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In this paper, we investigate the fast signal diffusion limit of solutions of the fully
parabolic Keller–Segel–Stokes system to solution of the parabolic–elliptic-fluid
counterpart in a two-dimensional or three-dimensional bounded domain with smooth
boundary. Under the natural volume-filling assumption, we establish an algebraic
convergence rate of the fast signal diffusion limit for general large initial data by
developing a series of subtle bootstrap arguments for combinational functionals and
using some maximal regularities. In our current setting, in particular, we can remove
the restriction to asserting convergence only along some subsequence in
Wang–Winkler and the second author (Cal. Var., 2019).
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1. Introduction

Keller–Segel system. In their remarkable paper [12], Keller and Segel heuris-
tically derived the following mathematical model (for the short Keller–Segel
system): {

∂tn = τ1Δn −∇ · (n∇c
)
,

∂tc = τ2Δc − c + n
(1.1)

to describe the growth phenomena mediated by a chemoattractant, that is, the
aggregation of Dictyostelium discoideum due to an attractive chemical substance,
where n and c stand for the cell density and the concentration of the chemical sub-
stance, respectively, whereas the positive constants τ1 and τ2 denote the diffusivity
of the cells and of the chemoattractant, respectively. The Keller–Segel system (1.1),
which looks simple at first sight, is a very rich mathematical system and it has been
an object of very extensive investigation for the last 50 years. A striking feature of
system (1.1) consists of its ability to spontaneously enhance the singularity forma-
tion in the sense of finite-time blow-up throughout various ranges of its ingredients.

c© The Author(s), 2020. Published by Cambridge University Press on behalf of

The Royal Society of Edinburgh

1972

https://doi.org/10.1017/prm.2020.88 Published online by Cambridge University Press

mailto:limin_pde@163.com
mailto:zxiang@uestc.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2020.88&domain=pdf
https://doi.org/10.1017/prm.2020.88


Convergence rate of the fast signal diffusion limit 1973

For instance, all solutions to the homogenous Neumann initial-boundary value prob-
lem of system (1.1) in a bounded domain Ω ⊂ R

d remain global and bounded when
either d = 1, or d = 2 and the initial total mass of cells

∫
Ω

n0 < 4π (see [20,21]),
whereas it possesses some solutions blowing up in finite time when either d � 3, or
when d = 2 and the total mass

∫
Ω

n0 is large in some sense (see [10,34]).
Since the blow-up is an extreme case, the early literature also aims to confirm an

intuitive idea that the tendency towards blow-up can be weakened if at large cell
densities the cross-diffusion is inhibited. In particular, for the prototypical case{

∂tn = τ1Δn −∇ · (nS(n)∇c
)
,

∂tc = τ2Δc − c + n,
(1.2)

a complete picture is available: if

S(n) � CS

(1 + n)α
with α > 1 − 2

d
(1.3)

for some positive constant CS , then all solutions to the homogeneous Neumann
initial-boundary value problem of system (1.2) are global and uniformly bounded,
whereas if

S(n) � CS

(1 + n)α
with α < 1 − 2

d

and Ω ⊂ R
d (d � 2) is a ball, then some solution may blow up in finite time (see,

e.g. Horstmann–Winkler [11]). Thus αc := 1 − 2/d is the critical blow-up exponent,
which is related to the presence of a so-called volume-filling effect.

Chemotaxis-(Navier–)Stokes system. The interaction between populations
of chemotactically migrating individuals and viscous fluid environments has been
another objective of considerable developments in the mathematical literature
during the past decade. This is partially stimulated by the striking experi-
ments revealing spontaneous formation of plume-like aggregates in populations of
Bacillus subtilis suspended in sessile water drops, in such situations it may be nec-
essary to take into account the mutual interaction of cells and their movement
on the one hand, and of the surrounding medium on the other hand (see Tuval
et al. [26]). Accordingly, the following coupled chemotaxis-(Navier–)Stokes system
has been proposed by Tuval et al. [26] to describe the chemotactic movement,
signal consumption, transport of both cells and signal through the fluid, and the
buoyancy-driven effect of cells on the fluid dynamics:⎧⎪⎪⎨⎪⎪⎩

∂tn + u · ∇n = Δn −∇ · (nS∇c
)
,

∂tc + u · ∇c = Δc − nf(c),
∂tu + κ(u · ∇)u + ∇P = Δu + n∇φ,

∇ · u = 0

(1.4)

for the cell population density n, the signal concentration c and the fluid variables
u and P , where the chemotactic sensitivity S, the signal consumption rate f and
the gravitational potential φ are given parameter functions. The coefficient κ � 0
is related to the strength of nonlinear fluid convection. System (1.4) has been the
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groundwork for many articles concerning the mathematical analysis of chemotaxis–
fluid interaction since the first analytical results asserting local existence of weak
solutions in Lorz [16]. Obtaining results concerning the global existence of solutions
is far from trivial. In the two-dimensional (2D) setting, global classical solutions
stemming from reasonably smooth initial data have been shown to exist in [5,33],
whereas many results treating variants of system (1.4) in three-dimensional (3D)
frameworks are again restricted to weak solutions emanating from small initial data
[4]. Intense analysis on the latter has confirmed that after some relaxation time,
this weak solution enjoys further properties of an eventual energy solution [37].
We also refer to more recent studies on system (1.4) for the large time behaviour
[2,29,35,36,40] or for the more realistic boundary conditions on the chemical
signal [22,25,40].

Concerning the framework where the chemical is produced by the cells instead
of consumed, as in the actual Keller–Segel model, that is

⎧⎪⎪⎨⎪⎪⎩
∂tn + u · ∇n = Δn −∇ · (nS(n)∇c

)
,

∂tc + u · ∇c = Δc − c + n,
∂tu + κ(u · ∇)u + ∇P = Δu + n∇φ,

∇ · u = 0,

(1.5)

a wide array of studies dedicated to the mathematical analysis under the volume-
filling assumption (1.3), where indeed the scalar function S can be replaced by
a general matrix-valued sensitivity function S(x, n, c) (see [27,28,31,32,38]) by
following a recent modelling approach in which for chemotactic movements of bac-
terial populations, the chemotactic sensitivity S is in general a tensor and when
the cells are subject to external forces, this tensor need not be symmetric [41]. In
particular, it has been showed that under the assumption of

|S(x, n, c)| � CS

(1 + n)α
,

a corresponding homogeneous Neumann–Neumann–Dirichlet initial-boundary value
problem of system (1.5) with κ = 0 admits a global bounded classical solutions
for all sufficiently regular initial data when α > 0 for d = 2 or α > 1/3 for d = 3
([31,38]), which are consistent with the fluid-free system (1.2).

Fast signal diffusion limit. When the small cell diffusion (or the fast signal
diffusion) is involved, we may denote

ε :=
τ1

τ2

by the ratio between the diffusivity of the cells and of the chemoattractant, which
can be regarded as a relaxation time scale such that ε−1 is the rate towards
equilibrium, and replace τ1t with t in the original model (1.1) to rewrite the
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system as

⎧⎪⎪⎨⎪⎪⎩
∂tn = Δn − 1

τ1
∇ · (n∇c

)
,

ε∂tc = Δc − 1
τ2

c +
1
τ2

n.

(1.6)

Corresponding to a fast relaxation of the chemical substance c, i.e. ε ↘ 0, system
(1.6) is formally reduced to a parabolic–elliptic system

⎧⎪⎪⎨⎪⎪⎩
∂tn = Δn − 1

τ1
∇ · (n∇c

)
,

0 = Δc − 1
τ2

c +
1
τ2

n.

(1.7)

The parabolic–elliptic chemotaxis system (1.7) substantially differs from their fully
parabolic prototypical system (1.6) due to the circumstance that the cross-diffusive
interaction in (1.7)1 involves a certain memory. A comprehensive picture for the
2D parabolic–elliptic system (1.7) was obtained in [24], where the Dirac mass
formation and finiteness of blow-up points were derived without substantial restric-
tions. Even in the mass critical case, in which solutions to the Cauchy problem of
the parabolic–elliptic system (1.7) in R

2 without the damping term −(1/τ2)c on
the second equation exist globally but blow up in infinite time, it is known that the
spatial profile near the corresponding blow-up time T = ∞ is essentially dictated
by Dirac distributions (see [3,9]).

It seems natural to seek for a uniform control of the error made when approximat-
ing a fully parabolic Keller–Segel system (1.6) by its parabolic–elliptic simplification
(1.7) in terms of the parameter ε. Recently, Liu et al. [15] developed an asymptotic
method to numerically show that the limit of the solutions to the Cauchy problem
of system (1.6) without the damping term −(1/τ2)c is a solution to the correspond-
ing parabolic–elliptic counterpart (1.7). However, the above asymptotic analysis is
unclear from a rigorous standpoint, and until quite recently, with [7,19,30] we
now also have two theoretical studies linking the two systems with coupled fluid.
Precisely, in a smoothly bounded physical domain Ω ⊂ R

d with d � 1 and under
appropriate assumptions on the model ingredients, Wang et al. [30] confirmed that
some subsequence of solutions to the fully parabolic Keller–Segel–(Navier–)Stokes
system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tnε + uε · ∇nε = Δnε −∇ · (nεS(x, nε, cε) · ∇cε

)
+ f(x, nε, cε),

ε∂tcε + uε · ∇cε = Δcε − cε + nε,

∂tuε + κ(uε · ∇)uε + ∇Pε = Δuε + nε∇φ,

∇ · uε = 0

(1.8)
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does in fact converge to a solution of the parabolic–elliptic simplification⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tn + u · ∇n = Δn −∇ · (nS(x, n, c) · ∇c

)
+ f(x, n, c),

u · ∇c = Δc − c + n,

∂tu + κ(u · ∇)u + ∇P = Δu + n∇φ,

∇ · u = 0

(1.9)

in Ω × (0, T ) under the presupposed bounds

sup
ε

‖∇cε‖Lλ((0,T );Lq(Ω)) < ∞ and sup
ε

‖uε‖L∞((0,T );Lr(Ω)) < ∞ (1.10)

with some λ ∈ (2,∞], q > d and r > max{2, d} satisfying 1/λ + d/2q < 1/2. They
also concretized this in the framework of two particular examples: for certain small-
data solutions to an unforced chemotaxis-Navier–Stokes system, and for arbitrary
solutions to a one-dimensional fluid-free logistic Keller–Segel model. As far as the
Cauchy problem is concerned, we may refer to [1,13,14,23] for the fluid-free case.
For instance, Biler–Brandolese [1] established some results on convergence, in strong
topologies, of solutions of the minimal system (1.6) in the plane to solutions of the
corresponding system (1.7). Their proofs relied on some suitable space–time esti-
mates, implying the global existence of slowly decaying solutions for these models,
under a suitable smallness assumption on nε(x, 0).

Main results. In light of the above, it seems natural to further investigate the
fast signal diffusion limit in the unforced Keller–Segel–Stokes system (1.8). Our
aim is twofold: on the one hand, we will consider the global classical solutions for
general initial data in a 2D or 3D setting, which require a natural volume-filling
assumption of the form (1.3) due to the possible singularity in the fluid-free case
as mentioned before; on the other hand, we will show the convergence containing
an algebraic rate for the whole sequence of solutions. In order to make this more
precise, we shall accordingly be concerned with the initial-boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tnε + uε · ∇nε = Δnε −∇ · (nεS(x, nε, cε) · ∇cε

)
, x ∈ Ω, t > 0,

ε∂tcε + uε · ∇cε = Δcε − cε + nε, x ∈ Ω, t > 0,

∂tuε + ∇Pε = Δuε + nε∇φ, x ∈ Ω, t > 0,

∇ · uε = 0, x ∈ Ω, t > 0,(∇nε − nεS(x, nε, cε) · ∇cε

) · ν = ∇cε · ν = 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,
(1.11)

where Ω ⊂ R
d is a bounded domain with smooth boundary. The known chemotactic

sensitivity function S = (Sij)d×d is assumed to satisfy the requirements of regularity

Sij(x, nε, cε) ∈ C2
(
Ω × [0,∞) × [0,∞)

)
(1.12)

and the structural restrictions∣∣S(x, nε, cε)
∣∣ � CS

(1 + nε)α
(1.13)
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for some positive constants CS and α, and the gravitational potential function φ
satisfies

φ ∈ W 2,∞(Ω). (1.14)

As for the initial data, our basic regularity assumptions will be that⎧⎪⎪⎨⎪⎪⎩
n0 ∈ W 1,∞(Ω), n0 � 0 and n0 �≡ 0 in Ω,

c0 ∈ W 1,∞(Ω), c0 � 0 and c0 �≡ 0 in Ω,

u0 ∈ W 2,∞(Ω; R
d
)

satisfies ∇ · u0 ≡ 0 in Ω and u0 = 0 on ∂Ω.

(1.15)

It has been shown that for each fixed ε > 0, system (1.11) possesses a global bounded
classical solution (nε, cε, uε, Pε) under the condition that α > 0 for d = 2 [31] or
α > 1/3 for d = 3 [38]. Accordingly, we shall examine the relationship between
these global solutions to system (1.11) and those to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tn + u · ∇n = Δn −∇ · (nS(x, n, c) · ∇c
)
, x ∈ Ω, t > 0,

u · ∇c = Δc − c + n, x ∈ Ω, t > 0,

∂tu + ∇P = Δu + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,(∇n − nS(x, n, c) · ∇c
) · ν = ∇c · ν = 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), u(x, 0) = u0(x), x ∈ Ω

(1.16)

in a setting as general as possible. We remark that it seems that there is no any
result on the well-posedness of the coupled chemotaxis–fluid limit system (1.9)
except for Lorz [17], where the blow-up delay was numerically showed for the 2D
Cauchy problem with S ≡ 1.

