effects (Canuto & Taira 2015).
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Figure 4. Compressible flow past a cylinder, in terms of the streamwise velocity u1, at Mach number M∞ =
0.5 and Reynolds numbers ReD = 40 and ReD = 100. (a) Steady flow at ReD = 40. (b) The pressure coefficient
Cp is compared with the DNS profile of Canuto & Taira (2015) (dashed line.) (c) Unsteady instantaneous flow
at ReD = 100. (d) Time-mean flow at ReD = 100.

In this configuration, the flow transitions from steady state to unsteady vortex shedding
in distinct stages. As the Reynolds number based on cylinder diameter D is increased,
the initial unsteadiness is manifested for incompressible flow in 47 � ReD � 178 as
periodic vortex shedding following a supercritical Hopf bifurcation at the critical Reynolds
number (Sreenivasan, Strykowski & Olinger 1987; Noack & Eckelmann 1994). The initial
two-dimensionality of the flow provides a suitable environment on which to demonstrate
LMA. The onset of three-dimensionality at ReD ≈ 178, appears in the form of spanwise
undulations (Behara & Mittal 2010).

Simulations are performed for a range of Reynolds numbers 20 ≤ ReD ≤ 100.
Appendix C provides details on the geometry and grid convergence study. The flow fields
are shown in figure 4 using the normalized streamwise velocity u1 for ReD = 40 and
ReD = 100. As noted earlier, the flow is steady at ReD = 40 (figure 4a). The corresponding
pressure coefficient, defined as

Cp ≡ p − p∞
1
2ρ∞u2∞

, (3.13)

is shown in figure 4(b) together with a favourable comparison with the DNS result of
Canuto & Taira (2015). For ReD = 100, on the other hand, a periodic vortex shedding is
observed in the wake region of the cylinder (figure 4c). The time-averaged flow field for
ReD = 100 is displayed in figure 4(d). The effect of increased Reynolds number is evident
when compared to the ReD = 40 flow field of figure 4(a), particularly in the wake region,
which becomes more compact for ReD = 100.
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4. Results and discussion

The LMA (§ 2) is now applied to unsteady flow, without and with mesh deformation, as
well as steady flow by considering the above lid-driven cavity and cylinder flows. Although
the focus is on LPOD and LDMD, the general procedure is applicable to all variants of
these and similar decomposition approaches. The development is performed in several
steps. The unsteady lid-driven cavity flow at ReL = 15 000 is examined first, followed
by an illustration on dynamic meshes with the deforming bottom surface case. Next, the
techniques are applied to steady flow by considering both lid-driven cavity and cylinder
cases at pre-critical Reynolds numbers of ReL = 7000 and ReD = 40, respectively. For the
latter, the backward LMA, where the traces evolve in reversed time, in the Lagrangian
sense, is also examined. Lastly, the LMA is used for the double-gyre flow pattern to
illustrate the relation with FTLE. In all cases, the modal decompositions are performed
directly on the flow fields, without subtracting the averaged flow field.

4.1. LMA on unsteady flow
As noted in § 3.2, the two-dimensional lid-driven cavity flow undergoes the first Hopf
bifurcation at a critical Reynolds number in the range 9000 � ReL � 11 000, leading to
an unsteady flow. At ReL = 15 000, the flow undergoes successive Hopf bifurcations,
exhibiting multiple frequency peaks in the power spectral density (PSD) of the flow
variables. In particular, the PSD of the integrated streamwise force (Fx1) on the cavity
exhibits three prominent frequency peaks at Strouhal numbers StL = 0.13, 0.24 and 0.37.
The analysis is performed using 2500 solution snapshots, collected at time intervals of
0.01, after the initial flow transients have disappeared from the simulation. The Eulerian
results from the DNS are cast in a Lagrangian frame of reference, ensuring that the
time resolution is sufficient to capture phenomena with Strouhal number in the range
0.04 ≤ StL ≤ 25.

The modal decompositions provide insights into flow organization inside the cavity,
which includes a primary vortex, shear regions along cavity walls and a Couette
flow region near the cavity centre. These features are evident in figure 5, which
displays traditional (Eulerian) POD and DMD modes using the streamwise velocity field
components. The POD modes (figure 5a) are the energy-dominant flow features; the
leading few modes, when ordered by energy content, comprise most of the flow energy, as
shown in figure 5(c). The first POD mode is non-oscillatory (not shown) and represents
the time-averaged flow field, whereas the POD modesΦu1

2 (x),Φ
u1
3 (x),Φ

u1
4 (x) andΦu1

5 (x)
highlight the unsteady shear regions of the lid-driven cavity. In contrast, DMD modes
are distilled based on their dynamic response (frequency) and significance, which also
accounts for the normalized magnitude of the mode; furthermore, as noted earlier, the
DMD modes and associated Ritz values are complex. The spatial DMD modes at Strouhal
numbers StL = 0.13, 0.24 and 0.37 are displayed in figure 5(b), while the associated Ritz
values are plotted in figure 5(d).

To perform the modal analysis in the Lagrangian frame of reference, the flow mapping of
(2.3a,b) is used. A pseudocode to compute LPOD modes is provided in Appendix A. The
Eulerian coordinates (x, t) are transformed into the Lagrangian coordinates (χ , τ ), starting
with an identity map M(χ0, τ0), where (χ0, τ0) = (x, t). The set of flow snapshots,
i.e. the Eulerian flow fields u(x, t), along with (2.5) and (2.6) are used to construct
a set of Lagrangian flow fields with respect to the identity map, i.e. simply the first
Eulerian snapshot. An accurate time evolution of the flow map M from a reference state
to a deformed geometric configuration requires higher-order time schemes and/or finer
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Figure 5. Leading POD and DMD modes of the streamwise velocity for the lid-driven cavity at ReL = 15 000
in the Eulerian frame of reference. (a) POD modes Φu1

2 , Φu1
3 , Φu1

4 and Φu1
5 . (b) DMD modes φu1

1 , φu1
2 and φu1

3 .
(c) POD modal energies and (d) DMD eigenvalues corresponding to the spatial modes.

time steps. Alternatively, for a given set of snapshots in the Eulerian frame of reference,
traditional POD can be used to reconstruct a high-time-resolved flow map. For example,
the Eulerian flow fields can be reconstructed by using POD as

u(x, tn) =
Nr∑

m=1

√
λm Φm(x)Ψm(tn) for n = 1, 2, . . . ,Nt. (4.1)

Here Nt is the number of snapshots; and Nr is a reduced number of POD modes used to
reconstruct the flow field u, where Nr ≤ Nt.

