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homogeneous isotropic turbulence
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A strategy to extract turbulence structures from direct numerical simulation (DNS) data
is described along with a systematic analysis of geometry and spatial distribution of
the educed structures. A DNS dataset of decaying homogeneous isotropic turbulence
at Reynolds number Reλ = 141 is considered. A bandpass filtering procedure is
shown to be effective in extracting enstrophy and dissipation structures with their
smallest scales matching the filter width, L. The geometry of these educed structures
is characterized and classified through the use of two non-dimensional quantities,
‘planarity’ and ‘filamentarity’, obtained using the Minkowski functionals. The planarity
increases gradually by a small amount as L is decreased, and its narrow variation
suggests a nearly circular cross-section for the educed structures. The filamentarity
increases significantly as L decreases demonstrating that the educed structures become
progressively more tubular. An analysis of the preferential alignment between the
filtered strain and vorticity fields reveals that vortical structures of a given scale L
are most likely to align with the largest extensional strain at a scale 3–5 times larger
than L. This is consistent with the classical energy cascade picture, in which vortices
of a given scale are stretched by and absorb energy from structures of a somewhat
larger scale. The spatial distribution of the educed structures shows that the enstrophy
structures at the 5η scale (where η is the Kolmogorov scale) are more concentrated
near the ones that are 3–5 times larger, which gives further support to the classical
picture. Finally, it is shown by analysing the volume fraction of the educed enstrophy
structures that there is a tendency for them to cluster around a larger structure or
clusters of larger structures.

Key words: isotropic turbulence structure, turbulent flows

1. Introduction
Kolmogorov’s universal theory of small scales is of pre-eminent importance for

homogeneous turbulence. While it successfully describes the lower-order statistics, it
fails to capture the higher-order statistics of the small scales. It has been observed in
numerous studies that the small scales are highly intermittent, occupy a small region
of the flow, appear to form coherent structures and lead to the non-Gaussian statistics
of the velocity increments. Understanding their geometry and spatial arrangement is
therefore key in completing the picture of small-scale turbulence.

Siggia (1981) showed that an intense vorticity field consists of long thin tubular
structures, and later studies (Hosokawa & Yamamoto 1990; She, Jackson & Orszag
1991; Vincent & Meneguzzi 1991; Jiménez et al. 1993, for example) at higher
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Reynolds number (Reλ > 100) further demonstrated that such a field is organized
as vortex filaments. The width of these filaments is typically of the order of a
few dissipation scales, and their length of the order of the integral scale. Jiménez
et al. (1993) proposed scaling laws for these filaments, and concluded that these
structures only account for a small volume fraction of the entire flow. Furthermore,
their circulation Reynolds number increases with Re1/2

λ . Given the rather small
kinetic energy content of these worm-like structures, one might wonder about their
significance in the overall dynamics of turbulence and their exact role in the energy
cascade. This has led to some interest in the role of vortex sheets (Ruetsch & Maxey
1994) in the energy cascade, suggesting that worm-like structures are generated by
a one-step sheet roll-up process caused by Kelvin–Helmholtz instability (Vincent
& Meneguzzi 1994). These vortex sheets are in turn produced by pancake-like
structures that become flattened over time. This picture is different from the classical
Richardson’s cascade picture. Vincent & Meneguzzi (1994) also attributed the merging
of several small parallel vortex tubes into a larger structure as an example of energy
backscatter. The dynamics of strained vortex sheets also suggests that vortex tubes
will eventually be formed by the disintegration of sheets if the intense vorticity
accumulates within them (Passot et al. 1995). Goto & Kida (2003) and Goto (2008)
investigated the role of the strain field created by anti-parallel tubular vortex pairs in
stretching smaller vortices as per the classical picture. However, a mechanism for the
formation of the anti-parallel tubes was not identified.

