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Abstract

Crop models can be used to explain yield variations associated with management practices,
environment and genotype. This study aimed to assess the effect of plant densities using
CSM-CROPGRO-Soybean for low latitudes. The crop model was calibrated and evaluated
using data from field experiments, including plant densities (10, 20, 30 and 40 plants per
m2), maturity groups (MG 7.7 and 8.8) and sowing dates (calibration: 06 Jan., 19 Jan., 16
Feb. 2018; and evaluation: 19 Jan. 2019). The model simulated phenology with a bias lower
than 2 days for calibration and 7 days for evaluation. Relative root mean square error for
the maximum leaf area index varied from 12.2 to 31.3%; while that for grain yield varied
between 3 and 32%. The calibrated model was used to simulate different management scen-
arios across six sites located in the low latitude, considering 33 growing seasons. Simulations
showed a higher yield for 40 pl per m2, as expected, but with greater yield gain increments
occurring at low plant density going from 10 to 20 pl per m2. In Santarém, Brazil, MG 8.8
sown on 21 Feb. had a median yield of 2658, 3197, 3442 and 3583 kg/ha, respectively, for
10, 20, 30 and 40 pl per m2, resulting in a relative increase of 20, 8 and 4% for each additional
10 pl per m2. Overall, the crop model had adequate performance, indicating a minimum
recommended plant density of 20 pl per m2, while sowing dates and maturity groups showed
different yield level and pattern across sites in function of the local climate.

Introduction

Brazil was responsible for 34% of global soybean production in the 2018 growing season
(FAOSTAT, 2020). The production occurred predominantly in the South and Midwestern
Brazil, reaching 86% of total national production. Currently, North/Northeast Brazil is a
new expansion area for soybean production. The region produced 14% of national production
in the 2018/19 growing season (CONAB, 2020). This region is located in low latitude, from 10°
south to 5° north. The expansion in this region has been made possible with the development
of cultivars adapted to low latitude (<15°S), improved soil fertility and reduction of soil acidity
(Cattelan and Dall’Agnol, 2018). In this scenario, the expansion of production area and
increase of yield are important to supply global demand for food.

Soybean crop management for new regions has been based on the management for current
production areas, which can lead to low efficiency to explore new environmental conditions,
for example, using sowing dates, plant density and cultivars from other production regions that
limit potential yield (Teixeira et al., 2019). The management needs to be adapted for different
environmental conditions to reduce risks associated with climate and production costs (Battisti
et al., 2020a) and to increase crop resilience (Halsnaes and Taerup, 2009). Crop management
practices that can be used in new environments to improve yield and crop resilience, include
sowing dates (Hu and Wiatrak, 2012; Spehar et al., 2015), maturity group (Battisti et al., 2018;
Teixeira et al., 2019) and irrigation (Justino et al., 2019; Battisti et al., 2020b).

In this context, plant density is a crop management practice with potential adaptation when
considered the interaction between weather (air temperature, rainfall and photoperiod), soil
(soil water availability to the crop) and other crop management (sowing date and maturity
group) (Salmerón et al., 2015, 2017). This combination can define potential yield for soybean
(Van Roekel et al., 2015). In Southern Brazil, Corassa et al. (2018) evaluated 109 replicated
field trials with seeding rates of 10, 23, 30, 36 and 49 pl per m2, with 2–12 genotypes (maturity
groups from 4.2 to 6.3) per site. Corassa et al. (2018) concluded that plant density can be
reduced up to 18% for fields with high yield potential (>5000 kg/ha) without losing yield
when compared with fields of lower yield potential (<4000 kg/ha).

In northern Brazil, farmers have opted for early sowing dates with lower maturity groups
(6.0–7.0) than recommended for the region (8.0–9.0) to get a short cycle which allows sowing
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a second crop (maize off-season) in the same growing season
(Nóia Júnior and Sentelhas, 2019; Battisti et al., 2020a). A short
cycle crop results in a recommendation to sow higher plant dens-
ity to increase leaf area index (LAI) for optimal value (Lee et al.,
2008; Tagliapietra et al., 2018). However, because of high seed
costs farmers sow less seed than ideal, leading to yield losses.
The yield losses can be avoided, by defining the best plant density
for each combination of sowing date and maturity group for this
environment. For that reason, mechanistic crop models can help
to make better decisions based on probabilistic level considering
climate, maturity groups, sowing dates and plant density (Boote
et al., 2013; Ewert et al., 2015; Hoogenboom et al., 2019).

The use of crop models requires evaluation of whether model
responses are acceptable for the intended management (Nendel
et al., 2011). Studies have evaluated and used soybean crop mod-
els for plant density management (e.g. Basso et al., 2001; Banterng
et al., 2009; Setiyono et al., 2010; Battisti et al., 2018). But, to the
extent of our knowledge, there are no studies of simulated plant
density response for production systems in low latitude (northern
Brazil) using high maturity groups. In this context, this research
hypothesizes that CSM-CROPGRO-Soybean is able to simulate
development and growth after calibration, and can be used to
define the best strategies considering the interaction of plant
density, sowing dates and maturity group for the sites of low lati-
tude in Brazil. Thus, our study aimed: (1) to calibrate and evaluate
CSM-CROPGRO-Soybean regarding plant development, growth
and yield in response to plant density for two soybean maturity
groups (7.7 and 8.8); and (2) to assess the best crop management
strategies (sowing dates × plant densities × maturity groups) based
on seasonal analysis using long-term historical weather for six
sites in low latitude.