The temporal coefficients of (4.1), Ψ (t), can be obtained at a higher time resolution over
the same time duration by performing a simple interpolation procedure, which then leads
to better time resolution for the flow variable as

ũ(x, tn) =
Nr∑

m=1

√
λm Φm(x)Ψ̃m(tn) for n = 1, 2, . . . ,N, (4.2)

where N, with N > Nt, is the new number of snapshots due to the time refinement.
High-resolution reconstructions of the Eulerian flow field ũ(x, t) and (2.3a,b), (2.5) and
(2.6) are used to obtain the Lagrangian flow fields to the required accuracy.
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Figure 6. Leading LPOD and LDMD modes of the streamwise velocity for the lid-driven cavity at
ReL = 15 000 in the Lagrangian frame of reference. The modes are presented using the identity map (reference
grid) χ0(τ0) at time τ = τ0. (a) LPOD modes ΦU1

1 , ΦU1
2 , ΦU1

3 and ΦU1
4 . (b) LDMD modes φU1

1 , φU1
2 and

φ
U1
3 . (c) LPOD modal energies and (d) LDMD eigenvalues, indicating the values corresponding to the spatial

modes.

The corresponding LPOD and LDMD of the unsteady lid-driven cavity are obtained
by using the same set of (2500 Eulerian flow field) snapshots. As discussed above, the
POD temporal coefficients are refined by a factor of 4, resulting in N = 10 000 Eulerian
instances. These are then transformed onto a set of 2500 Lagrangian flow fields in order
to perform LPOD and LDMD, by considering the first snapshot as the identity map. The
prominent LPOD and LDMD modes of the Lagrangian streamwise flow velocity field are
displayed in figures 6(a) and 6(b), whereas the corresponding energy contribution and
frequency content are shown in figures 6(c) and 6(d), respectively. The leading LPOD
modes ΦU1

1 and ΦU1
2 are strikingly similar to, respectively, the real and imaginary parts

of the LDMD mode φU1
1 , which is associated with the Strouhal number of StL = 0.125.

Furthermore, the higher LPOD modes ΦU1
3 and ΦU1

4 as well as the LDMD modes φU1
2 and

φ
U1
3 clearly highlight the shear region of the lid-driven cavity, where the LDMD modes

correspond to unsteadiness at Strouhal numbers of StL = 0.267 and 0.375, respectively.
The Lagrangian modes of figure 6 are characteristically different from the Eulerian

modes of figure 5. The Couette flow and shear flow regions of the lid-driven cavity are
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distinctly exhibited by the Lagrangian modes; on the other hand, the Eulerian modes show
modal shapes concentrated towards the bottom-left walls of the lid-driven cavity, focusing
on the shear regions with a high contribution to the flow unsteadiness. In general, the
decay of LPOD modal energies (figure 6c) for increasing number of modes, which is also
shown in terms of cumulative modal energy, appears higher for the Eulerian set of POD
modes (figure 5c). The LDMD modal patterns (figure 6b) for increasing Strouhal number
are more intelligible compared to the DMD modal patterns of figure 5(b) for increasing
Strouhal number.

The notion of non-uniqueness of the hyperbolic trajectories and Lyapunov exponents
due to the finite time applies to the LMA ansatz as well, in the sense that the set of
LMA coherent structures (e.g. LPOD/LDMD modes) changes with the identity map
and time duration T . However, the uniqueness of the LMA modes can be ensured by
considering a sufficiently long time duration and/or an appropriate flow region, where the
issue naturally relates to the spatiotemporal resolution of the flow. The Ritz eigenvalues
associated with DMD modes provide a measure of flow stationarity/convergence in terms
of the non-growing/non-decaying global modes that lie on the unit circle. For instance,
figure 6(d) displays the Ritz eigenvalues for LDMD modes of the lid-driven cavity at
ReL = 15 000, where, except for few outliers, most of the eigenvalues are along the unit
circle. The corresponding Eulerian DMD eigenvalues of figure 5(d) also lie along the unit
circle with some outliers. However, the eigenvalues are not perfectly on the unit circle,
indicating stable (for inside the circle) and unstable (for outside the circle) tendencies
of the modes. For instance, Chen, Tu & Rowley (2012) and Towne et al. (2018) discuss
the equivalence between DMD and Fourier modes for zero-centred data, which ensure
the zero growth/decay rate of the modes, i.e. the eigenvalues strictly lie on the unit
circle. Nonetheless, LMA employs unaltered flow map data in the context of finite-time
unsteady/transient dynamics, analogous to the finite-time hyperbolic trajectories and
Lyapunov exponents. Notably, the Ritz values for the LDMD modes are well aligned with
the unit circle (e.g. figure 6d), as opposed to the Eulerian counterpart (e.g. figure 5d).

In general, Lagrangian transport, mixing and chaos are studied using finite-time stable
and unstable manifolds of hyperbolic trajectories via measures such as the FTLEs, in order
to identify and monitor the transport and mixing barriers in the flow, which are the material
lines and surfaces on these attracting and repelling manifolds (Branicki & Wiggins 2010;
Haller 2015; Balasuriya et al. 2016). As noted earlier, Lyapunov exponents represent
the growth of small separation between trajectories with time, leading to d number of
exponents for a d-dimensional state space. A positive value of the exponent indicates an
unstable trajectory, where the largest Lyapunov exponent governs the dynamics, albeit
locally (Ottino 1989). On the other hand, the LMA ansatz acts on the entire material
surface (or more generally material volume) for its global dynamics, comprising the locally
stable and unstable manifolds over the considered time duration from the initial flow map.
The spatiotemporal material surface/volume may exhibit linear/nonlinear, steady/unsteady
and/or chaotic dynamics, dictating the transport and mixing process, whose dynamics can
be conveniently examined by means of suitable LMA techniques, e.g. LPOD, LDMD and
their variants.

The link between the FTLE and LMA is formulated in § 2.4, elucidating the equivalence
between the dominant LPOD mode of the velocity magnitude and maximum FTLE.
Figure 7(a) displays the first LPOD mode of the absolute velocity for the flow
past a cylinder at ReD = 100 and M∞ = 0.5 (see § 3.4 and Appendix C), where the
regions of high/low modal amplitudes are also delineated in terms of selected contours.
This LMA analysis is performed over time τ ∈ [0, T = 5], utilizing n = 500 material
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Figure 7. Leading LPOD and LDMD modes of the absolute velocity and temperature for flow past a cylinder
at ReD = 100 and M∞ = 0.5. The modes are displayed on the identity map (reference grid) χ0(τ0) at time
τ = τ0. (a) First LPOD mode Φ |U |

1 and (b) second LPOD mode Φ |U |
2 of the absolute velocity. (c) Real part of

LDMD mode Re(φ|U |
1 ) with StD = 0.13 and (d) real part of LDMD mode Re(φ|U |

2 ) with StD = 0.33 for the
absolute velocity. (e) First LPOD mode Φᵀ

1 and ( f ) second LPOD mode Φᵀ
2 of the temperature. (g) Imaginary

part of LDMD mode Im(φᵀ
1 ) with StD = 0.13 and (h) imaginary part of LDMD mode Im(φᵀ

2 ) with StD = 0.33
for the temperature.