The inherent difficulty in identifying turbulent eddies, which are not simple
geometrical objects such as sheets, ribbons, tubes or spheres, creates a major challenge
in studying the structure of homogeneous turbulence. Early studies (She et al. 1991)
relying on vector field visualization concluded that low-magnitude vorticity regions are
not organized and are of no particular geometry, while intense vorticity regions are
organized as filaments. Various point-based quantitative measures have been proposed
in past studies (Hunt, Wray & Moin 1988; Jeong & Hussain 1995). Such schemes
identify whether the local points of interest in the flow belong to a vortex or not,
with an emphasis on vortex tubes. These methods have also been refined to identify
the vortex core and sheet (Horiuti 2001; Horiuti & Takagi 2005). Nevertheless, these
point-based schemes do not provide information on the geometrical characteristics of
an entire structure.

There are recent studies that aim at identifying individual structures of either filtered
or unfiltered enstrophy or dissipation fields as connected isosurfaces, after which the
geometry of these educed structures can be observed and classified. Moisy & Jimenez
(2004) observed that moderate and intense vorticity structures are respectively ribbon-
and tube-like, moderate strain field structures are mostly complex without any distinct
shape, while the intense strain field structures appear to be ribbon- and sheet-like.
They followed a fractal approach to analyse the geometry of the connected isosurfaces
obtained after thresholding the vorticity and strain fields. Bermejo-Moreno & Pullin
(2008) and Bermejo-Moreno, Pullin & Horiuti (2009) further explored this strategy by
employing the curvelet transform to the enstrophy and dissipation fields to separate
structures of a given scale of interest before identifying connected isosurfaces at a
chosen thresholding value. However, instead of the fractal approach, the principal
curvatures of the identified structures were used to construct the differential-geometry
properties such as shape index and curvedness. Since these two quantities are local
on the isosurface, their joint probability density function (p.d.f.) was used to obtain
appropriate moments of the shape index, Ŝ, and curvedness, Ĉ. These two moments
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along with another dimensionless parameter, known as the stretching parameter
constructed using the volume enclosed by the isosurface and its surface area, SP,
were then used as signatures of the educed structure in a three-dimensional (Ŝ, Ĉ, SP)
visualization space. This analysis technique was applied to homogeneous isotropic
turbulence to study the geometry of the enstrophy and dissipation structures (Bermejo-
Moreno & Pullin 2008) and their proximities (Bermejo-Moreno et al. 2009). Their
results show a continuous evolution from blobs to tubes to highly stretched sheets as
one moves down in scale, and also support the view that on average dissipation or
strain rate structures are more planar than the enstrophy structures. These techniques
have also been explored to study Lagrangian structures in homogeneous (Yang, Pullin
& Bermejo-Moreno 2010) and inhomogeneous (Yang & Pullin 2011) turbulent flows.

The persistence of tubes in homogeneous turbulence has puzzled many researchers.
In his classical work, Betchov (1956) predicted that the strain field in isotropic
turbulence is biaxial on average, and has one strong compressive and two weaker
extensional strain rates. Such a strain field might favour the formation of sheet-like
structures, but sheets are seldom seen. The preferential alignment between vorticity
and strain has been the focus of many studies in the past to shed more light on the
role of straining motion in the energy cascade. While one would expect the vorticity to
be aligned with the largest extensional strain for the most effective stretching, evidence
of the vorticity aligning with the intermediate strain is overwhelming (Ashurst et al.
1987; She et al. 1991; Vincent & Meneguzzi 1994; Horiuti 2001, for example), and
some theoretical explanation using local and non-local effects of the strain field has
been given (Jiménez 1992; Nomura & Post 1998; Hamlington, Schumacher & Dahm
2008).

Aside from the geometry of these multi-scale structures, their spatial distribution and
organization is also important in the description of small-scale dynamics. Early works
described the inertial range as a random distribution of coherent structures uniformly
distributed in space (Townsend 1951; Tennekes 1968). However, recent numerical
experiments show that ‘worms’ have a strong tendency to cluster, and the clustering
of intense vorticity in the inertial range is shown by Moisy & Jimenez (2004) using
the box-counting technique. In addition, the clustering of fine-scale structures on the
periphery of larger structures has been observed experimentally by Worth (2010).
The proximity of enstrophy structures at different scales has also been examined by
Bermejo-Moreno et al. (2009).