Our main result asserts temporally uniform convergence of these solutions in the
limit ε → 0; more precisely:

Theorem 1.1. Let d = 2, 3, and Ω ⊂ R
d be a bounded domain with smooth bound-

ary. Assume that α > 0 for d = 2, whereas α > 1/2 for d = 3. Suppose that
(1.12)–(1.15) hold and that for ε ∈ (0, 1), (nε, cε, uε, Pε) solves system (1.11) classi-
cally in Ω × (0,∞) with nε � 0 and cε � 0 in Ω × (0,∞). Then there exists a unique
classical solution (n, c, u, P ) to system (1.16) in Ω × (0,∞) with the property that⎧⎪⎪⎨⎪⎪⎩

‖nε(·, t) − n(·, t)‖L2(Ω) + ‖nε(·, s) − n(·, s)‖L2((0,t);H1(Ω)) � C1eC1tε1/2,

‖cε(·, s) − c(·, s)‖L2((0,t);H1(Ω)) � C1eC1tε1/2,

‖uε(·, t) − u(·, t)‖L∞(Ω) + ‖uε(·, s) − u(·, s)‖L2((0,t);H1(Ω)) � C1eC1tε1/2

for all t ∈ (0,∞) and some uniform positive constant C1. For each θ ∈ (0, 1) and
p � 4, we also have{ ‖Aθuε(·, t) − Aθu(·, t)‖L2(Ω) � C2eC2tε1/2,

‖nε(·, t) − n(·, t)‖Lp(Ω) � C3eC3tε(p+d−2)/(p(d+2))

for all t ∈ (0,∞) and some positive constants C2 := C2(θ) and C3 := C3(p).
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Remark 1.1. Even for the large initial data, theorem 1.1 removes the restriction
to asserting convergence only along some subsequence in [30] (theorem 1.1 on p. 4)
and presents a precise convergence rate.

Remark 1.2. There is a subsequence of (nε, cε, uε) such that the strong and point-
wise convergence properties hold by applying lemmas 3.8 and 4.5 to the convergence
criterion in lemma 2.3.

Remark 1.3. Due to the potential initial layer, it is natural to further analyse the
uniform estimate of the correction term for cε − c. This is our future research.

Key steps in our analysis. In §3 and §4, we shall prove the existence of
classical solution (n, c, u, P ) to system (1.16) for 3D and 2D cases, respectively,
which in particular is the limit of some subsequence of solutions (nε, cε, uε, Pε) to
system (1.11). Here, our basic idea consists of finding a uniform a priori estimate
for (nε, cε, uε, Pε), which needs to satisfy the supposedly present bounds of the form
(1.10) on ∇cε and uε.

In the 3D case, the evident mass conservation property ‖nε(·, t)‖L1(Ω) =
‖n0‖L1(Ω) and the bound on ‖cε(·, t)‖L1(Ω) (lemma 2.1) is not sufficient to derive
some useful regularity information of uε and cε. Thus we will first track the time
evolution of the combinational functional of the form

‖nε(·, t)‖2α
L2α(Ω) + Kε‖cε(·, t)‖2

L2(Ω)

for some K to obtain a slightly improved uniform L2α bound for nε with respect to
ε for the 3D case (lemma 3.1), which does not give the L2 bound for cε but ensures
the Lr1 bound of uε for some r1 > 3 (corollary 3.1). The latter will further yield an
improved Lp bound for nε with 2α + 1/3 < p < (7/3)α + 1/3 by analysing an ODI
for the functional

‖nε(·, t)‖p
Lp(Ω) + ε‖∇cε(·, t)‖2

L2(Ω)

(lemma 3.3) and the Lr bound for uε with any r > 1 (corollary 3.3). Although
lacking uniform parabolicity and thus uniform bound for ∇cε, a key step is that a
very subtle bootstrap argument will finally yield the L2 bound for nε (corollary 3.4)
by investigating the time evolution of the combinational functional

‖nε(·, t)‖sk

Lsk (Ω) + ε‖∇cε(·, t)‖2
L2(Ω), (k = 1, 2, 3, . . .) (1.17)

for some sequence
{
sk

}
(lemma 3.4), which together with the damping effect of cε

provides the uniform L2 bound for ∇cε (lemma 3.5). Then the eventual Lp bound
of nε with p > 1 and L4 bound of ∇cε will follow from some similar but more
complicated calculations (lemma 3.6, corollary 3.5 and lemma 3.7). These bounds
together with the convergence criterion (lemma 2.3) imply the convergence of some
subsequence of (nε, cε, uε, Pε).

We take a similar strategy to deal with the 2D case. Indeed, unlike the 3D
case, the 2D mass conservation property ‖nε(·, t)‖L1(Ω) = ‖n0‖L1(Ω) is sufficient to
ensure the validity of the initial iterations and indeed the L4 bound of nε can be
reached by tracking the time evolution of the functional of the form (1.17) with
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different parameter choices (lemma 4.2 and corollary 4.1), which yields the uniform
L4 bounds of ∇cε and uε by following the proof of lemma 3.7. Again combining
these bounds with the convergence criterion, we obtain the convergence of some
subsequence of (nε, cε, uε, Pε).

Finally, in §5, we will attempt to establish the error control for the whole sequence
and obtain a algebraic convergence rate by using a new entropy-like evolution
estimate for the mixed functional of the form

‖nε(·, t) − n(·, t)‖2
L2(Ω) + ε‖cε(·, t)‖2

L2(Ω) + ‖uε(·, t) − u(·, t)‖2
L2(Ω).

Here, a key observation is the linear growth estimate∫ t

0

∫
Ω

∂tcεc � C(1 + t),

which follows from a uniform difference quotient estimate and some maximal reg-
ularity estimates for parabolic system and Stokes system. With the lower order
estimates at hand, the higher convergence estimates of uε and nε can be derived
from the standard smoothing effect of Stokes semigroup and the energy estimate,
respectively.

Notation: In the rest of this paper, we will suppose that (nε, cε, uε, Pε) is a
classical solution to system (1.11) in Ω × (0,∞) with ε ∈ (0, 1).

2. Preliminaries

In this section, we will collect some basic results which are valid for the solutions
of system (1.11) and have nothing to do with the particular choice of ε > 0.

Lemma 2.1. Suppose that (1.12)–(1.15) hold. Then nε � 0 and cε � 0 in Ω ×
(0,∞), and

‖nε(·, t)‖L1(Ω) = ‖n0‖L1(Ω) for all t ∈ (0,∞), (2.1)

and

‖cε(·, t)‖L1(Ω) � max
{
‖n0‖L1(Ω), ‖c0‖L1(Ω)

}
for all t ∈ (0,∞). (2.2)

Proof. The proof is rather standard and thus we omit the details. �

Lemma 2.2. Suppose that (1.12)–(1.15) hold. If

‖nε(·, t)‖Ls(Ω) � K for all t ∈ (0,∞), (2.3)

for some s > 1 and K > 0, there exists a positive constant C depending only on s,
K and c0 such that

‖cε(·, t)‖Ls(Ω) � C for all t ∈ (0,∞).
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Proof. We multiply equation (1.11)2 by cs−1
ε , and use the integration by parts and

the Young inequality to obtain

ε

s

d
dt

∫
Ω

cs
ε + (s − 1)

∫
Ω

cs−2
ε |∇cε|2 +

∫
Ω

cs
ε =

∫
Ω

nεc
s−1
ε � s − 1

s

∫
Ω

cs
ε +

1
s

∫
Ω

ns
ε

and thus

ε
d
dt

∫
Ω

cs
ε + s(s − 1)

∫
Ω

cs−2
ε |∇cε|2 +

∫
Ω

cs
ε �

∫
Ω

ns
ε

for all t ∈ (0,∞). By setting yε(t) :=
∫
Ω

cs
ε(·, t) and using (2.3), we have

y′
ε(t) +

1
ε
yε(t) � 1

ε
Ks for all t ∈ (0,∞).

Then by a basic calculation, we deduce that yε(t) � max
{∫

Ω
cs
0, Ks

}
for all t ∈

(0,∞). This completes the proof of lemma 2.2. �

Lemma 2.3 (Convergence criterion). Let d � 1, and Ω ⊂ R
d be a bounded

domain with smooth boundary, and suppose that (1.12)–(1.15) hold. Further-
more, suppose that (εj)j∈N ⊂ (0,∞) is such that εj ↘ 0 as j → ∞, and that
((nε, cε, uε, Pε))ε∈(εj)j∈N

is such that

sup
ε∈(εj)j∈N

‖∇cε‖Lλ((0,∞);Lq(Ω)) < ∞ and sup
ε∈(εj)j∈N

‖uε‖L∞((0,∞);Lr(Ω)) < ∞

with some λ ∈ (2,∞], q > d and r > max{2, d} satisfying

1
λ

+
d

2q
<

1
2
.

Then there exist a subsequence (εjk
)k∈N of (εj)j∈N and functions

n ∈ Cθ,θ/2
(
Ω × [0,+∞)

) ∩ C2+θ,1+θ/2
(
Ω × (0,+∞)

)
,

c ∈ C2+θ,θ
(
Ω × (0,+∞)

)
,

u ∈ Cθ,θ/2
(
Ω × [0,+∞); Rd

) ∩ C2,1
(
Ω × (0,+∞); Rd

)
,

P ∈ C1,0
(
Ω × (0,+∞)

)
for some θ ∈ (0, 1) such that (n, c, u, P ) is a classical solution to system (1.16) in
Ω × (0,∞) with the properties that

nε → n in C0
(
Ω × [0,∞)

)
,

nε ⇀ n in L2
loc

(
(0,∞);W 1,2(Ω)

)
,

cε → c in L∞
loc

(
(0,∞);C0(Ω)

)⋂
L2

loc

(
(0,∞);W 1,2(Ω)

)
,

∇cε
∗
⇀ ∇c in

⋂
q̂>d

L∞
loc

(
(0,∞);W 1,q̂(Ω)

)⋂
L∞

loc

(
Ω × (0,∞)

)
and

uε → u in C0
(
Ω × [0,∞); Rd

)⋂
C2,1

loc

(
Ω × (0,∞); Rd

)
as ε = εjk

↘ 0.
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Proof. The desired conclusion can be directly derived from theorem 1.1 in [30] by
taking T = ∞, where the convexity of Ω is required but can actually be removed
as pointed out by Remark (i) in [30]. �

For the chemotaxis–fluid system, it is highly nontrivial to obtain the global uni-
form (with respect to ε) a priori estimates from the basic mass conservation of nε

although we have showed the above convergence criterion. The main reason is that
due to the loss of uniform parabolicity in cε equation, it is usually difficult to derive
the temporal boundedness for cε in some Sobolev spaces.

3. Existence of solution to limit system: the 3D case

In this section, we focus on the existence of classical solution to limit system (1.16)
in the 3D setting. The basic methods are a series of subtle coupled functional
evolution estimates and a bootstrap argument.

3.1. L2α regularity of nε

The evident mass conservation property ‖nε(·, t)‖L1(Ω) = ‖n0‖L1(Ω) is not suf-
ficient to derive some useful regularity information for uε and cε directly. To
overcome this difficulty, we shall first establish a slightly improved bound for
nε by tracking the time evolution of a combinational functional of the form
‖nε(·, t)‖2α

L2α(Ω) + Kε‖cε(·, t)‖2
L2(Ω).

