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Evolutionary game theory provides a fresh perspective on the prospect that agents with
heterogeneous expectations might eventually come to agree on a single expectation
corresponding to the efficient markets hypothesis. We establish conditions under which
agreement on a unique forecast is stable, but also show that persistent heterogeneous
expectations can arise if those conditions do not hold. The critical element is the degree of
curvature in the payoff weighting functions agents use to value forecasting performance.
We illustrate our results in the context of an asset pricing model where a martingale
solution competes with the fundamental solution for agents’ attention.
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1. INTRODUCTION

Models assuming a representative agent with rational expectations are ubiquitous
in macroeconomics, though they implicitly make strong assumptions about the
availability and use of information. Such approaches also stand in contrast to the
variety of forecasting techniques (ARIMA, VAR) in the econometric literature.1

In an asset-pricing environment, the assumption of a unique rational forecast is
embodied in the strong version of the efficient markets hypothesis (EMH), where
asset prices depend solely on expected future dividends.

The EMH is the basis for much asset pricing theory [Cochrane (2001)] and has
empirical support based on the unpredictability of returns [Fama (1991)]. However,
some recent work suggests that returns are predictable [Fama and French (1989)]
and that there are a number of other features of the data, such as ARCH effects
[Engle (2001)], excess kurtosis in returns, and excess variance in asset prices
[Shiller (1981), LeRoy and Parke (1992)], that cannot be explained by models
satisfying the EMH.

There are many alternative forecasting strategies that do not satisfy the EMH,
including “technical” trading and behavioral forecasting strategies.2 Although
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these approaches can be criticized for violating rational expectations, there does
exist a continuum of martingale or rational bubble solutions that satisfy rationality.3

How agents are able to coordinate on the EMH equilibrium in the presence of such
a multiplicity of forecasts is an open question.

The present work proposes to allow agents a choice. The model presented here
is a variant of Parke and Waters (2007), where agents could switch between fore-
casting strategies based on the EMH and martingale solutions. Simulation results
in that work show that the model explains empirical features of asset-pricing data,
such as ARCH effects in returns, that models based on the EMH or representa-
tive agent rational bubbles cannot. The focus here is to examine the underlying
conditions necessary for agents to adopt forecasts based on martingale solutions.

Evolutionary game theory provides a mechanism describing how agents might
switch forecasting strategies based on performance, so their ability to coordinate
becomes an outcome, not an assumption, of the model. The primary result is that
coordination on a unique forecast based on the EMH is possible but requires very
strong assumptions. The stochastic innovations in the models must be sufficiently
bounded and agents must not be overly aggressive in switching strategies. Hence,
the assumption of a representative forecast based on the EMH is potentially
misleading.

All agents have the same information about the underlying model, and the
available forecasts satisfy rational expectations.4 Differences in agents’ choices of
forecasting strategies arise because of differences of opinion about the information
that should be used. We focus on three forecasting strategies: the fundamental
forecast based solely on expected future dividends according to the EMH, the
mystic forecast that uses an extraneous martingale, and the reflective forecast,
which is a weighted average of the other two. The reflective forecast provides
an unbiased forecast, satisfying rational expectations even in the presence of
heterogeneity of forecasting strategies in the population. The reflective forecast
follows the literature that sets out an econometric view of the merits of combining
forecasts.5

The evolution of the fractions of agents using the three strategies is determined
by a weighted replicator similar to that in Hofbauer and Weibull (1996), which
is an example of an imitative dynamic from the evolutionary game theory liter-
ature; see Sandholm (2011). The payoffs are based on forecast errors, following
common methods for evaluating forecasts in the time series literature; see Elliot
and Timmerman (2008). Imitative dynamics allows analysis of a situation where
one strategy is eliminated, in contrast to multinomial logit dynamics. A weighting
function transforms the payoffs and allows the modeling of varying degrees of
aggressiveness in switching between strategies over time. Under a linear weighting
function, the dynamic is equivalent to the replicator, but, for a convex weighting
function, agents switch to better-performing strategies faster.

The primary goal of the analysis is to determine conditions under which a small
fraction of agents experimenting with mysticism can gain a significant following.
When no agents use the mystic forecast, the fundamental and reflective forecasts
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coincide and the model satisfies the EMH. However, if a significant fraction of the
population adopts the mystic forecasting strategy, the extraneous martingale has
an impact on the asset price. Now, we can state the results more precisely. If the
shocks to the dividends and the martingale innovations are sufficiently large and
the weighting function is sufficiently convex, implying aggressive switching, then
persistent heterogeneity in the forecasting strategies is likely, which would violate
the EMH. The results are determined through both formal stability analysis and
simulations of the model.

The present approach has overlaps with the literatures on learning, finance, and
the evolution of forecasting strategies. Within the learning literature, expectations
are often homogeneous as well, as with the analysis of least squares learning in
Marcet and Sargent (1989b) or studies on gradient learning [Evans et al. (2005)].
There are examples of heterogeneous expectations with fixed fractions of agents
having idiosyncratic information both in the finance literature, Constanides and
Duffie (1996), for example, and in the learning literature [Marcet and Sargent
(1989a) and Evans and Guesnerie (2005)], including studies of agents learning
sunspot solutions [Branch and McGough (2004)].

There is a substantial literature with dynamic switching of forecasting strategies
using the multinomial logit model, particularly with the cobweb model [Brock and
Hommes (1997), Hommes (2006)] and with asset pricing6 [Brock and Hommes
(1998) and Föllmer et al. (2005)]. Anufriev and Hommes (2012a) estimate a multi-
nomial logit model with multiple forecasting strategies using experimental asset
market data, arguing that the data can only be explained through the consideration
of heterogeneous forecasts.

There are applications of imitative dynamics. In a cobweb model, Sethi and
Franke (1995) and Branch and McGough (2008) use alternative versions of the
replicator to describe the evolution of agents’ choices between adaptive and perfect
foresight forecasts and show conditions where chaos arises. As with the multi-
nomial logit approach in Brock and Hommes (1997), agents using the perfect
foresight forecast must pay a fixed cost. In the present approach, all agents have
the same choice of forecasting strategies available to them, and we do not impose a
cost. Fundamentalists ignore the martingale because they believe it is extraneous,
not because of the cost of information.7

Branch and Evans (2007) and Guse (2010) describe the evolution of models with
two costless forecasts in a small macro model and an asset-pricing environment,
respectively. The paper by Guse (2010) uses an imitative dynamic but varies from
the present approach in a number of ways. Agents update parameter estimates
and their choice of forecasting model each period; there are only two available
forecasting strategies, based on fundamentals or a sunspot; and agents pay a
cost for using a forecasting model that admits extraneous information. In this
environment, results from simulations show that persistent heterogeneity cannot
arise if the cost is sufficiently large.

Blume and Easley (1992) is a prominent example from a related literature that
studies the long-run survival of investment strategies. These models do not specify
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the fractions of followers of different strategies in each period but focus on the
limiting ratios of payoffs between strategies. Hens and Schenk-Hoppé (2009)
review recent developments.

The experimental literature confirms that asset pricing with heterogeneous
agents can produce a wide range of behaviors. Anufriev and Hommes (2012b)
provide results from recent studies.

The paper is organized as follows. Section 2 describes the asset pricing model,
the three forecasts, and their payoffs, and Section 3 discusses the evolutionary
dynamics. Section 4 contains the formal stability results, and Section 5 describes
the simulation results. Section 6 concludes.