Materials and methods

Data set for crop model calibration and evaluation

Field experiment description
The field experiments were conducted in Paragominas, Pará State,
Brazil (Lat: −3.37°, Long: -47.42°, 176 m a.s.l.) (Fig. 1). The cli-
mate is classified as Aw according to Köppen climate classifica-
tion, characterized by wet summers and a defined dry winter
season (Alvares et al., 2013) (Supplementary material, Fig. S1).
On-farm field experiments were carried out in 2018 and 2019
under no-tillage using randomized block design with four replica-
tion, including three factors: two soybean cultivars, four plant
densities and three sowing dates for crop model calibration, and
two soybean cultivars, four plant density and one sowing date
for crop model evaluation (Table 1). The cultivars were M7739
IPRO (maturity group 7.7 with semi-indeterminate growth
habit), named hereafter as MG 7.7, and M8808 IPRO (maturity
group 8.8, determinate growth habit), named hereafter as MG
8.8. Intended plant densities were 10, 20, 30 and 40 pl per m2,
where results were discarded if the plant density was not reached
(Table 1). The sowing dates were 06 Jan., 19 Jan. and 16 Feb. for
the 2018 growing season, used for crop model calibration; and 12
Jan. for the 2019 growing season, used for crop model evaluation
(Table 1). The plot size had 12 sowing rows (50-cm spacing
between rows) with a length of 25 m, with a useful area of six
rows by 3 m length delineated randomly inside the plot.

Crop management was done according to the farm schedule,
including seed treatment with insecticide and fungicide, followed
by biological inoculant containing strains of Bradyrhizobium:

SEMIA 5019 (B. elkanii) and SEMIA 5079 (B. japonicum) at an
amount of 0.03 litres per ha. The soil fertilization was incorpo-
rated during sowing using 90 kg/ha of monoammonium phos-
phate (NPK: 12-61-0). Copper, cobalt and molybdenum were
supplemented by foliar application. Weeds were controlled after
sowing using glyphosate; pests were controlled by monitoring
their presence every 5 days and diseases were controlled prevent-
ively, considering the action time of different chemical products;
where these controls were aimed to avoid the presence of limiting
factors.

Soil data collection
Soil chemical and physical attributes were sampled before sowing
the field experiment at layers of 0–10, 10–20, 20–30, 30–50 and
50–70 cm depths. Four undisturbed samples were collected at
the field using the volumetric ring to quantify soil water content
at the soil saturation (SAT), at the drained upper limit (DUL), at
the lower limit (LL) of plant extractable soil water, soil bulk dens-
ity (BD) and hydraulic conductivity at saturation (KSAT)
(Table 2), and three disturbed subsamples to quantify chemical
and texture soil properties (Table 2). The DUL and LL points
were quantified using the pressure plate method, respectively, at
10 and 1500 kPa. The initial soil water content was set at 50%
of the difference between DUL and LL with the simulation
initiated 30 days prior to the sowing date in the crop model.

Weather data collection
Daily weather data were obtained from an automatic weather sta-
tion located at the experimental field, including maximum and
minimum air temperature, total daily solar radiation and rainfall
(Fig. 2). The mean (min–max) air temperatures were 26.4°C
(18.9–38.8) and 27.0°C (19.8–37.3) respectively, for 2017/18 and
2018/19 growing seasons. The accumulated rainfalls were 1749
and 1928 mm from December to June, respectively, for 2017/18
and 2018/19 growing seasons. Total daily solar radiation had an
average (min–max) of 18.2 (8.4–25.0) and 19.2 (6.5–28.6) MJ/
m2/day, respectively, for 2017/18 and 2018/19 growing seasons.
The climatology for the field experiment site (Paragominas) is
shown in Fig. S1 of the Supplementary material.

Measurements
The phenological stages were monitored weekly, recording the
date when at least 50% of plot plants achieved the phenological
characteristics described by Boote et al. (2003). The phenological
stages were sowing, emergence (VE, cotyledons above soil sur-
face), first flower (R1, when one open flower appeared on any
node on the main stem), first seed (R5, when 3mm seeds
appeared on any node on the main stem) and beginning maturity
(R7, when one pod with mature colour appeared on any node on
the main stem). Total above-ground biomass, stem, leaf, pod,
grain, LAI and leaf number were measured from three to six
times during the growing season by sampling 1 linear metre of
a row (0.5 m2) from four replications. The samples occurred
around 15, 30, 60, 75 and 90 days after sowing and at harvest
for most of the treatments. Maturity group 7.7 did not have sam-
ples at 90 days after sowing, while for sowing dates on 16 Feb.
2018 and 12 Jan. 2019, the samples were done only at 40 and
75 days after sowing and at harvest.

The dry biomass was obtained after partitioning the plant in
stem, leaf, pod and grain, drying at 70°C until constant weight.
The LAI was determined by sampling leaves and scanning the
whole leaf area with the LI-COR LI-3100C. The specific leaf
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area was calculated by dividing leaf area (cm2) by leaf biomass (g).
Two central 1-m rows were harvested for final yield converted to
dry mass, drying at 70°C until constant weight, and yield compo-
nents (grain yield, number of pods, number of grains per pod and
weight per grain). The harvest index was calculated by dividing
grain yield by total aboveground biomass.

Crop model

Description of plant density response
The DSSAT CSM-CROPGRO-Soybean model v 4.7.0 (Hoogenboom
et al., 2017) is widely used in Brazil for management evaluation, for
example, for tropical conditions (Banterng et al., 2009), climate
response (Silva et al., 2017; Battisti and Sentelhas, 2019; Lima
et al., 2019) and irrigation (Battisti et al., 2020b). The response
to plant density is influenced by the LAI which affects crop
evapotranspiration and photosynthesis rates during the life
cycle. Leaf area growth depends on canopy photosynthesis, parti-
tioning of biomass to leaf and the specific leaf area (response to
temperature, light and water deficit) (Boote and Pickering, 1994;
Boote et al., 1998). The model simulates leaf senescence as a func-
tion of water deficit and nitrogen mobilization, as well as under
high LAI because lower leaves receive low solar radiation. Plant
density can indirectly affect water available to the crop through
root density, as daily assimilate is partitioned to root mass and
root length density leading to change in how the soil is explored

and the availability of water to the crop (Boote et al., 1998). The
root distribution with the soil profile depth is defined by the soil
root growth factor (SRGF) (Table 2), and the same root profile
shape was used for all plant densities in our study. The SRGF
was obtained from Battisti et al. (2017).

