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Numerical simulations have been conducted to identify the dominant mechanism
responsible for driving secondary flow motions in horizontal particle-laden pipe flows,
based on an analysis of the forces acting on each phase. A four-way coupling
Euler–Lagrangian approach was employed, using direct numerical simulations for the gas
phase and Lagrangian particle tracking to account for the drag, gravitational and lift forces,
together with the interactions that occur for both particle–wall and inter-particle collisions.
The four different flow regimes, which had been identified previously as depending on
various combinations of flow parameters and are characterised by the secondary flow
structures of both the fluid and particle phases, were identified via varying the mass
loading alone from Φm = 0.4 to Φm = 1.8. The distribution of the divergence of Reynolds
stresses was used to help characterise the classes of the secondary fluid flow. This shows
that secondary fluid flows of both the first and second kinds can either exist separately
or co-exist in such flows. The forces exerted on the fluid phase by the pressure gradient
and fluid–particle interactions were examined qualitatively and quantitatively to identify
their contribution to the secondary fluid flow motions. A similar study was also applied
to the drag, lift and gravitational forces exerted on the particle phase for the secondary
particle flow motions. These were found to explain the secondary flows of both the fluid
and particle phases with regard to both the flow direction and magnitude, together with the
interaction between the two phases.

Key words: particle/fluid flows, pipe flow

1. Introduction

This study aims to understand the mechanisms that generate various structures of
secondary flows in particle-laden gas–solid flows within horizontal pipes, for which there
is currently no consensus. Here, a secondary flow is defined as the mean motion in the
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cross-sectional plane of the pipe, perpendicular to the mean streamwise flow direction.
In the literature, it is generally accepted that the generation of secondary flows of the
continuous fluid phase can be classified into two different categories, depending on the
driving mechanisms (Speziale 1982). Secondary flows of the first kind are driven by
external forces, such as external pressure gradients, buoyancy forces or moving particles
(Alletto & Breuer 2013). For example, secondary flows can be driven by the centrifugal
force in curved pipes (Noorani, El Khoury & Schlatter 2013; Kalpakli Vester, Örlü &
Alfredsson 2016; Wang et al. 2018; Chin et al. 2020) or the buoyancy force in heated
pipes/channels (Yao 1978a,b; Sekimoto et al. 2011; Tian et al. 2019). Secondary flows of
the second kind are associated with the anisotropy of the Reynolds stress tensor in the pipe
cross-section and thus by turbulence itself, such as those in non-circular pipes (Speziale
1982; Dykhno, Williams & Hanratty 1994; Galletti & Bottaro 2004; Larsson et al. 2011),
in circular pipes with a non-uniform roughness (Hinze 1973; Van’t Westende et al. 2007)
and stratified flows (Flores, Crowe & Griffith 1995; Vollestad, Angheluta & Jensen 2020).
The particles transported within pipe flows can also induce a secondary flow. Specifically,
secondary flows in particle-laden flows can be generated directly by the particle forces
exerted on the fluid, which correspond to a secondary flow of the first kind. Alternatively,
secondary flows in particle-laden flows can be induced indirectly by the inhomogeneous
distribution of the particles over the pipe cross-section, as it leads to an inhomogeneous
turbulence attenuation and an anisotropy of the Reynolds stress tensor. Such secondary
flow corresponds to a secondary flow of the second kind. However, a lack of information
is available from the literature to fully classify the potential types of secondary flows in
horizontal particle-laden pipe flows, particularly those that can occur under different flow
regimes (i.e. based on different flow parameters). Additionally, the information available is
also insufficient to identify all of the mechanisms that may be present, because the particle
forces exerted on the fluid and anisotropic Reynolds stresses do not necessarily occur in
isolation. That is, a secondary flow may be of both the first and second kinds.

The necessary and sufficient conditions for the presence of secondary flows in
particle-laden pipe flows within a two-dimensional cross-section have been derived from
the three-dimensional Navier–Stokes (N–S) equations by Belt, Daalmans & Portela (2012),
given by

∇ × (∇ · τ̃ y−z) + ∇ × Sp,y−z,0 /= 0, (1.1)

where τ̃ y−z is the projection of the Reynolds stress tensor onto the cross-section (with
the subscript ‘y − z’), while Sp,y−z,0 is a component of the cross-sectional fluid–particle
interaction force exerted on the fluid that is independent of the secondary flow (with
the subscript ‘0’, explained in detail by Belt et al. 2012). Note that here, Sp,y−z,0 ≡
Sp,y−z(u

f
y−z = 0), where u f

y−z is the cross-sectional fluid velocity. Both τ̃ y−z and Sp,y−z

are the source terms for the vorticity ωx, which is a scalar for the two-dimensional velocity
field u f

y−z:

ρ f Dωx

Dt
= μ ∇2ωx + ∇ × (∇ · τ̃ y−z) + ∇ × Sp,y−z, (1.2)

which is obtained by applying the curl to the two-dimensional N–S equation. Here, x, y
and z denote the streamwise, lateral and vertical directions, respectively, in the Cartesian
coordinate system of the flow. Also, ρ f and μ are the fluid density and dynamic viscosity,
respectively. Therefore, in (1.1), a secondary flow driven by a non-zero ∇ × Sp,y−z,0
corresponds to that of the first kind, while a secondary flow driven by a non-zero
∇ × (∇ · τ̃ y−z) corresponds to that of the second kind (Belt et al. 2012). However, in
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this equation, it is not necessary that only one of these two terms on the left-hand side is
equal to zero, which means that both can induce a secondary flow, as mentioned earlier.
Additionally, the component Sp,y−z,0 is not easy to isolate from Sp,y−z, as the fluid–particle
interacting forces are strongly coupled through the slip velocity. Hence the theoretical
term in (1.1) is difficult to isolate. Furthermore, a Reynolds stress is, by definition, derived
from the Reynolds-averaging process rather than from the instantaneous forces. To the best
of the authors’ knowledge, no previous study has gone beyond the analysis of Reynolds
stresses to assess the role of these instantaneous forces on secondary flows in particle-laden
flow systems.

For particle-laden flows in horizontal pipes, several studies have reported various
structures of the secondary fluid flow and proposed their causes. The key information of
these previous studies is summarised in table 1. For instance, Sommerfeld & Lain (2009),
Lain, Sommerfeld & Quintero (2009) and Lain & Sommerfeld (2012) have reported a
structure with two cells (anticlockwise on the left and clockwise on the right) or with
four cells (with the above-mentioned two cells below and two contrary cells above)
for secondary fluid flows under simulations performed with or without inter-particle
collisions. The mass loading in their study was varied from Φm = 1.0 to Φm = 8.8,
which corresponds to a particle volumetric fraction within the transition between the
two-way coupling (where the conveying fluid and particle motions influence each other)
and four-way coupling (where inter-particle interactions are also significant) regimes. They
attributed such secondary fluid motions to the momentum transfer from particles, which
implies a secondary flow of the first kind, because particles collide with the circular pipe
wall and therefore rebound back towards the core of the pipe (the so-called focusing effect
of Sommerfeld & Lain 2009). Moreover, the upper two of the four cells were deduced to
be generated as a result of inter-particle collisions, which enhance the vertical dispersion
of particles and increase the collision frequency between particles and the upper pipe wall.
Nonetheless, the secondary particle motions in their study were not reported to verify this.

Later studies have revealed secondary flows of the second kind for particle-laden
flows in horizontal pipes. An experimental study by Belt et al. (2012) employed fixed,
non-uniformly distributed particles in a fully developed horizontal pipe flow to isolate
from other phenomena the fluid–particle interaction forces, which have the potential to
generate secondary flows of the first kind. They observed a structure with four cells (two
dominant centre-upward cells below, and two elongated cells near to the upper pipe wall).
This secondary flow structure was attributed to the anisotropy of the Reynolds stresses
induced by non-uniformly distributed particles. Therefore it is a secondary flow of the
second kind. The large-eddy simulations (LES) study by Alletto & Breuer (2013) obtained
only a two-cell (clockwise on the left and anticlockwise on the right) secondary flow
structure, regardless of the mass loading 0.3 ≤ Φm ≤ 0.7 (corresponding to the top of the
range for the two-way coupling regime). They excluded the possibility that the continuous
fluid phase is driven by the particles, based on the analysis of the particle drag forces.
Instead, the inhomogeneous particle distribution was reported to result in anisotropy of
the Reynolds stresses in their simulation, thus also being associated with the secondary
flows of the second kind.

A recent study by Zhang et al. (2021b) reported various structures of secondary flow
under systematically varied flow parameters. A transition of the secondary fluid flow
structure from a centre-upward two-cell to a four-cell (two centre-upward cells above,
and two centre-downward cells below), and a centre-downward two-cell structure was
found to occur for one of several conditions. These are an increase in mass loading
from Φm = 0.4 to Φm = 1.8 (corresponding to the volume fraction within the transition

949 A10-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.745


X. Zhang, G.J. Nathan, Z.F. Tian and R.C. Chin

A
ut

ho
rs

M
et

ho
d

M
ai

n
fix

ed
pa

ra
m

et
er

s
C

on
tr

ol
le

d
va

ri
ab

le
s

Se
co

nd
ar

y
flu

id
flo

w
Se

co
nd

ar
y

pa
rt

ic
le

flo
w

So
m

m
er

fe
ld

&
L

ai
n

(2
00

9)
R

A
N

S
&

L
ag

ra
ng

ia
n

Re
f b
=

87
50

0*
Tw

o-
or

fo
ur

-w
ay

co
up

lin
g

C
en

tr
e-

up
w

ar
d

tw
o-

ce
ll

N
/A

an
d

Sk
=

40
.5

*
0.

8◦
≤

Δ
γ

≤
5.

0◦
R

ev
er

se
d

fo
ur

-c
el

l
So

m
m

er
fe

ld
&

L
ai

n
(2

00
9)

Φ
m

=
1.

0
ρ

r
=

19
60

L
ai

n
et

al
.(

20
09

)
R

A
N

S
&

L
ag

ra
ng

ia
n

Re
f b
=

20
80

0*
2.

6
≤

Sk
≤

41
.3

*
C

en
tr

e-
up

w
ar

d
tw

o-
ce

ll
N

/A
ρ

r
=

83
0

2.
2

≤
Φ

m
≤

8.
8

R
ev

er
se

d
fo

ur
-c

el
l

Tw
o-

or
fo

ur
-w

ay
co

up
lin

g
1.

5◦
≤

�
γ

≤
10

.0
◦

B
el

te
ta

l.
(2

01
2)

E
X

P
N

/A
fo

rfi
xe

d
pa

rt
ic

le
s

53
00

≤
Re

f b
≤

10
60

0
R

ev
er

se
d

fo
ur

-c
el

l
N

/A
A

lle
tto

&
B

re
ue

r(
20

13
)

L
E

S
&

L
ag

ra
ng

ia
n

Re
f b
=

12
0

00
0

0.
3

≤
Φ

m
≤

0.
7

C
en

tr
e-

do
w

nw
ar

d
tw

o-
ce

ll
N

/A
Sk

=
41

.5
*

2.
4

≤
k+ s

≤
11

.8
*

ρ
r
=

20
40

Z
ha

ng
et

al
.(

20
21

a)
D

N
S

&
L

ag
ra

ng
ia

n
Re

f b
=

20
00

0
5.