2. ASSET PRICING

A simple asset pricing model motivates a number of the important concepts. For
an asset price yt , the notional model is a basic recursion,

yt = αye
t+1 + ut , (1)

where α < 1 is a discount factor, ye
t+1 is the expected price next period. and

the dividends term ut is a stochastic income flow.8 This model has a solution
under rational expectations based only on fundamentals (current and expected
future dividends here), but (1) also admits rational bubble solutions that depend
on extraneous variables. Convergence to agreement on a single expectation ye

t+1 is
viewed here as a possible conclusion rather than as an assumption. Given hetero-
geneous expectations and mean–variance optimizing agents, Brock and Hommes
(1998) discuss conditions9 under which the realized security price depends on the
weighted average of agents’ expectations.10 They show that

yt = α xt · et + ut , (2)

where et is a vector of forecasts of yt+1 and xt is a vector of fractions of the
population using each forecast. Here, the vector et = (e1,t , e2,t , e3,t ) represents
the three forecasts of reflectivism e1,t , fundamentalism e2,t , and mysticism e3,t ,
and the fractions of followers are given by the vector xt = (x1,t , x2,t , x3,t ).

The discounted present value of the expected income stream,

y∗
t = ut +

∞∑
j=1

αjEt(ut+j |�t), (3)

where �t is an information set available to the agents, will serve as a point of
reference as it satisfies the strong version of the EMH, though it is not the unique
solution to (1). The natural candidate for the fundamental forecast of yt+1 is thus

e2,t = E(y∗
t+1|�t) =

∞∑
j=1

αj−1E(ut+j |�t). (4)
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Although it is common to assume that all agents somehow recognize e2,t as the
appropriate forecast, we make the following less restrictive assumption:

Assumption 1. The fraction x2,t of the agents using the fundamental forecast
e2,t is bounded from below by δ2 > 0 for every t .

These unyielding fundamentalists might well be impressed by the fact that (4)
is touted by a large fraction of the academic literature in economics and finance.
They do not need to take a position on, for example, the merits of transversality
conditions vs. minimum state variables as a basis for (4) to recognize that (4) is
prominently featured in McCallum (1983, 1997) and Cochrane (2001).

We select a challenger to the fundamentalist forecast from among the martingale
or rational bubble solutions to the model (1). This alternative forecast will be

e3,t = e2,t + α−t−1mt = E(y∗
t+1|�t) + α−t−1mt, (5)

where mt = mt−1 + ηt is a martingale. We label this forecast mysticism because,
although α−tmt is thought by economic theorists to be extraneous, agents believing
in (1) cannot rule out a martingale solution on the basis of that mathematical
model.11 Followers of the mystical forecast might, for example, sincerely believe
that α−t−1mt is a valid addition to the fundamentals for yt . In fact, the martingale
does influence yt if the mystical forecast attracts followers.

Both the fundamental forecast (4) and mysticism (5) satisfy rational expectations
in the homogeneous case, but this observation may not hold if there is heterogeneity
in the choice of forecasting strategies in the population. Hence, the reflective
forecast is postulated to be an average of the fundamental and mystic forecasts
weighted according to their relative popularity,

e1,t = (1 − nt ) e2,t + nte3,t , (6)

where
nt = x3,t

x2,t + x3,t

(7)

is the proportion of followers of the mystical forecast x3,t among those not fol-
lowing the reflective forecast 1 − x1,t = x2,t + x3,t . Such a forecast follows
the literature on the benefits of combining forecasts. See Elliot and Timmerman
(2008) for multiple references. This ratio shows one reason for the imposition of a
minimum fraction δ2 using fundamentalism is to avoid dividing by zero. Because
reflectivism is based on other forecasts, there must be at least one other forecast
in the population for reflectivism to be well specified.

The reflective forecast can be written as

e1,t = E(y∗
t+1|�t) + α−t−1ntmt , (8)

which can be verified with the preceding four equations. The martingale affects
the reflective forecast according to the relative popularity of mysticism and funda-
mentalism. The realization for yt can be obtained by substituting the expectations
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(4), (5), and (8) into (2), yielding

yt = y∗
t + α−t ntmt . (9)

The realization is thus the fundamentalist forecast plus, to the extent that some
of the agents are following mysticism, a martingale term. Unlike the fundamental
and mystic forecasts, both the realization (9) and the reflective forecast embody
available information about the fractions of the population using the different
strategies. By construction, the aggregate expectation xt · et in (2) coincides with
the reflective forecast. For the three given forecasting strategies, the aggregate
expectation is x1,t e1,t + x2,t e2,t + x3,t e3,t . Substituting for e1,t and nt using (6)
and (7) demonstrates that the aggregate expectation and the reflective forecast are
equivalent.

Payoffs are given by the negative of the squared forecast error,

πi,t = −(yt − ei,t−1)
2. (10)

Evaluating forecasts using squared errors has a long tradition in econometrics.12

In an asset pricing context, there are a number of choices for payoffs, such as
realized profits, excess returns, or Sharpe ratios. For the present asset pricing
model, Hommes (2001) shows that (10) is the natural objective function for
mean–variance maximizing agents. If agents adjust for risk based on the variance
of the profits, then forecast errors are a more appropriate payoff than realized
profits.

The reflective forecast error,

Ut = yt − e1,t−1,

includes two components:

Ut = [y∗
t − E(y∗

t |�t−1)] + α−t (ntmt − nt−1mt−1). (11)

The first term on the right is the innovation in fundamentals, and the second term
on the right is the weighted martingale innovation.

The reflective forecast is unbiased, given the information assumed to be available
to the agents. The innovation to the dividends has mathematical expectation zero.
The expression in parentheses in the second term can be written �ntmt−1+nt�mt ,
where �nt is the change in nt and �mt = ηt is the martingale innovation. If
the expectation E(�nt |�t−1) is zero, then the expected reflective forecast error
E(Ut |�t−1) is zero, because the innovations to the dividend and martingale are
also unforecastable. Agents are assumed to be unable to forecast changes in the
choices of forecasting strategies across the population. Although they can observe
fractions of followers of the forecasting strategies, they do not understand the
dynamics describing the evolution of these fractions. (See note 13, cited in the
next section.)
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TABLE 1. Payoff ordering if At−1, nt−1 > 0

Realized Ut Best payoff Middle payoff Worst payoff

Ut < −nt−1At−1/2 Fund. Refl. Myst.
−nt−1At−1/2 < Ut < (1 − 2nt−1)At−1/2 Refl. Fund. Myst.
(1 − 2nt−1)At−1/2 < Ut < (1 − nt−1)At−1/2 Refl. Myst. Fund.
(1 − nt−1)At−1/2 < Ut Myst. Refl. Fund.