Lemma 3.1. Suppose that (1.12)–(1.15) hold with α > 1/2. Then there exists a
positive constant C depending only on α, n0, c0 and u0 such that

‖nε(·, t)‖L2α(Ω) � C for all t ∈ (0,∞). (3.1)

Proof. We first multiply equation (1.11)1 by n2α−1
ε , integrate by parts over Ω and

use the solenoidality of uε, the upper estimate (1.13) for S and the Young inequality
to deduce that

1
2α

d
dt

∫
Ω

n2α
ε + (2α − 1)

∫
Ω

n2α−2
ε |∇nε|2

= (2α − 1)
∫

Ω

n2α−1
ε ∇nε ·

(
S(x, nε, cε) · ∇cε

)
� (2α − 1)CS

∫
Ω

nα−1
ε |∇nε||∇cε|

� 2α − 1
2

∫
Ω

n2α−2
ε |∇nε|2 +

2α − 1
2

C2
S

∫
Ω

|∇cε|2

for all t ∈ (0,∞), which implies that

d
dt

∫
Ω

n2α
ε +

2α − 1
α

∫
Ω

|∇nα
ε |2 � α(2α − 1)C2

S

∫
Ω

|∇cε|2 := C1

∫
Ω

|∇cε|2

for all t ∈ (0,∞).
(3.2)
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We next test equation (1.11)2 by cε and use the Hölder inequality to obtain that

ε

2
d
dt

∫
Ω

c2
ε +

∫
Ω

|∇cε|2 +
∫

Ω

c2
ε

=
∫

Ω

nεcε � ‖cε‖L6(Ω)‖nε‖L6/5(Ω) for all t ∈ (0,∞). (3.3)

Due to the current 3D setting, the Sobolev embedding W 1,2(Ω) ↪→ L6(Ω) and the
L1 boundedness of cε in (2.2) ensure that

‖cε‖2
L6(Ω) � C2‖∇cε‖2

L2(Ω) + C2‖cε‖2
L1(Ω)

� C2‖∇cε‖2
L2(Ω) + C3 for all t ∈ (0,∞)

for some positive constants C2 and C3. Thus applying the Young inequality to the
right-hand side of (3.3), we have∫

Ω

nεcε � 1
2C2

‖cε‖2
L6(Ω) +

C2

2
‖nε‖2

L6/5(Ω) � 1
2

∫
Ω

|∇cε|2 +
C2

2
‖nε‖2

L6/5(Ω) +
C3

2C2

(3.4)

for all t ∈ (0,∞). For the second term on the right-hand side of (3.4), it follows
from the Gagliardo–Nirenberg inequality that one can find some positive constant
C4 such that

C2

2
‖nε‖2

L6/5(Ω) =
C2

2
‖nα

ε ‖2/α

L6/5α(Ω)
� C4‖∇nα

ε ‖2/(6α−1)
L2(Ω) ‖nα

ε ‖2(5α−1)/α(6α−1)

L1/α(Ω)

+ C4‖nα
ε ‖2/α

L1/α(Ω)

for all t ∈ (0,∞). Then due to the mass conservation (2.1) and the fact 2/(6α − 1) <
2 provided that α > 1/3, we see from the Young inequality that there exist positive
constants C5 and C6 such that

C2

2
‖nε‖2

L6/5(Ω) � C5‖∇nα
ε ‖2/(6α−1)

L2(Ω) + C5 � 2α − 1
8C1α

∫
Ω

|∇nα
ε |2 + C6

for all t ∈ (0,∞). This together with (3.3) and (3.4) entails that

ε
d
dt

∫
Ω

c2
ε +

∫
Ω

|∇cε|2 + 2
∫

Ω

c2
ε

� 2α − 1
4C1α

∫
Ω

|∇nα
ε |2 + 2C6 +

C3

C2
for all t ∈ (0,∞). (3.5)

Thus we can derive from an appropriate linear combination of (3.2) and (3.5)
that

d
dt

(∫
Ω

n2α
ε + 2C1ε

∫
Ω

c2
ε

)
+
(

2α − 1
2α

∫
Ω

|∇nα
ε |2 + C1

∫
Ω

|∇cε|2 + 4C1

∫
Ω

c2
ε

)
� 4C1C6 +

2C1C3

C2
(3.6)

for all t ∈ (0,∞). In order to establish the uniform bound for the functional∫
Ω

n2α
ε + 2C1ε

∫
Ω

c2
ε , we will use it to bound the dissipation from below. Precisely,
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we first employ the Gagliardo–Nirenberg inequality and the mass conservation (2.1)
to estimate

∫
Ω

n2α
ε = ‖nα

ε ‖2
L2(Ω) � C7

(
‖∇nα

ε ‖6(2α−1)/(6α−1)
L2(Ω) ‖nα

ε ‖4/(6α−1)

L1/α(Ω)
+ ‖nα

ε ‖2
L1/α(Ω)

)
� C8

(
‖∇nα

ε ‖6(2α−1)/(6α−1)
L2(Ω) + 1

)
for all t ∈ (0,∞), where C7 and C8 are some positive constants. Since
6(2α − 1)/(6α − 1) ∈ (0, 2) by α > 1/2, there exists a positive constant C9 such
that ∫

Ω

n2α
ε � 2α − 1

2α

∫
Ω

|∇nα
ε |2 + C9 (3.7)

for all t ∈ (0,∞). On the other hand, it is clear that

2C1ε

∫
Ω

c2
ε � 2C1

∫
Ω

c2
ε for all t ∈ (0,∞) (3.8)

due to ε ∈ (0, 1). Then by setting

yε(t) :=
∫

Ω

n2α
ε (·, t) + 2C1ε

∫
Ω

c2
ε(·, t) for each t ∈ (0,∞)

and substituting (3.7) and (3.8) into (3.6), we can deduce that

y′
ε(t) + yε(t) � 4C1C6 +

2C1C3

C2
+ C9 := C10

and thus that

yε(t) � max
{

yε(0), C10

}
� max

{∫
Ω

n2α
0 + 2C1

∫
Ω

c2
0, C10

}
for all t ∈ (0,∞).

Thereupon, we have established the slightly improved integrability estimate (3.1).
�

3.2. Low Lp regularity of uε

The following basic and essentially well-known property is the foundation of our
bootstrap argument, which shows the gain of regularity of uε from the a priori
regularity of nε.
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Lemma 3.2. Let p ∈ [1,+∞) and r ∈ [1,+∞] be such that⎧⎪⎪⎨⎪⎪⎩
r <

3p

3 − 2p
if p � 3

2
,

r � ∞ if p >
3
2
.

Then for all K > 0 there exists C = C(p, r,K, u0, φ) such that if

‖nε(·, t)‖Lp(Ω) � K for all t ∈ (0,∞),

then we have

‖uε(·, t)‖Lr(Ω) � C for all t ∈ (0,∞).

Proof. It is a direct result of applying the smoothing effect and decay estimates of
the Stokes semigroup to the variant-of-constant representation of uε. We may refer
to lemma 2.5 in [32] for details. �

Relying on the slightly improved bound on nε provided by lemma 3.1, we can
now prove the following low regularity for uε, which is the first step towards its
eventual Lp regularity.

Corollary 3.1. Suppose that (1.12)–(1.15) hold with α > 1/2. Then there exist
r1 > 3 and a positive constant C = C(r1, α, u0, φ) such that

‖uε(·, t)‖Lr1 (Ω) � C for all t ∈ (0,∞). (3.9)

Proof. By setting p := 2α, we can see from lemma 3.1 that ‖nε(·, t)‖Lp(Ω) is bounded
for t ∈ (0,∞). If 1/2 < α � 3/4 and thus 1 < p � 3/2, we have 3p/(3 − 2p) > 3.
Therefore, in this case, we can choose a r1 > 3 such that (3.9) holds by lemma 3.2.
On the other hand, if α > 3/4 and thus p > 3/2, then the estimate (3.9) holds for
any r1 ∈ [1,+∞]. This completes the proof of corollary 3.1. �

3.3. Improved Lp regularity of nε and cε, and eventual Lp regularity
of uε

In order to derive the eventual Lp regularity of uε, then we will need to proceed
to establish the more milder Lp regularity of nε. By constructing a combinational
functional, we now further increase the regularity of nε from ‖nε(·, t)‖L2α(Ω) to
‖nε(·, t)‖L2α+1/3(Ω), which is the base of our bootstrap argument.

Lemma 3.3. Suppose that (1.12)–(1.15) hold with α > 1/2. If p ∈ (2α +
1/3, (7/3)α + 1/3), then there exists a positive constant C such that

‖nε(·, t)‖Lp(Ω) � C for all t ∈ (0,∞).

Proof. We will deduce our desired result by analysing the time evolution of the
combinational functional

‖nε(·, t)‖p
Lp(Ω) + ε‖∇cε(·, t)‖2

L2(Ω).

For this purpose, we first multiply equation (1.11)1 by np−1
ε with p � 1, integrate

by parts over Ω, and use the Young inequality and the upper estimate (1.13) for S

https://doi.org/10.1017/prm.2020.88 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.88


Convergence rate of the fast signal diffusion limit 1985

to obtain

1
p

d
dt

∫
Ω

np
ε + (p − 1)

∫
Ω

np−2
ε |∇nε|2

= (p − 1)
∫

Ω

np−1
ε ∇nε ·

(
S(x, nε, cε)∇cε

)
� (p − 1)

4

∫
Ω

np−2
ε |∇nε|2 + (p − 1)C2

S

∫
Ω

np−2α
ε |∇cε|2

and thus we have

d
dt

∫
Ω

np
ε +

3(p − 1)
p

∫
Ω

|∇np/2
ε |2 � p(p − 1)C2

S

∫
Ω

np−2α
ε |∇cε|2 (3.10)

for all t ∈ (0,∞). It then follows from the Hölder inequality that

d
dt

∫
Ω

np
ε +

3(p − 1)
p

∫
Ω

|∇np/2
ε |2 � p(p − 1)C2

S

(∫
Ω

n3(p−2α)
ε

)1/3(∫
Ω

|∇cε|3
)2/3

(3.11)

for all t ∈ (0,∞). For the first integral on the right-hand side of (3.11), the
Gagliardo–Nirenberg inequality and the mass conservation (2.1) ensure that(∫

Ω

n3(p−2α)
ε

)1/3

= ‖np/2
ε ‖2(p−2α)/p

L6(p−2α)/p(Ω)

� C1

(
‖∇np/2

ε ‖θ1
L2(Ω)‖np/2

ε ‖1−θ1
L2/p(Ω)

+ ‖np/2
ε ‖L2/p(Ω)

)2(p−2α)/p

� C2‖∇np/2
ε ‖2(p−2α)/pθ1

L2(Ω) + C2 for all t ∈ (0,∞)

with θ1 := (3p(p − 2α) − p)/((3p − 1)(p − 2α)) ∈ (0, 1) due to p > 2α + 1/3 for
some positive constants C1 and C2 , and thus that(∫

Ω

n3(p−2α)
ε

)1/3

� C3

(∫
Ω

|∇np/2
ε |2

)(3(p−2α)−1)/(3p−1)

+ C3 for all t ∈ (0,∞)

(3.12)
for some positive constant C3. On the other hand, noticing that∫

Ω

|D2cε|2 =
1
2

∫
∂Ω

∇|∇cε|2 · ν −
∫

Ω

∇Δcε · ∇cε =
1
2

∫
∂Ω

∇|∇cε|2 · ν +
∫

Ω

(Δcε)2

by the integration by parts and ∇cε · ν = 0, we can apply the geometric property

∇|∇cε|2 · ν � 2CΩ|∇cε|2 (3.13)

with CΩ an upper bound for the curvatures of ∂Ω (see lemma 4.2 in [18]), the trace
theorem and the Gagliardo–Nirenberg inequality to find two positive constants C4
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and C5 such that

‖D2cε‖2
L2(Ω) � CΩ‖∇cε‖2

L2(∂Ω) + ‖Δcε‖2
L2(Ω)

� CΩ‖∇cε‖2
W 3/4,2(Ω) + ‖Δcε‖2

L2(Ω)

� C4

(
‖D2cε‖13/7

L2(Ω)‖cε‖1/7
L1(Ω) + ‖cε‖2

L1(Ω)

)
+ ‖Δcε‖2

L2(Ω)

� 1
2
‖D2cε‖2

L2(Ω) +
C5

2

(
‖cε‖2

L1(Ω) + ‖Δcε‖2
L2(Ω)

)
for all t ∈ (0,∞)

and thus that

‖D2cε‖2
L2(Ω) � C5

(
‖cε‖2

L1(Ω) + ‖Δcε‖2
L2(Ω)

)
for all t ∈ (0,∞). (3.14)

Therefore, for the second integral on the right-hand side of (3.11), again it follows
from the Gagliardo–Nirenberg inequality that(∫

Ω

|∇cε|3
)2/3

= ‖∇cε‖2
L3(Ω)

� C6

(
‖D2cε‖12/7

L2(Ω)‖cε‖2/7
L1(Ω) + ‖cε‖2

L1(Ω)

)
� C6

(
C5

(
‖cε‖2

L1(Ω) + ‖Δcε‖2
L2(Ω)

)6/7

‖cε‖2/7
L1(Ω) + ‖cε‖2

L1(Ω)

)
� C7

(
‖Δcε‖12/7

L2(Ω)‖cε‖2/7
L1(Ω) + ‖cε‖2

L1(Ω)

)
for some positive constants C6 and C7, which together with (2.2) gives that(∫

Ω

|∇cε|3
)2/3

� C8

(∫
Ω

|Δcε|2
)6/7

+ C8 for all t ∈ (0,∞) (3.15)

with some positive constant C8. Substituting (3.12) and (3.15) into (3.11), we
deduce that

d
dt

∫
Ω

np
ε +

3(p − 1)
p

∫
Ω

|∇np/2
ε |2

� C9

(∫
Ω

|∇np/2
ε |2

)(3(p−2α)−1)/(3p−1)(∫
Ω

|Δcε|2
)6/7

+ C9

(∫
Ω

|∇np/2
ε |2

)(3(p−2α)−1)/(3p−1)

+ C9

(∫
Ω

|Δcε|2
)6/7

+ C9

� (p − 1)
p

∫
Ω

|∇np/2
ε |2 + C10

(∫
Ω

|Δcε|2
)(3p−1)/7α

+ C10

(∫
Ω

|Δcε|2
)6/7

+ C10 for all t ∈ (0,∞)
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with C9 := p(p − 1)C2
SC3C8 and C10 > 0. Due to (3p − 1)/7α ∈ (0, 1) by 1/3 < p <

(7/3)α + 1/3, we can use the Young inequality again to infer that

d
dt

∫
Ω

np
ε +

2(p − 1)
p

∫
Ω

|∇np/2
ε |2 �

∫
Ω

|Δcε|2 + C11 for all t ∈ (0,∞) (3.16)

for some C11 > 0.
To absorb the integral on the right-hand side of (3.16), we multiply equation

(1.11)2 by −Δcε and integrate on Ω to get that

ε

2
d
dt

∫
Ω

|∇cε|2 +
∫

Ω

|Δcε|2 +
∫

Ω

|∇cε|2 = −
∫

Ω

nεΔcε +
∫

Ω

(uε · ∇cε)Δcε (3.17)

for all t ∈ (0,∞). For the first integral on the right-hand side of (3.17), it is clear
that

−
∫

Ω

nεΔcε � 1
4

∫
Ω

|Δcε|2 +
∫

Ω

n2
ε for all t ∈ (0,∞). (3.18)

It follows from the Gagliardo–Nirenberg inequality and the mass conservation (2.1)
that∫

Ω

n2
ε = ‖np/2

ε ‖4/p

L4/p(Ω)
� C12‖∇np/2

ε ‖4θ2/p
L2(Ω)‖np/2

ε ‖(4(1−θ2))/p

L2/p(Ω)
+ C12‖np/2

ε ‖4/p

L2/p(Ω)

� C13‖∇np/2
ε ‖4θ2/p

L2(Ω) + C13

with θ2 := 3p/(2(3p − 1)) ∈ (0, 1) and some positive constants C12 and C13. Then
due to p > 2α + 1/3 > 4/3, we see 4θ2/p = 6/(3p − 1) < 2, which ensures us to
apply the Young inequality to find C14 > 0 such that∫

Ω

n2
ε � p − 1

2p

∫
Ω

|∇np/2
ε |2 + C14 for all t ∈ (0,∞),

which together with (3.18) yields that

−
∫

Ω

nεΔcε � 1
4

∫
Ω

|Δcε|2 +
p − 1
2p

∫
Ω

|∇np/2
ε |2 + C14 for all t ∈ (0,∞).