The objective of this study is to shed more light on the structure of enstrophy
and dissipation fields in homogeneous isotropic turbulence, as well as their roles
in the energy cascade and clustering. These three objectives are achieved by first
educing these structures using a multi-scale extraction algorithm, which is a bandpass
filtering procedure described in § 2. While intermediate steps such as using a threshold
value and isosurfacing are common, this extraction algorithm and the geometry
description technique used in this study are different from the methodology and
technique used by Bermejo-Moreno & Pullin (2008). In this study, a bandpass filter,
simpler than the curvelet transform technique, is used to educe structures which are
then visualized using an isosurface for a given threshold. The morphology of these
educed structures is characterized using geometrical descriptors constructed from the
Minkowski functionals, which have roots in integral-geometry and aim to describe
the global aspects of a structure in terms of its characteristic thickness, width and
length with a minimal amount of subjectivity. The three characteristic dimensions
lead to the construction of two simple non-dimensional measures called ‘filamentarity’
and ‘planarity’ as described in § 3, which are convenient geometrical descriptors of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

37
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.373


456 T. Leung, N. Swaminathan and P. A. Davidson

the structures identified in this study. These analysis techniques are then used to
address the primary objectives: the alignment of these educed structures, their spatial
distributions, and their roles in the energy cascade and clustering. These are discussed
respectively in §§ 4 and 5, and the conclusions of this study are summarized in § 6.

2. Structure identification scheme
2.1. Bandpass filtering

An extraction algorithm allowing vortical structures at different scales to be identified
is needed as the first step of this study. Simple thresholding of the vorticity field
often does not produce the desired result as small intense structures tend to mask the
low-amplitude structures. However, by first applying a bandpass filter to the velocity
or vorticity field, structures that do not match the filter scale L can be suppressed
allowing the dominant structures associated with L to be observed. In this study,
the velocity field is filtered, from which the filtered vorticity and strain fields are
constructed since the operations of differentiation and filtering commute. To begin this
procedure, it is necessary to define the low-pass filtered velocity field,

uL(x)=
∫

u(x− r)G(L; r) dr, (2.1)

where uL(x) is the velocity field filtered at the scale L, G(L; r) is the filter function,
and r = |r|. The simplest filter that is both spherically symmetric and reasonably
compact in physical space is the Gaussian filter, defined as

G(L; r)= 1
π3/2L3

exp
(
− r2

L2

)
,

∫
G(L; r) dr= 1. (2.2)

The filtered field, uL(x), contains predominantly information about scales greater than
L, and so L(∂uL/∂L) should contain information centred around the scale L. Hence, we
define the bandpass filtered velocity field as

uL
b =−

αL√
L

∂uL

∂L
, (2.3)

where α is a dimensionless coefficient to be defined shortly. Following the convolution
theorem, the low-pass filtered velocity field has the Fourier transform

ûL(k)= T(κ)û(k), T(κ)= 8π3Ĝ(k). (2.4)

Here k is the wavenumber vector, and κ = kL/2 with k = |k|. The transfer function for
a Gaussian filter is T(κ) = exp(−κ2). The transform of the bandpass filtered velocity
field is then

ûL
b =−

ακ√
L

dT

dκ
û(k). (2.5)

Furthermore, it is convenient to introduce

Tb(κ)=−κ dT

dκ
= 2κ2 exp(−κ2), (2.6)

from which

ûL
b =

α√
L

Tb(κ)û(k). (2.7)
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Combining (2.5) and (2.6), the bandpass filtered energy spectrum can be written as

EL
b(L; k)=

α2

L
T2

b (κ)E(k), (2.8)

where EL
b and E(k) represent the energy spectra of the filtered, uL

b(x), and the
unfiltered, u(x), velocity fields respectively. Finally the normalization coefficient α
is chosen such that the following relationship is satisfied:∫ ∞

0
EL

b(L; k) dL= E(k). (2.9)

This requires

α2

∫ ∞
0

T2
b (κ)