6
≤

Sk
≤

22
.4

C
en

tr
e-

up
w

ar
d

tw
o-

ce
ll

R
ev

er
se

d
fo

ur
-c

el
l

an
d

ρ
r
=

10
00

0.
4

≤
Φ

m
≤

1.
8

Fo
ur

-c
el

l
Si

x-
ce

ll
Z

ha
ng

et
al

.(
20

21
b)

8.
5

≤
Fr

≤
34

.0
C

en
tr

e-
do

w
nw

ar
d

tw
o-

ce
ll

C
en

tr
e-

do
w

nw
ar

d
tw

o-
ce

ll
0.

2
≤

e p
−w

≤
0.

97
0.

2
≤

e p
−p

≤
0.

97
Pr

es
en

t
D

N
S

&
L

ag
ra

ng
ia

n
Re

f b
=

20
00

0
0.

4
≤

Φ
m

≤
1.

8
C

en
tr

e-
up

w
ar

d
tw

o-
ce

ll
R

ev
er

se
d

fo
ur

-c
el

l
Sk

=
11

.2
Fo

ur
-c

el
l

Si
x-

ce
ll

ρ
r
=

10
00

C
en

tr
e-

do
w

nw
ar

d
tw

o-
ce

ll
C

en
tr

e-
do

w
nw

ar
d

tw
o-

ce
ll

e p
−w

=
0.

97
e p

−p
=

0.
97

Ta
bl

e
1.

Pr
ev

io
us

st
ud

ie
s

on
se

co
nd

ar
y

flo
w

s
in

ho
ri

zo
nt

al
pa

rt
ic

le
-l

ad
en

pi
pe

flo
w

s.
H

er
e,

*
de

no
te

s
es

tim
at

es
by

th
e

cu
rr

en
ta

ut
ho

rs
fr

om
th

e
da

ta
re

po
rt

ed
in

th
e

or
ig

in
al

pa
pe

rs
.N

ot
e

th
at

Re
f b

is
th

e
bu

lk
flu

id
R

ey
no

ld
s

nu
m

be
r,

Sk
is

th
e

St
ok

es
nu

m
be

r,
Φ

m
is

th
e

pa
rt

ic
le

m
as

s
lo

ad
in

g,
ρ

r
is

th
e

pa
rt

ic
le

-t
o-

flu
id

de
ns

ity
ra

tio
,a

nd
Fr

is
th

e
Fr

ou
de

nu
m

be
r.

A
ls

o,
e p

−w
an

d
e p

−p
ar

e
th

e
co

ef
fic

ie
nt

s
of

re
st

itu
tio

n
of

pa
rt

ic
le

–w
al

la
nd

in
te

r-
pa

rt
ic

le
co

lli
si

on
s,

re
sp

ec
tiv

el
y.

T
he

w
al

lr
ou

gh
ne

ss
is

ch
ar

ac
te

ri
se

d
by

th
e

st
an

da
rd

de
vi

at
io

n
of

th
e

ro
ug

hn
es

s
an

gl
e

di
st

ri
bu

tio
n

(d
ep

en
di

ng
on

pa
rt

ic
le

si
ze

an
d

ro
ug

hn
es

s
he

ig
ht

),
Δ

γ
,o

rt
he

w
al

lr
ou

gh
ne

ss
he

ig
ht

in
w

al
lu

ni
ts

,k
+ s

.T
he

se
co

nd
ar

y
flo

w
st

ru
ct

ur
es

ar
e

ill
us

tr
at

ed
in

fig
ur

e
1.

T
he

co
nfi

gu
ra

tio
n

of
th

e
pr

es
en

tw
or

k
in

th
e

la
st

ro
w

is
de

sc
ri

be
d

in
§

2.
2.

949 A10-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.745


The dominant mechanisms for each regime of secondary flows

from the two-way to four-way coupling regimes), in the Froude number from Fr = 8.5 to
Fr = 34.0 (corresponding to a transition

of the gravitational effect from relatively strong to weak with respect to flow inertia),
or in the coefficient of restitution (COR) of inter-particle collisions from ep−p = 0.2 to
ep−p = 0.97 (corresponding to a transition from inelastic to elastic collisions), or else
with a decrease in the COR of particle–wall collisions from ep−w = 0.97 to ep−w = 0.2
(from elastic to inelastic collisions). They identified the pair of centre-upward cells (i.e. the
centre-upward two-cell structure itself or the upper pair of cells in the four-cell structure),
where the turbulence persists and is anisotropic, to be a secondary flow of the second
kind. This is consistent with the findings of Belt et al. (2012) and Alletto & Breuer (2013).
In contrast, the pair of centre-downward cells (i.e. the centre-downward two-cell structure
itself or the lower pair of cells in the four-cell structure) was hypothesised to be induced by
the particle motions. This is because, on the one hand, these two cells are enlarged with an
increase in Φm and tend to exhibit the same flow pattern as the particle phase; on the other
hand, they occur where the local particle mass loading is sufficiently high at Φm,loc ≥ 1.5.

Furthermore, Zhang et al. (2021b) revealed that the secondary particle flow structure
varies from a reversed four-cell (two centre-downward cells above and two centre-upward
cells below) to a six-cell (reversed four-cell above and two centre-downward cells below),
and a centre-downward two-cell structure, with the above-mentioned variations in flow
parameters. They also identified various combinations of the secondary flow structures of
both the fluid and particle phases: the f2–p4 (a two-cell structure for the secondary flow
motions of the fluid phase and a four-cell structure for that of the particle phase; the same
conventions apply hereafter), f4–p6, f4–p2 and f2–p2 regimes, as illustrated in figure 1.
Each of these represent different secondary flow structures of both phases and occurs for
different characteristics of the flow parameters. However, the governing mechanisms for
driving such different secondary flow motions, particularly for the pair of centre-downward
secondary fluid flow cells, and various secondary particle flow structures, have not been
reported previously.

In summary, for horizontal particle-laden pipe flows, the secondary fluid flow of the
second kind that results from an inhomogeneous particle distribution has been observed
and confirmed in terms of the anisotropy of the Reynolds stresses in the literature.
In contrast, the secondary fluid flow of the first kind has only been hypothesised to
occur where the particle mass loading is sufficiently high, i.e. to be dominated by the
fluid–particle interaction force exerted on the fluid, while the anisotropy of Reynolds
stress is negligible. However, the direct evidence supporting this hypothesis is missing.
Moreover, the fact that both the anisotropy of Reynolds stresses and the fluid–particle
interaction force can be non-zero implies that conditions may arise in which a secondary
fluid flow could be of both the first and second kinds. This, in turn, suggests that this
classification may be incomplete and that an assessment should be performed based on
instantaneous forces (e.g. the pressure gradient force and fluid–particle interaction force)
in addition to the Reynolds stresses. Since such analyses are not available, the aims of
the present numerical work are: (1) to characterise completely the class(es) of secondary
flows in horizontal particle-laden pipe flows; and (2) to advance understanding of the
generation of such secondary flows from an analysis of the forces acting on both the fluid
and particle phases. Here, we stress that although our previous studies have identified
various flow regimes and their characteristics, including the secondary flow patterns, no
detailed explanation was given for the mechanism for the secondary flow phenomenon,
whereas the present study focuses on the dominant mechanisms of secondary flows.
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Flow regime f2–p4

ep–w = 0.97

ep–p = 0.97

Φm = 0.4
ep–w = 0.6

ep–p = 0.97

Φm = 1.1

ep–w = 0.97

ep–p = 0.97

Φm = 1.1

f4–p6 f4–p2

ep–w = 0.97

ep–p = 0.97

Φm = 1.8

f2–p2

Flow parameters

(example)

Fluid phase

Particle phase

Centre-upward two-cell Centre-downward two-cellFour-cell Four-cell

Reversed four-cell Centre-downward

two-cell

Centre-downward

two-cell

Six-cell

Figure 1. Illustration of the various regimes of secondary flow structures of both the fluid and particle phases
identified previously Zhang et al. (2021b). Here, a subscript following the symbols f and p represents the
number of cells in the fluid and particle phases, respectively. Also shown are typical values of mass loading
and CORs that generate these regimes.

The paper is organised as follows. Section 2 describes the governing equations, applied
models, numerical configurations and data post-processing in the present work. In § 3, the
secondary fluid flows are identified, and the forces exerted on both the fluid and particle
phases are presented. Section 4 summarises the mechanisms with which the secondary
flows of both phases are generated, using sketches. Finally, conclusions are drawn in § 5.

2. Numerical method

2.1. Governing equations
A direct numerical simulations (DNS) method with four-way coupling Lagrangian particle
tracking in an open source framework (OpenFOAM�) was employed to solve the N–S
equations and those of particle motions, following the numerical framework of Zhang
et al. (2021a,b). The motion of an incompressible fluid (gas) phase in a horizontal circular
pipe is governed by the volume-averaged continuity and N–S equations, given by

∂α f

∂t
+ ∇ · (α f u f ) = 0, (2.1)

∂(α f u f )

∂t
+ ∇ · (α f u f u f ) = − 1

ρ f ∇p + ∇ · (α f ε) + α f g − Sp, (2.2)

where u f and α f are the velocity vector and volume fraction, respectively, of the fluid
phase (with a superscript ‘f ’). Also, p denotes the pressure, while Sp indicates the particle
source term, ε is the viscous stress tensor, and g is the gravitational acceleration vector.
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The fluid viscous stress tensor ε is given by

ε = 1
ρf

[(
λf + 2

3
μf

)
(∇ · uf )δK + μf ((∇ · uf ) + (∇ · uf )

T)

]
, (2.3)

where λf is the fluid bulk viscosity and δK is the Kronecker delta. For the present low
volume fraction (of the order of 10−3) of particles transported within the incompressible
gas, the fluid bulk viscosity λf , as well as the effect of mixture viscosity, can be neglected.
Furthermore, we note here that the discretisation schemes for these Eulerian governing
equations ((2.1) and (2.2)) can be found in the previous numerical work reported by Zhang
et al. (2021a).

The particle motions are governed by Newton’s second law, as follows:

mp
i

dup
i

dt
= f p

D,i + f p
L,i + f p

G,i + f p
C,iw +

∑
i /= j

f p
C,ij, (2.4)

where mp
i and up

i are the mass and the velocity vector for a single particle i (with a
superscript ‘p’ indicating the particle phase). Here, the drag force f p

D,i, lift force f p
L,i

and gravitational force f p
G,i in the negative z-direction were considered, following the

assumptions for particle forces of Zhang et al. (2021a). Additionally, the contacting forces
of particle i with the wall, f p

C,iw, and with other particle(s) j, f p
C,ij, were included and

computed using the spring–slider–dashpot model (see Fernandes et al. (2018) for detailed
information). The drag force was calculated, depending on the particle volume fraction
and the fluid–particle slip velocity, as

f p
D,i = Viβi

α
p
i

(u f
i − up

i ), (2.5)

where Vi denotes the volume of a single particle i, and u f
i indicates the local fluid velocity

vector at the ith particle position. Here, βi is an empirical inter-phase momentum exchange
coefficient (in units kg m−3 s−1) computed using the Gidaspow drag model (Gidaspow
1994), which combines the empirical correlations presented by Ergun & Orning (1949) and
Wen & Yu (1966) for α f ≤ 0.8 and α f ≥ 0.8, respectively. Also, α

p
i is the local particle

volumetric fraction of the computational cell where the particle i resides, given by

α
p
i = 1

Vcell

Np∑
i=1

Vi, (2.6)

where Vcell is the volume of the computational cell, and Np is the number of particles found
in this cell. Thus the fields of particle and fluid volumetric fractions satisfy αp + α f = 1.
Furthermore, the fluid–particle interaction forces exerted on the local fluid phase (i.e. the
source term Sp in (2.2)) were computed as the integral of the counteracting forces of the
forces exerted by the fluid on the particles (only the drag and lift forces in the present work,
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f f
D,i = − f p

D,i, f f
L,i = − f p

L,i) per unit of volume, given by

Sp =

Np∑
i=1

( f f
D,i + f f

L,i)

ρ f Vcell
. (2.7)

We note here that the term Sp,y−z in (1.2) is the projection of the vector Sp onto the
two-dimensional pipe cross-section.