(3.19)
On the other hand, for the second integral on the right-hand side of (3.17), we use
the Hölder inequality and corollary 3.1 to obtain that∫

Ω

(uε · ∇cε)Δcε � ‖Δcε‖L2(Ω)‖uε‖Lr1 (Ω)‖∇cε‖L2r1/(r1−2)(Ω)

� C15‖Δcε‖L2(Ω)‖∇cε‖L2r1/(r1−2)(Ω) (3.20)

for all t ∈ (0,∞) and some C15 > 0, where r1 is taken from corollary 3.1. For the last
factor in (3.20), we employ the Gagliardo–Nirenberg inequality and the estimate
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(3.14) to get

‖∇cε‖L2r1/(r1−2)(Ω) � C16‖D2cε‖θ3
L2(Ω)‖cε‖1−θ3

L1(Ω) + C16‖cε‖L1(Ω)

� C16C
θ3/2
5

(
‖cε‖2

L1(Ω) + ‖Δcε‖2
L2(Ω)

)θ3/2

‖cε‖1−θ3
L1(Ω)

+ C16‖cε‖L1(Ω) for all t ∈ (0,∞),

with θ3 := (5r1 + 6)/7r1 ∈ (0, 1) due to r1 > 3 and a positive constant C16, which
together with the estimate (2.2) implies that

‖∇cε‖L2r1/(r1−2)(Ω) � C17‖Δcε‖θ3
L2(Ω) + C17 for all t ∈ (0,∞) (3.21)

for some C17 > 0. Substituting (3.21) into (3.20) and using the Young inequality,
we obtain∫

Ω

(uε · ∇cε)Δcε � C15C17‖Δcε‖1+θ3
L2(Ω) + C15C17‖Δcε‖L2(Ω) � 1

4

∫
Ω

|Δcε|2 + C18

(3.22)
for all t ∈ (0,∞) and some C18 > 0. Combining (3.19), (3.22) and (3.17), we can
deduce that

ε
d
dt

∫
Ω

|∇cε|2 +
∫

Ω

|Δcε|2 + 2
∫

Ω

|∇cε|2

� p − 1
p

∫
Ω

|∇np/2
ε |2 + 2(C14 + C18) for all t ∈ (0,∞). (3.23)

By (3.16) and (3.23), we conclude that

d
dt

(∫
Ω

np
ε + ε

∫
Ω

|∇cε|2
)

+
p − 1

p

∫
Ω

|∇np/2
ε |2 + 2

∫
Ω

|∇cε|2 � C19

for all t ∈ (0,∞) with C19 := C11 + 2(C14 + C18). Following the same process as
(3.7) and (3.8), we have∫

Ω

np
ε � p − 1

p

∫
Ω

|∇np/2
ε |2 + C20, and ε

∫
Ω

|∇cε|2 � 2
∫

Ω

|∇cε|2 (3.24)

for all t ∈ (0,∞) and some C20 > 0, and thus obtain

d
dt

(∫
Ω

np
ε + ε

∫
Ω

|∇cε|2
)

+
(∫

Ω

np
ε + ε

∫
Ω

|∇cε|2
)

� C19 + C20 for all t ∈ (0,∞).

By a basic calculation, we deduce that∫
Ω

np
ε (·, t) + ε

∫
Ω

|∇cε(·, t)|2 � max
{∫

Ω

np
0 +

∫
Ω

|∇c0|2, C19 + C20

}
for all t ∈ (0,∞). This completes the proof of lemma 3.3. �
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Corollary 3.2. Suppose that (1.12)–(1.15) hold with α > 1/2. If s ∈ (2α +
1/3, (7/3)α + 1/3), then there exists a positive constant C such that

‖cε(·, t)‖Ls(Ω) � C for all t ∈ (0,∞).

Proof. A direct application of lemmas 3.3 and 2.2 yields the desired result. �

Corollary 3.3. Suppose that (1.12)-(1.15) hold with α > 1/2. Then for any r > 1,
there exists a positive constant C = C(r, n0, c0, u0, φ) such that for each ε ∈ (0, 1),
we have

‖uε(·, t)‖Lr(Ω) � C for all t ∈ (0,∞).

Proof. Since α > 1/2 is equivalent to (7/3)α + 1/3 > 3/2, we can fix a p0 satisfying

7
3
α +

1
3

> p0 > max
{

3
2
, 2α +

1
3

}
,

and then deduce the boundedness of ‖nε(·, t)‖Lp0 (Ω) for all t ∈ (0,∞) by lemma 3.3.
Thus for any r > 1, we can infer the Lr boundedness of uε from lemma 3.2 due to
p0 > 3/2. This completes the proof of corollary 3.3. �

3.4. L2 regularity of nε and ∇cε

On the basis of lemma 3.3 and corollary 3.2, we next plan to improve our knowl-
edge on the spatial regularity of nε by utilizing a very subtle induction argument
for nε, which together with the damping effect of cε will provide the key uniform
L2 bound for ∇cε.

Lemma 3.4. Suppose that (1.12)–(1.15) hold with α > 1/2. For any fixed s0 ∈ (2α +
1/3, (7/3)α + 1/3), define the sequence

{
sk

}∞
k=1

by fixing

sk ∈
(

2α +
sk−1

2
, 4α + min

{
2
3
sk−1,

2s2
k−1 + 18sk−1 − 72α

3(sk−1 + 12)

})
,

(k = 1, 2, 3, . . .).

Then for every k = 1, 2, 3, . . ., there exists a positive constant Ck such that

‖nε(·, t)‖Lsk (Ω) � Ck for all t ∈ (0,∞).

Proof. We intend to prove our conclusion by induction on k and to analyse the
time evolution of the combinational functional

‖nε(·, t)‖sk

Lsk (Ω) + ε‖∇cε(·, t)‖2
L2(Ω).

To this end, we first focus on the case k = 1 and use a similar process as the proof
of (3.10) to obtain

d
dt

∫
Ω

ns1
ε +

3(s1 − 1)
s1

∫
Ω

|∇ns1/2
ε |2 � s1(s1 − 1)C2

S

∫
Ω

ns1−2α
ε |∇cε|2,
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which together with the Hölder inequality gives that

d
dt

∫
Ω

ns1
ε +

3(s1 − 1)
s1

∫
Ω

|∇ns1/2
ε |2

� s1(s1 − 1)C2
S

(∫
Ω

n2(s1−2α)
ε

)1/2(∫
Ω

|∇cε|4
)1/2

(3.25)

for all t ∈ (0,∞). For the first integral on the right-hand side of (3.25), we can set
θ1
1 := (3s1(2(s1 − 2α) − s0))/(2(s1 − 2α)(3s1 − s0)), which belongs to (0, 1) due to

s1 > 2α + s0/2, and use the Gagliardo–Nirenberg inequality, lemma 3.3 and the
Young inequality to find two positive constants C1 and C2 such that

(∫
Ω

n2(s1−2α)
ε

)1/2

= ‖ns1/2
ε ‖2(s1−2α)/s1

L4(s1−2α)/s1 (Ω)

� C1

(
‖∇ns1/2

ε ‖θ1
1

L2(Ω)‖ns1/2
ε ‖1−θ1

1

L2s0/s1 (Ω)
+ ‖ns1/2

ε ‖L2s0/s1 (Ω)

)2(s1−2α)/s1

� C2‖∇ns1/2
ε ‖(2(s1−2α))/s1θ1

1
L2(Ω) + C2

= C2

(∫
Ω

|∇ns1/2
ε |2

)(6(s1−2α)−3s0)/(2(3s1−s0))

+ C2 (3.26)

for all t ∈ (0,∞). On the other hand, we apply the Gagliardo–Nirenberg inequality
to the second integral on the right-hand side of (3.25) and use (3.14) to find two
positive constants C3 and C4 such that

(∫
Ω

|∇cε|4
)1/2

= ‖∇cε‖2
L4(Ω)

� C3

(
‖D2cε‖θ1

2
L2(Ω)‖cε‖1−θ1

2
Ls0 (Ω) + ‖cε‖Ls0 (Ω)

)2

� C4

((
‖cε‖2

L1(Ω) + ‖Δcε‖2
L2(Ω)

)θ1
2/2

‖cε‖1−θ1
2

Ls0 (Ω) + ‖cε‖Ls0 (Ω)

)2

for all t ∈ (0,∞) with θ1
2 := (s0 + 12)/(2s0 + 12) ∈ (0, 1), which together with (2.2)

and corollary 3.2 gives that

(∫
Ω

|∇cε|4
)1/2

� C5

((
1 + ‖Δcε‖2

L2(Ω)

)θ1
2/2

‖cε‖1−θ1
2

Ls0 (Ω) + ‖cε‖Ls0 (Ω)

)2

� C6

(∫
Ω

|Δcε|2
)θ1

2

+ C6 (3.27)
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for all t ∈ (0,∞) and some positive constant C6. Since (6(s1 − 2α) − 3s0)/
(2(3s1 − s0)) < (6(s1 − 2α) − 3s0)/(3s1 − s0) due to s1 > 2α + s0/2, and by sub-
stituting (3.26) and (3.27) into (3.25), we can obtain

d
dt

∫
Ω

ns1
ε +

3(s1 − 1)
s1

∫
Ω

|∇ns1/2
ε |2

� C7

(∫
Ω

|∇ns1/2
ε |2

)(6(s1−2α)−3s0)/(2(3s1−s0))(∫
Ω

|Δcε|2
)θ1

2

+ C7

(∫
Ω

|∇ns1/2
ε |2

)(6(s1−2α)−3s0)/(3s1−s0)

+ C7

(∫
Ω

|Δcε|2
)θ1

2
+ C7

for all t ∈ (0,∞) with some positive constant C7. Since

0 <
6(s1 − 2α) − 3s0

3s1 − s0
< 1 and

2(3s1 − s0)θ1
2

s0 + 12α
< 1

by 2α + s0/2 < s1 < 4α + min
{

(2/3)s0, (2s2
0 + 18s0 − 72α)/(3(s0 + 12))

}
, we use

the Young inequality twice to obtain

d
dt

∫
Ω

ns1
ε +

3(s1 − 1)
s1

∫
Ω

|∇ns1/2
ε |2

� (s1 − 1)
s1

∫
Ω

|∇ns1/2
ε |2 + C8

(∫
Ω

|Δcε|2
)(2(3s1−s0)θ

1
2)/(s0+12α)

+ C8

(∫
Ω

|Δcε|2
)θ1

2

+ C8

� (s1 − 1)
s1

∫
Ω

|∇ns1/2
ε |2 +

∫
Ω

|Δcε|2 + C9 (3.28)

for all t ∈ (0,∞) and some positive constants C8 and C9.
Multiplying equation (1.11)2 by −Δcε, integrating on Ω and following proof of

lemma 3.3, we also have

ε
d
dt

∫
Ω

|∇cε|2 +
∫

Ω

|Δcε|2 + 2
∫

Ω

|∇cε|2

� s1 − 1
s1

∫
Ω

|∇ns1/2
ε |2 + C10 for all t ∈ (0,∞) (3.29)

with some positive constant C10. Combining (3.28) and (3.29), we obtain

d
dt

(∫
Ω

ns1
ε + ε

∫
Ω

|∇cε|2
)

+
s1 − 1

s1

∫
Ω

|∇n
s1
2

ε |2 + 2
∫

Ω

|∇cε|2 � C11
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for all t ∈ (0,∞) with C11 := C9 + C10 and then use a similar process as (3.24) to
get

d

dt

(∫
Ω

ns1
ε + ε

∫
Ω

|∇cε|2
)

+
(∫

Ω

ns1
ε + ε

∫
Ω

|∇cε|2
)

� C12

for all t ∈ (0,∞) and some C12 > 0. Thus the proof for the case k = 1 is completed
by a direct calculation.