The payoff (10) to reflectivism is

π1,t = −U 2
t . (12)

The payoffs to mysticism and fundamentalism also depend on At−1 = α−tmt−1.
Intuitively, Ut depends primarily on innovations and At−1 depends on the level
of the martingale and consequently is nonstationary. The fundamentalist forecast
error from (9) and (4),

yt − e2,t−1 = Ut + nt−1At−1,

includes a fraction of the martingale term because, to the extent that some of the
agents are following the mystical forecast, the realization (9) is affected by the
martingale term. Note that if mysticism is driven out of the population, so that
nt−1 = 0, then the fundamental forecast coincides with the reflective forecast.
The fundamentalist payoff is

π2,t = −U 2
t − 2nt−1UtAt−1 − n2

t−1A
2
t−1. (13)

The mystic forecast error is

yt − e3,t−1 = Ut − (1 − nt−1)At−1,

from (9) and (5), and the resulting payoff is

π3,t = −U 2
t + 2(1 − nt−1)UtAt−1 − (1 − nt−1)

2A2
t−1. (14)

Any of the three forecasting strategies could have the best payoff depending
on the realizations of Ut and At−1, as detailed in Table 1. If At−1 is large relative
to Ut , then the third terms, referred to as martingale terms, in the payoffs to
fundamentalism (13) and mysticism (14) are the dominating feature, causing both
payoffs to underperform reflectivism. The reflective forecast is constructed so that
the martingale does not affect its payoff; thus, when the martingale term is large,
reflectivism is best. However, if At−1 is not large and the “covariance” UtAt−1 is
large and positive, then mysticism could have the best payoff. Such an outcome
corresponds to a fortunate (for the mystic) correlation between the martingale and
the innovations in the model. Similarly, a large and negative covariance favors
fundamentalism.
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Despite these observations, reflectivism does have an inherent advantage over
the other strategies, as one might expect given that the reflective forecast embodies
extra information about the other forecasts and their fractions of supporters. Many
evolutionary game theory dynamics depend on the fitness of the strategies, the
difference between payoffs and the population average payoff πt , given by πt =
x1,t−1π1,t + x2,t−1π2,t + x3,t−1π3,t . In particular, the replicator dynamic with a
linear weighting function w (·) in (16) has the property that the fraction of agents
using a strategy adjusts proportionally to the fitness of that strategy. Here, the
population average is

πt = −U 2
t − x2,t−1x3,t−1

x2,t−1 + x3,t−1
A2

t−1. (15)

Although At−1 does not enter the payoff π1,t = −U 2
t to reflectivism, if there is

any heterogeneity in the population, it does affect the population average. Under
the linear weighting according to population shares for πt , the covariance terms
in the mystic and fundamental payoffs cancel, so the population average payoff
cannot be superior to the reflective payoff. Hence, the following holds:

Remark. The fitness of reflectivism π1,t − πt is always nonnegative.

Under the standard replicator dynamic, the evolution of the vector xt describing
the strategy choices in a population is driven by the fitness of the strategies.
The Remark suggests that reflectivism has an ever-increasing following under the
replicator, and the point where the maximum fraction of the population is using
reflectivism is stable, though much work remains to be done to formalize this idea.
First of all, the standard replicator may be problematic in an environment with
payoffs that are negative and stochastic. Furthermore, the analysis should allow
for a wider range of behavior than specified by the replicator.

3. CURVATURE AND SELECTION DYNAMICS

The evolutionary dynamic studied here, called the weighted replicator, allows the
study of stability of points where one strategy is eliminated. Further, the speed
at which agents switch to better performing strategies is naturally parameterized
within the weighted replicator. The goal is to examine the relationship between
agent aggressiveness and the stability of a point where mysticism is not adopted by
any agents. Given the previously defined notation for payoffs and strategy choices,
the general form of the dynamic is

xi,t+1 − xi,t = xi,t−1
w(πi,t ) − wt

wt

, (16)

where the weighting function w(·) is increasing in the payoffs, and the expression
wt is the population average weighted according to the popularity of the strate-
gies, so that wt = x1,t−1w(π1,t ) + x2,t−1w(π2,t ) + x3,t−1w(π3,t ). Strategies with
above average payoffs gain adherents. Dynamics such as (16) with xi,t−1 on the
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right-hand side are also imitative in that the popularity of a strategy affects its pop-
ularity in the following periods.13 The timing in (16) differs from the customary
replicator dynamic. We make this choice because the time-t payoffs depend on a
forecast made at time t − 1, which in turn depends on the time-(t − 1) fractions
of followers of the strategies xi,t−1. Simulations with an alternative timing are
conducted as a robustness check.14

For a linear weighting function, the dynamic (16) corresponds to the replicator—
see Weibull (1998)—but this is not the only possibility. Hofbauer and Weibull
(1996, p. 563) note that curvature in w(·) can change agent behavior in an evo-
lutionary game, somewhat analogously to how curvature in utility functions can
affect behavior toward risk in other settings. The degree of nonlinearity parameter-
izes a property that we interpret as agent aggressiveness. We interpret a weighting
function that places a relatively high weight only on small squared errors as
symptomatic of agent aggressiveness in pursuing accurate forecasting strategies.
A weighting function that makes a more moderate distinction between large and
small squared errors characterizes less aggressive agents.

A second consideration, enforcing the nonnegativity condition w(πi,t ) ≥ 0, also
motivates using nonlinear weighting functions. Nonnegativity, which is common
in static games, is desirable because wt appears in the denominator of (16) and
wt ≤ 0 would be a problem. Weighting functions that achieve nonnegativity are
inherently nonlinear because no linear transformation of the squared error payoffs
will be unambiguously nonnegative.

We consider two particular nonlinear payoff weighting functions that enforce
w(πi,t ) ≥ 0 and parameterize agent aggressiveness for the general dynamic (16).

Truncation weighting. A simple way to achieve nonnegativity is to work with
the weighting w(πi,t ) = C+πi,t , where C is a constant chosen so that C+πi,t > 0
for all strategies and all periods. The revised replicator dynamic then becomes

xi,t+1 − xi,t = xi,t−1
πi,t − πt

C + πt

. (17)

In static game theory, the form of the replicator (17) is quite sufficient, as it is easy
to choose C to be larger than the biggest payoff.15 Here, there is no lower bound
for −U 2

t in the payoffs, but the truncation function,

w(π) =
{

C + π if C + π ≥ 0
0 if C + π < 0

}
, (18)

guarantees nonnegativity without requiring C + πi,t ≥ 0 for all strategies and all
periods.

The parameter C can be viewed as parameterizing agent aggressiveness. If C is
small, then w(π) = 0 for all but the smallest forecast errors because agents regard
strategies with larger forecast errors as worthless. Smaller values for C increase
the ratio (πi,t − πt)/(C + πt), causing a bigger change xi,t+1 − xi,t for a given
πi,t − πt and πt .
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Exponential weighting. The exponential transformation

w(π) = eπ/(2σ 2) (19)

achieves nonnegativity without sacrificing smoothness. The resulting dynamic is
an example of a convex monotonic dynamic as discussed in Hofbauer and Weibull
(1996).

Applying the exponential transformation to the squared forecast error πi,t =
−(yt − ei,t−1)

2 produces a familiar functional form,

w(πi,t ) = e−(yt−ei,t−1)
2/(2σ 2). (20)

This is a normal probability density. The “mean” of the forecast error yt − ei,t−1 is
zero and the “variance” is σ 2. The parameter σ 2 has no necessary relation to the
statistical properties of the forecast errors. It instead determines how agents react
to large and small squared forecast errors.

In the present context, σ 2 parameterizes agent aggressiveness. If σ 2 is large,
w(πi,t ) is not very sensitive to the magnitudes of the forecast errors. Equivalently,
agents are not very aggressive about pursuing the best forecasting strategy. If σ 2

is small, agents assign appreciable value only to the smallest forecast errors. Hof-
bauer and Weibull (1996, p. 563) describe the effect of convexity as “individuals
react over-proportionally to higher payoffs,” as opposed to the replicator, where
the population shares adjust proportionally to fitness.