(Lagrangian) snapshots. The maximum FTLE fields at other parameters by, for example,
Kasten et al. (2009) and Finn & Apte (2013), share several structural similarities with
the LPOD mode of figure 7(a), in particular the lower-amplitude contours (on the green
region) in the cylinder wake and along the upstream centreline (χ2 = 0). These regions of
the flow map (material surface) are at lower absolute velocities, in the Lagrangian mean
sense, over the considered finite time duration from an initial state, as opposed to the
higher-amplitude regions (in red). The second LPOD mode of figure 7(b) displays the flow
map regions with the largest contribution to the variance of the absolute velocity about
the first LPOD mode. These flow map regions are also associated with the von Kármán
vortex shedding, which becomes evident in terms of the corresponding LDMD mode
with StD = 0.13 shown in figure 7(c). Clearly, the LPOD and LDMD modes of figures
7(b) and 7(c), respectively, indicate the prominent regions of the flow map exhibiting the
von Kármán vortex shedding. In addition, an LDMD mode with StD = 0.33 is displayed
in figure 7(d), where the flow map regions are associated with the first higher harmonic
of the vortex shedding frequency (StD = 0.16). The LPOD and LDMD modes of figures
7(a)–7(d), along with the complete sets of LPOD/LDMD modes showcase spatiotemporal
dynamics of the material surface, providing insights into its transport and chaotic mixing
characteristics.

In many practical situations, it is desired to obtain Lagrangian coherence of quantities
other than the primary flow variables, namely, velocity, pressure and density (Balasuriya,
Ouellette & Rypina 2018). For example, the flow temperature, species concentration
and, in general, the quantities derived from the primary variables are relevant to many
multi-physics processes including, among others, turbulent combustion, acoustics and
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magnetohydrodynamics. In the LMA ansatz, the non-primary flow variables can also
be subjected to many other modal decomposition techniques. To demonstrate this, we
consider LPOD and LDMD of the temperature field that is associated with the Lagrangian
flow map of the flow past a cylinder case (of § 3.4), where again the LMA analysis is
performed over time τ ∈ [0, T = 5], utilizing n = 500 material (Lagrangian) snapshots.
The first two LPOD modes of the temperature field (figures 7e and 7 f ) exhibit coherent
regions of the flow map, in terms of the Lagrangian mean and a greater part of the
variance of the temperature, respectively. The LDMD modes of the temperature of figures
7(g) and 7(h) manifest the temporal dynamics of the Lagrangian thermal field with the
unsteadiness of StD = 0.12 and 0.33, respectively. The temperature field in the Eulerian
simulation relates to the absolute velocity via the pressure and density; there is a noticeable
dependence of the temperature modes on the corresponding velocity magnitude modes in
figure 7.

The Lagrangian approach in fluid turbulence provides a systematic description of
particles and field statistics, educing chaos and exponentially separating trajectories
(Falkovich, Gawedzki & Vergassola 2001; Yeung 2002). In addition to remarkable physical
insights into the transport, mixing and dispersion, the Lagrangian description of turbulence
is useful in, for example, stochastic modelling and probability density functions (Yeung
& Pope 1989; Pope 1994), turbulence modelling in large-eddy simulations (Meneveau,
Lund & Cabot 1996) and reduced-order modelling (Lu & Tartakovsky 2020; Xie et al.
2020). However, such studies are limited in number compared to the Eulerian counterpart.
The plethora of modal analysis techniques, in the Eulerian reference frame, inherently
connect to the spatiotemporal scales of turbulence, educing coherent flow structures,
where these prominent flow features are utilized in, among others, flow control and
optimization, reduced-order modelling and turbulence modelling (Rowley & Dawson
2017; Shinde 2020). Thus, the LMA provides a means to transform the Eulerian
modal analysis techniques and their applications to the Lagrangian flow maps (material
surfaces/volumes).

4.2. LMA on flow with mesh deformation
The difficulties of applying modal decompositions to deforming meshes and associated
domains in the Eulerian frame are overcome by recasting such problems in the Lagrangian
formulation. The LMA on the flow with deforming meshes can be performed at least in two
settings: in the first case, the (material) flow map is considered to be the frame of reference,
whereas in the second case the moving/deforming mesh is taken as the frame of reference.
In either case, the modal analysis is not restricted because of the moving/deforming
domain. Here we demonstrate the second possibility of performing LMA, where the
Lagrangian frame of reference is the deforming mesh. Two major advantages of this
approach are: (i) the flow fields for the LMA, in general, already account for the deforming
mesh in the Eulerian–Lagrangian computations; and (ii) the LMA distils out modes that
are associated with the mesh deformation from the modes of the flow fields, as illustrated
below.

The two-dimensional lid-driven cavity with mesh deformation (see § 3.3) is considered.
As detailed in § 3.3, the bottom wall of the lid-driven cavity is subjected to forced
sinusoidal deformation ( 3.10 and 3.11) at a Strouhal number StL = 1, which affects the
mesh in the entire domain. The resulting flow fields are always unsteady at all Reynolds
numbers due to the time-dependent domain deformation. As before, 2500 snapshots are
collected at time intervals of 0.01, encompassing Strouhal numbers in the range 0.04 ≤
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Figure 8. Leading LPOD and LDMD modes of the streamwise velocity for the lid-driven cavity at
ReL = 15 000 subjected to forced bottom surface deformation at StL = 1.0. The modes are presented using the
identity map (reference grid) χ0(τ0) at time τ = τ0. (a) LPOD modes ΦU1

2 , ΦU1
3 , ΦU1

4 and ΦU1
6 . (b) LDMD

modes φU1
1 , φU1

2 , φU1
3 and φU1

4 . (c) LPOD modal energies and (d) LDMD eigenvalues, indicating the values
corresponding to the spatial modes.

St ≤ 25. The first Eulerian snapshot is considered as the identity map for the Lagrangian
transformation of (2.3a,b), where the Lagrangian coordinates (χ0, τ0) = (x, t).