Assume now the lemma is valid for some positive constant k. Then by lemma 2.2,
we see that

‖cε(·, t)‖Lsk (Ω) � C13 for all t ∈ (0,∞)

for some C13 > 0, and deduce

‖nε(·, t)‖Lsk+1 (Ω) � C14 for all t ∈ (0,∞)

for some positive constant C14 by following the proof of the case k = 1. This implies
the lemma is true for the case k + 1 and completes the proof of lemma 3.4 by
induction. �

Corollary 3.4. Suppose that (1.12)–(1.15) hold with α > 1/2. Then there exists
C > 0 such that

‖nε(·, t)‖L2(Ω) � C for all t ∈ (0,∞).

Proof. Let
{
sk

}∞
k=0

be defined by lemma 3.4. Then sk > 2α + (1/2)sk−1, (k =
1, 2, 3, . . .), implies that

sk > 2α +
1
2

(
2α +

1
2
sk−2

)
> · · · > 2α

(
1 +

1
2

+
1
22

+ · · · + 1
2k−1

)
+

1
2k

s0

= 4α +
1
2k

(
s0 − 4α

)
for k = 1, 2, 3, . . .. Thus due to α > 1/2, we have sk � 2 for k large enough
and obtain the desired result by using lemma 3.4 (and the Hölder inequality if
necessary). This completes the proof of corollary 3.4. �

With the boundedness of ‖nε(·, t)‖L2(Ω) at hand, we now turn back the proof of
lemma 3.3 to establish the key boundedness of ‖∇cε(·, t)‖L2(Ω).

Lemma 3.5. Suppose that (1.12)–(1.15) hold with α > 1/2. Then there exists C > 0
such that

‖∇cε(·, t)‖L2(Ω) � C for all t ∈ (0,∞).
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Proof. By repeating the proof of (3.17), (3.18) and (3.22) in lemma 3.3 and using
corollary 3.4, we can deduce that

ε

2
d
dt

∫
Ω

|∇cε|2 +
∫

Ω

|Δcε|2 +
∫

Ω

|∇cε|2

� 1
2

∫
Ω

|Δcε|2 +
∫

Ω

n2
ε + C1 � 1

2

∫
Ω

|Δcε|2 + C2

for all t ∈ (0,∞) and some positive constants C1 and C2. Then a direct calculation
shows that∫

Ω

|∇cε(·, t)|2 � C2 +
(∫

Ω

|∇c0|2 − C2

)
e−(2t/ε) � max

{
C2,

∫
Ω

|∇c0|2
}

for all t ∈ (0,∞). This completes the proof of lemma 3.5. �

3.5. Eventual Lp regularity of nε and L4 regularity of ∇cε

By making use of the regularity information obtained so far and developing a
new coupled estimate, we are now in the position to establish the regularity of
nε in arbitrary Lp space, from which we will eventually deduce the desired L4

regularity for ∇cε.

Lemma 3.6. Suppose that (1.12)–(1.15) hold with α > 1/2. Let q � 2 and p > 1
satisfy that

max
{

4
3
,

6α

3q − 1

}
<

3p − 1
3q − 1

< 6α. (3.30)

Then there exists C > 0 such that

‖nε(·, t)‖Lp(Ω) + ε‖∇cε(·, t)‖L2q(Ω) � C for all t ∈ (0,∞). (3.31)

Proof. Our strategy is to investigate the combinational functional of the form

‖nε(·, t)‖p
Lp(Ω) + ε‖∇cε(·, t)‖2q

L2q(Ω)

with p and q satisfying (3.30). Firstly, it is clear from the proof of (3.10) and the
Hölder inequality that

d
dt

∫
Ω

np
ε +

3(p − 1)
p

∫
Ω

|∇np/2
ε |2 � p(p − 1)C2

S

∫
Ω

np−2α
ε |∇cε|2

� p(p − 1)C2
S

(∫
Ω

n3(p−2α)
ε

)1/3(∫
Ω

|∇cε|3
)2/3

(3.32)

for all t ∈ (0,∞). Since the first inequality in (3.30) implies that p > 2α + 1/3, we
know from the proof of (3.12) that

p(p − 1)C2
S

(∫
Ω

n3(p−2α)
ε

)1/3

� C1

(∫
Ω

|∇np/2
ε |2

)(3p−6α−1)/(3p−1)

+ C1 (3.33)
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for all t ∈ (0,∞) and some positive constant C1, while the Gagliardo–Nirenberg
inequality and lemma 3.5 give that

(∫
Ω

|∇cε|3
)2/3

=
∥∥|∇cε|q

∥∥2/q

L3/q(Ω)

� C2(
∥∥∇|∇cε|q

∥∥q/(3q−1)

L2(Ω)

∥∥|∇cε|q
∥∥(2q−1)/(3q−1)

L2/q(Ω)
+
∥∥|∇cε|q

∥∥
L2/q(Ω)

)2/q

� C3

(∫
Ω

∣∣∇|∇cε|q
∣∣2)1/(3q−1)

+ C3 (3.34)

for all t ∈ (0,∞) and some positive constants C2 and C3. Submitting (3.33) and
(3.34) into (3.32), we have

d
dt

∫
Ω

np
ε +

3(p − 1)
p

∫
Ω

|∇np/2
ε |2

� C1C3

(∫
Ω

|∇np/2
ε |2

)(3p−6α−1)/(3p−1)(∫
Ω

∣∣∇|∇cε|q
∣∣2)1/(3q−1)

+ C1C3

(∫
Ω

|∇np/2
ε |2

)(3p−6α−1)/(3p−1)

+ C1C3

(∫
Ω

∣∣∇|∇cε|q
∣∣2)1/(3q−1)

+ C1C3

for all t ∈ (0,∞). Noticing that (3p − 6α − 1)/(3p − 1) + 1/(3q − 1) < 1 due to
(3p − 1)/(3q − 1) < 6α, the Young inequality entails that

d
dt

∫
Ω

np
ε +

3(p − 1)
p

∫
Ω

|∇np/2
ε |2 � p − 1

p

∫
Ω

|∇np/2
ε |2 +

q − 1
4q

∫
Ω

∣∣∇|∇cε|q
∣∣2 + C4

and thus that

d
dt

∫
Ω

np
ε +

2(p − 1)
p

∫
Ω

|∇np/2
ε |2 � q − 1

4q

∫
Ω

∣∣∇|∇cε|q
∣∣2 + C4 (3.35)

for all t ∈ (0,∞) and some positive constant C4.
On the other hand, we apply ∇ to equation (1.11)2 and multiply the resulting

equation by |∇cε|2(q−1)∇cε to obtain

ε

2q

d
dt

∫
Ω

|∇cε|2q −
∫

Ω

|∇cε|2(q−1)∇cε · Δ∇cε +
∫

Ω

|∇cε|2q

=
∫

Ω

|∇cε|2(q−1)∇cε · ∇nε −
∫

Ω

|∇cε|2(q−1)∇cε · ∇
(
uε · ∇cε

)
,
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which together with the pointwise identity 2∇cε · ∇Δcε = Δ|∇cε|2 − 2|D2cε|2 and
the integration by parts ensures that

ε

2q

d
dt

∫
Ω

|∇cε|2q +
q − 1

2

∫
Ω

|∇cε|2(q−2)
∣∣∇|∇cε|2

∣∣2
+
∫

Ω

|∇cε|2(q−1)|D2cε|2 +
∫

Ω

|∇cε|2q

=
∫

Ω

|∇cε|2(q−1)∇nε · ∇cε + (q − 1)
∫

Ω

(uε · ∇cε)|∇cε|2(q−2)∇cε · ∇|∇cε|2

+
∫

Ω

(uε · ∇cε)|∇cε|2(q−1)Δcε +
1
2

∫
∂Ω

|∇cε|2(q−1) ∂|∇cε|2
∂ν

(3.36)

for all t ∈ (0,∞). For the first term on the right-hand side of (3.36), we use the
pointwise inequality |Δcε|2 � 3|D2cε|2, the integration by parts and the Young
inequality to obtain∫

Ω

|∇cε|2(q−1)∇nε · ∇cε

= −
∫

Ω

|∇cε|2(q−1)nεΔcε − (q − 1)
∫

Ω

|∇cε|2(q−2)nε∇cε · ∇|∇cε|2

�
√

3
∫

Ω

|∇cε|2(q−1)nε|D2cε| + (q − 1)
∫

Ω

|∇cε|2q−3nε

∣∣∇|∇cε|2
∣∣

� 1
2

∫
Ω

|∇cε|2(q−1)|D2cε|2 +
q − 1

4

∫
Ω

|∇cε|2(q−2)
∣∣∇|∇cε|2

∣∣2
+
(

q +
1
2

)∫
Ω

n2
ε |∇cε|2(q−1), (3.37)

while for the second and third terms, we have

(q − 1)
∫

Ω

(uε · ∇cε)|∇cε|2(q−2)∇cε · ∇|∇cε|2

� q − 1
8

∫
Ω

|∇cε|2(q−2)
∣∣∇|∇cε|2

∣∣2 + 2(q − 1)
∫

Ω

|uε|2|∇cε|2q (3.38)

and∫
Ω

(uε · ∇cε)|∇cε|2(q−1)Δcε �
√

3
∫

Ω

|uε||∇cε|2q−1|D2cε|

� 1
2

∫
Ω

|∇cε|2(q−1)|D2cε|2 +
3
2

∫
Ω

|uε|2|∇cε|2q. (3.39)

For the last term on the right-hand side of (3.36), we know from the geometry
property (3.13), the trace theorem and the Gagliardo–Nirenberg inequality that
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there exist positive constants C5, C6 and C7 such that

1
2

∫
∂Ω

|∇cε|2q−2 ∂|∇cε|2
∂ν

� C5

∫
∂Ω

|∇cε|2q = C5

∥∥|∇cε|q
∥∥2

L2(∂Ω)

� C6

∥∥|∇cε|q
∥∥2

W 3/4,2(Ω)

� C7

∥∥∇|∇cε|q
∥∥(3(2q−1))/(3q−1)

L2(Ω)

∥∥|∇cε|q
∥∥1/(3q−1)

L2/q(Ω)

+ C7

∥∥|∇cε|q
∥∥2

L2/q(Ω)
,

which together with lemma 3.5 and the Young inequality ensures the existence of
a positive constant C8 satisfying

1
2

∫
∂Ω

|∇cε|2(q−1) ∂|∇cε|2
∂ν

� q − 1
4q2

∫
Ω

|∇|∇cε|q|2 + C8 for all t ∈ (0,∞). (3.40)

Substituting (3.37)–(3.40) into (3.36), we deduce that

ε
d
dt

∫
Ω

|∇cε|2q +
q − 1
2q

∫
Ω

∣∣∇|∇cε|q
∣∣2 + 2q

∫
Ω

|∇cε|2q

� C9

∫
Ω

n2
ε |∇cε|2q−2 + C9

∫
Ω

|uε|2|∇cε|2q + C9 (3.41)

for all t ∈ (0,∞) and some positive constant C9, which together with (3.35) yields

d
dt

(∫
Ω

np
ε + ε

∫
Ω

|∇cε|2q

)
+

2(p − 1)
p

∫
Ω

|∇np/2
ε |2 +

q − 1
4q

∫
Ω

∣∣∇|∇cε|q
∣∣2

+ 2q

∫
Ω

|∇cε|2q � C9

∫
Ω

n2
ε |∇cε|2q−2 + C9

∫
Ω

|uε|2|∇cε|2q + C10 (3.42)

for all t ∈ (0,∞) and some C10 > 0.
We now show that the integrals on the right hand of (3.42) can be controlled by

the dissipation on the left hand of (3.42). Indeed, for the first one, we first use the
Hölder inequality to show that∫

Ω

n2
ε |∇cε|2(q−1) �

(∫
Ω

n3
ε

)2/3(∫
Ω

|∇cε|6(q−1)

)1/3

for all t ∈ (0,∞). (3.43)

The two integrals on the right-hand side of (3.43) can be estimated as (3.33) and
(3.34), respectively, and thus we can deduce that∫

Ω

n2
ε |∇cε|2(q−1) � C11

(∫
Ω

|∇np/2
ε |2

)4/(3p−1)(∫
Ω

∣∣∇|∇cε|q
∣∣2)(3q−4)/(3q−1)

+ C11

(∫
Ω

|∇np/2
ε |2

)4/(3p−1)

+ C11

(∫
Ω

∣∣∇|∇cε|q
∣∣2)(3q−4)/(3q−1)

+ C11
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for all t ∈ (0,∞) with some positive constant C11. Then since 4/(3p − 1) +
(3q − 4)/(3q − 1) < 1 due to (3p − 1)/(3q − 1) > 4/3, the Young inequality entails
that

C9

∫
Ω

n2
ε |∇cε|2(q−1) � p − 1

p

∫
Ω

|∇np/2
ε |2 +

q − 1
8q

∫
Ω

∣∣∇|∇cε|q
∣∣2 + C12 (3.44)

for all t ∈ (0,∞) and some positive constant C12. For the second integral on the right
of (3.42), we first fix r ∈ (1, 3) and then use the Hölder inequality and corollary 3.3
to obtain∫

Ω

|∇cε|2q|uε|2 � ‖u2
ε‖Lr/(r−1)(Ω)

∥∥|∇cε|2q
∥∥

Lr(Ω)
� C13

∥∥|∇cε|2q
∥∥

Lr(Ω)

for all t ∈ (0,∞) and some C13 > 0. Since the interpolation implies that∥∥|∇cε|2q
∥∥