A more common choice of dynamic for the modeling of heterogeneous forecasts
is the multinomial logit (MNL),

xi,t+1 = eπi,t /γ

n∑
j=1

eπj,t /γ

. (21)

The search intensity parameter γ is assumed to be positive. The primary reason
we opt for an imitative dynamic is that under the MNL dynamic, all strategies
maintain a fraction of followers even if their performance is consistently poor. See
Waters (2009) for a detailed discussion.

The parameterization of agent aggressiveness in the present context with imita-
tive dynamics is related to the search intensity parameter. Compare the weighted
replicator (16) with exponential weighting (19) and the multinomial logit dynamic
(21), where there are two strategies to choose from. A lower σ and γ indicate
higher aggressiveness and search intensity in the respective dynamic, leading to
more followers for the better performing strategy under both. However, because the
multinomial logit dynamic determines the level, as opposed to the change, in xi,t ,
the search intensity parameter should not be interpreted as a speed-of-adjustment
parameter as with the aggressiveness parameter in the present approach. To pa-
rameterize the speed of adjustment with a multinomial logit approach, one can
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use the weighting on an average of past payoffs, as in equation 4.5 of Brock and
Hommes (1998).

4. STABILITY ANALYSIS

We are interested in the stability properties of a system that we can summarize
as follows. In period t , the population fractions xi,t , i = 1, . . . , k, determine the
choices among forecasts ei,t , i = 1, . . . , k, and the realization of the asset price

yt = α xt · et + ut .

This is (9). Agents choose among the reflective forecast (8), the fundamentalist
forecast (4), and the mystical forecast (5). The payoffs are determined by squared
errors of the forecasts:

πi,t = −(yt − ei,t−1)
2.

This is (10). It takes the specific forms (12), (13), and (14) for reflectivism,
mysticism, and fundamentalism, respectively. The selection dynamic,

xi,t+1 − xi,t = xi,t−1
w

(
πi,t

) − wt

wt

,

produces the population fractions for period t + 1. This is (16). We consider two
choices for w(πi,t ), truncation weighting (18) and exponential weighting (19).

4.1. Truncation Weighting

The stability of the system depends on the parameter C that characterizes agent
aggressiveness compared to the magnitude of the shocks. In Section 5 we explore
some unstable regions using simulations. In this section, we establish a rigorous
extension of the Remark following equation (15) for truncation weighting (18).
The proof of stability shows that, given a bound on Ut

2 and a minimum fraction
of agents following fundamentalism, for every t either the fraction following
reflectivism increases or mysticism is eliminated from the population. In either
case, all agents end up following either the fundamental forecast or the reflective
forecast, which are then identical. Intuitively, under such a bound, the covariance
terms in the payoffs to mysticism and fundamentalism cannot have sufficient
influence on the dynamics for mysticism to attract a following.

The proof can be described informally. If the payoffs to all three strategies
are greater than −C, then there is no truncation and the logic of the Remark is
straightforward. The covariance terms do not appear in the population average
payoff, so reflectivism’s fitness is always nonnegative, and its share cannot fall.
For mysticism to attract followers, the payoff to fundamentalism must be below
−C and the payoff to mysticism must be best. However, for fundamentalism to
perform so badly, A2

t−1 must be large; but if it is too large, the reflective payoff is
greater than the mystic payoff. Therefore, for Ut sufficiently bounded, the effect
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of the covariance term on the mystic payoff is limited, and there is no A2
t−1 that

is simultaneously large enough to force the fundamentalist payoff below −C and
small enough so that mysticism outperforms reflectivism.

DEFINITION 1. Let � = {x|x1+x2+x3 = 1, x2 ≥ δ2} be the set of admissible
points in the simplex, and let B(y, ε) = {z ∈ �|‖y − z‖ < ε} be the open ball
around a point y within �.

Note that if xt is in the set of admissible points �, then nt < 1 − δ2, which is
necessary for the proof of the following.

PROPOSITION 2. There exists a constant ϕ ∈ (0, 1) such that for the dynamics
given by (16) and (18) and for the payoffs (12), (13), and (14), if Ut satisfies the
condition, for any xt ∈ �,

Ut
2 < ϕC,

then x1,t+1 ≥ x1,t or x3,t+1 = 0.

Proof. See the Appendix.

Given this bound, either the fraction of followers of reflectivism increases or
mysticism is eliminated from the population. This proposition implies stability
of the point where the maximum number of agents are using reflectivism. To be
more precise, consider the following definition, adapted from Lakshmikantham
and Trigiante (2002, Section 4.1).

DEFINITION 3. A point x̃ is uniformly stable if for any ε > 0 there exists a
δ > 0 such that xt ∈ B(̃x, δ) implies that xt+k ∈ B(̃x, ε) for any positive integer
k.

Although this version of stability does not apply directly to the present model,
a slightly modified version captures the implications of Proposition 2 in the fol-
lowing corollary:

COROLLARY 4. For the model in Proposition 2, given that the condition on
Ut holds for all t , the point where the maximum fraction of agents are using
reflectivism, x̃ = (1 − δ2, δ2, 0, ) has the following property. For any ε > 0, there
exists a δ > 0 such that if xt ∈ B(̃x, δ), then for every k > 0, xt+k ∈ B(̃x, ε) or
x3,t+k = 0, meaning that mysticism is eliminated.

Proof. See the Appendix.

Proposition 2 implies that the point with the maximum fraction of agents using
reflectivism satisfies a weak version of stability, in the sense that if xt is in
a neighborhood of x̃, then, for an appropriate bound on Ut from (11), it will
remain there for future periods or mysticism will be eliminated. The logic of the
proof of Proposition 2 is relevant for any point in the interior of the simplex for
an appropriately chosen bound. The bound on Ut implies bounds on both the
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innovations in the dividends and the martingale, which are necessary conditions16

for Proposition 2 to hold.
Proposition 2 shows that mysticism, which does not conform to the EMH,

cannot achieve a significant following if a sufficiently tight bound on the reflective
forecast error can be established, relative to the aggressiveness of the agents
represented by C. However, persistent heterogeneity of forecasts is also a viable
possibility. It is notable that a result such as Proposition 2 can be established in
an environment allowing heterogeneous expectations, but it is questionable that
bounding stochastic elements such as dividend innovations is realistic. “Black
swans” in asset markets would violate such bounds, for example, as would some
realizations under normally distributed dividends, though such events could be
rare. Simulation results in the next section help to clarify the quantitative impor-
tance of the formal analysis.

The stability concept arising from Proposition 2 is adapted from the theory
of deterministic difference equations to an environment with stochastic payoffs.
Stability theory for deterministic difference equations is well developed; see Lak-
shmikantham and Trigiante (2002), for example. Even so, they identify 11 different
versions of stability (Definition 4.1.2), depending on whether the variable in ques-
tion remains within a neighborhood of a point or converges to a point in the limit
and depending on the speed of convergence. The stability theory for stochastic
games has few general results because there are a number of ways to introduce
randomness. For example, Hofbauer and Sandholm (2007) study the evolutionary
dynamics of simple games with random payoffs and examine the limiting behavior
as the randomness is eliminated. In Kandori et al. (1993), agents make occasional
mistakes in their strategy choices, and the authors show that there are absorbing
sets for the population’s strategy choices.

The stability concept in Proposition 2 is “weak” in the sense that it does not
guarantee convergence to x̃ either locally or globally. However, although the
present model is stochastic, the stability concept is deterministic. With more
restrictive model assumptions, it is possible to demonstrate a stronger version of
stability, but the primary goal of the paper is to demonstrate that both adherence to
the EMH and outbreaks of heterogeneity of the forecasts are possible outcomes.
The model presented here provides a formal representation of the view that the
EMH is an important benchmark for understanding asset prices, but it does not
fully describe the underlying formation of expectations or the resulting dynamics.