Moreover, in (2.4), the lift force was calculated depending on the cross-product of the
fluid–particle slip velocity and fluid vorticity, as follows:

f p
L,i = CL · ρ f · Vi · (u f

i − up
i ) × ωi, (2.8)

where ωi is the fluid vorticity (ω = ∇ × u f ) at the ith particle position. Here, CL is the
lift coefficient in terms of the particle Reynolds number Rep = ρ f |up − u f | d/μ and the
vorticity Reynolds number Reω = ρ f |∇ × u f | d2/μ, where d is the particle diameter.
The Saffman lift force model, corrected by Mei (1992) and Mei & Klausner (1994) for
moderate particle Reynolds numbers, was employed in the present study to evaluate the
effect of particle motions near to the wall where velocity gradients are high.

2.2. Numerical configurations
The configuration of simulations followed the previous numerical work by Zhang et al.
(2021a,b). The fluid bulk Reynolds number was Re f

b = ρ f U f
b D/μ = 20000 based on

the fluid bulk velocity U f
b and pipe diameter D, while the shear Reynolds number

was Re f
τ = 570. The particle-to-gas density ratio was fixed at ρr = ρp/ρ f = 1000.

A constant Stokes number Sk = ρpd2U f
b /(18μD) = 11.2 and a constant Froude number

Fr = U f
b /

√|g|D = 17 were used, which are the moderate values employed by Zhang et al.
(2021a), who assessed conditions in the ranges 1.4 ≤ Sk ≤ 40.5 and 8.5 ≤ Fr ≤ 34, as
well as the sensitivity of the flow behaviour to these parameters. Also, note that the
Stokes number is associated with the ratio of the particle viscous relaxation time to
the flow-through time (where one flow-through time refers to the fluid passing through
the computational domain with the bulk velocity once). The CORs of particle–wall and
inter-particle collisions in the present work were fixed at ep−w = ep−p = 0.97, while the
sensitivity of flow behaviour to both CORs was reported by Zhang et al. (2021b). Also, a
constant value was used for the coefficient of friction μfri = 0.1 (Goldschmidt, Beetstra
& Kuipers 2002; Geurts 2010), for both particle–wall and inter-particle collisions in the
present flow. The variable controlled in the present work was the mass loading alone,
varying from Φm = 0.4 to 0.9, 1.2 and 1.8 (which corresponds to the volume fraction of
the order of 10−3, spanning the transition between the two-way and four-way coupling
regimes). It should be noted that the cases with Φm = 0.4 and 1.8, which we reported
previously (Zhang et al. 2021b) for the flow statistics only, were repeated within a new
time window, as described in detail below (producing almost the same statistical results
because of the full development of the flow), and were post-processed for force analyses
so that the current numerical results are completely new. Moreover, the cases Φm = 0.9
and 1.2 were added to obtain additional flow regimes via such a single variable parameter.
Furthermore, we note here that the mass loading was prescribed based on the assumption
that the bulk particle velocity equals the bulk fluid velocity. Hence the actual values of the
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mass loading ratio could vary, while the particle volume fraction remains constant during
the simulation.

The simulation was performed for a streamwise-periodic pipe of length x = 6D. The
periodic condition was applied to both the fluid and particle phases, i.e. particles moving
outside the domain in the streamwise direction were reintroduced via periodicity. For the
Eulerian fluid phase, a momentum source was included in the pressure gradient term ∇p,
in (2.2), whose streamwise component, (∇p)x, was adjusted implicitly in the simulation
to drive the flow with a constant U f

b . An O-type mesh layout was employed using 11.5
million grid points, with the near-wall grids being refined to resolve the turbulent boundary
layer. The dimensionless grid size in the streamwise direction was �x+ = 19.9, while
in the azimuthal direction near to the pipe wall it was �rθ+|wall = 12.4, in the radial
direction near to the pipe wall it was �y+|wall = 0.8, and in the pipe centre it was
�y+|centre = 8.0. Here, the superscript ‘+’ indicates the normalised value in the wall units,
e.g. �x+ = (�x · uτ )/ν, where the inner variables uτ and ν are the shear velocity and
kinematic viscosity. The present grid resolution is sufficient to resolve the Kolmogorov
scale and ensure that the fluid statistics are independent of it. Note that, as reported
by Burton & Eaton (2005) and Vreman (2015), and as clarified in our previous work
(Zhang et al. 2021b), though the particle size in wall units is d+ = 3.5 (equivalent to four
wall-normal grid dimensions near to the pipe wall), it affects only the turbulence intensity
but not the mean fluid velocity, including the secondary flow patterns. As suggested
by Balachandar (2009) and Balachandar & Eaton (2010), for such large particles with
a size of the order or larger than the Kolmogorov scale, a separate deterministic and
stochastic component needs to be included in the drag and lift forces to model the effects
of turbulence on inter-phase coupling accurately. However, the best way to incorporate
these effects remains an open research question.

For the Lagrangian part, the particles were initially released from randomly distributed
locations over the entire domain, with an initial velocity equal to the local fluid velocity.
The calculation of the contact force during collisions was given according to the positions
and overlapping rates between a particle and the wall, or between two colliding particles,
with the new velocity and acceleration of particle(s) being updated for every Lagrangian
sub-iteration. This sub-iteration is five times smaller than the simulation time step, and
much smaller than the particle response time, which enables the capture of the physics
of particle collisions. We note here that the validation of this numerical model for
particle-laden flows can be found in the previous study (Zhang et al. 2021a), while its
validation for turbulence statistics in single-phase flows is in Appendix A.

2.3. Process of force statistics
The gravitational term in the momentum equation of the fluid phase, α f g, is negligible
for the fluid (gas) phase (see (2.2)). Therefore, the sum of the pressure gradient
term −(1/ρ f )∇p, the viscous stress tensor term ∇(α f ε) and the particle source term
−Sp equals the material derivative of the fluid velocity, Du f /Dt = ∂(α f u f )/∂t + ∇ ·
(α f u f u f ), which represents the total acceleration of fluid particles for each numerical
time step. In view of this, we calculated all four terms separately in the simulation, to
identify the contribution of each fluid force to the secondary fluid flow motions.

Also, in the momentum equation of the particle phase (see (2.4)), we calculated the
drag force f p

D, lift force f p
L, particle–wall contacting force f p

C,W and particle resultant
force mp(dup/dt), separately, to identify the contribution of each of these forces to the
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particle motions. Hence it is clear that the sum of the former three, combined with
the gravitational force f p

G, equals the latter. Note that the statistics of the particle
phase introduced here without a subscript ‘i’ are the locally averaged values, thus the
inter-particle contacting force is zero as they were cancelled out by each other locally.

The normalised pressure gradient force F f
∇p, viscous force F f

ε , fluid–particle interaction

force (via drag and lift alone) F f
S,p and resultant force F f

tot exerted on the fluid phase,
together with the normalised drag force F p

D, lift force F p
L, particle–wall contacting force

F p
C,W , gravitational force F p

G and resultant force F p
tot exerted on the particle phase, were

calculated by dividing their locally averaged values normalised by the magnitude of the
gravitational force in the flow system, as follows:

F f
∇p =

m f
i

(
− 1

ρ f ∇p
)

m f
i |g|

, F f
ε = m f

i [∇ · (α f ε)]

m f
i |g|

,

F f
S,p = m f

i (−Sp)

m f
i |g|

, F f
tot =

m f
i

(
Du f

Dt

)

m f
i |g|

, (2.9a–d)

and

F p
D = f p

D

mp
i |g| , F p

L = f p
L

mp
i |g| , F p

C,W = f p
C,W

mp
i |g| ,

F p
G = f p

G

mp
i |g| = (0, 0, −1), F p

tot =
mp

i

(
dup

dt

)

mp
i |g| , (2.10a–e)

where m f
i and mp

i represent the masses of the virtual fluid particle and the solid particle,
respectively. Also, these statistics satisfy the relationships

F f
∇p + F f

ε + F f
S,p = F f

tot (2.11)

and
F p

D + F p
L + F p

C,W + F p
G = F p

tot. (2.12)

The cross-sectional distributions of these force statistics are presented in § 3 by averaging
them over time and space in the streamwise direction of the entire domain (indicated by
the brackets 〈 〉) for 314 flow-through times after the flow reached a statistically stationary
state.

3. Results

3.1. Secondary flow structures and flow statistics
Figure 2 presents the fluid streamwise vorticity 〈ω+

x 〉 together with the gradients of
radial and azimuthal Reynolds stresses, ∂〈τ+

rr 〉/∂r and (D/r)(∂〈τ+
θθ 〉/∂θ), for the four flow

regimes f2–p4, f4–p6, f4–p2 and f2–p2, while varying only the mass loading from Φm = 0.4
to Φm = 1.8. Also shown are the corresponding secondary flows of the fluid and particle
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phases, i.e. the streamlines of 〈u f
y−z〉 and 〈up

y−z〉, respectively, together with the mean static
pressure 〈P/P0〉, and the particle local mass loading 〈Φm,loc〉, for reference. It should be
noted that although we have previously published similar data (indicated by the black
dot-dashed boxes in the last five columns) for Φm = 0.4 and 1.8 (Zhang et al. 2021b), the
current dataset is completely new as it not only includes new cases (Φm = 0.9 and 1.2,
designed to obtain the four flow regimes in a single variable Φm) but also fully repeats
these previous simulations within a new time window. Importantly, negligible differences
for these statistics in the black dot-dashed boxes between the present study and the previous
work can be observed, confirming the convergence and repeatability of the simulation
results.

For convenience, for the secondary fluid flow structure in the fourth column of figure 2,
we term the pair of centre-upward cells of the secondary fluid flow structure (anticlockwise
on the left and clockwise on the right; see the regions surrounded by the yellow dashed
lines) ‘fluid-up-cells’. These cells exhibit similar characteristics and have been proposed to
be categorised into a secondary flow of the second kind that is induced by the anisotropy of
turbulence (Zhang et al. 2021b). In contrast, we term the pair of centre-downward cells (the
contrary two cells; see the regions surrounded by the blue dashed lines) ‘fluid-down-cells’.
These cells also exhibit similar characteristics (different from the above) and have been
hypothesised to be categorised into a secondary flow of the first kind that is caused by
the fluid–particle interaction forces (Zhang et al. 2021b). Similarly, for the secondary
particle flow structure in the fifth column, we term the reversed four-cell structure (see
the regions surrounded by the green dotted lines) ‘particle-four-cells’, while the pair of
centre-downward cells (see the regions surrounded by the red dotted lines) are termed
‘particle-down-cells’.