Lr(Ω)
=
∥∥|∇cε|q

∥∥2

L2r(Ω)

� C14

∥∥∇|∇cε|q
∥∥(6(rq−1))/(r(3q−1))

L2(Ω)

∥∥|∇cε|q
∥∥(2(3−r))/(r(3q−1))

L2/q(Ω)

+ C14

∥∥|∇cε|q
∥∥2

L2/q(Ω)

for all t ∈ (0,∞) and some positive constant C14, we can deduce from lemma 3.5
and the Young inequality that

C9

∫
Ω

|∇cε|2q|uε|2 � C15

∥∥∇|∇cε|q
∥∥(6(rq−1))/(r(3q−1))

L2(Ω)
+ C15

� q − 1
8q

∫
Ω

∣∣∇|∇cε|q
∣∣2 + C16 (3.45)

for all t ∈ (0,∞) and some positive constants C15 and C16.
Thereupon, by substituting (3.44) and (3.45) into (3.42), we conclude that

d
dt

(∫
Ω

np
ε + ε

∫
Ω

|∇cε|2q

)
+

p − 1
p

∫
Ω

|∇np/2
ε |2 + 2q

∫
Ω

|∇cε|2q � C17

for all t ∈ (0,∞) with C17 := C10 + C12 + C16. Following a similar process as (3.24),
we have∫

Ω

np
ε � p − 1

p

∫
Ω

|∇np/2
ε |2 + C18 and ε

∫
Ω

|∇cε|2q � 2q

∫
Ω

|∇cε|2q

for all t ∈ (0,∞) and some positive constant C18. Therefore, we obtain

d
dt

(∫
Ω

np
ε + ε

∫
Ω

|∇cε|2q

)
+
(∫

Ω

np
ε + ε

∫
Ω

|∇cε|2q

)
� C19

for all t ∈ (0,∞) with C19 := C17 + C18, which implies (3.31) by a direct calculation.
This completes the proof of lemma 3.6. �
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Corollary 3.5. Suppose that (1.12)–(1.15) hold with α > 1/2. Then for any p > 1,
there exists C > 0 such that

‖nε(·, t)‖Lp(Ω) � C for all t ∈ (0,∞).

Proof. Without loss of generality, we may assume p > 2α + 1/3 and then take q
such that (3.30) holds. Then corollary 3.5 is a direct result of lemma 3.6. �

Now along with our regularity in corollary 3.3 and lemma 3.5, the boundedness
in corollary 3.5 asserts the following.

Lemma 3.7. Suppose that (1.12)–(1.15) hold with α > 1/2. Then there exists C > 0
such that

‖∇cε(·, t)‖L4(Ω) � C for all t ∈ (0,∞).

Proof. We can take q = 2 in (3.41) by following the proof of Lemma 3.6 to obtain

ε
d
dt

∫
Ω

|∇cε|4 +
1
4

∫
Ω

∣∣∇|∇cε|2
∣∣2 + 4

∫
Ω

|∇cε|4

� C1

∫
Ω

n2
ε |∇cε|2 + C1

∫
Ω

|uε|2|∇cε|4 + C1

for all t ∈ (0,∞) and some positive constant C1. Noticing that

C1

∫
Ω

n2
ε |∇cε|2 � 2‖∇cε‖4

L4 + C2‖nε‖4
L4 � 2‖∇cε‖4

L4 + C3

by corollary 3.5, and that

C1

∫
Ω

|uε|2|∇cε|4 � C1‖u2
ε‖L2

∥∥|∇cε|4
∥∥

L2 = C1‖uε‖2
L4

∥∥|∇cε|4
∥∥

L2

� C4

∥∥|∇cε|4
∥∥

L2 = C4

∥∥|∇cε|2
∥∥2

L4

� C5

(∥∥∇|∇cε|2
∥∥9/5

L2

∥∥|∇cε|2
∥∥1/5

L1 +
∥∥|∇cε|2

∥∥2

L1

)
� 1

4

∥∥∇|∇cε|2
∥∥2

L2 + C6

by corollary 3.3 and lemma 3.5, we have

ε
d
dt

‖∇cε‖4
L4 + 2‖∇cε‖4

L4 � C7

for all t ∈ (0,∞), which yields∫
Ω

|∇cε(·, t)|4 � C7

2
+
(∫

Ω

|∇c0|4 − C7

2

)
e−(2t/ε) � max

{
C7

2
,

∫
Ω

|∇c0|4
}

for all t ∈ (0,∞) by a direct calculation. This completes the proof of lemma 3.7. �
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We are now in the position to extract a suitable subsequence of (nε, cε, uε) along
which the respective solutions approach a limit in convenient topologies.

Lemma 3.8. Let Ω ⊂ R
3 be a bounded domain with smooth boundary, and let α >

1/2 and (1.12)–(1.15) hold. Then there exist a sequence
{
εj

}∞
j=1

and a unique
classical solution (n, c, u, P ) to system (1.16) in Ω × (0,∞) with the properties that

nεj
→ n in C0

(
Ω × [0,∞)

)
,

nεj
⇀ n in L2

loc

(
(0,∞);W 1,2(Ω)

)
,

cεj
→ c in L∞

loc

(
(0,∞);C0(Ω)

)⋂
L2

loc

(
(0,∞);W 1,2(Ω)

)
,

∇cεj

∗
⇀ ∇c in

⋂
q̂>3

L∞
loc

(
(0,∞);W 1,q̂(Ω)

)⋂
L∞

loc

(
Ω × (0,∞)

)
and

uεj
→ u in C0

(
Ω × [0,∞); R3

)⋂
C2,1

loc

(
Ω × (0,∞); R3

)
as j → ∞.

Proof. Firstly, it follows from lemma 3.7 and corollary 3.3 that

sup
ε∈(0,1)

‖∇cε‖L∞((0,∞);L4(Ω)) � C and sup
ε∈(0,1)

‖uε‖L∞((0,∞);L4(Ω)) � C

for some positive constant C. Then by taking λ := ∞, q := 4, r := 4 and d = 3 in
lemma 2.3, we complete the proof of lemma 3.8.

The uniqueness of solution (n, c, u, P ) to system (1.16) can be showed by a stan-
dard energy method together with a bootstrap argument and thus we omit the
details here. �

4. Existence of solution to limit system: the 2D case

In this section, we deal with the existence of classical solution to limit system (1.16)
in the 2D case. Our basic strategy is similar to the 3D setting in §3 and thus we
will just give a sketch for completeness.

Firstly, we can show the gain of regularity for uε from the mass conservation of
nε by using the smoothing effect and decay estimates of the Stokes semigroup.

Lemma 4.1. Suppose that (1.12)–(1.15) hold with α > 0. Then for any r > 1, there
exists a positive constant C = C(r, n0, c0, u0, φ) such that for each ε ∈ (0, 1), we
have

‖uε(·, t)‖Lr(Ω) � C for all t ∈ (0,∞).

Then similar to lemma 3.4, we can improve our knowledge on the spatial
regularity of nε by utilizing a very subtle induction argument for nε.
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Lemma 4.2. Suppose that (1.12)–(1.15) hold with α > 0. For any fixed r̂ > 1
satisfying (1 − α/2)r̂ < 1, define the sequence

{
sk

}∞
k=0

by fixing

s0 = 1, sk ∈
(

max
{

1, 2α +
sk−1

r̂

}
, 2α +

sk−1(sk−1 + 2αr̂ + 2 − 2α)
sk−1 + 2r̂

)
,

(k = 1, 2, 3, . . .).

Then for every k = 1, 2, 3, . . ., there exists a positive constant Ck such that

‖nε(·, t)‖Lsk (Ω) � Ck for all t ∈ (0,∞), (k = 1, 2, 3, . . .).

Corollary 4.1. Suppose that (1.12)–(1.15) hold with α > 0. Then there exists
C > 0 such that

‖nε(·, t)‖L4(Ω) � C for all t ∈ (0,∞).

Proof. Let
{
sk

}∞
k=0

and r̂ be defined by lemma 4.2. Then sk > 2α + (1/r̂)sk−1

(k = 1, 2, 3, . . .), implies that

sk > 2α +
1
r̂

(
2α +

1
r̂
sk−2

)
> · · · > 2α

(
1 +

1
r̂

+
1
r̂2

+ · · · + 1
r̂k−1

)
+

1
r̂k

s0 =
2αr̂

r̂ − 1
+

1
r̂k

(
s0 − 2αr̂

r̂ − 1

)
for k = 1, 2, 3, . . .. Noticing that 2αr̂/(r̂ − 1) > 4 due to (1 − α/2)r̂ < 1, we can
deduce from r̂ > 1 that sk � 4 for k large enough. It then follows from lemma 4.2
(and the Hölder inequality if necessary) that ‖nε(·, t)‖L4(Ω) is bounded in (0,∞).
This completes the proof of corollary 4.1. �

Thus similar to lemma 3.5, the spatial regularity of nε together with the damping
effect of cε will provide the key uniform L2 bound for ∇cε.

Lemma 4.3. Suppose that (1.12)–(1.15) hold with α > 0. Then there exists C > 0
such that

‖∇cε(·, t)‖L2(Ω) � C for all t ∈ (0,∞).

Therefore the L4 regularity of ∇cε follows by an argument quite similar to that
used in lemma 3.7.

Lemma 4.4. Suppose that (1.12)–(1.15) hold with α > 0. Then there exists C > 0
such that

‖∇cε(·, t)‖L4(Ω) � C for all t ∈ (0,∞).

Now based on lemmas 4.4 and 4.1, we can take λ := ∞, q := 4, r := 4 and d = 2
in lemma 2.3 to deduce the existence of solution to the 2D limit system.

https://doi.org/10.1017/prm.2020.88 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.88


Convergence rate of the fast signal diffusion limit 2001

Lemma 4.5. Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and let α > 0

and (1.12)–(1.15) hold. Then there exist a sequence
{
εj

}∞
j=1

and a unique classical
solution (n, c, u, P ) to system (1.16) in Ω × (0,∞) with the properties that

nεj
→ n in C0

(
Ω × [0,∞)

)
,

nεj
⇀ n in L2

loc

(
(0,∞);W 1,2(Ω)

)
,

cεj
→ c in L∞

loc

(
(0,∞);C0(Ω)

)⋂
L2

loc

(
(0,∞);W 1,2(Ω)

)
,

∇cεj

∗
⇀ ∇c in

⋂
q̂>2

L∞
loc

(
(0,∞);W 1,q̂(Ω)

)⋂
L∞

loc

(
Ω × (0,∞)

)
and

uεj
→ u in C0

(
Ω × [0,∞); R2

)⋂
C2,1

loc

(
Ω × (0,∞); R2

)
as j → ∞.

5. Convergence rate: final proof of theorem 1.1

In the section, we will show the convergence for the whole sequence (nε, cε, uε) and
derive an algebraic convergence rate with respect to ε. The key idea is to analyse
a new entropy-like evolution estimate for a mixed functional and then to use the
standard smoothing effect of Stokes semigroup and the energy estimate.

Throughout this section, we let (n, , c, u, P ) be solutions of system (1.16) obtained
in lemmas 3.8 and 4.5, and set

n̂ := nε − n, ĉ := cε − c, û := uε − u, and P̂ := Pε − P

for simplicity. Then (n̂, ĉ, û) will be a solution to the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tn̂ = Δn̂ − uε · ∇n̂ − û · ∇n −∇
·
(
n̂S(x, nε, cε) · ∇cε + nS(x, nε, cε) · ∇ĉ

+ n
(
S(x, nε, cε) − S(x, n, c)

) · ∇c
)
, x ∈ Ω, t > 0,

ε∂tcε = Δĉ − uε · ∇ĉ − û · ∇c − ĉ + n̂, x ∈ Ω, t > 0,

∂tû = Δû −∇P̂ + n̂∇φ, x ∈ Ω, t > 0,

∇ · û = 0, x ∈ Ω, t > 0

(5.1)

with the initial-boundary values⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
∇n̂ − n̂S(x, nε, cε) · ∇cε − nS(x, nε, cε) · ∇ĉ

− n
(
S(x, nε, cε) − S(x, n, c)

) · ∇c
)
· ν = 0,

∇ĉ · ν = 0, û = 0, x ∈ ∂Ω, t > 0,

n̂(x, 0) = 0, û(x, 0) = 0, x ∈ Ω.

As a last preparation for the proof of theorem 1.1, let us draw a linear growth
estimate for the spatio-temporal integral of ∂tcεc.
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Lemma 5.1. There exists a positive constant C such that for each ε ∈ (0, 1), we
have ∫ t

0

∫
Ω

∂tcεc � C(1 + t) for all t ∈ (0,∞).