Calibration and evaluation
The initial set of cultivar parameters for calibration was the gen-
eric cultivar parameters for maturity groups 7.0 and 8.0 from eco-
type and cultivar file in the DSSAT-CROPGRO-Soybean for MG
7.7 and MG 8.8, respectively. The first step involved calibration of
phenological coefficients such as first flower appearance (EM-FL),
first pod (FL-SH) (adjusted to fit the onset of pod growth), first
seed (FL-SD) and beginning maturity (SD-PM) (Hunt and
Boote, 1998), in combination with critical short day length
(CSDL) and slope of the relative response of development to
photoperiod (PPSEN). Adjustments using observations were
done to reduce bias and the root mean square error (RMSE)
(Wallach et al., 2006), comparing measured and simulated values
using scatter plots.

After phenology calibration, growth parameters were cali-
brated in the second step. These included the maximum leaf
photosynthesis rate (LFMAX), defined at 30°C, 350 vpm of CO2

and high light; specific leaf area of cultivar under standard growth
conditions (SLAVR); maximum size of full leaf (three leaflets)
(SIZLF); time between first flower (R1) and end of leaf expansion

Fig. 1. (Colour online) State locations in Brazil (top left), experiment site, locations used for long-term yield simulation, soybean production intensity and muni-
cipality areas in the new expansion soybean area in Brazil. Adapted from IBGE (2020).
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(FL-LF); maximum weight per seed (WTPSD); seed filling dur-
ation for pod cohort at standard growth conditions (SFDUR);
average seed number per pod under standard growing conditions
(SDPDV); time required for cultivar to reach final pod load under
optimal conditions (PODUR) and threshing percentage between
grain and pod (THRSH).

Growth parameters were adjusted simultaneously using gener-
alized likelihood uncertainty analysis (GLUE) (Makowski et al.,
2002; Jones et al., 2011) available within DSSAT to adjust
LFMAX, SLAVR and SIZLF. The target of GLUE was only the
final yield values. Therefore, subsequent manual calibration was
done to improve the model performance against time-series
growth analysis using scatter plots for yield, LAI and biomass par-
titioning, including bias and RMSE (Wallach et al., 2006). The
GLUE was set to run 15 000 simulations, following the recom-
mendation of Jones et al. (2011). After the optimization with
GLUE and the manual calibration, parameters were checked to
verify their consistency with other calibrations and maturity
group characteristics in the model database. After calibration,
the crop model was evaluated with independent data measured
in the 2019 growing season (Table 2).

Model application over multiple weather seasons at six sites

Crop management was simulated using DSSAT’s Seasonal
Analysis software considering sowing dates, plant densities and
maturity groups for six sites in northern Brazil. The sites were:
Paragominas, Santarém, Santana do Araguaia, Anapurus, Balsas

and Porto Nacional (Fig. 1). The daily weather data for 33 grow-
ing seasons were obtained from 01 Jan. 1980 to 31 Dec. 2013
(Xavier et al., 2015). The climatology for these sites can be
found in Fig. S1 of the Supplementary material. The simulated
crop management included four plant densities of 10, 20, 30
and 40 pl per m2; two maturity groups (7.7 and 8.8); and sowing
dates every 10 days during the sowing windows for each
region (Table 3), defined based on agroclimatic zoning risk
(MAPA, 2020). The soil type and texture by site were
obtained from RADAM (1974) (Table 3), while the soil
water characteristics were obtained from Battisti and Sentelhas
(2019) (Supplementary material, Table S1). The Seasonal
Analysis was initiated 3 months prior to each sowing date,
assuming initial soil water content at 50% of the difference
between DUL and LL, with initial conditions reinitiated every
growing season.

Results

Crop model performance compared to experimental data

The parameters calibrated can be found in Table 4 for MG 7.7
and 8.8. In the calibration process, the first step was to adjust
parameters of CSDL and PPSEN to improve the prediction of
first flower occurrence, followed by calibrating EM-FL, FL-SH,
FL-SD and SD-PM. Then FL-LF, SLAVR and SIZELF were modi-
fied to improve LAI simulation, where it was necessary to modify
parameters to improve LAI mainly for the lower plant density.
FL-LF was increased for MG 7.7 due to its indeterminate flower-
ing habit (start flowering early and indeterminate leaf area
growth), while FL-LF for MG 8.8 was not changed from the gen-
eric default determine cultivar parameters because of its deter-
minate growth habit. LFMAX was adjusted to increase biomass
production, as this parameter increases both LAI and biomass.
The default LFMAX value of 1.03 was increased to 1.20 and
1.175 μmol/m2/s, respectively, for MG 7.7 and 8.8. The final
changes involved parameters related to pod and grain growth dur-
ation, to improve yield simulation (Table 4).

Phenology
For calibration, the model had a bias lower than 2 days for emer-
gence, first flower, first seed and beginning maturity for MG 7.7
and 8.8 (Table 5), with a strong agreement between measured
and simulated (Figs 3(a) and (b)). The evaluation was in agree-
ment across crop stages for MG 7.7, with bias less than 1.3 days
(Table 5) and strong agreement between measured and simulated
(Fig. 3(a)). However, MG 8.8 showed a longer time to the occur-
rence of beginning maturity (bias = 7 days; Table 5); while anthe-
sis occurred 4 days early in the crop model simulation (Table 5).
There were no observed or simulated effects of plant density on
crop phenology.