From the first column in figure 2, it can be seen that the absolute value of 〈ω+
x 〉,

which is a measure of the strength of the secondary fluid flow motions, decreases in the
fluid-up-cells region with an increase in mass loading Φm. For example, the absolute peak
value |〈ω+

x 〉|max ≥ 200, which occurs in the lower half of the pipe for the f2–p4 regime,
decreases to |〈ω+

x 〉|max ≈ 120 and shifts to the upper half of the pipe for the f4–p2 regime.
This coincides with a shrinkage of the fluid-up-cells, in which turbulence persists. In
contrast, the strength of the secondary fluid flow motions in the fluid-down-cells region
increases from |〈ω+

x 〉|max ≈ 0 to 120 with increase in Φm from 0.9 to 1.8, and hence the
transition from the f4–p6 regime to the f2–p2 regime. This coincides with an enlargement of
the fluid-down-cells, in which the turbulence has been attenuated greatly by the increased
local particle mass loading Φm,loc (see the last column). Also, note that the sign of 〈ω+

x 〉
is opposite in the fluid-up-cells and fluid-down-cells regions, which means that their
secondary fluid flows are in opposite directions. Overall, the shrunken fluid-up-cells with
their weakened secondary flows and the enlarged fluid-down-cells with their enhanced,
reversed secondary flows coincide with each other. Both regions are associated with the
increase in Φm, particularly the increase in Φm,loc in the lower half of the pipe.

The second and third columns of figure 2 present the radial and azimuthal gradients of
the Reynolds stresses, ∂〈τ+

rr 〉/∂r and (D/r)(∂〈τ+
θθ 〉/∂θ). These are the dominant terms

of (∇ · τ̃ y−z)r and (∇ · τ̃ y−z)θ , respectively (Belt et al. 2012; Vollestad et al. 2020),
which are the radial and azimuthal components of the divergence of the Reynolds stress
tensor (i.e. ∇ · τ̃ y−z in (1.1)). It can be observed that the fluid-up-cells occur where
∂〈τ+

rr 〉/∂r /= 0 and (D/r)(∂〈τ+
θθ 〉/∂θ) /= 0 (i.e. ∇ × (∇ · τ̃ y−z) /= 0). Also, the directions

of the gradients of the Reynolds stresses (see the purple arrows) are consistent with the
secondary flow directions of the fluid-up-cells. On the other hand, the particle local mass
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loading, Φm,loc, is relatively low in such cells (see the last column), corresponding to a
relatively small fluid–particle interaction force term ∇ × Sp,y−z,0, in (1.1). In particular,
Φm,loc is approximately zero in the top region of such cells (near to the top wall of the
pipe), which means that ∇ × Sp,y−z,0 ≈ 0. Hence the current results support the inference
that the secondary fluid flows in the fluid-up-cells are associated primarily with the
anisotropy of the Reynolds stresses, i.e. secondary flows of the second kind. Additionally,
the anisotropy of the Reynolds stresses is a primary driver only where the local mass
loading is sufficiently low.

In contrast, the values of both ∂〈τ+
rr 〉/∂r and (D/r)(∂〈τ+

θθ 〉/∂θ) are approximately equal
to zero (i.e. ∇ × (∇ · τ̃ y−z) ≈ 0) in the fluid-down-cells region, which means that the
secondary fluid flows in such cells are not associated with the anisotropy of the Reynolds
stresses. Instead, it is inferred that such secondary flows are attributed to a non-zero
fluid–particle interaction force term, ∇ × Sp,y−z,0 /= 0, from the necessary and sufficient
conditions for the presence of secondary flows (see (1.1)). Also, the relatively high values
of Φm,loc in such cells are supporting evidence for this inference. However, it is challenging
to isolate the component, Sp,y−z,0, which is independent of the secondary flow velocity,
from the fluid–particle interaction force term Sp,y−z (in (1.2) and (2.2)), as mentioned in
§ 1. Therefore, the hypothesis that secondary fluid flows in the fluid-down-cells are caused
by the fluid–particle interaction forces exerted on the fluid, i.e. secondary flows of the first
kind, still cannot be confirmed.

However, from the gradients of the Reynolds stresses (the second and third columns
of figure 2) for the f4–p6 and f4–p2 regimes, it is reasonable to suppose that both
∇ × (∇ · τ̃ y−z) /= 0 and ∇ × Sp,y−z,0 /= 0 are true in the transition region between the
fluid-up-cells and fluid-down-cells. This supposition is made because the variations in the
distributions of both the Reynolds stress gradients and the particle local mass loading (in
the last column) are continuous, i.e. they are continuous functions of spatial locations
within the pipe domain. That is, the majority of the fluid-up-cells and fluid-down-cells
could be classified as the first and second kinds of the secondary flow, respectively, while
the transition region between them could be of both kinds.

3.2. Fluid force analysis
Figure 3 presents the mean cross-sectional distributions of the normalised pressure
gradient force 〈F f

∇p,y−z〉, viscous force 〈F f
ε,y−z〉, fluid–particle interaction force 〈F f

S,p,y−z〉
and resultant force 〈F f

tot,y−z〉 exerted on the fluid, decomposed into the transverse (y-axis)
and vertical (z-axis) components. The figure is presented to span the four flow regimes as
a function of the single variable of mass loading varying from Φm = 0.4 to Φm = 1.8. As
mentioned in § 2.3, the sum of the former three forces equals the latter resultant force for
all cases.

From the first two columns in figure 3, it can be seen that the increase in mass loading,
and hence the transition from the f2–p4 regime to the f2–p2 regime, is associated with
a reduction in both the magnitude and extent of the relatively high pressure gradient
forces (|〈F f

∇p,y−z〉| ∼ O(1)). This trend coincides with those reported above for the
streamwise vorticity 〈ω+

x 〉, and the extent of fluid-up-cells (see § 3.1). In other words, the
magnitudes of the components of 〈F f

∇p,y−z〉 in the fluid-up-cells region are relatively high;

in particular, |〈F f
∇p,y〉| � 1 and |〈F f

∇p,z〉| � 1 near to the pipe wall. In contrast, these
magnitudes in the fluid-down-cells region are relatively low. They increase from nearly
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zero to |〈F f
∇p,y〉| ≈ 0.3 and |〈F f

∇p,z〉| ≈ 0.3 with the increase in mass loading, and hence
the transition of regimes mentioned above. Also, this trend coincides with the variation in
〈ω+

x 〉 within the fluid-down-cells region (see § 3.1).
The above-mentioned variations of the distribution of 〈F f

∇p,y−z〉 in figure 3 are attributed
to the changes in static pressure difference in different flow regimes (see the third column
from last in figure 2). The higher concentration of particles in the region near the bottom of
the pipe, due to gravitational settling, decelerates the fluid there, which results in a higher
pressure than that in the top region of the pipe. This explains the secondary flow direction
in the fluid-up-cells. However, a further increase in the particle mass loading leads to a
local value 〈Φm,loc〉 ≥ 1.5 (see the last column of figure 2), which attenuates the local
turbulence significantly, resulting in a lower pressure difference, thus explaining the weak
pressure gradient force in the fluid-down-cells for this case. We note here that where the
value of 〈Φm,loc〉 ≥ 1.5 extends to the core region of the pipe, any large-scale turbulent
vortices are quickly dissipated or never generated, followed by secondary dissipation of
the small-scale vortices. This case corresponds to strongly attenuated turbulence, resulting
in low pressure gradients throughout the domain for the f2–p2 regime (see the second
and third columns from last in figure 2). The above-mentioned interpretation for the
distribution of pressure difference (i.e. the pressure gradient force) in each flow regime
is consistent with the previous work by Zhang et al. (2021b).

The distribution of viscous force 〈F f
ε,y−z〉 in the third and fourth columns of figure 3

exhibits the same trend as 〈F f
∇p,y−z〉 in the near-wall region for various flow regimes.

Its magnitude is considerable in the fluid-up-cells because the turbulence persists, and
the turbulent shear stresses are relatively strong. In contrast, it is negligible in the
fluid-down-cells because the turbulence is attenuated greatly, so that the turbulent shear
stresses are weak. Furthermore, the contribution of 〈F f

ε,y−z〉 is considerable in the viscous
and buffer layers of the turbulent flow, particularly close to the wall, while it can be
neglected in the outer layer because the turbulent shear stresses are dominant (Pope 2000).
The position of the boundary between the buffer and outer layers in wall units is y+ ≈ 30,
corresponding to the radial distance normalised by the pipe diameter r/D ≈ 0.47 for
the present pipe flows. That is, the 〈F f

ε,y−z〉 term can be neglected, and the relationship

〈F f
∇p,y−z〉 + 〈F f

S,p,y−z〉 = 〈F f
tot,y−z〉 is satisfied in the outer region (r/D ≤ 0.47) for the

present cases.
The value of 〈F f

S,p,y−z〉 (fifth and sixth columns in figure 3), which is the normalised
local integral of the drag and lift forces exerted by particles on the fluid (see (2.7)), is
progressively more significant in both the y- and z-directions with the increase in Φm,
and hence the transition from the f2–p4 regime to the f2–p2 regime. Given the negligible
〈F f

ε,y−z〉 term in the outer region of the flow mentioned above, the magnitude of 〈F f
S,p,y−z〉

is much smaller than that of 〈F f
∇p,y−z〉 in the fluid-up-cells region. That is, the distribution

of the resultant force on the fluid, 〈F f
tot,y−z〉 (the second and third columns from last

in figure 3), is dominated by that of the pressure force 〈F f
∇p,y−z〉. In contrast, in the

fluid-down-cells region, the magnitude of 〈F f
S,p,y−z〉 is comparable with that of 〈F f

∇p,y−z〉,
but both forces are opposite in direction. These two forces result in a low resultant force
〈F f

tot,y−z〉 there. This can be seen most clearly for the f2–p2 regime. These variations

in 〈F f
S,p,y−z〉 are attributed both to the increased particle number with the increase in
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mass loading and to the changes in the distributions of the counteracting forces of the
fluid–particle interaction forces ( f p

D,i,y−z = − f f
D,i,y−z and f p

L,i,y−z = − f f
L,i,y−z), which

are discussed in § 3.3.
The distribution of 〈F f

tot,y−z〉, shown in the second and third columns from last in
figure 3, provides explanations for the direction of the secondary flow. We first note that
the magnitude of 〈F f

tot,y−z〉 in the fluid-up-cells is high and dominated by 〈F f
∇p,y−z〉.

These magnitudes are high because turbulence in such cells persists, thus the flows in
the cross-section are strong. In particular, the directions of 〈F f

tot,y−z〉 and 〈F f
∇p,y−z〉 are

towards the pipe core in the region near the pipe wall because the no-slip pipe wall
acts as a resistance to the flow where turbulence persists through the pressure field.
In contrast, such large magnitudes of 〈F f

∇p,y−z〉 and 〈F f
tot,y−z〉 are almost absent in the

fluid-down-cells region because of the significant attenuation of turbulence (where the
flows in the cross-section are weak or absent).

In the inner region of the fluid-up-cells, the resultant force 〈F f
tot,y−z〉 is mostly upwards,

especially around the vertical centreline of the pipe. It is also leftwards or rightwards in
the upper section, which drives the upward flow anticlockwise in the left half of the pipe
and clockwise in the right. As a result of the resultant force and continuity of the fluid,
the fluid flow circulates as a pair of left anticlockwise and right clockwise cells within the
cross-section. Moreover, the magnitude and spatial extent of |〈F f

tot,y−z〉| ∼ O(1) decrease
and shrink to the upper half of the pipe, respectively, with the transition from the f2–p4
regime to the f4–p2 regime. These coincide with the decrease in the streamwise vorticity
〈ω+

x 〉 and the shrinkage of the fluid-up-cells (see figure 2). Therefore, the secondary flows
in the fluid-up-cells are dominated by, and their strength is positively associated with, the
pressure gradient force.