The leading LPOD and LDMD modes of the streamwise flow velocity are displayed in
figure 8 together with their energy and frequency content data, respectively. Figures 8(a)
and 8(b) use the Eulerian/Lagrangian coordinates at the reference state (identity map). The
leading spatial LPOD and LDMD modes of figure 8 closely resemble the Eulerian POD
and DMD modes of figure 5, in terms of the spatial structure, modal energy and frequency
content. This is consistent with the findings of Menon & Mittal (2020), where the DMD
modes at frequencies other than the rigid-body motion were shown to be unmodified.
However, the spatial modes of figure 8 display differences compared to those of figure 5,
mainly in regions of large mesh deformation, i.e. near the bottom wall of the lid-driven
cavity. These differences between the Eulerian and Lagrangian modes are congruent with
those between the corresponding flow fields of figures 2 and 3, respectively.

Furthermore, figures 8(a) and 8(b) include an LPOD and LDMD mode, respectively,
which correspond to the forced mesh deformation, where the LDMD mode (φU1

4 ) exhibits
a modal frequency equal to the forcing frequency of St = 1. The Lagrangian modes that
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correspond to the domain deformation, ΦU1
6 (LPOD) and Re(φU1

4 ) (LDMD), precisely
indicate the regions of the flow that are affected by the bottom surface deflection. This
is of significant practical importance for the flow control using surface morphing (Bruce
& Colliss 2015; Shinde, McNamara & Gaitonde 2020; Shinde, Gaitonde & McNamara
2021), where the effect of control surface deformation on the flow fields can be identified
using LMA for the efficacy of control.

4.3. LMA on steady flows
In the Eulerian description, a steady flow is characterized by time-independent flow
variables. From the stability point of view, a base flow or fixed point is a flow state
where all the solutions to an initial value problem converge monotonically. The stability
properties of the flow can be characterized based on the temporal/spatial evolution of the
external perturbations superimposed on the steady base flow state. In addition to stability
analysis, the steady base flow can be subjected to different analyses that are of practical
interest, such as, for instance, resolvent analysis (Sharma & McKeon 2013; Schmid &
Brandt 2014). A steady non-uniform flow in the Eulerian frame of reference transforms
to an unsteady flow in the Lagrangian frame of reference, enabling the use of Lagrangian
modal decompositions (of § 2) directly for the steady flows. The Eulerian steady base
flow/fixed point again serves as the identity map of (2.3a,b) for the Lagrangian flow
diffeomorphism. A set of flow snapshots may be extracted from the phase portrait of the
base flow, starting at the identity map and tracing the diffeomorphism of the Lagrangian
domain for increasing time. Alternatively, the time direction may be reversed by tracing the
diffeomorphism of the Lagrangian domain in the negative (backward) time direction. The
forward and adjoint (backward) formulations to perform the Lagrangian modal analysis of
a steady base flow are discussed in this section.

4.3.1. Forward Lagrangian approach
The lid-driven cavity flow at the pre-critical Reynolds number of ReL = 7000 (see § 3.2,
figure 2a) is considered here for the Lagrangian modal analysis. The steady base flow in
the Eulerian frame of reference is then represented in the Lagrangian frame of reference
according to (2.3a,b), (2.5) and (2.6). The Lagrangian flow map is allowed to evolve in the
positive/forward time direction from the reference steady state by solving an initial value
problem. A set of 2500 snapshots of the Lagrangian flow fields at time interval of 0.01 are
collected to perform the modal analysis, while a much smaller time step of δt = 0.001 is
used to accurately track the Lagrangian flow map.

The leading LPOD and LDMD modes of the streamwise flow velocity for the steady
lid-driven cavity at ReL = 7000 are displayed in figures 9(a) and 9(b), while the
corresponding modal energies of LPOD and modal frequencies of LDMD modes are
shown in figures 9(c) and 9(d), respectively. The energy-dominant LPOD modes ΦU1

1 and
Φ

U1
2 are nearly identical to the real and imaginary components of the LDMD mode φU1

1 ,
respectively. Notably, although the flow is steady in the Eulerian sense, the LDMD mode
φ
U1
1 corresponds to the unsteadiness of StL = 0.133, as shown in figure 9(d). Furthermore,

the LDMD modes φU1
2 and φU1

3 of figure 9(b) are associated with the Strouhal numbers
StL = 0.28 and 0.41, respectively, from the Lagrangian point of view. The LPOD modes
Φ

U1
5 and ΦU1

7 (of figure 9a) correspond to the LDMD modes φU1
2 and φU1

3 , respectively.
As discussed in § 3.2, the lid-driven cavity flow becomes unstable beyond the critical

Reynolds number of Rec ≈ 10 500; furthermore, at the post-critical Reynolds number of
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Figure 9. Leading modes of the steady-state streamwise flow velocity for the lid-driven cavity at ReL = 7000
in the Lagrangian frame of reference. (a) LPOD modes ΦU1

1 , ΦU1
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8 and ΦU1
17 . (b) LDMD modes φU1

1 , φU1
2

and φU1
3 . (c) LPOD modal energies and (d) LDMD eigenvalues, indicating the values corresponding to the

spatial modes.

ReL = 15 000, the flow exhibits dominant frequency peaks at StL = 0.13, 0.25 and 0.39.
For the steady lid-driven cavity flow at ReL = 7000, the LDMD modes at these frequencies
closely resemble the LDMD modes at ReL = 15 000 (figure 6b), which also represent
energetically significant LPOD modes. Importantly, the Lagrangian approach of modal
decomposition provides a means to extract the dynamically significant flow features that
are embedded in the steady base flow. This feature of LMA is of significant importance
from the base flow stability point of view.

The Eulerian to Lagrangian flow mapping of (2.3a,b) for the flow past a cylinder (of
§ 3.4) needs a special treatment due to the convective/open nature of the flow; this is
different from the lid-driven cavity flow (of § 3.2), where the diffeomorphism SDiff(D)
is always confined to the original Eulerian flow domain D. The time evolution of the
diffeomorphism SDiff(D) for the flow past a cylinder is not confined to the original
Eulerian flow domain D or the flow domain D of the identity map M(χ0, τ0). Note that
this applies to the unsteady lid-driven cavity and cylinder flows discussed in § 4.1. A simple
remedy to this problem is to use the (Eulerian) flow conditions at the outlet boundary
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Figure 10. Leading modes of the steady-state streamwise flow velocity for the flow past a cylinder at ReD = 40
in the Lagrangian frame of reference. (a) LPOD modes ΦU1

2 , ΦU1
3 , ΦU1

4 and ΦU1
5 . (b) LDMD modes φU1

1 and
φ
U1
2 . (c) LPOD modal energies and (d) LDMD eigenvalues, indicating the values corresponding to the spatial

modes.

for the (Lagrangian) flow that has left the computational domain, and considering the
diffeomorphism for a limited time for a meaningful analysis.