Proof. Noticing that∫
Ω

∂tcεc =
d
dt

∫
Ω

cεc −
∫

Ω

cε∂tc � d
dt

∫
Ω

cεc +
1
2

(∫
Ω

c2
ε +

∫
Ω

(∂tc)2
)

for all t ∈ (0,∞), we see from the boundedness of cε and c, which can be derived
from lemmas 3.7 and 4.4 together with the Sobolev embedding, that∫ t

0

∫
Ω

∂tcεc �
∫

Ω

cε(·, t)c(·, t) −
∫

Ω

c0(·)c(·, 0) +
1
2

(∫ t

0

∫
Ω

c2
ε +

∫ t

0

∫
Ω

(∂tc)2
)

� ‖cε‖L∞(Ω×(0,∞))‖c‖L∞(Ω×(0,∞))|Ω|

+
1
2

(
‖cε‖2

L∞(Ω×(0,∞))|Ω|t +
∫ t

0

∫
Ω

(∂tc)2
)

� C1(1 + t) +
1
2

∫ t

0

∫
Ω

(∂tc)2 (5.2)

for all t ∈ (0,∞) with some positive constant C1. It remains to deal with the L2

space–time estimate of ∂tc.
To this end, we first establish the uniform estimates for the difference quotient

ch(x, t) :=
c(x, t + h) − c(x, t)

h

for any t ∈ (τ,∞) with τ ∈ (0,∞) and h ∈ (−τ,∞). Then due to the classical reg-
ularity c(·, t) ∈ C2+θ(Ω) for some θ > 0 and all t ∈ (0,∞), we see that for each
t ∈ (τ,∞), ch(·, t) ∈ C2(Ω) is a classical solution of the homogeneous Neumann
boundary-value problem for

−Δch(·, t) + ch(·, t) =
n(·, t + h) − u(·, t + h) · ∇c(·, t + h)

h

− n(·, t) − u(·, t) · ∇c(·, t)
h

(5.3)

in Ω. Setting

nh(·, t) :=
n(x, t + h) − n(x, t)

h
and uh(·, t) :=

u(x, t + h) − u(x, t)
h

and rearranging the right-hand side of (5.3), we obtain

−Δch(·, t) + ch(·, t) = −uh(·, t) · ∇c(·, t + h) − u(·, t) · ∇ch(·, t) + nh(·, t)
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in Ω. Testing the above equation by ch(·, t) and utilizing the integration by parts
and the Hölder inequality, we have

‖∇ch(·, t)‖2
L2(Ω) + ‖ch(·, t)‖2

L2(Ω)

= −
∫

Ω

ch(·, t)uh(·, t) · ∇c(·, t + h) +
∫

Ω

ch(·, t)nh(·, t)

� ‖ch(·, t)‖L4(Ω)‖uh(·, t)‖L2(Ω)‖∇c(·, t + h)‖L4(Ω)

+ ‖ch(·, t)‖L2(Ω)‖nh(·, t)‖L2(Ω)

for all t ∈ (τ,∞), which together with the uniform boundedness of ‖∇c(·, t +
h)‖L4(Ω), the Gagliardo–Nirenberg inequality and the Young inequality yields that

‖∇ch(·, t)‖2
L2(Ω) + ‖ch(·, t)‖2

L2(Ω)

� C2‖ch(·, t)‖L4(Ω)‖uh(·, t)‖L2(Ω) + ‖ch(·, t)‖L2(Ω)‖nh(·, t)‖L2(Ω)

� C3

(
‖∇ch(·, t)‖d/4

L2(Ω)‖ch(·, t)‖(4−d)/4
L2(Ω) + ‖ch(·, t)‖L2(Ω)

)
‖uh(·, t)‖L2(Ω)

+ ‖ch(·, t)‖L2(Ω)‖nh(·, t)‖L2(Ω)

� 1
2

(
‖∇ch(·, t)‖2

L2(Ω) + ‖ch(·, t)‖2
L2(Ω)

)
+ C4

(
‖uh(·, t)‖2

L2(Ω) + ‖nh(·, t)‖2
L2(Ω)

)
for all t ∈ (τ,∞) and some uniform positive constants C2, C3 and C4, and thus that

∫ t

τ

∫
Ω

|∇ch|2 +
∫ t

τ

∫
Ω

c2
h � 2C4

(∫ t

τ

∫
Ω

n2
h +

∫ t

τ

∫
Ω

|uh|2
)

� C5

(∫ t+1

0

∫
Ω

(∂tn)2 +
∫ t+1

0

∫
Ω

|∂tu|2
)

(5.4)

for all t ∈ (τ,∞) and some uniform constant C5 > 0. Here for the last inequality,
we used the temporal version of theorem 3(i) in §5.8.2 [6].

To deal with the first integral on the right-hand side of (5.4), we first use the
maximal regularity of parabolic equations (theorem 2.3 in [8]) and the trace theorem
to obtain

‖∂tn‖L2((0,t+1);L2(Ω))

� C6

(
‖u · ∇n‖L2((0,t+1);L2(Ω)) + ‖∇ · (nS(x, n, c) · ∇c)‖L2((0,t+1);L2(Ω))

+ ‖nS(x, n, c) · ∇c‖L2((0,t+1);W 1/2,2(∂Ω)) + ‖n0‖W 1,2(Ω)

)
� C7

(
‖u · ∇n‖L2((0,t+1);L2(Ω)) + ‖nS(x, n, c)

· ∇c‖L2((0,t+1);W 1,2(Ω)) + ‖n0‖W 1,2(Ω)

)
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for some positive constants C6 and C7, which together with the assumption on S
yields that

‖∂tn‖L2((0,t+1);L2(Ω)) � C8

(
‖u‖L∞(Ω×(0,∞))‖∇n‖L2((0,t+1);L2(Ω))

+ ‖∇n‖L2((0,t+1);L2(Ω))‖∇c‖L∞(Ω×(0,∞))

+ ‖n‖L∞(Ω×(0,∞))‖∇c‖L2((0,t+1);W 1,2(Ω)) + ‖n0‖W 1,2(Ω)

)
� C9(1 + t)1/2 (5.5)

for all t ∈ (0,∞) with positive constants C8 and C9. Here in the last inequality, we
used the boundedness of u, n and ∇c, which follows from lemma 3.2 with r = ∞,
the proofs of lemmas 2.2 and 5.3 in [30], respectively, and the growth estimates
‖∇n‖2

L2((0,t+1);L2(Ω)) � C(1 + t) and ‖D2c‖2
L2((0,t+1);L2(Ω)) � C(1 + t) obtained by

following the proof of lemma 3.4 in [30] and by a direct integral in equation (1.16)2,
respectively. On the other hand, for the second integral on the right-hand side of
(5.4), we utilize maximal regularity of Stokes equations to obtain

‖∂tu‖L2((0,t+1);L2(Ω)) � C10

(
‖Au0‖L2(Ω) + ‖P(n∇φ)‖L2((0,t+1);L2(Ω))

)
� C11

(
‖u0‖W 2,2(Ω) + ‖n‖L2((0,t+1);L2(Ω))‖∇φ‖L∞(Ω)

)
� C12(1 + t)1/2 (5.6)

for all t ∈ (0,∞) and some positive constants C10, C11 and C12.
Inserting (5.5) and (5.6) into (5.4), we see that∫ t

τ

∫
Ω

|∇ch|2 +
∫ t

τ

∫
Ω

c2
h � C13(1 + t) := C5

(
C2

9 + C2
12

)
(1 + t)

for all t ∈ (τ,∞) and some uniform positive constant C13. Consequently, there exists
(hi)i∈N ⊂ (−τ,∞) such that hi → 0 and chi

→ ∂tc in L2(Ω × (τ, t)) with the same
bound

∫ t

τ

∫
Ω
(∂tc)2 � C13(1 + t) as i → ∞. Noticing that C13 is independent of τ ,

we may take τ ↘ 0 to find
∫ t

0

∫
Ω
(∂tc)2 � C13(1 + t), which together with (5.2)

yields that
∫ t

0

∫
Ω

∂tcεc � C14(1 + t) for all t ∈ (0,∞) with C14 = C1 + (1/2)C13.
This completes the proof of lemma 5.1. �

We can now apply a subtle energy estimate to gain the convergence rate of fast
signal diffusion limit.

Lemma 5.2. There exists C > 0 such that for each ε ∈ (0, 1), we have

‖n̂(·, t)‖L2(Ω) + ‖û(·, t)‖L2(Ω) � CeCtε1/2 for all t ∈ (0,∞)

and

‖n̂(·, s)‖L2((0,t);H1(Ω)) + ‖ĉ(·, s)‖L2((0,t);H1(Ω)) + ‖û(·, s)‖L2((0,t);H1(Ω))

� CeCtε1/2 for all t ∈ (0,∞).
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Proof. Our proof is based on a entropy-like evolution estimate for the mixed
functional involving n̂, û and cε of the form

‖n̂(·, t)‖2
L2(Ω) + ε‖cε(·, t)‖2

L2(Ω) + ‖û(·, t)‖2
L2(Ω).

To this end, we first multiply equation (5.1)1 by n̂ and integrate by parts over Ω
to obtain

1
2

d
dt

‖n̂‖2
L2(Ω) + ‖∇n̂‖2

L2(Ω) =
∫

Ω

nû · ∇n̂ +
∫

Ω

n̂S(x, nε, cε) · ∇cε · ∇n̂

+
∫

Ω

nS(x, nε, cε) · ∇ĉ · ∇n̂

+
∫

Ω

n
(
S(x, nε, cε) − S(x, n, c)

) · ∇c · ∇n̂

:= I1 + I2 + I3 + I4. (5.7)

For I1 and I3, we can see from the boundedness of n, the upper estimate (1.13) for
S, the Hölder inequality and the Young inequality that

I1 � ‖n‖L∞(Ω)‖û‖L2(Ω)‖∇n̂‖L2(Ω) � 1
8
‖∇n̂‖2

L2(Ω) + C1‖û‖2
L2(Ω) (5.8)

and

I3 � CS‖n‖L∞(Ω)‖∇ĉ‖L2(Ω)‖∇n̂‖L2(Ω) � 1
8
‖∇n̂‖2

L2(Ω) + C2‖∇ĉ‖2
L2(Ω) (5.9)

for all t ∈ (0,∞) with some positive constants C1 and C2. For I2, we first use
the Hölder inequality, the upper estimate (1.13) for S and the boundedness of
‖∇cε(·, t)‖L4(Ω) obtained in lemmas 3.7 and 4.4 to deduce that

I2 � CS‖n̂‖L4(Ω)‖∇cε‖L4(Ω)‖∇n̂‖L2(Ω) � C3‖n̂‖L4(Ω)‖∇n̂‖L2(Ω)

for all t ∈ (0,∞) and some positive constant C3, which together with the Gagliardo–
Nirenberg inequality and the Young inequality yields that

I2 � C4

(
‖∇n̂‖d/4

L2(Ω)‖n̂‖(4−d)/4
L2(Ω) + ‖n̂‖L2(Ω)

)
‖∇n̂‖L2(Ω)

� C5‖∇n̂‖(4+d)/4
L2(Ω) ‖n̂‖(4−d)/4

L2(Ω) + C5‖n̂‖L2(Ω)‖∇n̂‖L2(Ω)

� 1
8
‖∇n̂‖2

L2(Ω) + C6‖n̂‖2
L2(Ω) (5.10)

for all t ∈ (0,∞) with some positive constants C4, C5 and C6. Finally, for I4, it
follows from the differential mean value theorem, (1.12) and the boundedness of
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nε, n, cε, c and ∇c that

I4 �
∫

Ω

n
∣∣S(x, nε, cε) − S(x, n, c)

∣∣|∇c||∇n̂|

�
∫

Ω

n
(∣∣S(x, nε, cε) − S(x, n, cε)

∣∣+ ∣∣S(x, n, cε) − S(x, n, c)
∣∣)|∇c||∇n̂|

�
∫

Ω

n
(∣∣∇S(x, ξ, cε)

∣∣|nε − n| + ∣∣∇S(x, n, η)
∣∣|cε − c|

)
|∇c||∇n̂|

� C7‖n‖L∞(Ω)‖∇c‖L∞(Ω)

∫
Ω

(|n̂| + |ĉ|)|∇n̂|

� 1
8
‖∇n̂‖2

L2(Ω) + C8

(‖n̂‖2
L2(Ω) + ‖ĉ‖2

L2(Ω)

)
(5.11)

for all t ∈ (0,∞) with positive constants C7 and C8, where ξ and η depend on nε,
n and cε, c, respectively. Substituting the estimates of (5.8)–(5.11) into (5.7), we
have

d

dt
‖n̂‖2

L2(Ω) + ‖∇n̂‖2
L2(Ω) � C9

(
‖n̂‖2

L2(Ω) + ‖ĉ‖2
L2(Ω) + ‖∇ĉ‖2

L2(Ω) + ‖û‖2
L2(Ω)

)
(5.12)

for all t ∈ (0,∞) with some positive constant C9.
Next, testing equation (5.1)2 by ĉ and using the integration by parts over Ω, we

can obtain
ε

2
d

dt
‖cε‖2

L2(Ω) + ‖∇ĉ‖2
L2(Ω) + ‖ĉ‖2

L2(Ω)

= ε

∫
Ω

∂tcεĉ + ε

∫
Ω

∂tcεc + ‖∇ĉ‖2
L2(Ω) + ‖ĉ‖2

L2(Ω)

= ε

∫
Ω

∂tcεc −
∫

Ω

ĉ û · ∇c +
∫

Ω

n̂ĉ := ε

∫
Ω

∂tcεc + I5 + I6. (5.13)

For I5 and I6, it is clear from the Hölder inequality, the Young inequality and the
boundedness of ∇c that

I5 � ‖∇c‖L∞(Ω)‖û‖L2(Ω)‖ĉ‖L2(Ω) � 1
8
‖ĉ‖2

L2(Ω) + C10‖û‖2
L2(Ω)

and

I6 � 1
8
‖ĉ‖2

L2(Ω) + C11‖n̂‖2
L2(Ω)

for all t ∈ (0,∞) with some positive constants C10 and C11. Substituting them into
(5.13), we obtain that