Time-series of leaf area index and biomass

LAI was simulated well across plant densities and sowing dates
for MG 7.7 for both model calibration and evaluation processes
(Fig. 4). For calibration, the RMSE was lower than 1.23 (relative
RMSE (RRMSE) <33%; bias <1.08) (Supplementary material,
Table S2). The later sowing dates (19 Jan. and 16 Feb.) showed
a higher observed LAI than simulated, being higher during the
middle to end of the cycle for 19 Jan. sowing (Fig. 4(b)), and a
more rapid reduction for 16 Feb. (Fig. 4(c)). This performance

Table 1. Field experiment treatment data sets by plant densities, sowing dates
and maturity groups during 2018 and 2019 growing seasons used for calibration
and evaluation

Sowing date Plant density (PD) Maturity group

Pl per m2 7.7 8.8

Calibration

06 Jan. 2018 10 X X

20 X X

30 X Missing PDa

40 X X

19 Jan. 2018 10 X X

20 X X

30 X Missing PD

40 Missing PD Missing PD

16 Feb. 2018 10 Missing PD X

20 X Missing PD

30 X Missing PD

40 Missing PD X

Evaluation

12 Jan. 2019 10 X X

20 X X

30 X X

40 X X

aMissing PD means that the intended plant density was not reached, therefore results were
discarded.
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Table 2. Soil layer characteristics measured prior to planting in the field experiment in Paragominas, PA

Depth layer
(cm) pH (CaCl2) OM (g/kg) Presin (mg/dm3) K (cmolc/dm3) Ca (cmolc/dm3) Mg (cmolc/dm3) H + Al (cmolc/dm3) CEC (cmolc/dm3) V (%)

0–10 5.3 20.4 20.6 0.22 3.10 1.30 3.00 7.62 60.6

10–20 5.0 14.8 15.7 0.21 2.67 0.96 1.30 7.04 54.5

20–30 4.7 9.5 10.6 0.19 2.08 0.72 0.96 5.69 52.5

30–50 4.7 6.7 9.6 0.15 1.78 0.52 0.72 6.45 38.1

50–70 4.7 3.5 6.6 0.11 1.04 0.36 0.52 5.01 30.2

70–300 4.7 3.5 6.6 0.11 1.04 0.36 0.52 5.01 30.2

Depth (cm) Sand (%) Silt (%) Clay (%) BD (g/cm3) KSAT (cm/h) SAT (cm3/cm3) DUL (cm3/cm3) LL (cm3/cm3)

0–10 11 12 77 1.0 3.0 0.58 0.49 0.24

10–20 7 13 80 1.2 3.0 0.52 0.42 0.27

20–30 4 11 84 1.3 3.0 0.50 0.46 0.30

30–50 4 12 84 1.3 1.0 0.49 0.43 0.31

50–70 4 12 84 1.3 1.0 0.49 0.43 0.31

70–300 4 12 84 1.3 1.0 0.49 0.43 0.31

Soil layer SRGF Soil layer SRGF

1 (0–5 cm) 1 7 (60–70 cm) 0.18

2 (5–15 cm) 1 8 (70–100 cm) 0.16

3 (15–30 cm) 0.42 9 (100–125 cm) 0.04

4 (30–40 cm) 0.34 10 (125–150 cm) 0.04

5 (40–50 cm) 0.23 11 (150–160 cm) 0.00

6 (50–60 cm) 0.20 12 (160–300 cm) 0.00

OM, organic matter; Presin, phosphorus extracted by ion exchange resins; CEC, cation-exchange capacity; V, base-cation saturation ratio; BD, soil bulk density; KSAT, hydraulic conductivity at saturation; SAT, soil water content at soil saturation; DUL, soil
water content at drained upper limit; LL, lower limit of plant extractable soil water. The layer 70–300 cm was obtained extrapolating the last measured layer (50–70 cm). SRGF, soil root growth factor, obtained from Battisti et al. (2017).
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was similar during evaluation for the sowing on 12 Jan. for
four plant densities, with the field experiment having higher
LAI late in the cycle when compared with simulated (Fig. 4
(d )), although the crop model simulated higher main stem
leaf (node) number during the evaluation (bias = 0.71)
(Table 5).

The simulated and observed LAI were similar during the grow-
ing cycle for MG 8.8. A limitation was that the model overpre-
dicted LAI for high plant density, as can be observed for 40 pl
per m2 for sowing date on 06 Jan. (Fig. 4(e)) and 16 Feb.
(Fig. 4(g)), where RRMSE was 28 and 19%, respectively
(Supplementary material, Table S2). Simulated LAI was higher
than observed for 10 pl per m2, where RRMSE were between 5
and 13% (Supplementary material, Table S2). For the model
evaluation, the RRMSE increased with higher plant densities.
RRMSE was 5% for 10 pl per m2, while it reached 32% at 40 pl
per m2 (Supplementary material, Table S2).