4.2. Exponential Weighting

For agents using the exponential weighting function (20), we present an infor-
mal argument that a restriction on Ut in relation to agent aggressiveness again
guarantees that the fraction of agents following reflectivism is increasing over
time. For reflectivism to increase under the dynamic (16), the weighted payoff
to reflectivism w(π1,t ) must be larger than the weighted average payoff wt , so

https://doi.org/10.1017/S1365100513000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100513000059


1594 WILLIAM R. PARKE AND GEORGE A. WATERS

wt/w(π1,t ) < 1. Using exponential weighting (19), this fraction may be written

wt

w(π1,t )
= x1,t−1 + x2,t−1 exp(π2,t − π1,t ) + x3,t exp(π3,t − π1,t ).

To examine the dynamics around the introduction of the mystic, assume the
martingale is small and the payoff differences in the equation are close to zero.
The following equation uses Taylor approximations of the exponential functions
around At−1 = 0 in the preceding equation with payoffs (12), (13), and (14),
eliminating powers of At−1 higher than two because they are small:

wt

w(π1,t )
∼= 1 − (2σ 4)−1

(
x2,t−1x3,t−1

1 − x1,t−1

)
A2

t−1

(
σ 2 − U 2

t

)
. (22)

If we restrict the Taylor expansion to linear terms, then U 2
t does not appear, the

ratio wt/w(π1,t ) < 1, and reflectivism’s share increases over time as with linear
weighting. When the second-order term of the Taylor approximation is included,
the sign of wt/w(π1,t ) depends on the sign of σ 2−U 2

t . Hence, if Ut is appropriately
bounded, then σ 2 − U 2

t is positive, but for U 2
t > σ 2, x1,t decreases, opening the

door to persistent heterogeneity in forecasting strategies. So, if the stochastic
innovations in the model are sufficiently large relative to agents’ aggressiveness
in switching to better performing strategies, reflective monotonicity does not hold
and mysticism has an opportunity to gain adherents. Again, stability and persistent
heterogeneity are both possible, depending on whether there is a sufficient bound
on the dividends relative to the aggressiveness of the agents. To determine the
quantitative effects of changes in model parameters on the likelihood for such
instability, we examine simulations of the asset pricing model.

5. ROBUSTNESS

The results in the preceding sections show the potential for either agreement
on the fundamental forecast within the population or persistent heterogeneity in
forecasting strategies. This section describes simulation results that quantitatively
characterize the conditions that might lead to heterogeneous expectations by con-
sidering how the following for mysticism might increase from the initial minimal
following17 nt−1 ≈ 0. We then discuss the interpretation of the model, using it to
describe bubbles and other features of financial market data.

5.1. Simulations

The simulation results confirm the intuition from the formal discussion. For suffi-
ciently bounded dividends and shocks to the martingale and for sluggish switching
between forecasting strategies, mysticism cannot attract a following. With mys-
ticism playing little or no role in the dynamics, the reflective and fundamental
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forecasts coincide, and the model reduces to the homogeneous environment cor-
responding to the EMF. However, for sufficiently large shocks, mysticism can
attract a significant following, and the extraneous martingale can have an impact
on the asset price, as seen in equation (9) for nt > 0. In such a situation, the asset
price still satisfies a weak version of the efficient markets hypothesis in that prices
and returns are not forecastable, but the strong version is not satisfied because
information besides expected future dividends impacts the asset price.

The magnitude of the stochastic elements of the model is crucial. For mysticism
to succeed, the term based on the innovations Ut—see equation (11)—must be
large relative to the curvature of w(π), which we interpret as aggressiveness of
the agents. Furthermore, the term At , which is based on the martingale, must be
in a range where the covariance term UtAt−1 in the mystic payoff (14) outweighs
the impact of the third term with A2

t−1, as indicated in the proof of Proposition 2.
Some normalization is necessary, and we set the standard deviation of the

fluctuation in fundamentals, y∗
t − E(y∗

t |�t−1) in (11), to σ ∗ = 1. We set the dis-
count factor to α = 0.99. The other two parameters are either C or σ 2 and the
standard deviation ση of the martingale innovation ηt = mt −mt−1. The innovation
in fundamentals and the innovation in the martingale are both taken to be normally
distributed, which means that the conditions for stability in Proposition 2 and
equation (22) may be violated for some t . Whether this is quantitatively important
is a key question to be examined through simulations.

The initial population share for fundamentalism is set to the minimum
x2,0 = 0.05, but mysticism starts at x3,0 = 0.0001, which is 500 times smaller.
At the start, then, n0 = 0.002 and agents are very nearly following the fundamen-
talist forecast. Therefore, if mysticism cannot attract a much greater following,
then the martingale term has little impact and the asset price is governed by the
EMH.

The unconstrained dynamic given by the weighted replicator (16) must be
augmented to account for behavior at or near the boundaries of the simplex.
Assumption 1 ensures that the fraction of followers of fundamentalism cannot fall
below the minimum δ2. Similarly, if x3,t falls below 0.0001 in a given period, we
reset the fraction of agents following mysticism to that starting value. When the
fractions given by the unconstrained dynamics break these bounds, we set those
fractions to their minima and allocate the other fractions so that x1,t +x2,t +x3,t = 1
and the unconstrained fractions are in proportion to their weighted payoffs. For
example, to make Assumption 1 operational, if equation (16) sets x2,t+1 < δ2,
then we let x2,t+1 = δ2 and use equation (16) with only the other two forecasting
strategies to determine the division of the remaining fraction18 of agents 1 − δ2.
Last, when the fraction of mystics is reset to its minimum x3,t+1 = 0.0001, the
martingale is restarted at zero mt+1 = 0.

We define robustness in terms of the probability that mysticism attains a specific
percentage following. The simulations start at x3,0 = 0.0001. We calculate the
probability that x3,t ≥ 0.20 at any time within the first 100 periods. If we frequently
observe x3,t ≥ 0.20 within the first 100 periods, we conclude that, for the given
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FIGURE 1. σ 2 = 1.

parameter values, the tendency to converge to a single forecast is not robust to one
agent in 10,000 experimenting with mysticism.

Figures 1 and 2 show sample simulations with ση = 1.0 for exponential weight-
ing with a low level of aggressiveness, σ 2 = 1 in Figure 1, and a high level,
σ 2 = 1/4 in Figure 2. Along with the fractions of followers for the three strategies,
the figures show the resulting asset price deviations from its steady state. Following
Branch and Evans (2011), we assume that dividends are iid, ut ∼ N(1.0, 1.0),
which implies that the asset price under the EMH is a constant, so any variation

FIGURE 2. σ 2 = 1/4.
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TABLE 2. Truncated squared errors (18): Probability x3,t ≥ 0.20
for some t ≤ 100, 10,000 trials

C = 16 C = 8 C = 4 C = 2 C = 1

ση = 1/16 0.001 0.065 0.357 0.642 0.776
ση = 1/8 0.002 0.088 0.507 0.829 0.939
ση = 1/4 0.002 0.122 0.649 0.951 0.994
ση = 1/2 0.002 0.151 0.752 0.988 1.000
ση = 1 0.003 0.173 0.834 0.997 1.000
ση = 2 0.003 0.183 0.846 0.998 1.000
ση = 4 0.003 0.172 0.774 0.979 0.997
ση = 8 0.002 0.110 0.570 0.882 0.953
ση = 16 0.001 0.064 0.359 0.662 0.791

in the asset price must be the result of heterogeneity in the forecasting strategies.
Parke and Waters (2007) show simulations of a related model with persistence
in the dividend process. Persistence of the dividends affects the asset price, but
the robustness analysis presented here depends only on the magnitude of the
innovations.