κ
dκ = 1, (2.10)

and the resulting value of α for a Gaussian filter is therefore
√

2.
The effectiveness of this filtering method for educing structures of different scales

is demonstrated in the Appendix using some examples. The important points can
be summarized as follows. The bandpass filter attenuates eddies of sizes `� Ł and
`� Ł; however, the filtered field contains traces of eddies ranging from L to 4L
with a maximum at ` = √5L in the case of a spherical eddy. The filter is sharper
for ` < L and less so for ` > L. There is also a small dilatation of eddies, which is
most significant for ` < L. Since these eddies are effectively damped by the filter, this
dilatation effect should not be important. For ` > L, the dilatation is less significant.
For structures with more than one length scale, the filter predominantly educes those
whose smallest length scale matches the filter width L.

2.2. Filtering scalar fields from a DNS database
The bandpass filter described in § 2.1 is applied to a decaying homogeneous isotropic
turbulence simulated using direct numerical simulation (DNS). The details of this
simulation can be found in Tanahashi, Miyauchi & Ikeda (1999). The incompressible
Navier–Stokes equations were solved using the Fourier spectral method in a cubic
domain of size 2π with 400 grid points in each direction. This dataset has Reλ = 141
and velocity derivative (∂u/∂x) skewness of about −0.53, which signifies that the
turbulence is fully developed. The ratio of the computational domain size to the
integral length scale, `, is 3.77. The Taylor microscale, λ, and the Kolmogorov
scale, η, are related to ` by the ratio of `/λ = 8.33 and `/η = 200 respectively.
The numerical resolution in this simulation is kmaxη ∼ 1.5.

Filtered scalar fields, such as enstrophy, ωiωi, and dissipation, SijSij, can be
constructed from the filtered velocity field uL

b . The filter scales L used in this analysis
are given in table 1 along with some relevant statistics of the filtered fields. The
fraction of turbulent kinetic energy in each of these scales compared to the unfiltered

mean value shows the expected behaviour of a decrease in |uL
b|2 as the filter scale

decreases. On the other hand, the mean, standard deviation, and maximum values of
the filtered enstrophy and dissipation fields increase as the filter scale decreases, which
is also expected.

The turbulent kinetic energy spectra constructed using the unfiltered and filtered
fields are shown in figure 1. A threshold has to be applied to the filtered scalar fields
so that individual structures can be identified as connected isosurfaces. The expectation
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Enstrophy Dissipation

ID Scale, L
|uL

b |2
|u |2

mL

mo

sL

so

maxL

maxo

mL

mo

sL

so

maxL

maxo

F1 0.75`(150η) 0.356 0.0036 0.0018 0.0002 0.0037 0.0020 0.0003
F2 0.50`(100η) 0.270 0.0080 0.0040 0.0006 0.0080 0.0047 0.0009
F3 0.25`(50η) 0.114 0.0245 0.0133 0.0021 0.0245 0.0151 0.0034
F4 λ(24η) 0.043 0.0847 0.0511 0.0159 0.0847 0.0566 0.0191
F5 15η 0.024 0.1875 0.1215 0.0423 0.1831 0.1324 0.0589
F6 10η 0.013 0.3238 0.2292 0.1127 0.3162 0.2427 0.1448
F7 5η 0.004 0.5120 0.4647 0.2506 0.5002 0.4728 0.3602

TABLE 1. Filter settings used in the DNS data analysis and the corresponding mean, m,
standard deviation, s, and maximum values. The subscripts L and o respectively denote
values associated with the filtered at scale L and unfiltered fields.

 

 

Unfiltered
F1
F2
F3
F4
F5
F6
F7

100

100

10–1

10–1

10–2

10–2

10–3

10–4

FIGURE 1. Bandpass filtered energy spectra.

that increasing the threshold value would result in structures that are less volume-
filling and more sparse has been verified by comparing educed structures obtained
using different threshold values. For a given filter scale, often several structures
obtained using a high threshold are enclosed by one large structure obtained using
a lower threshold. Despite a variation in the volume of these structures, their general
shape and spatial distribution are not drastically altered by varying the threshold. In
the present study, a value of mL + 1.5sL is chosen as the threshold for all the filtered
fields given in table 1 unless stated otherwise. The kinetic energy content of these
educed structures obtained after thresholding is ∼10 % of the total in the bandpass
filtered field.