The model response to plant density was well predicted for bio-
mass and the individual components of biomass across crop cycle
(pod, leaf and stem). The fractional partitioning between pod, leaf
and stem for MG 7.7 was not affected by plant densities (true of
the data as well as the model) (Figs 5(a–d)). For model calibration,
the aboveground dry biomass for MG 7.7 had RMSE lower than
975 kg/ha (RRMSE <26%) (Supplementary material, Table S3) for
time-series data, while for end-of-season, including all plant density,
the overall RMSE was 489 kg/ha (RRMSE = 11.4%) (Table 5). The
results from model evaluation revealed that RMSE for aboveground
dry biomass increased to 1220 kg/ha, but with RRMSE of 21% for
time-series data, while overall performance at end-of-season showed
RMSE of 268 kg/ha (RRMSE = 4.6%) (Table 5). The bias for leaf and
pod dry mass were similar during calibration and evaluation, being
between −395 and −17 kg/ha for leaf (Supplementary material,
Table S4), and between – 460 and 622 kg/ha for pod
(Supplementary material, Table S5), showing agreement across

Fig. 2. (Colour online) Maximum and minimum air
temperature (a), total daily solar radiation (b and c)
and rainfall (b and c) for field experiment conducted
during 2017/18 (a and b) and 2018/19 (a and c) grow-
ing seasons. In (a), the arrow indicates the sowing date
for soybean and in (b) and (c), the continuous line is
total daily solar radiation and bar graph is rainfall.
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crop cycle (Fig. 5). The LAI and leaf dry biomass resulted in a good
simulation of specific leaf area for most of the plant densities
(RRMSE between 2 and 40%), but with high RRMSE for low
plant densities and early planting dates (Supplementary material,
Table S7).

The aboveground dry biomass was overpredicted by the model
in the last date of measurement for MG 8.8 in the calibration and
evaluation (Figs 5(e–h)). As expected, the RMSE aboveground dry
biomass was larger for 40 than for 10 pl per m2 (increasing from
499 to 652 kg/ha in calibration and from 798 to 1206 kg/ha in

Table 3. Sites, geographic location, sowing window dates and soil type considered in the seasonal analyses for soybean management in the north Brazil

Sites Lata (°) Longb (°) Elevc (m)

Sowing datesd

Soil typeeStart End

Paragominas, PA −3.35 −47.37 90 01 Dec. 21 Feb. Clayey

Santarém, PA −2.54 −55.34 35 01 Dec. 21 Feb. Clayey

Santana do Araguaia, PA −9.49 −50.52 160 01 Oct. 21 Dec. Sandy-clay

Anapurus, MA −3.62 −43.08 68 01 Dec. 21 Feb. Sandy-clay

Balsas, MA −7.55 −46.59 283 01 Oct. 21 Jan. Sandy-clay

Porto Nacional, TO −10.57 −48.49 212 01 Oct. 21 Dec. Sandy-clay

aLat is the latitude.
bLong is the longitude.
cElev is the elevation (m above sea level).
dSowing was done every 10 days.
eSoil parameters are shown in Table S1 of the Supplementary material.

Table 4. Calibrated soybean cultivar parameters for the MG 7.7 and 8.8 in the CSM-CROPGRO-Soybean crop model

Traitsa Description

Values

MG 7.7 MG 8.8

#ECO Code for the ecotype to which this cultivar belongs SB0701 SB0801

CSDL Critical short day length below which reproductive development progresses with no daylength effect (for short day
plants) (h)

11.80 11.50

PPSEN Slope of the relative response of development to photoperiod with time (positive for short day plants) (1/h) 0.325 0.340

EM-FL Time between plant emergence and flower appearance (R1) (photothermal days) 25.00 24.50

FL-SH Time between first flower and first pod (R3) (photothermal days) 5.00 8.20

FL-SD Time between first flower and first seed (R5) (photothermal days) 10.50 12.00

SD-PM Time between first seed (R5) and physiological maturity (R7) (photothermal days) 27.50 25.00

FL-LF Time between first flower (R1) and end of leaf expansion (photothermal days) 22.00 18.00

LFMAX Maximum leaf photosynthesis rate at 30°C, 350 vpm CO2 and high light (mg CO2/m
2 s) 1.200 1.175

SLAVR Specific leaf area of cultivar under standard growth conditions (cm2/g) 365 388

SIZLF Maximum size of full leaf (three leaflets) (cm2) 230 216

XFRT Maximum fraction of daily growth that is partitioned to seed + shell 1.00 1.00

WTPSD Maximum weight per seed (g) 0.15 0.16

SFDUR Seed filling duration for pod cohort at standard growth conditions (photothermal days) 18.2 25.0

SDPDV Average seed per pod under standard growing conditions (#/pod) 2.0 2.06

PODUR Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 10.0 10.0

THRSH The maximum ratio of (seed/(seed + shell)) at maturity. Causes seed to stop growing as their dry weights increase until
shells are filled in a cohort (threshing percentage)

76.0 78.0

SDPRO Fraction protein in seeds (g(protein)/g(seed)) 0.40 0.40

SDLIP Fraction oil in seeds (g(oil)/g(seed)) 0.20 0.20

V1-JUb Time required from first true leaf to end of the juvenile phase, thermal days 6.00 6.00

aTraits are described in Boote et al. (2003).
bV1-JU is in the ecotype file.
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evaluation) (Supplementary material, Table S3). The model simu-
lated well the values and the dynamics of aboveground dry biomass
(Figs 5(e–h)), with RRMSE ranged from 7 and 16% for calibration,
and 21 to 28% for evaluation (Supplementary material, Table S3).
The leaf dry mass had low RRMSE during calibration (between 13
and 22%) (Supplementary material, Table S4) than during evalu-
ation, when RRMSE increased from 10 to 33% with plant densities,
respectively, from 10 to 40 pl per m2 (Supplementary material,
Table S4); although specific leaf area had a similar RRMSE, from
7 to 27% during calibration, and from 11 to 21 during evaluation
(Supplementary material, Table S7).

Grain yield
Grain yield had an RMSE and RRMSE, respectively, of 401 kg/ha
and 12% for calibration, and 119 kg/ha and 3% for evaluation for

MG 7.7 (Fig. 6(a)). The biases were 88 and 21 kg/ha, respectively,
for calibration and evaluation (Table 5). MG 8.8 had similar per-
formance for calibration to MG 7.7, resulting in a RMSE and
RRMSE, respectively, of 384 kg/ha and 10% (Fig. 6(b)), with a
bias of −24 kg/ha (Table 5). However, RRMSE was larger for
evaluation of MG 8.8, with 32% (RMSE = 1035 kg/ha) and a
bias of 986 kg/ha (Fig. 6(b)). In this case, the model showed a
yield response higher than field experiments across plant
densities.