The simulation for a low level of aggressiveness in switching between strategies
in Figure 1 shows minimal variation in the asset price, and mysticism never exceeds
the threshold 0.2. In contrast, the simulation in Figure 2 has multiple significant
outbreaks where mysticism is the dominant strategy and the asset price shows
deviations from its steady state value.

Table 2 (the truncation weighting function) and Table 3 (the exponential weight-
ing function) report results for these probabilities and show rather forcefully that
mysticism will be an important factor if agents are sufficiently aggressive and the
martingale innovations are sufficiently large. Although convergence in Table 2 to
a single expectation is common for C = 16 and likely for C = 8, the probability
of episodes of mysticism approaches one for smaller values of C. In Table 3,

TABLE 3. Exponential weighting (19): Probability x3,t ≥ 0.20 for some t ≤
100, 10,000 trials

σ 2 = 1 σ 2 = 1/2 σ 2 = 1/4 σ 2 = 1/8 σ 2 = 1/16

ση = 1/16 0.001 0.015 0.157 0.444 0.615
ση = 1/8 0.001 0.051 0.382 0.802 0.948
ση = 1/4 0.003 0.128 0.671 0.970 0.998
ση = 1/2 0.006 0.235 0.848 0.996 1.000
ση = 1 0.011 0.327 0.910 0.999 1.000
ση = 2 0.018 0.341 0.890 0.998 1.000
ση = 4 0.015 0.258 0.762 0.973 0.998
ση = 8 0.010 0.153 0.530 0.861 0.953
ση = 16 0.006 0.070 0.305 0.613 0.780
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TABLE 4. Truncated squared errors (18): mean of x3,100, 10,000 trials

C = 16 C = 8 C = 4 C = 2 C = 1

ση = 1/16 0.0011 0.0428 0.0863 0.0655 0.0504
ση = 1/8 0.0013 0.0599 0.1118 0.1023 0.0880
ση = 1/4 0.0017 0.0580 0.1361 0.1406 0.1425
ση = 1/2 0.0012 0.0485 0.1259 0.1650 0.1765
ση = 1 0.0013 0.0257 0.0871 0.1591 0.1936
ση = 2 0.0005 0.0115 0.0528 0.1145 0.1540
ση = 4 0.0002 0.0051 0.0303 0.0661 0.0913
ση = 8 0.0001 0.0024 0.0154 0.0344 0.0465
ση = 16 0.0001 0.0012 0.0066 0.0179 0.0253

if the convexity parameter σ 2 is 1/4 or smaller and the martingale innovation
standard deviation ση is at least 1/8, then the probability of significant episodes
of mysticism ranges from over one-half to 1.000. Together, Tables 2 and 3 tell a
consistent story. If agents are aggressive, which we can identify as σ 2 ≤ 1/4 or
C ≤ 4, then the outcome is not well characterized as convergence to homogeneous
expectations. The probability of repeated episodes of mysticism approaches 1.000
for some parameter combinations.

For martingale innovations with standard deviation above ση = 2, however,
the frequency of mystic success declines. For high levels of At−1, the reflective
payoff (12) is superior because the large martingale terms involving A2

t−1 in the
payoffs to fundamentalism (13) and mysticism (14) overwhelm the covariance
terms involving UtAt−1. This intuition is also the reason that only a restriction on
Ut , and not At−1 or the payoffs, is necessary for stability in Proposition 2.

Tables 4–7 give a snapshot of the behavior of the model after 100 periods.
Tables 4 and 6 show the mean fraction of mystic followers x3,100 for the linear and
exponential weighting cases, whereas Tables 5 and 7 show the standard deviations
of those values over 10,000 trials for the two cases. In cases where mysticism

TABLE 5. Truncated squared errors (18): standard deviation of
x3,100, 10,000 trials

C = 16 C = 8 C = 4 C = 2 C = 1

ση = 1/16 0.0296 0.1880 0.2593 0.2295 0.2032
ση = 1/8 0.0326 0.2186 0.2888 0.2792 0.2614
ση = 1/4 0.0371 0.2128 0.3128 0.3179 0.3195
ση = 1/2 0.0295 0.1963 0.3030 0.3377 0.3464
ση = 1 0.0310 0.1452 0.2590 0.3337 0.3574
ση = 2 0.0194 0.0993 0.2063 0.2917 0.3275
ση = 4 0.0087 0.0658 0.1581 0.2283 0.2639
ση = 8 0.0000 0.0450 0.1142 0.1678 0.1948
ση = 16 0.0000 0.0304 0.0746 0.1230 0.1457
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TABLE 6. Exponential weighting (19): mean of x3,100, 10,000 trials

σ 2 = 1 σ 2 = 1/2 σ 2 = 1/4 σ 2 = 1/8 σ 2 = 1/16

ση = 1/16 0.0002 0.0032 0.0218 0.0459 0.0405
ση = 1/8 0.0004 0.0067 0.0464 0.0955 0.0957
ση = 1/4 0.0005 0.0148 0.0819 0.1459 0.1621
ση = 1/2 0.0010 0.0262 0.1124 0.1952 0.2124
ση = 1 0.0011 0.0285 0.1022 0.1783 0.2058
ση = 2 0.0010 0.0173 0.0613 0.1150 0.1529
ση = 4 0.0005 0.0062 0.0249 0.0631 0.0883
ση = 8 0.0003 0.0029 0.0116 0.0300 0.0459
ση = 16 0.0003 0.0012 0.0053 0.0146 0.0246

could not gain followers, the mean values are at or close to the starting value of
0.0001 with minimal variation. However, when mysticism has a chance, the means
are well above the minimum and show great variation in the possible outcomes,
implying that it is not hard to find instances where mysticism is the dominant
strategy.

As noted in the Introduction, the timing of the general dynamic (16) is different
from that in some standard developments of the replicator. For example, Samuelson
(1997, p. 64) discusses a dynamic of the form

xi,t+1 − xi,t = xi,t

w(πi,t ) − wt

wt

, (23)

where wt = x1,tw(π1,t ) + x2,tw(π2,t ) + · · · + xn,tw(πn,t ), whereas the dynamic
(16) lags the right-hand-side population shares xi,t−1, a natural step given that the
time t payoffs πi,t depend on time-(t − 1) strategy choices represented by nt−1 in
the payoffs to fundamentalism (13) and mysticism (14). Simulations of the model
using the more standard dynamic19 (23) give outcomes almost identical to those
presented here, so the results are not dependent on the choice of timing.