In contrast, in the inner region of the fluid-down-cells, the magnitude of the resultant
force, |〈F f

tot,y−z〉| ∼ O(0.1), is much weaker than in the fluid-up-cells. This is due to the

absence of a strong pressure gradient force 〈F f
∇p,y−z〉, whose low magnitude is comparable

with, and partly counterbalanced by, 〈F f
S,p,y−z〉 in the fluid-down-cells. Additionally, the

downward flow around the vertical centreline of the pipe is attributed mainly to the
downward 〈F f

tot,y−z〉 in the upper section, while it is decelerated in the lower section

by the upward 〈F f
tot,y−z〉. The downward resultant force is dominated by 〈F f

∇p,y−z〉. In
addition, the downward flow is followed by a pair of left clockwise and right anticlockwise
circulation cells along the streamlines, which are driven by the leftward and rightward
resultant forces on the left and right sides, respectively. The resultant force on both sides is
dominated by 〈F f

S,p,y−z〉. Therefore, both the pressure gradient force and the fluid–particle
interaction force contribute to the secondary flows in the fluid-down-cells.

Figures 4(a)–4(c) present the quantitative profiles of the pressure gradient force,
fluid–particle interaction force and resultant force exerted on the fluid phase in each of
the vertical (with subscript ‘z’), azimuthal (subscript ‘θ ’) and transverse (subscript ‘y’)
directions. Note that for the azimuthal line, the results in the right half of the pipe alone are
shown due to the symmetry (the same goes for the following relevant content). These force
components at specific locations are chosen as they represent the forces that contribute to
each circulation cell of the secondary fluid flow. It can be seen that the pressure gradient
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Figure 4. Profiles for each of the four regimes of the gravity-normalised, mean forces exerted on the fluid
phase: the pressure gradient force (left column) and the fluid–particle interaction force (middle column),
together with the resultant force (right column), which equals the sum of the first two in the outer region
of the pipe flow (r/D ≤ 0.47, where the viscous force is negligible). (a) Vertical forces along the vertical
centreline (y/D = 0). (b) Azimuthal forces along the azimuthal line at r/D = 0.4 in the right half of the pipe.
(c) Transverse forces along the horizontal centreline (z/D = 0; the subplots are placed with rotation). Note that
all subplots are plotted in physical directions.

force 〈F f
∇p〉 dominates over the fluid–particle interaction force 〈F f

S,p〉, in all three directions
within the fluid-up-cells region. Such a region is z/D ≥ −0.5 & θ ≥ −90◦ for the f2–p4
regime, z/D ≥ −0.25 & θ ≥ −45◦ for the f4–p6 regime, and z/D ≥ 0.03 & θ ≥ 4◦ for the
f4–p2 regime (shown as the regions above the dashed line with the same colour for each
regime). In contrast, both forces in all three directions are comparable with, but opposite
in direction to, each other in the fluid-down-cells region. Such a region is z/D ≤ −0.25 &
θ ≤ −45◦ for the f4–p6 regime, z/D ≤ 0.03 & θ ≤ 4◦ for the f4–p2 regime, and z/D ≤ 0.5
& θ ≤ 90◦ for the f2–p2 regime (below the dashed line for each regime).
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From figure 4(a), it can be seen that in both the fluid-up-cells and fluid-down-cells, the
secondary flows of the fluid along the vertical centreline undergo an acceleration followed
by a deceleration. For instance, given the upward flow along the vertical centreline in the
fluid-up-cells region for the f2–p4 regime (above the blue dashed line, z/D ≥ −0.5), the
value of 〈F f

tot,z〉 is mostly positive (i.e. upwards and accelerates the flow) at −0.5 ≤ z/D ≤
0.4. For the subsequent locations along the centreline, it is negative (i.e. downwards and
decelerates the flow) at 0.4 ≤ z/D ≤ 0.5 (near the top wall) and reaches 〈F f

tot,z〉 ≈ −14
(indicated by the broken axis). This high value of 〈F f

tot,z〉 acts as a resistance to the flow
in the region near to the no-slip wall, as mentioned previously. Also, the acceleration and
deceleration on the downward flow in the fluid-down-cells region can be found clearly
for the f2–p2 regime (below the purple dashed line, z/D ≤ 0.5). The value of 〈F f

tot,z〉 is
negative (i.e. downwards and accelerates the flow) in the upper section of the pipe, yet
positive (i.e. upwards and decelerates the flow) in the lower section. This variation in the
direction of 〈F f

tot,z〉 is consistent with that of 〈F f
S,p,z〉 rather than 〈F f

∇p,z〉, which means that
the former is dominant.

From figure 4(b), the trend that secondary fluid flows undergo an acceleration followed
by a deceleration along an azimuthal line can also be seen. For instance, given the
clockwise secondary flow (in the right half of the pipe) in the fluid-up-cells region for
the f2–p4 regime (above the blue dashed line, θ ≥ −90◦), such a flow starts from a
segment of negative 〈F f

tot,θ 〉 (i.e. clockwise and accelerates the flow) at 80◦ ≤ θ ≤ 90◦.
This acceleration is due to the continuity of the fluid when the upward flow reaches
the top region of the pipe and is driven by 〈F f

∇p,θ 〉. For the subsequent locations along

the azimuthal line, 〈F f
tot,θ 〉 is positive (i.e. anticlockwise and decelerates the flow) at

−90◦ ≤ θ ≤ 80◦. This deceleration is also dominated by 〈F f
∇p,θ 〉, which stems from the

pressure difference within such a region (see figure 2). Similarly, the anticlockwise flow in
the fluid-down-cells region for the f2–p2 regime (below the purple dashed line, θ ≤ 90◦)
undergoes an acceleration at −90◦ ≤ θ ≤ −30◦ and a deceleration at −30◦ ≤ θ ≤ −90◦.
The azimuthal resultant force in the fluid-down-cells region is mostly dominated by
〈F f

∇p,θ 〉, which is slightly higher than, and partly counterbalanced by, 〈F f
S,p,θ 〉. Also, note

that the values of 〈F f
S,p,θ 〉 are always positive (i.e. anticlockwise) for all the regimes. This

confirms that the fluid flow along an azimuthal line is either in the opposite direction to the
particle flow in the fluid-up-cells, or in the same direction with, but driven by, the particle
flow in the fluid-down-cells.

Figure 4(c) presents the fluid transverse forces along the horizontal centreline of the
pipe, which is found particularly in the lower section of the fluid-up-cells for the f4–p6
regime (red), or the upper section of the fluid-down-cells for the f4–p2 regime (yellow). It
can be seen that the resultant forces 〈F f

tot,y〉 of both regimes are dominated by the pressure
gradient force 〈F f

∇p,y〉. Also, both forces decrease with an increase in mass loading Φm

due to the more significant attenuation of turbulence.
In summary, the flow in the fluid-up-cells is dominated by the pressure gradient force

alone. In contrast, the flow in the fluid-down-cells is dominated by the fluid–particle
interaction force in the centre-downward segment and around the vertical centreline,
while the rest of the flow in the circulation is dominated by the pressure gradient
force. Both forces in the fluid-down-cells region are comparable with each other,
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but opposite in direction. This summary is presented and discussed in more detail
in § 4.

3.3. Particle force analysis
Figure 5 presents the averaged cross-sectional distributions of the drag force 〈F p

D,y−z〉,
lift force 〈F p

L,y−z〉, particle–wall contacting force 〈F p
C,W,y−z〉 and resultant force 〈F p

tot,y−z〉
exerted on the particle phase, decomposed into the transverse (y-axis) and vertical (z-axis)
components. The figure is presented to span the four flow regimes as a function of the
single variable of mass loading varying from Φm = 0.4 to Φm = 1.8. As mentioned
in § 2.3, the sum of the first three forces combined with the gravitational force F p

G =
(0, 0, −1) equals the latter resultant force for all the cases. We note here that the
particle–wall contacting force is effective only on the pipe wall with a much greater value,
|〈F p

C,W,y−z〉| � 0.5 (discussed below for figure 6), while the value is zero inside the pipe.
Also, the inter-particle contacting forces are cancelled out (i.e. zero) everywhere due to
Newton’s third law.

From figure 5, it can be seen that the lift force 〈F p
L,y−z〉 (third and fourth columns),

is strong in the near-wall region only, where the fluid velocity gradient and vorticity are
very high and lead to a strong lift force towards the pipe core. In contrast, the magnitude
of 〈F p

L,y−z〉 is relatively low and plays a less important role than the drag force in the
resultant force exerted on the particles away from the pipe wall for all cases. Quantitative
comparison can be seen in the following discussion of figure 6. Here, the drag and lift
forces exerted by the fluid on particles are the counteracting forces of those exerted by
particles on the fluid ( f p

D = − f f
D and f p

L = − f f
L). Note that the local integral of these

forces on the fluid is the particle momentum source term in each computational cell, whose
normalised value is F f

S,p, as mentioned in § 2. This explains the correlated distributions

with opposite signs between 〈F p
D,y−z〉 in figure 5 and 〈F f

S,p,y−z〉, which is dominated by

f f
D in regions away from the wall, in figure 3.
Moreover, the particle resultant force in the vertical direction in the second column from

last in figure 5 is dominated by the gravitational force Fp
G,z = −1 rather than the drag and

lift forces in the pipe region except for the wall. The values of these force components
are |〈Fp

L,z〉| < |〈Fp
D,z〉| ≤ 0.5, while 〈Fp

tot,z〉 ≈ −1 (see the following quantitative results
in figure 6) inside the pipe. Note that the effect of gravity plays a considerable role with
the Froude number, Fr = 17, in the present system (see Zhang et al. (2021a) for details).
Therefore, the downward secondary particle flow inside the pipe is accelerated, while the
upward one is decelerated by the gravity-dominated resultant force. Also, from the colour
maps of 〈Fp

tot,z〉, it can be seen that the mean upward momentum of particles is sourced
solely from the lift force generated near to, and their collision with, the lower pipe wall
(see the dark red region where 〈Fp

tot,z〉 � 0.5).
Inside the pipe, the transverse motions of secondary particle flows are closely associated

with the distribution of the transverse particle drag force 〈Fp
D,y〉, which dominates the

transverse particle resultant force 〈Fp
tot,y〉 (see the first column and the third column from

last in figure 5). For instance, in the particle-four-cells for the f2–p4 regime (i.e. the entire
pipe region in the first row), the particle flow exhibits a pair of left anticlockwise and right
clockwise circulation cells in the lower section, and this coincides with the rightward and
leftward drag forces on the left and right sides, respectively, near the bottom of the pipe.
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The dominant mechanisms for each regime of secondary flows

Additionally, an inverse pair of circulation cells and an inverse distribution of the drag
force are in the upper section of the pipe.

In the particle-four-cells, the corresponding transverse momentum of the lower pair
of cells is inferred to be transferred to the vertical momentum through the collision
between the particles and the circular pipe wall, as mentioned previously (and potentially
between particles). It is worth noting that this momentum transfer of the lower pair of
cells in the particle-four-cells for the f4–p6 regime (i.e. the middle pair of the six-cell
structure) is inferred to occur via the inter-particle collisions with the particle flow from the
particle-down-cells (i.e. the bottom pair of the six-cell structure). However, in this study,
the verification for the momentum transfer via inter-particle collisions is not included.
Similarly, the downward momentum of particles around the vertical centreline of the upper
pair of cells in the particle-four-cells is also inferred to be transferred to the transverse
momentum, via the inter-particle collisions with the particle flow from the lower pair
of cells. For the subsequent locations along the upper pair of cells, the transverse drag
force 〈Fp

D,y〉 again contributes to the particle flow in the direction away from the vertical
centreline of the pipe. Hence the transverse drag force mostly accelerates the particle flow
in the particle-four-cells.