The LMA is also performed for the steady flow past a cylinder at ReD = 40. The steady
base flow serves as the reference state for the Lagrangian mapping of (2.3a,b), while
(2.5) and (2.6) are used to extract the time-dependent Lagrangian flow fields. Some 1000
snapshots are collected at time intervals of 0.005, and the Lagrangian flow map is again
obtained at a much smaller time step of δt = 0.001 for accuracy. Thus, the finite-time
duration for the LMA is τ ∈ [0, T = 5], the same as for the LMA on unsteady flow past a
cylinder at ReD = 100 discussed before in § 4.1. The significant LPOD and LDMD modes
of the streamwise flow velocity are depicted in figures 10(a) and 10(b) with their energy
and frequency content in figures 10(c) and 10(d), respectively. Figure 10(b) displays the
real and imaginary parts of the LDMD modes φU1

1 and φU1
2 that exhibit Strouhal numbers

of StD = 0.072 and 0.33, respectively. The LPOD mode ΦU1
2 resembles the LDMD mode

φ
U1
2 , which is associated with the Strouhal number of 0.072; furthermore, the higher LPOD

modes (ΦU1
3 , ΦU1

4 and ΦU1
5 ), in general, show the structural similarity with the LDMD

modes.
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The two-dimensional flow past a cylinder in the post-critical regime (50 � ReD � 190)
exhibits a distinct unsteadiness at a Strouhal number of StD = 0.16, which is associated
with the shedding of vortices in the wake region (refer to § 3.4). The LDMD modes φU1

1
and φU1

2 exhibit Strouhal numbers of StD = 0.072 and 0.33, while the LDMD modes of
the flow normal velocity component φU2

1 and φU2
2 (not shown) exhibit Strouhal numbers of

StD = 0.06 and 0.18. The LPOD mode ΦU1
2 of figure 10(a) and LDMD mode Re(φU1

2 ) of
figure 10(a) exhibit structural similarities with the LPOD mode of figure 7(b) and LDMD
mode of figure 7(d), respectively, particularly in the upstream region of the cylinder.
Note that the steady case (ReD = 40; figure 10) displays LMA of the streamwise velocity,
whereas the unsteady case (ReD = 100; figure 7) displays LMA of the absolute velocity.
Nonetheless, the breakdown of the modal symmetry about χ2 = 0 for increased Reynolds
number is evident, particularly in the wake region, clearly manifesting the unsteady effects
of the von Kármán shedding in terms of the considered flow maps (material surfaces).
Importantly, the LMA of the steady base flow can extract flow features that, in general,
correspond to the unsteady flow dynamics from the post-bifurcation regime.

The LPOD and LDMD modes (of figures 10a and 10b, respectively) are displayed on the
reference flow state or identity map, which is the initial condition for the Lagrangian flow
map. Interestingly, the LPOD and LDMD modes indicate upstream regions of the cylinder
that correspond to the unsteady flow dynamics associated with the downstream/wake
region of the cylinder. In other words, the procedure tracks the Lagrangian flow map in
the future time/space and then traces back the flow variations to the identity map in terms
of the modal decomposition. Alternatively, the analysis can be performed by reversing the
time direction, in which the Lagrangian flow map is traced in prior time/space and the flow
variations can then be tracked forward to the identity map. The latter approach is referred
to as the adjoint Lagrangian approach of modal decomposition, which we discuss in the
following section (§ 4.3.2).

4.3.2. Adjoint Lagrangian approach
Adjoint-based analyses find utility in the study of flow receptivity, sensitivity and stability;
in addition, these procedures are employed in design and optimization (Hill 1995; Schmid
2007; Browne et al. 2014; Iorio, González & Ferrer 2014; Luchini & Bottaro 2014).
Briefly, the adjoint equations of a linear or nonlinear system of equations are effectively
solved by reversing the direction of time (Chandler et al. 2012). In the similar manner, the
Lagrangian flow map of (2.3a,b) can be obtained for negative direction of time t as

M : D × [0, T ] → SDiff(D) ⊆ E = R3 : (χ , τ ) �→ M(χ , τ ) = (x,−t)
and M(χ0, τ0) = identity map

}
, (4.3a,b)

where the identity map is now the terminal condition, from the Eulerian point of view. In
addition, (2.5) and (2.6) also consider the negative time direction, while the Eulerian flow
fields are transformed to the Lagrangian flow fields.

In matrix form, let X ∈ Rm×n and Y ∈ Rm×n be the discrete sets of Lagrangian flow
fields that are gathered in the forward and backward time directions. The real symmetric
tensors XTX and YTY are self-adjoint by definition. For reversed initial and terminal
conditions, the corresponding eigenvalue problems for the two tensors result in an identical
set of orthonormal eigenfunctions (Φ) and real eigenvalues (Λ), indicating that the
two symmetric tensors are adjoint and normal (Chandler et al. 2012). Following the
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LPOD/LDMD framework (of § 2), the matrices can be expressed as

X = ΦΛ1/2Ψ T
x and Y = ΦΛ1/2Ψ T

y , (4.4a,b)

which leads to

XΨ x = YΨ y, (4.5)

satisfying an adjoint formalism

X = YΨ yΨ
T
x and Y = XΨ xΨ

T
y , (4.6a,b)

with an adjoint operator (Ψ yΨ
T
x ) ∈ Rn×n. However, for the same initial condition (or

the identity map), the data matrices X and Y may not lead to exactly the same set of
eigenfunctions and eigenvalues due to the non-normality of the flow fields with advection
(Chomaz 2005; Marquet et al. 2009); on the other hand, the forward and backward data
matrices can lead to normal operators depending on flow symmetries, for instance those
in the absolutely unstable flows (Symon et al. 2018).

To compute the backward/adjoint modes, similar to the forward Lagrangian modal
decomposition of the flow past a cylinder in § 4.3.1, 1000 snapshots are collected at time
intervals of 0.01, i.e. −0.01 from the Eulerian point of view, while the Lagrangian flow
map evolves with a finer time step of δt = 0.001 for accuracy. The leading adjoint LPOD
and LDMD modes of the streamwise flow velocity are shown in figures 11(a) and 11(b)
together with their energy and frequency content in figures 11(c) and 11(d), respectively.
As opposed to the forward Lagrangian modes of figures 10(a) and 10(b), the adjoint modes
appear in the downstream region of the flow. These modes indicate synchronized regions
of the flow (i.e. the streamwise velocity), which were subjected to similar variations of
the magnitude and wavelength over the considered time in the past. Like for the forward
Lagrangian modes (of figure 10), the adjoint modes are symmetric about the χ2 = 0 line,
mainly indicating the shear layer regions of the flow. Notably, similar to the forward
LDMD, the adjoint LDMD modes φ̂U1

1 and φ̂U1
2 of figure 11(b) exhibit unsteadiness at

Strouhal numbers of StD = 0.095 and 0.297, respectively, relevant to the post-bifurcation
dynamics.