Seasonal analysis application: sowing dates × plant density ×
cultivars

Seasonal analysis over 33 seasons showed that higher plant dens-
ity (40 pl per m2) resulted in higher yield than lower plant density

Table 5. Measured (M), simulated (S), bias, RMSE and RRMSE (%) for crop end -season variables simulated by crop model in the calibration and evaluation steps for
maturity groups (MG) 7.7 and 8.8

Variables

Calibration Evaluation

M S Bias RMSE RRMSE M S Bias RMSE RRMSE

MG 7.7

Emergence day 4.50 5.50 1.00 – – 4.00 5.00 1.00 – –

Anthesis day 34.75 35.00 0.25 – – 35.00 35.00 0.00 – –

1st seed day 48.00 49.75 1.75 – – 52.00 50.00 −2.00 – –

Maturity day 85.00 86.25 1.25 – – 85.00 87.00 2.00 – –

Canopy height (m) 0.55 0.68 0.13 0.15 27 0.52 0.69 0.17 0.18 35

Maximum LAI 4.03 3.51 −0.52 0.71 18 4.25 3.79 −0.46 0.52 12

Leaf number on main stem 11.19 11.34 0.14 0.44 4 10.64 11.35 0.71 0.74 7

Grain number per m2 2107 2043 −64 176 8 2150 2017 −133 154 7

Grain number per pod 2.01 2.00 −0.01 0.11 5 1.81 2.00 0.19 0.20 11

Grain weight (g/unit) 0.16 0.17 0.01 0.01 6 0.16 0.17 0.01 0.01 6

Tops weight (kg/ha) 5402 5620 218 583 11 5757 5798 41 268 5

Pod weight (kg/ha) 4298 4452 154 489 11 4370 4497 127 227 5

Grain yield (kg/ha) 3339 3427 88 401 12 3453 3475 21 119 3

Variables MG 8.8

Emergence day 4.57 5.43 0.86 – – 4.00 5.00 1.00 – –

Anthesis day 38.14 36.86 −1.29 – – 41.00 37.00 −4.00 – –

1st seed day 57.86 57.57 −0.29 – – 57.00 58.00 1.00 – –

Maturity day 95.57 96.00 0.43 – – 91.00 98.00 7.00 – –

Canopy height (m) 0.57 0.77 0.20 0.21 37 0.67 0.78 0.11 0.13 19

Maximum LAI 4.07 4.22 0.15 0.60 15 3.80 4.82 1.02 1.19 31

Leaf number on main stem 13.63 12.74 −0.89 1.10 8 13.47 12.72 −0.75 0.83 6

Grain number per m2 2693 2528 −165 488 18 2228 2712 484 505 23

Grain number per pod 2.18 2.06 −0.12 0.14 6 1.99 2.06 0.07 0.11 6

Grain weight (g/unit) 0.14 0.15 0.01 0.02 14 0.14 0.15 0.01 0.01 7

Tops weight (kg/ha) 6303 6939 636 811 13 6029 7511 1482 1497 25

Pod weight (kg/ha) 4877 5091 214 524 11 4291 5686 1395 1442 34

Grain yield (kg/ha) 3729 3704 −24 384 10 3203 4189 986 1035 32
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for all locations, sowing dates and maturity group (Fig. 7).
However, the yield increase was greater when plant density was
increased from 10 to 20 pl per m2, followed by 20 to 30 pl per
m2 and 30 to 40 pl per m2. The higher yield difference between
plant density occurred for the sowing date on 21 Feb. and MG

8.8 in Santarém. Under this condition, median yields were
2658, 3197, 3442 and 3583 kg/ha (Fig. 7( f )), respectively, for
10, 20, 30 and 40 pl per m2. The yield increase was 20, 8 and
4%, respectively, from 10 to 20, 20 to 30 and 30 to 40 pl per
m2. Porto Nacional had the lower response with plant density

Fig. 3. Relationship between measured and simulated soybean crop stages (emergence, anthesis, first seed and maturity) for calibration and evaluation for matur-
ity group 7.7 (a) and 8.8 (b). Absolute values and bias for calibration and evaluation steps can be found in Table 5.

Fig. 4. (Colour online) Measured (symbols) and simulated (line) LAI over time for calibration (a, b, c, e, f and g) and evaluation (d and h) for MG 7.7 (a, b, c and d)
and MG 8.8 (e, f, g and h) at four plant densities. Mean measured and simulated values, bias, RMSE and RRMSE can be found in Table S2 of the Supplementary
material.
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increase for MG 8.8, from 1.2 to 7.3%, with a median yield across
sowing dates of 2991, 3211, 3293 and 3332 kg/ha, respectively, for
10, 20, 30 and 40 pl per m2 (Fig. 7( j)).

The yield across sowing dates had a similar response for MG
7.7 and 8.8 in Anapurus (Figs 7(a) and (b)), Paragominas (Figs
7(c) and (d)) and Santarém (Figs 7(e) and ( f )). The greater inter-
annual yield variability occurred at the beginning of sowing win-
dow (01 Dec. and 11 Dec.), due to limiting weather conditions
that can occur at the beginning of the sowing window. The
delay of the sowing date increased the yield difference between
plant densities in these sites. For example, the median yield for
MG 7.7 with 40 pl per m2 density was 635 kg/ha (25%) greater
than that with 10 pl per m2 for the 01 Dec. sowing date, and
this yield difference between plant densities was 820 kg/ha
(38%) for the 21 Feb. sowing date. For these three sites, the
median yield typically reduced on delaying the sowing date, and
the yield reduction with delayed sowing was larger for the lowest
planting density than for the highest planting density. For
example, the difference yield for MG 7.7 with 10 pl per m2 sowing
on 01 Dec. and 21 Feb. was 415 kg/ha, while this difference was
230 kg/ha for 40 pl per m2.