In contrast, the transverse motions of secondary particle flows in the particle-down-cells
are transferred primarily from the downward momentum, while the transverse drag force
mainly decelerates these flows. For instance, for the f2–p2 regime (the last row), the particle
flow is accelerated by the gravitational force Fp

G,z around the vertical centreline of the pipe.
For the subsequent locations along the pair of cells, its downward momentum is transferred
to the transverse through the collisions between particles and the lower pipe wall (or
potentially between particles), circulating as left clockwise and right anticlockwise cells.
In the region of these cells away from the vertical centreline of the pipe, the transverse
drag force is mostly in the direction opposite to the transverse motions of secondary
particle flows, i.e. it decelerates the secondary particle flow motions. We note here that
the acceleration in the particle-four-cells and the deceleration in the particle-down-cells
by the drag force are identified quantitatively below for figure 6.

Furthermore, it can be seen from figure 5 that the spatial extent of the 〈Fp
D,y〉 distribution

in the particle-four-cells shrinks to the upper region of the pipe with an increase in
mass loading, and hence the transition from the f2–p4 regime to the f4–p6 regime. This
variation coincides with the shrunken particle-four-cells. Additionally, the absence of the
particle-four-cells corresponds to the absence of transverse drag forces towards the vertical
centreline of the pipe, which is associated with the lower pair of cells, as mentioned
above. This can be seen from the difference in the dashed box ‘A’ between the f4–p6
and f4–p2 regimes. In contrast, the occurrence of the particle-down-cells coincides with
the distribution of the transverse drag force outwards from the vertical centreline (see the
f4–p2 and f2–p2 regimes with 〈Fp

D,y〉 ≤ 0 on the left and 〈Fp
D,y〉 ≥ 0 on the right).

To sum up, the qualitative relationship between the cross-sectional particle forces and
the particle flow from figure 5 implies that although the gravitational force is the initial
driver of the secondary particle flow in the vertical direction, the transverse drag force
plays an important role in determining the flow direction. In the particle-four-cells, the
transverse drag force from the fluid accelerates the particles. This is because the local
mass loading of particles is relatively low in such cells, where the pressure gradient force
〈F f

∇p,y−z〉 is strong and dominates the fluid-up-cells (see § 3.2). As a result, the secondary
fluid motions are stronger than, and drive, the secondary particle motions. In addition, the

949 A10-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.745


X. Zhang, G.J. Nathan, Z.F. Tian and R.C. Chin

spatial extent of the fluid-up-cells is always greater than that of the particle-four-cells,
or they are equal to each other if they occupy the entire pipe domain (see figure 2).
In contrast, in the particle-down-cells, the transverse drag force is caused by the fluid,
which decelerates the particles. This is because the particle local mass loading is relatively
high in such cells, where both 〈F f

∇p,y−z〉 and the fluid–particle interaction force exerted

on the fluid, 〈F f
S,p,y−z〉, contribute to the fluid-down-cells (see § 3.2). Consequently, the

secondary fluid motions are weaker than, and driven by, the secondary particle motions.
Additionally, the spatial extent of the fluid-down-cells is always less than or equal to that
of the particle-down-cells (see figure 2).

Figures 6(a)–6(c) present the quantitative profiles of the drag, lift and resultant forces
exerted on the particle phase in the vertical (with subscript ‘z’), azimuthal (subscript ‘θ ’)
and transverse (subscript ‘y’) directions. Similar to the fluid phase, these components at
specific locations are chosen as they represent the forces that contribute to each circulation
cell of the secondary particle flow. The dashed line with arrows also shown in figures 6(a)
and 6(b) indicates the particle-four-cells above and particle-down-cells below, while the
same colour is used for the same regime. From the comparison between 〈Fp

D〉 and 〈Fp
L〉 in

all subplots, it can be confirmed that the lift force constitutes a small part compared with
the drag force in the pipe domain, except in the near-wall region (−0.45 ≤ z/D ≤ 0.45 in
figure 6a, and −0.45 ≤ y/D ≤ 0.45 in figure 6c) for all the cases.

From figure 6(a), it can be seen that the vertical resultant force on particles for all the
cases is −1.4 ≤ 〈Fp

tot,z〉 ≤ −0.6, which is dominated by the gravitational force (Fp
G,z =

−1) in the pipe except for the near-wall region (−0.45 ≤ z/D ≤ 0.45). However, near to
the pipe wall (particularly for the lower wall at z/D = −0.5), the lift force and resultant
force (dominated by particle–wall collisions) can be up to 〈Fp

L,z〉 ≈ 2 and 〈Fp
tot,z〉 ≈ 35,

respectively, which are indicated by the broken axes. That is, the mean upward lift force
and particle–wall contacting force on the bottom wall can be up to 2 and 33 times the
gravitational force, respectively, which are the sources of the mean upward momentum, as
discussed previously.

The contribution of the drag force in the vertical direction, 〈Fp
D,z〉, to the particle flow

can be seen from figure 6(a). For instance, in the particle-four-cells for the f2–p4 regime
(above the blue dashed line, z/D ≥ −0.5), the secondary particle flow along the vertical
centreline of the pipe is shown to be upwards at −0.5 ≤ z/D ≤ 0.2, while it is downwards
at −0.2 ≤ z/D ≤ 0.5. Thus the mostly positive 〈Fp

D,z〉 (i.e. upwards) accelerates and
subsequently decelerates the particle flow along this centreline from the bottom to
the top. Also, it is observed that the integral of 〈Fp

D,z〉 along this vertical centreline,∫ 〈Fp
D,z〉 dz × sign(dup

z /dz), is positive, where ‘sign(dup
z /dz)’ = 1 or −1 indicates the

upward or downward particle flow direction, respectively. This is because a positive peak
value of 〈Fp

D,z〉 (i.e. upwards) is consistent with the upward particle flow in the lower
section of the pipe. That is, the work done by 〈Fp

D,z〉 is positive in the particle-four-cells
for the f2–p4 regime. Here, we define a positive work as the work done on the flow in the
same direction (i.e. the force accelerates the flow), while a negative work means that the
force and the flow are in opposite directions (i.e. the force decelerates the flow).

In contrast, from figure 6(b), in the particle-down-cells for both the f4–p2 and f2–p2
regimes (below the yellow and purple dashed lines, θ ≤ 90◦), as an example, the work
done by the azimuthal drag force 〈Fp

D,θ 〉 on the particle flow along the azimuthal line is
negative. This can be observed from the always-negative 〈Fp

D,θ 〉 (i.e. clockwise), which is
in the opposite direction to the anticlockwise particle flow in such cells (in the right half
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Figure 6. Profiles for each of the four regimes of the gravity-normalised, mean forces exerted on the particle
phase: the drag force (left column) and lift force (middle column), together with the resultant force (right
column), which equals the sum of the first two combined with the gravitational force F p

G = (0, 0, −1), in the
pipe domain except for the wall (r/D < 0.5, where there is no particle–wall contacting force). (a) Vertical
forces along the vertical centreline (y/D = 0). (b) Azimuthal forces along the azimuthal line at r/D = 0.4 in
the right half of the pipe. (c) Transverse forces along the horizontal centreline (z/D = 0, the subplots are placed
with rotation). Note that all subplots are plotted in physical directions. Also, the broken axis is shown on one
side only of each relevant subplot for conciseness, to indicate the magnitude.

of the pipe). Hence the drag force decelerates the particle flow in the particle-down-cells
for the f4–p2 and f2–p2 regimes.

Figure 6(c) presents the particle transverse forces along the horizontal centreline of the
pipe. From the comparison of directions between the drag force 〈Fp

D,y〉 and the secondary
particle flow for each of the flow regimes, the trend of the work done by particle drag
forces mentioned above remains applicable. To be specific, the horizontal centreline is
particularly located in the particle-four-cells for the f2–p4 and f4–p6 regimes, where both
〈Fp

D,y〉 and the secondary particle flow along this centreline are outward from the centre
or inward towards the centre, respectively, for each of these regimes. That is, the work
done by 〈Fp

D,y〉 is positive in the particle-four-cells. In contrast, the directions of 〈Fp
D,y〉
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Variable Φm = 0.4 Φm = 0.9 Φm = 1.2 Φm = 1.8

Regime f2–p4 f4–p6 f4–p2 f2–p2
WPFC 0.059 0.012 N/A N/A
WPDC N/A −0.017 −0.080 −0.092

Table 2. The non-dimensional work done by the cross-sectional particle drag force on the particle flow within
the particle-four-cells (WPFC), or the particle-down-cells (WPDC) region. Here, a positive value means that the
particle flow is accelerated by the drag force, while a negative value means that it is decelerated. Also, N/A
denotes not applicable, i.e. the absence of secondary particle flow cells.

and secondary particle flow along this centreline are opposite in the particle-down-cells
for the f4–p2 and f2–p2 regimes, corresponding to a negative work.

For quantitative purposes, the non-dimensional work done by the cross-sectional
drag force 〈F p

D,y−z〉 on the secondary particle flow within the particle–four–cells or
particle-down-cells region, considering the local particle number density, was calculated
as

W =
∫∫

R
〈Fp

D,y Φm,loc〉 dy dz × sign
(

dup
y

dy

)
+

∫∫
R
〈Fp

D,z Φm,loc〉 dy dz × sign
(

dup
z

dz

)
,

(3.1)

where R denotes the two-dimensional region of either the particle-four-cells (subscript
‘PFC’) or particle-down-cells (subscript ‘PDC’) in the pipe cross-section. Here, the local
particle number was considered in the integral by employing the local mass loading
Φm,loc. Also, the directions of the particle flow, ‘sign(dup

y/dy)’ and ‘sign(dup
z /dz)’, were

considered. Thus a positive value of work W means that the particle drag force exerted
by the fluid accelerates the particle flow, while a negative value of W means that there is
deceleration. For the various regimes from f2–p4 to f2–p2, the values of W are summarised
in table 2.

From table 2, it can be seen that the values of W in the particle-four-cells
region are always positive, while those in the particle-down-cells region are negative.
(Appendix B discusses more values of W for the previous cases under various other flow
parameters; Zhang et al. 2021a,b.) This confirms that the secondary particle flow in the
particle-four-cells is accelerated by the fluid phase which, in turn, is driven by the pressure
gradient force 〈F f

∇p,y−z〉. That is, the fluid drives the particles in such cells. In contrast,
the secondary particle flow in the particle-down-cells is decelerated by the fluid phase,
which in turn is dominated by the fluid–particle interaction force on the fluid, 〈F f

S,p,y−z〉,
or 〈F f

∇p,y−z〉, alternately. That is, the particles drive the fluid in such cells.
In addition, the absolute value of WPFC for the shrunken particle-four-cells is decreased

from the f2–p4 regime to the f4–p6 regime (see the fifth column of figure 2). This is also
associated with the decreased magnitude of 〈F f

∇p,y−z〉 in the fluid-up-cells (the first two
columns of figure 3), and thus the decrease in the fluid streamwise vorticity 〈ω+

x 〉 (the first
column of figure 2) between these flow regimes. Consequently, such weakened secondary
fluid motions result in weaker drag forces on the particles, reducing the work done on the
secondary particle flow. In contrast, the absolute value of WPDC is increased dramatically
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(from 0.017 to 0.080) with the enlarged particle-down-cells region from the f4–p6 regime
to the f4–p2 regime (see the fifth column of figure 2). Additionally, WPDC increases slightly
(from 0.080 to 0.092) from the f4–p2 regime to the f2–p2 regime, in which the spatial
extent of particle-down-cells occupying the entire pipe domain is unchanged. Hence
this slight increase in WPDC is associated with both the increased Φm and the enlarged
fluid-down-cells, which are driven by the particle flow, i.e. their enlargement requires more
work to be done by the particles on the secondary fluid flow.