4.4. Double-gyre flow
As noted earlier, the (maximum) FTLE is extensively used in understanding the flow
chaos, mixing and transport, which play an important role in the geophysical flows
(d’Ovidio et al. 2004; Allshouse & Peacock 2015; BozorgMagham & Ross 2015;
Garaboa-Paz et al. 2015); in addition, the FTLE finds application in biological (Green,
Rowley & Smits 2010; Shadden & Arzani 2015) and several industrial (González et al.
2016; Dauch et al. 2019) flows. To elaborate on the relation between the FTLE and LMA,
we consider a double-gyre flow pattern of interest in geophysical flows. As presented by
Shadden et al. (2005), a simple potential flow leads to an oscillating double-gyre flow
pattern for a non-zero perturbation parameter, exhibiting an engagement between the
classical stable/unstable manifolds (Rom-Kedar, Leonard & Wiggins 1990; Guckenheimer
& Holmes 2013).
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Figure 11. Leading adjoint modes of the steady-state streamwise flow velocity for the flow past a cylinder at
ReD = 40 in the Lagrangian frame of reference. (a) Adjoint LPOD modes Φ̂U1

2 , Φ̂U1
3 , Φ̂U1

4 and Φ̂U1
5 . (b) Adjoint

LDMD modes φ̂U1
1 and φ̂U1

2 . (c) Adjoint LPOD modal energies and (d) adjoint LDMD eigenvalues, indicating
frequencies associated with the spatial modes.

The periodically varying double-gyre flow is described by a streamfunction, in the
Eulerian frame of reference, as

ψ(x1, x2, t) = a sin(πf (x1, t)) sin(πx2), (4.7)

where

f (x1, t) = a(t)x2
1 + b(t)x1, (4.8)

a(t) = ε sin(2πStf t), (4.9)

b(t) = 1 − 2ε sin(2πStf t), (4.10)

over a domain D × [0, T ] such that x1 ∈ [0, 2], x2 ∈ [0, 1] and t ∈ [0, 15]. This simple
mathematical model produces two counter-rotating flow cells. A non-zero value of the
parameter ε leads to the time-dependent double-gyre flow (Shadden et al. 2005). The two
components of the velocity field are

u1 = − ∂ψ
∂x2

= −πa sin(πf (x1, t)) cos(πx2), (4.11)

u2 = ∂ψ

∂x1
= πa cos(πf (x1, t))

d f (x1, t)
dx1

sin(πx2). (4.12)
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Figure 12. Comparison between the FTLE, LPOD and LDMD modes of the double-gyre flow. (a) Forward
FTLE and (b) backward FTLE reference data from Finn & Apte (2013). The first (c) forward (Φ |U |

1 , with a

single contour level of value 1) and (d) adjoint (Φ̂ |U |
1 ) LPOD modes, as well as the only stationary (e) forward

(φ|U |
1 ) and ( f ) adjoint (φ̂|U |

1 ) LDMD modes for the double-gyre flow.

The parameter a determines the magnitude of velocity, while St is the Strouhal number
associated with the flow unsteadiness. The Eulerian flow fields are generated for a = 0.1,
St = 0.1 and ε = 0.1 over the computational domain discretized by nx1 × nx2 = 601 ×
301 grid points, while the time-step value of δt = 0.05 results in a total number of 301
snapshots.

The FTLE fields for the double-gyre flow in the forward and backward time flow maps
are as shown in figures 12(a) and 12(b), respectively, which are reproduced here from
Finn & Apte (2013). To perform the Lagrangian modal analysis of this flow, the Eulerian
snapshots are transformed to a Lagrangian frame of reference. The LPOD and LDMD
modes are then obtained for both forward and backward Lagrangian flow maps. The first
LPOD and adjoint LPOD modes, which correspond to the maximum eigenvalues, are
displayed in figures 12(c) and 12(d), respectively, while the LDMD and adjoint LDMD
modes that are stationary (in the finite-time Lagrangian sense; St = 0) are shown in figures
12(e) and 12( f ), respectively. The FTLE field, which highlights the maximum eigenvalues
of the right Cauchy–Green strain tensor, is expected to be geometrically similar to the first
LPOD mode (see § 2.4), which corresponds to the largest eigenvalue. The resemblance
between the first LPOD modes (figures 12c and 12d) and the FTLE fields (figures 12a
and 12b) is evident in figure 12, in both the forward and backward time directions. In
the finite-time Lagrangian sense, the first LPOD modes correspond to the mean field
of the absolute velocity, while the corresponding LDMD modes display no associated
unsteadiness (St = 0), as shown in figures 12(e) and 12( f ). The LDMD and adjoint
LDMD modes closely match the LPOD and adjoint LPOD modes, exhibiting geometrical
similarities with the forward and backward FTLE fields, respectively.

The simple double-gyre flow leads to a single significant (in terms of the modal
energy) LPOD mode, while the higher LPOD modes comprise relatively lower modal
energy, as shown in figure 13(a). For instance, the relative energy of the second LPOD
mode is λ|U|

2 /λ
|U|
1 ≈ 0.01, which decreases further for the higher-rank LPOD modes.

The Ritz spectrum of eigenvalues for the LDMD modes is displayed in figure 13(b).
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Figure 13. Modal energies/frequencies and higher-rank Lagrangian POD/DMD modes of the double-gyre

flow. (a) LPOD modal energies, (b) LDMD eigenvalues and modal frequencies, (c) LPOD mode Φ |U |
2 ,

(d) LPOD mode Φ |U |
3 , (e) LPOD mode Φ |U |

4 , ( f ) real part of LDMD mode φ|U |
2 , (g) real part of LDMD

mode φ|U |
3 , and (h) imaginary part of LDMD mode φ|U |

4 .

The stationary mode corresponds to St = 0; in addition, the LDMD modes that have
higher modal weights and frequencies of St = 0.05, 0.11 and 0.18 are marked in
figure 13(b). The spatial structures of the higher-rank LPOD and LDMD modes, displayed
in figures 13(c)–13(h), exhibit higher modal values (contributions) along the peak
values of FTLE field (also FTLE ridges) of figure 12(a), indicating the spatiotemporal
dynamics.