The sowing dates resulted in two patterns of yield when con-
sidered MG 7.7 (Fig. 7(g)) and MG 8.8 (Fig. 7(h)) in Balsas. The
two maturity groups showed very similar potential yield in the
region, with, respectively, a mean yield of 3408 and 3335 kg/ha.
MG 7.7 increased median yield, averaged across planting dens-
ities, from 3448 kg/ha on 01 Oct. to 3895 kg/ha on 11 Nov., redu-
cing after that date until 21 Jan. In this scenario, the sowing date
affects the yield difference between plant density, where early sow-
ing date (01 Oct.) showed a mean difference between 10 and 40 pl
per m2 of 453 kg/ha, while late sowing (21 Jan.) reached a

difference of 662 kg/ha. However, MG 8.8 increased median
yield, averaged across planting densities, from 3133 kg/ha on 01
Oct. to 3772 kg/ha on 21 Dec., reducing after data until 21 Jan.

Porto Nacional (Figs 7(i) and ( j)) and Santana do Araguaia
(Figs 7(k) and (l )) had similar yield levels and patterns across
sowing dates, maturity groups and plant densities. MG 7.7 had
a similar yield from 01 Oct. to 21 Nov., with a reduction until
21 Dec. for plant density of 20, 30 and 40 pl per m2. However,
plant density of 10 pl per m2 showed a lower yield at the start
and end of the sowing window, with the best sowing date occur-
ring on 11 Nov., with a median yield of 3637 and 3591 kg/ha,
respectively, for Porto Nacional (Fig. 7(i)) and Santana do
Araguaia (Fig. 7(k)). The delay of sowing from 01 Oct. to 21
Dec. increased yield for MG 8.8, showing lower potential and
yield difference between plant densities than MG 7.7 (Figs 7( j)
and (l )).

Discussion

CSM-CROPGRO-Soybean demonstrated good performance for
both MG 7.7 and 8.8 in response to plant densities and sowing
dates in this short photoperiod low latitude environment. The
performance of the model as described by statistical indices are
similar to prior studies in Brazil for the north (Lima et al.,
2019), midwestern (Teixeira et al., 2019) and southern (Battisti
et al., 2017) regions. Furthermore, a characteristic not accounted
for by Grimm et al. (1993) in the default parameters is the pres-
ence of long juvenile phase introduced into soybean germplasm
adapted to low latitude (Destro et al., 2001; Carpentieri-Pípolo
et al., 2002; Sinclair et al., 2005; Alliprandini et al., 2009; Liu
et al., 2017). A value of 6 thermal days was added to the ecotype

Fig. 5. (Colour online) Measured (symbols) and simulated (line) soybean above-ground biomass and partition to leaf, stem and pod over time for 10 pl per m2 (a, c,
e and g) and 40 pl per m2 (b, d, f and h) sown on 06 Jan. 2018 (a, b, e and f ) and 12 Jan. 2019 (c, d, g and h) for MG 7.7 (a, b, c and d) and 8.8 (e, f, g and h). Mean
measured and simulated values, bias, RMSE and RRMSE can be found in Tables S3, S4, S5, S6 and S7 of the Supplementary material, respectively, for aboveground,
leaf, pod and stem dry biomass.
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parameter time required from first true leaf to end of the juvenile
phase (V1-JU) (Table 4), which led to minimal effect of short
photoperiod of this region on the time for first flower occurrence.
However, this did not work as intended, therefore the effect of the
juvenile trait was created by using a longer EM-FL parameter dur-
ation than the generic cultivar parameters presented by Boote
et al. (2003).

The model had poorer phenology performance during the
evaluation (2019 growing season) for MG 8.8. The crop model
followed the same pattern for evaluation as for calibration,
while the observed crop in the evaluation had a longer vegetative
period (4-day delay of the first flower) and a shorter time from
first flowering to beginning maturity (7 days earlier to beginning
maturity). We hypothesize that this occurred because of an effect
of water excess in the field associated with high cultivar sensitivity
(Bajgain et al., 2015; Pasley et al., 2020). The crop model simu-
lated a penalization for water excess lower than 1% (data not

shown). The potential water excess can be verified based on a
high frequency of rainy days during the growing seasons (Figs 2
(b) and (c)), where the accumulated rainfalls were 1749 and
1928 mm from December to June, respectively, for 2017/18 and
2018/19 growing seasons.

CROPGRO-Soybean does simulate canopy height and width
and does account for row spacing (Boote et al., 1998) an approach
required for its hedgerow light interception. Plant structure
changes considerably across plant density due to soybean plasti-
city (Supplementary material, Fig. S2) (Carpenter et al., 1997;
Balbinot Junior et al., 2018; Ferreira et al., 2020). The plasticity
increases branch number under low plant density in response
to solar radiation interception, light quality and plant competition
(Board, 2000; Nakano et al., 2019). The leaf senescence was smal-
ler in the field than in the crop model from the middle to the end
of the cycle under low plant density (10 pl per m2). This may be
associated with a less self-shading effect and a high number of
branches, and high light may slow nitrogen mobilization from
leaves, thus reducing leaf senescence (Boote and Pickering, 1994).

The interaction between maturity group, sowing dates and
plant densities affected LAI dynamics and, consequently, poten-
tial yield. For example, MG 7.7 had LAI reaching value 3 later
in the cycle (80 days after sowing) for 10 pl per m2 (Figs 4(a),
(b) and (d)), while plant densities above 20 pl per m2 reached
the LAI 3 value in less than 50 days after sowing.