The typical structures identified by thresholding the filtered enstrophy fields are
shown in figure 2(a–c) for filters F2–F4 given in table 1. As the filter scale decreases,
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(a) (c)(b)

FIGURE 2. (Colour online) Bandpass filtered enstrophy fields for filters F2–F4 in table 1:
(a) L2 = 0.50` (100η); (b) L3 = 0.25` (50η); (c) L4 = λ (24η).

the structures become increasingly difficult to discern when visualizing the entire
domain. Therefore, for a closer examination of the small scales, the filtered enstrophy
fields for F3, F4, F6 and F7 are shown within a thin slice of the domain with
dimensions of 2π× 2π× 3λ (or 72η) in figure 3. The fine-scale structures at L6 = 10η
and L7 = 5η certainly appear to be worm-like. The two intermediate filter settings
L3 = 0.25` or 50η and L4 = λ or 24η also give tubular structures. As the filter
scale increases, the structures tend to be more blob-like than tube-like. There is
some suggestion in figure 3 that the small worms are concentrated at the periphery
of larger structures, a point to be noted for discussion in § 5. The larger structures
appear to be quite ‘empty’. As Goto (2008) noted earlier, it is generally untrue that
a large-scale structure encompasses a cluster of smaller vortices. There are also some
fine-scale structures that are found relatively far away from the larger ones. One
possible explanation is that they can be the debris of dissipating structures.

The filtered estrophy and dissipation fields for the filter F6 are compared in figure 4.
The dimensions of the domain shown in this figure are 2π × 2π × 3λ (or 72η) as in
figure 3. When the two fields are superimposed (figure 4c), they closely mirror each
other; however, detailed structural features of these two fields are quite different. One
qualitative observation is that the dissipation field is more fragmented and irregular
than the enstrophy field at the small scale. The dissipation structures, which appear
to be shorter and flatter, seldom overlap the relatively more worm-like enstrophy
structures. Often a long worm-like enstrophy structure is in close contact with or is
sandwiched between a few smaller dissipation structures. This observation is consistent
with the view that fine-scale structures are similar to Burgers vortices, because the
intense dissipation region in a Burgers vortex does not coincide with its intense
enstrophy region. However, the regions of high strain do not form an annulus around
the high enstrophy regions, which would be the case for a single Burgers vortex.

3. Morphology of turbulence structures
3.1. Minkowski functionals and shapefinders

In addition to the visual examination of the filtered scalar fields, a less subjective and
more robust method is needed to obtain a statistical description of the morphology of
turbulence structures. As noted in § 1, visualization quantities and schemes based on
local point-based information have been attempted in many past studies. Moreover,
properties of the principal curvatures (κ1, κ2) have also been used to represent
the ‘non-local’ geometry of turbulence structures (Bermejo-Moreno & Pullin 2008;
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x

y

z

FIGURE 3. Typical picture of the filtered enstrophy fields in a subdomain of size
2π × 2π × 3λ(=72η). Four filter settings, see table 1, are shown: yellow – F3, purple – F4,
orange – F6 and dark green – F7.

x
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z

x

y

z

x

y

z

(a) (c)(b)

FIGURE 4. Filtered (a) enstrophy, (b) dissipation and (c) superimposed fields for F6 in
table 1 (L6 = 10η).