ε
d
dt

‖cε‖2
L2(Ω) + 2‖∇ĉ‖2

L2(Ω) +
3
2
‖ĉ‖2

L2(Ω)

� 2ε

∫
Ω

∂tcεc + 2C11‖n̂‖2
L2(Ω) + 2C10‖û‖2

L2(Ω) (5.14)

for all t ∈ (0,∞).
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Similarly, multiplying equation (5.1)3 by û and making use of the Hölder inequal-
ity, the Poincaré inequality due to û = 0 on ∂Ω and the Young inequality, we
have

1
2

d
dt

‖û‖2
L2(Ω) + ‖∇û‖2

L2(Ω) =
∫

Ω

n̂ û · ∇φ � ‖∇φ‖L∞(Ω)‖û‖L2(Ω)‖n̂‖L2(Ω)

� C12‖∇φ‖L∞(Ω)‖∇û‖L2(Ω)‖n̂‖L2(Ω)

� 1
2
‖∇û‖2

L2(Ω) + C13‖n̂‖2
L2(Ω)

for all t ∈ (0,∞) with some positive constants C12 and C13 and thus

d
dt

‖û‖2
L2(Ω) + ‖∇û‖2

L2(Ω) � 2C13‖n̂‖2
L2(Ω). (5.15)

Summarily, we multiply (5.14) by C9 and combine the resulted inequality with
(5.12) and (5.15) to obtain

d
dt

(
‖n̂‖2

L2(Ω) + εC9‖cε‖2
L2(Ω) + ‖û‖2

L2(Ω)

)
+ ‖∇n̂‖2

L2(Ω)

+ C9

(
‖∇ĉ‖2

L2(Ω) +
1
2
‖ĉ‖2

L2(Ω)

)
+ ‖∇û‖2

L2(Ω)

� 2εC9

∫
Ω

∂tcεc +
(
C9 + 2C9C11 + 2C13

)‖n̂‖2
L2(Ω) +

(
C9 + 2C9C10

)‖û‖2
L2(Ω)

(5.16)

for all t ∈ (0,∞). Thus by setting

y(t) := ‖n̂‖2
L2(Ω) + εC9‖cε‖2

L2(Ω) + ‖û‖2
L2(Ω)

and

g(t) := ‖∇n̂‖2
L2(Ω) + C9

(
‖∇ĉ‖2

L2(Ω) +
1
2
‖ĉ‖2

L2(Ω)

)
+ ‖∇û‖2

L2(Ω)

as well as

h(t) := 2C9

∫
Ω

∂tcεc,

we can simplify (5.16) as

y′(t) + g(t) � C14y(t) + εh(t)

for all t ∈ (0,∞) with C14 := max
{
C9 + 2C9C11 + 2C13, C9 + 2C9C10

}
. It then

follows from the Gronwall inequality and lemma 5.1 that

y(t) � eC14t

(
y(0) + ε

∫ t

0

e−C14sh(s)ds

)
� eC14t

(
εC9‖c0‖2

L2(Ω) + εC15(1 + t)

)
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for all t ∈ (0,∞) and some C15 > 0 due to n̂(·, 0) = 0 and û(·, 0) = 0, which together
with the fact 1 + t � et implies that

‖n̂(·, t)‖2
L2(Ω) + ‖û(·, t)‖2

L2(Ω) � y(t) � C16eC16tε

for all t ∈ (0,∞) and some C16 > 0 and thus that∫ t

0

g(s)ds � y(0) + C14

∫ t

0

y(s)ds + ε

∫ t

0

h(s)ds � C17eC17tε

for all t ∈ (0,∞) and some C17 > 0. Since
∫
Ω

n̂ = 0 and û = 0 on ∂Ω, we can also
use the Poincaré inequality to deduce that

‖n̂(·, s)‖2
L2((0,t);W 1,2(Ω)) + ‖ĉ(·, s)‖2

L2((0,t);W 1,2(Ω)) + ‖û(·, s)‖2
L2((0,t);W 1,2(Ω))

� C18eC18tε

for all t ∈ (0,∞) and some C18 > 0. This completes the proof of lemma 5.2. �

Lemma 5.3. For any given θ ∈ (0, 1), there exists a positive constant C(θ) such that
for each ε ∈ (0, 1), we have

‖Aθû(·, t)‖L2(Ω) � C(θ)eC(θ)tε1/2 for all t ∈ (0,∞).

In particular, we have

‖û(·, t)‖L∞(Ω) � CeCtε1/2 for all t ∈ (0,∞)

with some positive constant C.

Proof. We first apply the Helmholtz projection P to both sides of equation (5.1)3
and then make use of the variation-of-constants representation of û to obtain that

‖Aθû(·, t)‖L2(Ω) =
∥∥∥∥∫ t

0

Aθe−(t−s)AP(n̂∇φ)(·, s)ds

∥∥∥∥
L2(Ω)

� C1

∫ t

0

(t − s)−θe−λ(t−s)‖P(n̂∇φ)(·, s)‖L2(Ω)ds

for some λ > 0 and C1 > 0 due to û(x, 0) = 0. It follows from the Hölder inequality
and lemma 5.2 that

‖P(n̂∇φ)(·, s)‖L2(Ω) � ‖n̂(·, s)‖L2(Ω)‖∇φ‖L∞(Ω) � C2eC2sε1/2,

for some C2 > 0 and thus that

‖Aθû(·, t)‖L2(Ω) � C1C2ε
1
2

∫ t

0

(t − s)−θe−λ(t−s)+C2sds � C3eC3tε1/2

for all t ∈ (0,∞) and some C3 := C3(θ) > 0. Since D(Aθ) ↪→ L∞(Ω, Rd) whenever
θ > d/4, we have similar estimate for ‖û(·, t)‖L∞(Ω). This completes the proof of
lemma 5.3. �
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Lemma 5.4. For any p � 4, there exists C(p, t) > 0 such that for each ε ∈ (0, 1), we
have

‖n̂(·, t)‖Lp(Ω) � C(p, t)ε(p+d−2)/(p(d+2)) for all t ∈ (0,∞).

Proof. For this purpose, we first test equation (5.1)1 by n̂p−1 with p � 4 and
integrate by parts over Ω to obtain

1
p

d
dt

‖n̂p/2‖2
L2(Ω) +

4(p − 1)
p2

‖∇n̂p/2‖2
L2(Ω)

= (p − 1)
∫

Ω

nn̂p−2û · ∇n̂ + (p − 1)
∫

Ω

n̂p−1S(x, nε, cε) · ∇cε · ∇n̂

+ (p − 1)
∫

Ω

nn̂p−2S(x, nε, cε) · ∇ĉ · ∇n̂

+ (p − 1)
∫

Ω

nn̂p−2
(
S(x, nε, cε) − S(x, n, c)

)∇c · ∇n̂

:= I7 + I8 + I9 + I10. (5.17)

We now estimate I7, I8, I9 and I10 one by one. Indeed, it follows from the Hölder
inequality, the Gagliardo–Nirenberg inequality and the Young inequality that

I7 � (p − 1)‖n‖L∞(Ω)‖n̂(p−2)/2∇n̂‖L2(Ω)‖n̂(p−2)/2‖L4(Ω)‖û‖L4(Ω)

� p − 1
8

‖n̂(p−2)/2∇n̂‖2
L2(Ω) + 2(p − 1)‖n‖2

L∞(Ω)‖n̂p/2‖(2(p−2))/p

L(4(p−2))/p(Ω)
‖û‖2

L4(Ω)

� p − 1
2p2

‖∇n̂p/2‖2
L2(Ω)

+ C1

(
‖∇n̂p/2‖(2d(p−3))/((p−2)d+4)

L2(Ω) ‖n̂p/2‖(2(4−d)p+8d−16)/(p(p−2)d+4p)

L4/p(Ω)

+ ‖n̂p/2‖(2(p−2))/p

L4/p(Ω)

)
‖û‖2

L4(Ω)

� p − 1
p2

‖∇n̂p/2‖2
L2(Ω) + C2‖n̂p/2‖(2(4−d)p+8d−16)/(p(d+4))

L4/p(Ω)
‖û‖(2(p−2)d+8)/(d+4)

L4(Ω)

+ C2‖n̂‖p−2
L2(Ω)‖û‖2

L4(Ω)

=
p − 1
p2

‖∇n̂
p
2 ‖2

L2(Ω) + C2‖n̂‖((4−d)p+4d−8)/(d+4)
L2(Ω) ‖û‖(2(p−2)d+8)/(d+4)

L4(Ω)

+ C2‖n̂‖p−2
L2(Ω)‖û‖2

L4(Ω) (5.18)

for some positive constants C1 and C2, and

I8 � (p − 1)CS‖n̂(p−2)/2∇n̂‖L2(Ω)‖n̂p/2‖L4(Ω)‖∇cε‖L4(Ω)

� p − 1
8

‖n̂(p−2)/2∇n̂‖2
L2(Ω) + 2(p − 1)C2

S‖n̂p/2‖2
L4(Ω)‖∇cε‖2

L4(Ω)
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� p − 1
2p2

‖∇n̂p/2‖2
L2(Ω)

+ C3

(
‖∇n̂p/2‖(2d(p−1))/((p−2)d+4)

L2(Ω) ‖n̂p/2‖(2(4−d))/((p−2)d+4)

L4/p(Ω)
+ ‖n̂p/2‖2

L4/p(Ω)

)
� p − 1

p2
‖∇n̂p/2‖2

L2(Ω) + C4‖n̂p/2‖2
L4/p(Ω)

=
p − 1
p2

‖∇n̂p/2‖2
L2(Ω) + C4‖n̂‖p

L2(Ω) (5.19)

for some positive constants C3 and C4, as well as

I9 � (p − 1)CS‖n‖L∞(Ω)‖∇cε −∇c‖L∞(Ω)‖n̂(p−2)/2∇n̂‖L2(Ω)‖n̂(p−2)/2‖L2(Ω)

� p − 1
8

‖n̂(p−2)/2∇n̂‖2
L2(Ω)

+ 2(p − 1)C2
S‖n‖2

L∞(Ω)‖∇cε −∇c‖2
L∞(Ω)‖n̂p/2‖(2(p−2))/p

L(2(p−2))/p(Ω)

� p − 1
2p2

‖∇n̂p/2‖2
L2(Ω)

+ C5

(
‖∇n̂p/2‖(2d(p−4))/((p−2)d+4)

L2(Ω) ‖n̂p/2‖(8(d+p−2))/(p(p−2)d+4p)

L4/p(Ω)

+ ‖n̂p/2‖(2(p−2))/p

L4/p(Ω)

)
� p − 1

p2
‖∇n̂p/2‖2

L2(Ω) + C6‖n̂p/2‖(4(d+p−2))/(p(d+2))

L4/p(Ω)
+ C6‖n̂‖p−2

L2(Ω)

=
p − 1
p2

‖∇n̂p/2‖2
L2(Ω) + C6‖n̂‖(2(d+p−2))/(d+2)

L2(Ω) + C6‖n̂‖p−2
L2(Ω) (5.20)

for some positive constants C5 and C6. Similar to (5.20), we also have

I10 � (p − 1)
∫

Ω

n
∣∣S(x, nε, cε) − S(x, n, c)

∣∣|∇c||n̂p−2∇n̂|

� 2(p − 1)CS‖n‖L∞(Ω)‖∇c‖L∞(Ω)‖n̂
p−2
2 ∇n̂‖L2(Ω)‖n̂

p−2
2 ‖L2(Ω)

� p − 1
8

‖n̂ p−2
2 ∇n̂‖2

L2(Ω) + 8(p − 1)C2
S‖n‖2

L∞(Ω)‖∇c‖2
L∞(Ω)‖n̂

p
2 ‖

2(p−2)
p

L
2(p−2)

p (Ω)

� p − 1
p2

‖∇n̂
p
2 ‖2

L2(Ω) + C7‖n̂‖
2(d+p−2)

d+2

L2(Ω) + C7‖n̂‖p−2
L2(Ω) (5.21)

for some C7 > 0. Substituting (5.18)–(5.21) into (5.17), we deduce that

1
p

d
dt

‖n̂p/2‖2
L2(Ω) � C2‖n̂‖((4−d)p+4d−8)/(d+4)

L2(Ω) ‖û‖(2(p−2)d+8)/(d+4)
L4(Ω)

+ C2‖n̂‖p−2
L2(Ω)‖û‖2

L4(Ω) + C4‖n̂‖p
L2(Ω)

+ (C6 + C7)
(
‖n̂‖(2(d+p−2))/(d+2)

L2(Ω) + ‖n̂‖p−2
L2(Ω)

)
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for all t ∈ (0,∞), which together with lemmas 5.2, 5.3 and the interpolation yields
that

d

dt
‖n̂ p

2 (·, t)‖2
L2(Ω) � C8eC8t

(
ε

p
2 + ε

d+p−2
d+2 + ε

p−2
2

)
� 3C8eC8tε

d+p−2
d+2

for all t ∈ (0,∞) and some positive constant C8 due to ε ∈ (0, 1). Then a direct
calculation together with the fact n̂(x, 0) = 0 in Ω implies that

‖n̂(·, t)‖p
Lp(Ω) = ‖n̂p/2(·, t)‖2

L2(Ω) � 3eC8tε(d+p−2)/(d+2)

for all t ∈ (0,∞). This completes the proof of lemma 5.4. �

Proof of theorem 1.1. A direct combination of lemmas 5.2–5.4 yields the desired
result. �
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