4. Sketches of the mechanisms driving the secondary flows

Figure 7 presents sketches that summarise the dominant forces (in the left half of each
cross-section) and flow direction (right half) for each flow regime. Note that these do not
include the flow in the near-wall region, where the viscous term affects the fluid while
the lift force and wall collisions affect the particles. For the secondary fluid flow, the
fluid-up-cells are classified, by definition, as a secondary flow of the second kind due to
the dominant anisotropy of the Reynolds stresses ∇ · τ̃ y−z and a negligible component
of the fluid–particle interaction force exerted on the fluid, Sp,y−z,0. In contrast, the
fluid-down-cells are classified, by definition, as a secondary flow of the first kind, because
of the dominant, non-zero Sp,y−z,0 and a negligible ∇ · τ̃ y−z.

From the force analysis, the secondary fluid flow in the fluid-up-cells is dominated by the
pressure gradient force 〈F f

∇p,y−z〉 alone, while the fluid–particle interaction force exerted

on the fluid, 〈F f
S,p,y−z〉, is negligible because the local particle mass loading Φm,loc is

low. The upward fluid flow along and around the vertical centreline of the pipe is first
accelerated and then decelerated as it approaches the top region of the pipe. For the
subsequent locations along the streamline, the fluid flow starts with a short segment
of acceleration due to the fluid continuity in the clockwise direction (considering the
right half of the pipe) and is then decelerated. Additionally, the fluid flow undergoes an
acceleration and a deceleration along the lower side of the fluid-up-cells (marked with ‘A’
for the f4–p6 and f4–p2 regimes) because of the presence of the fluid-down-cells below.
This is because the latter results in stagnant regions of the fluid around the vertices of side
A between both kinds of circulation cells.

The secondary fluid flow in the fluid-down-cells is dominated primarily by 〈F f
S,p,y−z〉

around the vertical centreline of the pipe, but by 〈F f
∇p,y−z〉 in the rest of the cells. Note

that both forces are comparable with relatively low magnitudes but opposite in direction.
The former increases from nearly zero, due to the increase in particle mass loading and
hence an increased momentum transfer, while the latter decreases from a large magnitude
in the fluid-up-cells because of the significant attenuation of turbulence and hence a weak
pressure difference. Similar to above, the downward fluid flow along and around the
vertical centreline of the pipe and the subsequent anticlockwise flow are first accelerated
and then decelerated. Also, the presence of the fluid-up-cells above leads to stagnant
regions, resulting in an acceleration and a deceleration of the fluid flow along the upper
side of the fluid-down-cells (marked with ‘B’ for the f4–p6 and f4–p2 regimes).

For the particle phase in figure 7, all the secondary flow motions are dominated by
the gravitational force, Fp

G,z in the vertical direction, and by the drag force 〈Fp
D,y〉 in the

transverse direction. We note from the sketches in the right half of the cross-section,
that unlike the continuous fluid phase, there is no obvious deceleration segment for the
dispersed particles before they collide with the pipe wall or other particles. That is, the
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Figure 7. Sketches illustrating the dominant mechanisms driving secondary flows of both the fluid and particle
phases for each flow regime. Due to symmetry, the force analysis and arrows showing flow direction are
presented in the left and right halves, respectively, in each pair of left and right circulation cells. Note that
sides A and B indicate the side between the fluid-up-cells and fluid-down-cells, for discussion.

momentum and direction of particles are changed primarily through their interactions with
the wall and with other particles (as well as by the strong centripetal lift force near the wall,
as mentioned in § 3.3).

In the particle-four-cells, the cross-sectional drag force exerted on the particles,
〈F p

D,y−z〉, stems from the fluid that drives the particles. Here, the fluid phase is dominated

by 〈F f
∇p,y−z〉 alone because of relatively low Φm,loc for the fluid-up-cells, as mentioned

above. As a result, in addition to the relationship between the particle forces and flow
directions of each circulation cell as shown in figure 7, 〈F p

D,y−z〉 does positive work on
(i.e. accelerates) the particle flow in the entire particle-four-cells region. Also, the spatial
extent of particle-four-cells is always less than that of fluid-up-cells, or equal to each other
if they occupy the entire pipe domain.

In the particle-down-cells, the cross-sectional drag force exerted on the particles,
〈F p

D,y−z〉, is caused by the fluid that is driven by the particles. Here, the fluid phase is

dominated by 〈F f
S,p,y−z〉 or 〈F f

∇p,y−z〉 alternately for the fluid-down-cells, as mentioned
above. Consequently, in addition to the particle forces and flow directions as shown,
〈F p

D,y−z〉 does negative work on (i.e. decelerates) the particle flow in the overall
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The dominant mechanisms for each regime of secondary flows

particle-down-cells region. In addition, the spatial extent of the particle-down-cells is
always greater than or equal to that of the fluid-down-cells.

Furthermore, we note here that the transition from the f2–p4 regime to the f2–p2 regime
is identified in the present work by varying the mass loading from Φm = 0.4 to Φm = 1.8.
This transition of regimes was identified by Zhang et al. (2021b) by increasing the Froude
number Fr or the COR of inter-particle collisions ep−p, or by decreasing the COR of
particle–wall collisions ep−w, where the mass loading is higher than the critical value,
Φm > Φm,crit. However, this previous study did not identify the mechanisms inducing
the secondary flow motions. To this end, a quantitative force analysis is included in
Appendix B for both the fluid and particle phases under the influence of those other
flow parameters (Φm, ep−w and ep−p). Additionally, the secondary flow structures and
their dominant mechanisms are presented in Appendix C, as deduced from the previous
numerical results of Zhang et al. (2021a,b) for the flow with Φm < Φm,crit.

5. Conclusion

The dominant mechanisms driving the secondary flow motions of both the fluid and
particle phases in horizontal particle-laden gas–solid pipe flows have been identified. The
secondary fluid flow of the first kind is always associated with a pair of centre-downward
cells (clockwise on the left and anticlockwise on the right) in each flow regime (termed
fluid-down-cells), while the secondary fluid flow of the second kind is always associated
with a pair of centre-upward cells (anticlockwise on the left and clockwise on the right)
in each flow regime (termed fluid-up-cells). It is also deduced that a secondary fluid
flow of both the first and second kinds is present in the transition region between the
fluid-up-cells and fluid-down-cells. Moreover, with the transition of flow regimes (via
increasing the particle mass loading alone in the present work), the strength of secondary
fluid flow motions reduces in the fluid-up-cells, whose spatial extent is accordingly
reduced. This coincides with the increase in the strength of secondary fluid flow motions
in the fluid-down-cells, whose extent is accordingly increased.

From the force analysis, the secondary fluid flow is driven primarily by the pressure
gradient force, which is caused indirectly by the inhomogeneous distribution of particles
that generates the asymmetric fluid velocity distribution, and/or by the fluid–particle
interaction force exerted directly by particles on the fluid. The fluid-up-cells are dominated
by the former alone, which has a large magnitude, while the fluid-down-cells can be
dominated by either force, both of which are of comparable and relatively low in
magnitude, but have opposite directions.

For the particle phase, the secondary flow is driven primarily by the gravitational force,
while the drag force plays an accessory role in accelerating or decelerating the secondary
flow. In the particle-four-cells (the structure with a pair of left clockwise and right
anticlockwise cells above, and a pair of contrary cells below, in different flow regimes),
the particle drag force exerted by the fluid accelerates the particles and does positive
work on the secondary particle flow, i.e. the fluid drives the particles. In contrast, in the
particle-down-cells (the structure with a pair of left clockwise and right anticlockwise
cells in different flow regimes), the particle drag force decelerates the particles and does
negative work on the secondary particle flow, i.e. the particles drive the fluid. It will be
beneficial for future work to quantify the effects of secondary fluid flow to drive, or to be
driven by, the secondary particle flow in this system.

The new understanding of particle-laden flows in horizontal pipes will contribute to
the development of improved modelling of engineering processes. The force analysis has
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Figure 8. Comparison of turbulence statistics in single-phase pipe flows between the present work (Re f
τ =

570) and the previous DNS (Re f
τ = 500) by Chin et al. (2014). The results of (a) mean streamwise velocity;

and (b) mean streamwise, radial and azimuthal velocity fluctuations, are shown.

shown that the mechanisms driving these secondary flows are distinctly different from
those in vertical pipes.
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Appendix A. Validation of turbulence statistics in single-phase flows

This appendix presents the validation of the turbulence production in single-phase pipe
flows using the present numerical model.

Figure 8 presents the mean streamwise velocity 〈U+〉 and the streamwise, radial
and azimuthal velocity fluctuations, 〈u+〉, 〈v+〉 and 〈w+〉, between the present study
(Re f

τ = 570) and the previous DNS study of a pipe flow (Re f
τ = 500) by Chin, Monty

& Ooi (2014). All the statistics are presented in wall units (with a superscript ‘+’).
It can be seen that the results of the present model show good agreement with the
previous studies within the viscous sublayer (y+ ≈ 6). Some deviations are visible for the
velocity fluctuations, particularly the radial component, within the buffer layer (y+ ≈ 30).
Considering that the present study employs the finite volume method while the previous
DNS used a high-order spectral method, these results are acceptable. Overall, the fluid
velocity for the first-order results and the turbulence intensity for the second-order results
were well reproduced in the present study.
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Appendix B. Force analysis under the influence of other parameters

This appendix presents the force analysis for both the fluid and particle phases of the
cases under a constant Stokes number Sk = 11.2, and a constant mass loading Φm = 1.1,
along with various values of other parameters, as can be found in previous numerical work
reported by Zhang et al. (2021a,b). It can be found that the mechanisms of secondary flows
of both the fluid and particle phases in such cases agree with the findings in §§ 3.2 and
3.3, as well as the sketches in § 4.

Figure 9 presents the vertical component only of the pressure gradient force 〈F f
∇p,z〉,

fluid–particle interaction force 〈F f
S,p,z〉 and resultant force 〈F f

tot,z〉 exerted on the fluid
phase, along the vertical centreline of the pipe (y/D = 0). These forces, under various
values of the Froude number Fr and the CORs of particle–wall collisions ep−w and
inter-particle collisions ep−p, are shown in figures 9(a), 9(b) and 9(c), respectively. In all
subplots, the blue profiles always represent the results under Fr = 17 and ep−w = ep−p =
0.97 for comparison purposes. We note here that the Froude number was varied by varying
gravitational acceleration alone in the simulation (Zhang et al. 2021a), which means that
the value of |g| for normalisation in (2.9a–d) and (2.10a–e) is varied with various Fr.

In figure 9(a), a lower Froude number, Fr = 8.5 (i.e. where the gravitational influence
is relatively stronger than the flow inertia, in red), results in positive 〈F f

∇p,z〉 (i.e.

upwards) at −0.25 ≤ z/D ≤ 0.47, which dominates 〈F f
tot,z〉. This resultant force drives the

fluid-up-cells in the upper section of the pipe (above the red dashed line at z/D = −0.4
for the f4–p6 regime, and these locations can be found in figure 9 of Zhang et al. 2021b).
This upward pressure gradient force is attributed to the particles that are preferentially
concentrated in the lower section of the pipe under the strong gravitational settling effect,
which results in a deceleration of the fluid velocity and high pressure there (see figures 8
and 9 of Zhang et al. 2021a). In contrast, a high Froude number, Fr = 34 (i.e. the
gravitational influence is relatively weaker than the flow inertia, in yellow), results in
〈F f

∇p,z〉 and 〈F f
S,p,z〉 being comparable with each other, but opposite in direction. The latter

determines the resultant force that drives the fluid-down-cells in the entire pipe domain
(corresponding to the dashed line at z/D = 0.5 for the f2–p2 regime). In such a case, the
particles are preferentially concentrated near the pipe core, attenuating the turbulence and
reducing the pressure difference significantly within the entire pipe.