Bermejo-Moreno et al. 2009). The topological quantities such as the genus or the
Euler characteristic, related to the Gaussian curvature integrated over the surface
of a structure, are effective descriptors of the global aspects of a structure as
noted by Mecke, Buchert & Wagner (1994). However, these are not adequate for
the full morphological identification of spatial structures in a multi-scale problem
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such as turbulence. This issue has been recognized in cosmology while attempting
to describe the geometry and topology of galaxies and their superclusters (see for
example Mecke et al. 1994 and references therein), which led to the use of Galilean
invariant morphological properties called the Minkowski functionals from integral-
geometry. Hadwiger’s theorem (Hadwiger 1957) states that there are d + 1 Minkowski
functionals in d-dimensional space, and thus for a three-dimensional space there are
four functionals. They are given by Sahni, Sathyaprakash & Shandarin (1998) and
Einasto et al. (2007):

V0 = V, V1 = S

6
, V2 = 1

3π

∫
S

κ1 + κ2

2
dS, V3 = 1

2π

∫
S
(κ1κ2) dS. (3.1)

The first two functionals are related to the volume, V , and surface area, S, of a
three-dimensional object. The latter two, V2 and V3, are related to the integrated mean
and Gaussian curvatures respectively. The functional V3 is also a topological invariant
known as the Euler characteristic and is often denoted as χ . These functionals have
been used extensively to quantify the morphology of complex cosmological structures
(Mecke et al. 1994; Kerscher et al. 1997; Schmalzing & Buchert 1997; Sahni et al.
1998; Schmalzing et al. 1999; Sheth, Shandarin & Sathyaprakash 2003; Shandarin,
Sheth & Sahni 2004; Sheth & Sahni 2005; Einasto et al. 2007) as well as the structure
of the magnetic field in a small-scale dynamo (Wilkin, Barenghi & Shukurov 2007).
To the knowledge of the present authors, this method has not been applied to describe
the morphology of turbulence structures. Although one of the objectives in this study
(identification and classification of turbulence structures) is similar to that of Bermejo-
Moreno & Pullin (2008), the details of these two studies are different. As noted in § 1,
Bermejo-Moreno & Pullin (2008) used curvelet transforms and differential-geometry
descriptors, whereas this study employs bandpass filtering and Minkowski functionals
based on integral-geometry giving an effective global descriptor. Furthermore, there is
an important difference in the findings of these two studies, as will be noted later.

Using the the Minkowski functionals in (3.1), Sahni et al. (1998) proposed three
shapefinders: thickness, T , width, W , and length, L , as follows:

T = V0

2V1
, W = 2V1

πV2
, L = 3V2

2V3
. (3.2)

These shapefinders have dimension of length and they are positive semi-definite
quantities for convex objects. This can explain why we do not have many
negative shapefinders despite the presence of partial concavity in many structures.
The isoperimetric inequalities for the Minkowski functionals resulting from the
Alexandrov–Fenchel inequality give T 6 W 6 L for convex bodies (Schmalzing
et al. 1999). It is easy to verify that in the special case of a sphere of radius R,
T =W =L =R. For an infinitely long cylinder with radius R1, these shapefinders
yield T = 1.5R1 and W = 2R1. Thus, the shapefinders strictly give representative
scales for the spatial extent of a structure, and do not return its exact dimensions
except for the sphere. However, these shapefinders scale very well with the three
principal axes of a triaxial ellipsoid (Sahni et al. 1998).

While the above inequality and non-negativeness apply for convex shapes, there is
a possibility that one of the local principal curvatures may be negative, representing
a locally concave surface as in saddles (see Bermejo-Moreno & Pullin 2008 for
illustration of such surfaces). However, a joint probability density function of the
two principal curvatures (not shown in this paper) for enstrophy structures educed
at various scales suggests that the probability of finding negative curvature locally
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is very small in the present filtered data. This is consistent with the observations of
Bermejo-Moreno & Pullin (2008), and suggests that the entities of our interest are
typically made of convex surfaces in an integral sense, thus ensuring that V3 > 0.
Although in general V3 can be positive, negative or zero, for a closed surface we have
χ = V3 = 2. This is the only case observed in the present analysis since no structure
with holes (multiply connected structures) was found in the filtered datasets at the
threshold values of m+ 1.5s used. It should be noted that lowering the threshold value
can yield multiply connected structures and care is required to obtain L as noted
below. However, lowering the threshold to m + 0.5s gives structures with holes of
∼5 % or less of the extracted structures. Thus, one can conclude that the multiply
connected structures are insignificant for this study.