A higher plant density typically increases aboveground bio-
mass and LAI, but yield increase is conditioned by the cultivar
adaptation to a given environment (Ball et al., 2000; Board,
2000; Corassa et al., 2018; Carciochi et al., 2019). The crop
model simulated well the yield, biomass and LAI for most cases
across plant density and sowing dates. However, for MG 8.8
(determinate growth) sowing on 12 Jan. 2019 (Fig. 5(h)), the
higher plant density did not result in an increase of yield at the
field, while the crop model did increase yield in response to
high plant density.

Seasonal analysis showed a higher soybean grain yield for a
plant density of 40 pl per m2, as expected (Fig. 7). However, a con-
siderable yield increase occurred from 10 to 20 pl per m2. This
indicates that a minimum of plant density over 20 pl per m2 is
required for these sites (Fig. 7), ensuring soybean yield stability
across sowing dates. The soybean plasticity across plant density
is associated with adjustment in branch number, pod and seed
number by area (Supplementary material, Fig. S2). The resultant
effects include increased biomass partitioned to branches, the net
photosynthesis, the efficiency of solar radiation interception by
leaf area during the vegetative phase and the leaf expansion during
reproductive phase (Carpenter and Board, 1997; Ball et al., 2000;
Board, 2000; Balbinot Junior et al., 2018).

Plant density higher than 20 pl per m2 showed higher yield,
however, it is essential to consider cultivars resistance to lodging
and the potential pressure of diseases in the region. These are
conditions that can lead to yield losses when higher plant dens-
ities are used, and lodging and pests are not accounted for yield
penalization by the crop model (Teixeira et al., 2019). For
example, Paragominas has a higher rainfall amount during the
reproductive period when sowing occurs in January
(Supplementary material, Fig. S1). High rainfall amount increases
soybean rust pressure due to leaf wetness (Del Ponte et al., 2006),
where a plant density between 20 and 30 pl per m2 has a prefer-
ence to reach high potential yield and reduce diseases risk by
lower leaf area (lower leaf wetness and more efficiency of applica-
tion of chemical control).

Fig. 6. Relation between simulated and measured soybean grain yield for calibration
and evaluation for maturity group 7.7 (a) and 8.8 (b). RMSE is the root mean square
error and RRMSE is the relative root mean square error.
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The maturity group and sowing dates affected the interaction
between local weather and plant density over yield due to cycle
duration and the time to achieve the optimum LAI for maximum
light interception (Purcell et al., 2002; Lee et al., 2008; Zdziarski
et al., 2018). For the sites of low latitude, between 2° and 4°
south, MG 8.8 had preference over MG 7.7 due to the higher aver-
age and stability yield across sowing window, while for sites below
latitude 9° south, MG 7.7 had the preference of sowing. On the
contrary, Balsas (latitude 8° south) had a similar average yield
across sowing window for MG 7.7 and MG 8.8, but with the
higher yield occurring for sowing dates, respectively, in
November and December.

The maturity groups and sowing date patterns by location
occurred due to cycle duration and potential yield associated
with climate (Battisti and Sentelhas, 2019). The cycle duration
defines the capacity of the crop to intercept solar radiation and,
consequently, the potential yield (Van Roekel et al., 2015). The
longer cycle (MG 8.8) was a better strategy for low latitude,
where water deficit is lower and longer cycle results in higher
potential yield (Battisti and Sentelhas, 2019). The sites of higher
latitude showed a preference for MG 7.7, mainly for early sowing
dates. On the contrary, MG 8.8 had a higher yield for late sowing
dates in Balsas, and a lower yield difference between MG 8.8 and
MG 7.7 with early sowing dates in Porto Nacional and Santana do

Fig. 7. (Colour online) Soybean grain yield simulated as a function of plant density (10 to 40 pl per m2), sowing dates and maturity groups 7.7 (a, c, e, g, i and k) and
8.8 (b, d, f, h, j and l) across 33 growing seasons in Anapurus (a and b), Paragominas (c and d), Santarém (e and f), Balsas (g and h), Porto Nacional (i and j) and
Santana do Araguaia (k and l). In the box-plot, the central line is the medium, the lower and upper hinges correspond to the first and third quartiles (the 25th and
75th percentiles), the upper and lower whisker extends from the hinge to the largest and smallest value, respectively, than 1.5 × IQR from the hinge (where IQR is
the inter-quartile range, or distance between the first and third quartiles), and data beyond the end of the whiskers are called ‘outlying’ points and are plotted
individually. The red dashed line is the mean value across plant density and sowing date.
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Araguaia. This occurred due to the photoperiod reduction in late
sowing dates accelerates the crop cycle of MG 7.7, resulting in less
time for the crop to increase leaf area in low plant densities
(Tagliapietra et al., 2018).

Conclusion

CSM-CROPGRO-Soybean was able to simulate crop development
and growth across maturity groups, sowing dates and plant dens-
ities in the short-day low latitude environment. Multi-year sea-
sonal analysis indicated that plant density of 40 pl per m2 leads
to higher yield in all sites, sowing dates and maturity groups
simulated in the crop model. However, high plant density can
lead to yield losses by plant lodging and increase disease pressure
by higher leaf area, increasing leaf wetness and reducing the effi-
ciency of application of chemical control. Lodging and diseases
are factors that crop models are not accounted for in yield simu-
lation. Overall, the 20 pl per m2 is a minimum plant density
required for soybean production in this region, due to the higher
yield increase that occurred when plant density was increased
from 10 to 20 pl per m2, leading to high yield gain and relive to
lower seed costs. Further to plant density, the planning of matur-
ity groups and sowing dates by sites showed to be important fac-
tors by the different response patterns, which can help to improve
soybean yield.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859621000204.
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