In figure 9(b), a decrease in the COR of particle–wall collisions from ep−w = 0.97
(nearly elastic collision, in blue) to ep−w = 0.2 (inelastic collision, in yellow) reduces
the upward 〈F f

∇p,z〉 at 0 ≤ z/D ≤ 0.47, which dominates 〈F f
tot,z〉 and drives the upward

secondary fluid flow along the vertical centreline of the pipe. This is because the
particles are preferentially distributed throughout the pipe wall due to the greater
inelastic-collision-dominant effect (Zhang et al. 2021b) rather than the gravitational
settling effect. Consequently, the pipe domain features more significant attenuation of
turbulence and smaller pressure differences with the decrease in ep−w. Thus this variation
is in correspondence with the transition from the co-existence of both the fluid-up-cells
and fluid-down-cells (i.e. the f4–p2 regime) to the fluid-down-cells alone that occupy the
entire pipe (i.e. the f2–p2 regime; see figure 7(a) of Zhang et al. 2021b).

In figure 9(c), a decrease in the COR of inter-particle collisions from ep−p = 0.97
(nearly elastic collision, in blue) to ep−p = 0.2 (inelastic collision, in yellow) increases
the bulk value of the upward 〈F f

∇p,z〉 at 0 ≤ z/D ≤ 0.47, which dominates 〈F f
tot,z〉 and

drives the fluid-up-cells. This is because the particles are concentrated more significantly

949 A10-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.745


X. Zhang, G.J. Nathan, Z.F. Tian and R.C. Chin

–

+

–

+

–

+

–0.5

0z/D

0.5

–0.5

0

0.5

–0.5

0

0.5

z/D

–0.5

0

0.5

–0.5

0

0.5

–0.5

0

0.5

–3.0 –1.5 3.01.50–3.0 –1.5 3.01.50–3.0 –1.5 3.01.50

–3.0 –1.5 3.01.50–3.0 –1.5 3.01.50–3.0 –1.5 3.01.50

–3.0
–0.5

0z/D

0.5

–0.5

0

0.5

–0.5

0

0.5

Fr = 8.5
( f4–p6 regime) ( f4–p2 regime) ( f2–p2 regime)

Fr = 17 Fr = 34

ep–w = 0.97 ep–w = 0.6 ep–w = 0.2
( f4–p2 regime) ( f4–p2 regime) ( f2–p2 regime)

ep–p = 0.97 ep–p = 0.6 ep–p = 0.2
( f4–p2 regime) ( f4–p2 regime) ( f4–p2 regime)

–1.5 1.5 3.00 –3.0 –1.5 1.5 3.00 –3.0 –1.5 1.5 3.00

Fluid-up-cells region

Fluid-down-cells region

(b)

(a)

(c)

〈Ftot,z〉f〈FS,p,z〉f〈F∇p,z〉f

Figure 9. Profiles for each of the four regimes of the gravity-normalised, mean vertical forces exerted on the
fluid phase along the vertical centreline (y/D = 0) of the pipe: the pressure gradient force (left column) and the
fluid–particle interaction force (middle column), together with the resultant force (right column), which equals
the sum of the first two in the outer region of the pipe flow (r/D ≤ 0.47). The results for a series of values
of (a) the Froude number Fr, (b) the COR of particle–wall collisions ep−w, and (c) the COR of inter-particle
collisions ep−p, are shown. A constant Stokes number Sk = 11.2 and mass loading Φm = 1.1 are employed,
and the unmentioned parameters in the legend of each subplot are always constant at Fr = 17, ep−w = 0.97
or ep−p = 0.97. The identification of the flow regime for each case can be found in the study by Zhang et al.
(2021b).

949 A10-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.745


The dominant mechanisms for each regime of secondary flows

in the bottom of the pipe, due to the gravitational settling effect being enhanced by the
inelastic-collision-dominant effect, with the decrease in ep−p. Hence the decrease in ep−p
corresponds to the enlargement of the fluid-up-cells (see figure 7(b) of Zhang et al. 2021b).

Similar to the fluid phase, the corresponding vertical forces exerted on the particle phase
along the vertical centreline of the pipe (y/D = 0), including the drag force 〈Fp

D,z〉, lift
force 〈Fp

L,z〉 and resultant force 〈Fp
tot,z〉, are presented in figure 10. Also, the work done

by the cross-sectional drag force on the particle flow within the particle-four-cells region,
WPFC, or the particle-down-cells region, WPDC, is calculated following (3.1). The values
of WPFC and WPDC for a series of values of Fr, ep−w and ep−p are summarised in table 3.

In figure 10, the lift force 〈Fp
L,z〉 is much weaker than the drag force 〈Fp

D,z〉 in the pipe
domain, except in the near-wall region, while the resultant force 〈Fp

tot,z〉 is dominated by
the gravitational force Fp

G,z for all the cases. Also, it can be seen that 〈Fp
D,z〉 is mostly

positive in the particle-four-cells region (i.e. the region above the corresponding dashed
lines), e.g. Fr = 8.5 (red) in figure 10(a), and ep−p = 0.6 (red) and ep−p = 0.2 (yellow)
in figure 10(c). In contrast, the value of 〈Fp

D,z〉 alternates between positive and negative,
but its integral is always positive (i.e. work done by the drag force is negative to the
downward particle flow) in the particle-down-cells region. These correlations between
the vertical forces and secondary flows of the particle phase, under various values of other
flow parameters, are consistent with the findings in § 3.3.

From table 3, the work done by the cross-sectional drag force on particles is always
positive (i.e. accelerates the particle flow) in the particle-four-cells, yet negative (i.e.
decelerates the particle flow) in the particle-down-cells, which is consistent with the
findings in § 3.3. However, there is a non-monotonic variation in |WPDC| with an increase
in Fr or the decrease in ep−w, which is different from the trend in table 2, where |WPDC|
increases monotonically with an increased Φm. The decrease in |WPDC| from 0.076 to
0.055 with the increase in Fr from 17 to 34 could be attributed to a weaker gravitational
force that does less work on the particle flow. Thus the secondary particle flow does less
but sufficient work on driving the secondary fluid flow. In addition, the decrease in |WPDC|
from 0.081 to 0.033 with the decrease in ep−w from 0.6 to 0.2 could be attributed to the
momentum loss of particles from inelastic particle–wall collisions, which also results in
less work done by the particles on driving the fluid. Moreover, in the reverse transition
of flow regimes under the variation in ep−p, the value of |WPDC| increases from 0.011
to 0.015 within the same regime f4–p6 with the decrease in ep−p from 0.6 to 0.2. This
could be because of the significantly increased concentration of particles in the bottom
region of the pipe under the enhanced gravitational settling effect, which surpasses the
momentum loss due to inelastic inter-particle collisions and results in greater work done
by the particles on driving the fluid in the particle-down-cells.

Appendix C. Sketches of secondary particle flows with the absence of secondary fluid
flows

In this appendix, for a complete picture of flow regimes, we show three supplementary
regimes, which are identified (or deduced) from the previous work by Zhang et al.
(2021a,b), where the secondary fluid flow is absent, while the secondary particle flow
is absent or exhibits the two-cell or four-cell structure, respectively, in figure 11.

As shown in figure 11, from right to left, the f0–p4 regime is characterised by
flow with an absence of the secondary fluid flow (zero secondary flow cells) and the
particle-four-cells structure of the secondary particle flow. This regime is identified to
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Figure 10. Profiles for each of the four regimes of the gravity-normalised, mean vertical forces exerted on
the particle phase along the vertical centreline (y/D = 0) of the pipe: the drag force (left column) and lift
force (middle column), together with the resultant force (right column), which equals the sum of the first two
combined with the gravitational force Fp

G,z = −1 in the pipe domain except for the wall (r/D < 0.5). The
results for a series of values of (a) the Froude number Fr, (b) the COR of particle–wall collisions ep−w, and
(c) the COR of inter-particle collisions ep−p, are shown. Other flow conditions are as per figure 9.

occur for the cases with a relatively low mass loading, 0 < Φm ≤ 0.053, reported by
Zhang et al. (2021a). The secondary particle flow motions are driven by the gravitational
force together with the contribution of the drag force exerted by the fluid phase. Also, the
regime’s particle behaviour, including secondary particle flow motions, is close to that
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Flow regime

Fluid phase

Particle phase

Variables

Legend of
the particle

phase
Particle-four-cells Particle-down-cells

Particle flow is accelerated by the resultant force

Φm ↓, Fr ↑, ep–p ↑ and/or ep–w ↓, where Φm ≤ Φm,crit

Particle flow is decelerated by the resultant force

No secondary
flow

No secondary
flow

f0–p0

y

z

f0–p2 f0–p4

No secondary
flow

No secondary
flow

FG,z
p

FG,z
p

FD,y dominates the particle resultant forcep

FG,z dominates the particle resultant forcep

Figure 11. Sketches illustrating the dominant mechanisms driving secondary flows of both the fluid and
particle phases for each flow regime where mass loading is less than the critical one. Due to symmetry, the
force analysis and arrows showing flow direction are presented in the left and right halves, respectively, in each
pair of left and right circulation cells.

of the f2–p4 regime, while the difference between them lies in Φm, which is less than the
critical value Φm,crit for the f0–p4 regime. As a result, the relatively dilute particle phase, in
turn, is sufficient neither to drive the fluid nor to result in the anisotropic pressure gradient
force necessary for driving any secondary fluid flow.

The f0–p2 regime is characterised by flow with an absence of the secondary fluid flow
and a centre-downward two-cell structure of the secondary particle flow. This regime is
identified to occur particularly where Φm ≤ 0.4 and ep−w ≤ 0.2. In addition, the pair of
cells of the secondary particle flow structure are inferred to be enlarged from the upper
pair of cells in the particle-four-cells (see the corresponding variations in figures 7 and
8 of Zhang et al. 2021b). In this regime, the particle forces exhibit the same pattern as
in the f2–p2 regime, as shown in figure 5, where the gravitational force is dominant in
the vertical direction, while the drag force dominates the transverse direction. Also, the
particle flow is accelerated by the gravitational force around the vertical centreline, while
it is decelerated by the drag force exerted by the fluid phase (i.e. the particles drive the
fluid). However, due to the relatively low mass loading, Φm ≤ Φm,crit, such a particle drag
force, in turn, is insufficient to drive any secondary flow for the fluid phase, similar to
the f0–p4 regime above. Furthermore, the formation of the f0–p2 regime could also be
promoted by an increased Fr or a decreased ep−w compared with the f0–p4 regime.

The f0–p0 regime is defined for flow without secondary flows for both the fluid and
particle phases. This regime is deduced to occur where the mass loading is extremely
low, Φm ∼ 0 (i.e. in the one-way coupling regime, in which the fluid is not affected by
the particles), together with a relatively high Fr (where gravity is insufficiently strong to
lead any bias). Thus the flow is close to a single-phase flow, where there is no secondary
fluid flow, while the secondary particle flow under such a weak gravitational effect is
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The dominant mechanisms for each regime of secondary flows

also absent. In addition to this low Φm and high Fr, the elastic inter-particle collisions (high
value of ep−p) or inelastic particle–wall collisions (low value of ep−w) could contribute to
the formation of this flow regime, according to the influence of the CORs mentioned in
Appendix B.
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