The first LPOD mode of figure 12(c) also displays a single contour level at an
arbitrary value of Φ |U|

1 = 1, delineating the lower velocity magnitude regions of the flow
map (material surface) of the double-gyre flow. Clearly, the peak values of the FTLE
field are encompassed in the Φ |U|

1 � 1 region of the first LPOD mode (similarly the
Re(φ|U|

1 ) � −0.002 region of the LDMD mode). In addition to the high stretching regions
of the flow map, the contour level Φ |U|

1 = 1 of the LPOD mode outlines the two core
regions of the double-gyre flow. The dynamics of the two gyre cores, in the finite-time
sense, is apparent by LDMD mode Re(φ|U|

2 ) with St = 0.05 in figure 13(d), which also
corresponds to the second most energetic LPOD mode (figure 13a). The LMA, in general,
manifests the spatiotemporal coherence between the different regions of the flow map,
where identification of these Lagrangian flow patterns are of paramount significance in
the geophysical, chemical and biological flows, among others.
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5. Conclusion

Modal analyses of fluid flows, such as popular POD and DMD, are typically performed
in an Eulerian (fixed) frame of reference, leading to time-invariant spatial modes.
These techniques, however, face difficulties when the numerical simulations and
experiments comprise deforming/moving domains, such as in fluid–structure interaction
problems. To address this issue, we have presented a Lagrangian approach of modal
analysis of fluid flows, where the Eulerian flow fields are a posteriori transformed
to Lagrangian (deforming/moving) flow fields. For deforming/moving domains, the
Lagrangian modal analysis can be alternatively performed in the Lagrangian (material)
flow map or moving-mesh frame of reference. Interestingly, in the latter case, the LMA
distils out modes that are associated with the domain deformation; in addition, the
Lagrangian modes exhibit a large structural similarity with the Eulerian modes on the
otherwise static domain. The LMA (e.g. LPOD/LDMD) procedures elegantly manage the
deforming/moving domain, enabling modal analysis with reference to the identity map,
which is the initial Lagrangian flow map.

In the material frame of reference, the spatiotemporal material surface/volume
is subjected to the LMA. The Lagrangian (material) flow map is useful in many
circumstances; it is central to turbulent mixing and transport (Ottino 1989; Wiggins
2005), where features such as fixed points, periodic orbits, stable and unstable manifolds
and chaotic attractors become manifest (Shadden et al. 2005; Haller 2015). In general,
most Lagrangian techniques developed to analyse the dynamics of Lagrangian flow
map (material surface/volume) naturally relate to or build upon the FTLE, elucidating
finite-time dynamics of the material trajectories. The LMA brings forth a Lagrangian
framework for modal decomposition of a spatiotemporal material flow map, providing
valuable insights into prominent Lagrangian coherent flow structures and associated
dynamics pertinent to the decomposition technique. For instance, the first LPOD mode
is shown to relate closely with the maximum FTLE field, while the higher LPOD
modes represent energetically coherent structures of the material flow map; on the other
hand, LDMD modes represent dynamically coherent structures of the Lagrangian flow
map, exhibiting energy amplification and resonance behaviour (Schmid 2010) of not
only the primitive variables but also the derived/passive variables, e.g. vorticity, species
concentration and temperature.

The Eulerian POD and DMD find restricted usage on steady/base/turbulent mean flows
(Schmid 2010; Shinde et al. 2019b), which are time-independent, whereas the Lagrangian
POD and DMD can be directly employed for non-uniform steady/base/turbulent
mean flows, which are inevitably unsteady in the Lagrangian frame of reference.
The LMA on (Eulerian) steady flow yields Lagrangian coherent flow structures that
continue to exist in the post-critical (post-bifurcation) flow regime, exhibiting prominent
LPOD/LDMD modes that are likely to be engaged in flow transition. For instance, the
LPOD/LDMD modes of the lid-driven cavity at ReL = 7000 (pre-bifurcation; figure 9) and
ReL = 15 000 (post-bifurcation; figure 6) are strikingly similar, providing insights into the
prominent Lagrangian flow features, including those associated with the post-bifurcation
unsteadiness.

The notions of finite-time analysis and time duality pertain to the LMA ansatz,
analogous to hyperbolic trajectories and FTLE. The forward and adjoint LMA analysis
yields Lagrangian (LPOD/LDMD) modes in the upstream and downstream regions
of flow, respectively, which potentially leads to flow sensitivity, receptivity and
controllability. In addition, the LMA remains to be explored for applications that
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include other features such as barriers in the turbulent mixing and transport, stability
characteristics of the steady/base/turbulent mean flows, flow control and optimization in
terms of the adjoint formulation, and turbulence and reduced-order modelling.
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Appendix A. Pseudo-algorithm and source code to perform Lagrangian modal
analysis

In this section, we present a procedure to perform Lagrangian modal analysis in terms
of the Lagrangian POD, considering the simple double-gyre flow configuration of § 4.4.
The pseudo-algorithm of table 1 describes the steps necessary to compute LPOD modes.
Briefly, the input to the algorithm is a set of Eulerian flow fields and associated flow
parameters that include the grid, the solution state variables, the number of snapshots
(Nt) and the time step (δt). A negative value of the time step is used to perform
backward Lagrangian modal analysis, resulting in the adjoint LPOD modes. The initial
Eulerian flow state u(x0, t0) represents the identity map for the Lagrangian flow map, thus
U(χ0, τ0) = u(x0, t0). An equal number of Lagrangian snapshots (Nt) are obtained for
the forward (δτ = δt) or backward (δτ = −δt) passage of time. The Lagrangian snapshots
can also be extracted from a single snapshot of a steady Eulerian base flow, in both the
forward and backward directions. Lastly, the POD is performed on the Lagrangian flow
fields, by computing the correlation matrix via an appropriate weight matrix and solving
the eigenvalue problem.

The source code of the algorithm (table 1) is available in fortran 90 at
GitHublinktoLagrangianModalAnalysis. In addition to the Lagrangian modal analysis
sources, the repository includes a subroutine that generates the double-gyre flow snapshots
in the Eulerian frame of reference.

Appendix B. Grid convergence of the lid-driven cavity

The geometrical configuration of the lid-driven cavity is displayed in figure 14. The size
of the square cavity is Lref = L, and the side and bottom surfaces (edges) are prescribed
with the no-slip wall and adiabatic boundary conditions. A uniform velocity u1 = u∞ in
the x1 direction is assigned to the top surface, which also uses a Dirichlet condition for all
the reference variables. The specification of regularized velocity profile at the top surface
(Shen 1991) is not considered, since the effects are not significant (Bergamo et al. 2015)
for the current purposes.