TABLE 7. Exponential weighting (19): standard deviation of x3,100, 10,000 trials

σ 2 = 1 σ 2 = 1/2 σ 2 = 1/4 σ 2 = 1/8 σ 2 = 1/16

ση = 1/16 0.0012 0.0307 0.1025 0.1506 0.1368
ση = 1/8 0.0056 0.0524 0.1583 0.2263 0.2208
ση = 1/4 0.0088 0.0864 0.2202 0.2807 0.2893
ση = 1/2 0.0169 0.1249 0.2595 0.3221 0.3305
ση = 1 0.0217 0.1341 0.2512 0.3160 0.3316
ση = 2 0.0215 0.1065 0.2000 0.2663 0.3029
ση = 4 0.0143 0.0620 0.1282 0.2064 0.2433
ση = 8 0.0091 0.0442 0.0861 0.1427 0.1816
ση = 16 0.0127 0.0273 0.0587 0.1001 0.1357
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5.2. Interpretation

The model with outbreaks of mysticism represents an appealing model of a bubble.
Although mysticism can gain a following for certain parameter values, it cannot last
indefinitely. If mysticism is at its maximum, the presence of the minimum fraction
following fundamentalism ensures that the mystic and reflective forecasts are not
identical. Although the mystic forecast can outperform the reflective forecast for
given periods, the expected payoff of the reflective forecast is superior to the
expected payoff to mysticism so agents eventually abandon mysticism. Hence,
bubbles arise and collapse endogenously, as shown in Figure 2, in contrast to
the models on rational bubbles.20 Furthermore, the reflective forecast is an apt
description of bubble psychology. Agents adopt a forecast based on information
they believe to be extraneous because other agents are using that information.

In practice there could be many mystic forecasts, making persistent hetero-
geneity more likely. There is an abundance of variables—exchange rates and
commodity prices being two of many examples—that might be considered for
use in forecasting asset prices. Hence, for a given asset, it is quite possible that
an extraneous variable exists that has the characteristics necessary to serve the
role of the martingale in the present model. We focus on a single martingale
alternative to clarify the conditions necessary for mysticism to arise. Furthermore,
when one mystic forecast does gain a following, agents will tend to coordinate on
that strategy. Note that when mysticism gains a large following, i.e., nt is close
to one, the mystic payoff (14) is close to the reflective payoff because the impact
of the martingale (third) term in (14) is minimized. Although an extension of the
model to include more forecasts might be desirable to calibrate to financial market
data, the intuition of the present model should hold because agents will tend to
coordinate on a successful mystic.

It might be argued that the existence of a minimum fraction of fundamentalists is
unlikely, given that mysticism can have significant periods of success. However, if
all agents adopt the mystic forecast, the model collapses to a never-ending rational
bubble, which is economically implausible. As we note following Assumption 1,
this minimum fraction of fundamentalists exists as long as some agents believe
standard asset pricing textbooks. The small fraction of unyielding fundamentalists
is all that is necessary to ensure that the asset price remains connected to the
dividends in the long run.

The conclusion that extraneous information embodied in the mystic forecast can
affect asset prices depending on the magnitude of the shocks and the aggressiveness
of the agents has both theoretical and quantitative support. Hence, asset price
bubbles arising from the presence of mysticism are a definite possibility, but so are
stretches of time in which the EMH is satisfied. The shocks to the fundamentals are
closely related to the uncertainty about future dividends, suggesting that bubbles
are more likely to arise for the stocks of firms in new industries or for recently
developed asset classes, where judgements about future profits and performance
are difficult.
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Parke and Waters (2007) show that, when conditions are favorable for repeated
episodes of mysticism, the observed excess returns will exhibit volatility clus-
tering. Standard tests for autoregressive conditional heteroskedasticity (ARCH)
reject the null of homoskedasticity. The widespread finding of ARCH effects in
empirical work could thus be taken as supporting the notion that aggressive agents
are precluding convergence to a single expectation.

6. SUMMARY AND CONCLUSIONS

Our evolutionary game theory approach demonstrates that agreement on a unique
rational expectation and the persistent presence of heterogeneous forecasts based
on extraneous information are both distinct possibilities. The primary determining
factor is the aggressiveness of the agents in switching forecasts relative to the
magnitude of the stochastic elements. Convexity in the weighting function of
the payoffs in the evolutionary game theory dynamic is directly related to the
switching speed. Sluggish adjustment and small shocks correspond to stability of
the point where mysticism is eliminated and agents coordinate on a forecast corre-
sponding to the efficient markets hypothesis. Higher aggressiveness gives rise to
the possibility that mysticism could play a significant role in asset price dynamics,
potentially leading to persistent deviations from the fundamental forecast.

These results have a direct bearing on the merits of assuming that all agents agree
on a single forecast. The theoretical results imply that such an assumption may
be a reasonable abstraction for agents not overly aggressive in pursuing the best
forecast, but also imply that an environment populated by aggressive agents may
be fertile ground for emergence of heterogeneous expectations. The simulation
results confirm that, for our asset pricing example, sufficient agent aggressiveness
can lead to persistent heterogeneous expectations.

NOTES

1. The econometrics literature in the tradition of Box and Jenkins (1970) specifically focuses on
the advantages of empirical models over theory-based models.

2. Covel (2004) describes the benefits of trend following. Hommes (2006) surveys models with
heterogeneous, boundedly rational forecasts.

3. Blanchard (1979), Evans (1991), and Charemza and Deadman (1995) are examples of rational
bubble models. Pesaran (1987) discusses the implications of the multiplicity of solutions.

4. There are a number of boundedly rational or behavioral alternative forecasting strategies. Al-
though some of these are appealing, we focus on rational bubble forecasts to introduce heterogeneity
in a disciplined way.

5. Bates and Granger (1969) and Granger and Ramanathan (1984) discuss the potential benefits.
Elliot and Timmerman (2008) has references such as Stock and Watson (1999) that empirically verify
that combining forecasts can improve performance.

6. Branch and Evans (2007) study dynamic switching with multinomial logit in a Lucas-style
macro model. Horst and Wenzelburger (2008) examine the long-run behavior of a related asset-pricing
model.

7. One could impose a cost on reflectivists because they use more information, which would make
the adoption of mysticism more likely.
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8. This equation could apply equally to aggregate prices, exchange rates, etc..
9. In particular, there is a constant supply of a risky asset, and agents have a common belief about

the variance of the returns.
10. There are several important differences between our analysis and that of Brock and Hommes

(1998). Our choice of strategies differs from theirs. Brock and Hommes take payoffs to equal trading
profits, which are a linear rather than concave function of forecast errors. Their discrete choice updating
mechanism, as we note in the next section, does not allow convergence to a single expectation.

11. Even an auxiliary belief in a stationary solution does not rule out a martingale in a finite number
of periods. It is not possible to know with certainty that mt is nonstationary from a finite data sample.
In fact, when mysticism grows in popularity, that growth will often occur in the first few periods, well
before tests for nonstationarity have useful power.

12. Elliott and Timmerman (2008) discuss the role of mean squared prediction error and forecast
combination in the literature on forecasting.

13. Such dynamics emerges from learning models where myopic agents repeatedly play a game
and update their strategy choices over time. Hence they are not aware of the equation describing the
evolution of xt such as the one preceding, as noted in the discussion of the reflective forecast error
following equation (11).

14. Parke and Waters (2007) use an alternative timing in a related model. As occurs for some discrete-
time dynamics—see Weibull (1998, Sect. 4.1)—the present approach can produce overshooting, where
xi,t could fall below zero or the fraction of fundamentalists fall below δ2. For the simulations, we specify
that if xi,t falls below its minimum, it is reset to that value for the next period and the other fractions
are set proportional to the fractions given (16). More details are given in Section 5.

15. Hofbauer and Sigmund (1988, p. 133), Samuelson (1997, p. 66), Hofbauer and Sigmund (1998,
pp. 76–77), and Weibull (1998, pp. 122–123) discuss this version of the replicator dynamic.

16. It is not possible to show that bounds on the innovations imply a bound on the reflective forecast,
but, for practical purposes, this is the case. Investigation of alternative versions of the model where
this point may be made explicitly are left for future work.