The computational domain is uniformly discretized in either direction, as shown in
the inset of figure 14. A mesh sensitivity study is performed for ReL = 15 000 with four
meshes, designated G1, G3, G3 and G4. The drag and lift coefficients are

Cd ≡ Fx1
1
2ρ∞u2∞L

and Cl ≡ Fx2
1
2ρ∞u2∞L

, (B1a,b)

where Fx1 and Fx2 are the forces on the no-slip walls in the x1 and x2 directions,
respectively, and are noted in table 2, where the overline ( · ) and rms denote the
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Inputs: Eulerian snapshots, number of snapshots Nt, time step δt
Output: Lagrangian POD modes

1. Convert the Eulerian snapshots to the Lagrangian snapshots:
δτ = δt (forward) or δτ = −δt (backward)
(χ0, τ0) = (x0, t0)
for i = 1 to Nt do

U (χ i−1, τi−1) = u(χ i−1, τi−1)

χ i = χ i−1 + U (χ i−1, τi−1)× δτ

τn = τn−1 + δτ

end
2. Lagrangian POD:

Construct the correlation matrix –
for i = 1 to Nt

for j = 1 to Nt
C(τi, τj) = U (χ i, τi)W ij U (χ j, τj)

end
end
Solve the eigenvalue problem –
CΨ n(τ ) = λnΨ n(τ )

LPOD modes –
Φn(χ0) = λ−1/2

n
∑Nt

i=1 U (χ i, τi)Ψn(τi)

Table 1. Pseudo-algorithm for computing Lagrangian POD modes using a set of Eulerian snapshots.

0

0.5

1.0

x2 L

Lid

x1

–10 0.5 1.0

0
0.96 0.98 1.00

0.02

0.04U∞

No-slip walls

Figure 14. Computational domain of the two-dimensional lid-driven cavity. The inset displays a small region
of mesh M2 with uniform discretization in either direction.

standard time-averaging and root-mean-square of fluctuations operations, respectively.
These parameters display relatively mesh-independent results on G3 and G4. In addition,
table 2 displays the Strouhal number,

StL ≡ fL
u∞

, (B2)
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Mesh nx1 × nx2 Cd Crms
d Cl Crms

l StL 1StL 2StL
(×10−2) (×10−4) (×10−3)

G1 301 × 301 2.70 2.74 −5.74 4.08 0.14 0.25 0.38
G2 501 × 501 2.35 5.94 −5.73 4.07 0.13 0.24 0.37
G3 701 × 701 2.06 6.17 −5.72 4.06 0.13 0.24 0.37
G4 1001 × 1001 2.09 6.69 −5.72 4.06 0.13 0.24 0.37

Table 2. Mesh details for the lid-driven cavity at the Reynolds number ReL = 15 000 and Mach number M∞ =
0.5, mesh sensitivity of the time-averaged and root-mean-squared (rms) drag and lift coefficients, and the
Strouhal number with its higher harmonics.

0 0

0

2

4

0.25

0.25

0.50

0.50

0.75

0.75

x1 x1

CfG1
G2
G3
G4

x2

1.00 0.2

–2

–4
0.4 0.6 0.8 1.0

1.00
–1.0

–1.0

–0.5

–0.5

0.5

0.5
ū2

ū1

1.0 (×10–3)
1.0

0

0

(b)(a)

Figure 15. Grid convergence of the results for the lid-driven cavity at ReL = 15 000. (a) Time-averaged flow
velocity components along the cavity centrelines and (b) the skin-friction coefficient on the bottom wall of the
cavity for the four grids G1, G2, G3 and G4.

where the flow frequency f and its higher harmonics are estimated using the PSD of the
integrated force Fx1 on the cavity. The Strouhal numbers exhibit converged values for the
grids G3 and G4, similar to the convergence of the drag and lift coefficients.

Flow velocity components and the skin-friction coefficient, in the time-mean sense,
are displayed in figures 15(a) and 15(b), respectively, for all meshes. The time-averaged
velocity components ū1 and ū2 along the vertical (x1 = 0.5) and horizontal (x2 = 0.5)
centrelines, respectively, are nearly identical with respect to meshes G2, G3 and G4. On the
other hand, the skin-friction coefficient on the bottom wall of the cavity, which is defined
as

Cf = σ̄12|x2=0
1
2ρ∞u2∞

, (B3)

exhibits some dependence on the mesh refinement from G1 to G2, albeit rather locally. The
overall results appear grid-converged for meshes G3 and G4; thus mesh G3 is considered
for the results and discussion.

Appendix C. Grid convergence of the flow past a cylinder

The DNS database of flow past a cylinder is constructed at a Mach number M∞ = 0.5,
for which unsteadiness appears at ReD ≈ 50. Two Reynolds numbers, namely ReD = 40
and 100, are chosen to yield pre-bifurcation and post-bifurcation solutions, respectively.
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–20
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0.3

0.4

Outflow

No-slip wall

Inflow

Figure 16. Computational domain with mesh M1 to simulate flow past a cylinder of diameter D. The outer
boundary is placed at 40D from the centre. The inset shows the near-wall mesh structure.

Mesh nθ nr r Cd Cl StD

M1 361 361 1.0103 1.5636 ± 0.008 ±0.3239 0.1599
M2 541 541 1.0069 1.5627 ± 0.008 ±0.3267 0.16

Table 3. Details of the computational meshes M1 and M2, mesh sensitivity to drag and lift coefficients and
Strouhal number for ReD = 100 and M∞ = 0.5 for the flow past a cylinder.

The former condition results in a steady separated flow, while the latter manifests
two-dimensional unsteady vortex shedding. The computational domain, displayed in
figure 16, is discretized with a structured cylindrical mesh. The cylinder is placed at
the origin, with outer boundaries 40D away. The inflow is uniform with a normalized
velocity u∞ = 1.0, while the outflow is obtained by extrapolation of all variables except
pressure, which is maintained constant at p∞ = 1/γM2∞ in the far field. The cylinder
surface (perimeter) is prescribed with a no-slip wall and adiabatic boundary conditions.
Periodicity is enforced in the azimuthal direction.

The sensitivity of the results to spatial resolution is examined using two meshes, M1 and
M2, whose details and effect on the results are provided in table 3. In mesh M1, the cylinder
surface (perimeter) is discretized using nθ = 361 grid points. In the radial direction, the
first grid point is placed at πD/2(nθ − 1), while the radial extent is divided into nr = nθ
points by using a geometric progression with a growth ratio of r = 1.0103. For mesh M2,
nθ = 541 is used, resulting in the radial growth ratio of 1.0069.

The drag and lift coefficients are defined as

Cd ≡ Fd
1
2ρ∞u2∞D

and Cl ≡ Fl
1
2ρ∞u2∞D

, (C1a,b)
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where Fd and Fl are the forces in the x and y directions, respectively. The frequency of
unsteady vortex shedding is reported using the Strouhal number,

StD ≡ fD
u∞

. (C2)

The drag (Cd) and lift (Cl) coefficients change little between the two meshes; in addition,
the Strouhal number computed using Cl is nearly identical for the two meshes. The results
also match well with the literature (Canuto & Taira 2015). Thus, we consider the mesh M1
for further analysis.
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