17. Binmore et al. (1995) introduce drift, which is a similar approach that examines the effects of
introducing a small fraction using a strategy.

18. A similar rule is used if x1,t becomes negative for the unconstrained dynamic, though the details
do not affect our analysis of the robustness to the introduction of mysticism.

19. Note that this dynamic could be simplified so that only xi,t+1 appeared on the left-hand side.
20. See, for example Evans (1991). See Parke and Waters (2007) for further discussion and simulation

examples.
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APPENDIX

To prove Proposition 2, we first examine the one case where, given the restriction in the
proposition, reflectivism could lose followers, but mysticism is eliminated. This situation
arises for a small n when the covariance term UA is negative and fundamentalism gains
followers. The details of the proof are rather involved, but the intuition is the following. If n

is small, for fundamentalism to be the best, the term A2 must be so large that the weighted
payoff to mysticism must be zero in two successive periods, ensuring that mystic followers
are eliminated from the population.

LEMMA 5. If w(π2,t ) > 0 and w(π3,t ) = 0, then either x1,t+1 > x1,t or x3,t+1 = 0.

Proof. Examining the dynamic (16) for mysticism, if w(π3,t ) = 0 and x3,t−1 ≥ x3,t , then
x3,t+1 = 0 follows directly. We must show that if x1,t+1 > x1,t is not true, then it must be
the case that x3,t−1 ≥ x3,t , which implies that mysticism is eliminated in period t + 1. This
case is somewhat different from the case where the weighted payoff on fundamentalism is
zero because we do not assume a minimum bound on mysticism.
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If x1,t+1 ≤ x1,t and w(π3,t ) = 0, then fundamentalism must gain adherents, so w(π2,t ) >

0. The condition w(π1,t ) ≤ wt becomes (1 − x1,t−1)w(π1,t ) ≤ x2,t−1w(π2,t ), which is
equivalent to

C − U 2
t < (1 − nt−1)

(−2UtAt−1 − nt−1A
2
t−1

)
. (A.1)

Because w(π2,t ) > 0, it must be the case that UtAt−1 < 0. From the condition in the
proposition, C − U 2

t > (1 − ϕ)C and |Ut | <
√

ϕC. Therefore, because nt−1 > 0, for
A′ = (1−ϕ)C√

ϕC
, inequality (A.1) implies that |At−1| ≥ A′. Note that as ϕ → 0, A′ → ∞.

To show that x3,t−1 ≥ x3,t , we must demonstrate that w(π3,t−1) = 0, which is equivalent
to

C − U 2
t−1 < (1 − nt−2)

(−2Ut−1At−2 + (1 − nt−2) A2
t−2

)
. (A.2)

If this inequality is true for Ut−1At−2 > 0, it is true for Ut−1At−2 < 0 as well. Because
C − U 2

t > C, |Ut | <
√

ϕC, and 1 − nt−2 > δ2, there exists an A′′ such that |At−2| > A′′

guarantees the inequality, and A′′ is decreasing in ϕ. Here, for the inequality to hold, the
A2 term must be sufficiently large, in contrast to the inequality (A.1), where |UA| must be
sufficiently large.

However, a lower bound on At−1 implies a lower bound on At−2. By definition (see
the discussion after equation (12)), the term At−1 = α−t−1mt−1 = α−1At−2 + α−t−1ηt−1,

recalling that ηt is the innovation to the martingale, or At−2 = αAt−1 − α−t ηt−1. The
definition of U (11) in light of its bound |U | <

√
ϕC for any n ∈ [0, 1] implies that

|α−t ηt−1| <
√

ϕC. Hence, if x1,t+1 ≤ x1,t and w(π3,t ) = 0, implying that At−1 > A′

from above, then At−2 > αA′ − √
ϕC. Because αA′ − √

ϕC → ∞ as ϕ → 0 and A′′ is
decreasing in ϕ, there exists a ϕ′ sufficiently small so that A′ is large enough and A′′ is
small enough to ensure that At−2 > A′′, so the inequality (A.2) is satisfied, w(π3,t−1) = 0,
and x3,t−1 ≥ x3,t , as required.

The following proof of Proposition 2 covers the other cases.

Proof. The bound on U 2
t guarantees that w(π1,t ) > 0. If w(π2,t ) > 0 and w(π3,t ) > 0,

then the inequality in the Remark following equation (15) implies that w(π1,t ) > wt and
so x1,t+1 > x1,t . The same inequality holds if both w(π2,t ) = 0 and w(π3,t ) = 0.

Suppose then that w(π2,t ) = 0 and w(π3,t ) > 0. The case where x2,t+1 hits its minimum
δ2 is treated first as a separate case. If x2,t+1 is fixed, then x1,t+1 > x1,t if and only if
w(π1,t ) > w(π3,t ) for any reasonable dynamic. This condition is equivalent to

2 (1 − nt−1) UtAt−1 − (1 − nt )
2 A2

t−1 < 0. (A.3)

Because w(π2,t ) = 0 in this case, it must be true that

C − U 2
t − 2nt−1UtAt−1 − n2

t−1A
2
t−1 < 0,

but the condition from the proposition Ut
2 < ϕC implies that C − U 2

t > (1 − ϕ)C.

Combining inequalities yields

2nt−1UtAt−1 + n2
t−1A

2
t−1 > (1 − ϕ)C.

For this inequality to be true, there must be a minimum A′′′ > 0 such that |At−1| > A′′′.
Now, we can show the inequality (A.3), guaranteeing that w(π1,t ) > w(π3,t ) is satisfied

in this case for some ϕ′ sufficiently small. If Ut and At−1 have different signs, (A.3) is
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satisfied automatically. If they have the same signs, (A.3) is satisfied as long as

|Ut | <
1

2
(1 − nt ) |At−1| . (A.4)

In this case, we have |At−1| > A′′′ > 0. Furthermore, because x2,t+1 ≥ δ2, it is also
the case that (1 − nt ) > δ2. Therefore, there exists a ϕ′′ ∈ (0, 1) such that for Ut

2 < ϕC,
the inequality (A.4) is satisfied and therefore so is x1,t+1 > x1,t

For the case where w(π2,t ) = 0 and w(π3,t ) > 0 when x2,t+1 is greater than its minimum,
the condition for x1,t+1 > x1,t is w(π1,t ) > nt−1w(π3,t ), which is weaker than the condition
w(π1,t ) > w(π3,t ) for the case when x2,t+1 = δ2, so the preceding argument applies.

So x1,t+1 > x1,t , except in the case covered by the preceding lemma where x3,t+1 = 0.

So for ϕ = min{ϕ′, ϕ′′}, Proposition 2 holds.

The proof of Corollary 4 follows. The one minor complication is that x1 − x̃1 is not the
same as the distance between x and x̃.

Proof. Given ε > 0, there exists a δ′ > 0 such that x1,t − x̃1 < δ′ implies that
x1,t ∈ B(̃x, ε). Similarly, given δ′ > 0, there exists a δ > 0 such that x1,t ∈ B(̃x, δ) implies
that x1,t − x̃ < δ′. Therefore, x1,t ∈ B(̃x, δ) implies that x1,t − x̃ < δ′ and Proposition 2
implies that x1,t+k − x̃ < δ′ or x3,t+k = 0. Hence, xt+k ∈ B(̃x, ε) or x3,t+k = 0.

https://doi.org/10.1017/S1365100513000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100513000059