We note that care is required with the interpretation of V3 when holes are present
in the structure because V3 can become zero or negative (Sheth & Sahni 2005). For
these situations, L is defined as L = 3V2/4(G+ 1), where G= 1− V3/2 is the genus
of the structure (Sheth et al. 2003). The genus is defined as the number of cuts that
can be made along a simple curve on an object without splitting it. Thus with every
additional hole, G increases by 1. For example, G = 0 for a closed surface, G = 1 for
a torus, and G = 2 for a pretzel. Therefore, for G > 0, L represents the characteristic
length between two holes. One can also verify that L , as given above, scales with
the ring radius of a circular torus, which has G = 1. Despite these more extensive
definitions, one must note that bandpass filtering will inevitably ‘smudge’ the details
of the structures such as small holes in a sheet. As a result, V3 = 2 in our filtered
datasets, and hence definitions (3.1) and (3.2) are adequate for our purposes.

Representing the three parameters in (3.2) in dimensionless form, two quantities
called the planarity, P , and filamentarity, F , can be defined (Sahni et al. 1998) as

P = W −T

W +T
, F = L −W

L +W
. (3.3)

These two dimensionless quantities are bounded such that 0 6 P 6 1 and
0 6 F 6 1 when T 6 W 6 L is satisfied. As noted earlier, T = W = L for a
perfect sphere yielding (P,F ) = (0, 0). A filament is characterized by one large
dimension, L , compared to the other two dimensions, W and T , implying that an
infinitely long tube would have F = 1 since L � W . The value of P would then
depend on the cross-section of such a filament, where a large value of P would
indicate the shape of a ribbon for W � T , and a small value of P would indicate
a round tube for W ∼ T . On the other hand, a very thin sheet would have one very
small dimension (T ), so that P = 1 represents a sheet with negligible thickness. In
the case of a sheet, a large value of F would indicate a pancake that is stretched out
more in one direction, resembling an infinitely long ribbon. If F ∼ 0, then the shape
resembles a circular thin sheet. Thus, the three quantities T ,W and L expressed
in dimensionless form as P and F provide a relatively simple and intuitive way to
describe the shapes of various three-dimensional objects. In order to further illustrate
the geometry represented by P and F , a simple schematic is provided in figure 5.
The four special cases (P,F )= (0, 0), (0, 1), (1, 0) and (1, 1) as described above are
labelled in the schematic, as well as regions roughly corresponding to other common
shapes.

We shall examine the morphology derived from the above scheme for typical
turbulence structures. By way of illustration, a number of individual enstrophy
structures educed from the filtered field using the filter F3 are shown in figure 6. The
corresponding shapefinders (P,F ) for these structures are also given. Figure 6(a)
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1

FIGURE 5. Typical regions for various simple shapes in the P–F , shapefinders, plane.

(a) (c)(b)

(d) ( f )(e)

FIGURE 6. Sample structures extracted from the DNS and their shapefinders, (P,F ), in the
enstrophy field filtered using the F3 filter: (a) (P,F ) = (0.044, 0.066); (b) (0.0885, 0.269);
(c) (0.107, 0.431); (d) (0.085, 0.850); (e) (0.010, 0.808); (f ) alternative view of (e).

shows an irregular shape but a relatively simple blob-like structure. Its shape can be
characterized by its P and F , and both are less than 0.1. Figure 6(b) shows a short
tube, which has a small P but a larger F . Figure 6(c) is a more complex shape with
a twisted surface containing some local negative curvatures. It still has a small P and
a large F , and can be characterized as a short tube. Two more complex structures
are shown in figure 6(d,e). Both of these structures, whether appearing like a single
convoluted worm (figure 6d) or with several branches (shown as two alternative views
in figure 6e,f ), would be classified as long tubular structures with a similar signature
of (P , F ). The long worm-like structure in figure 6(d) has a higher P value than
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that in figure 6(e), which indicates that on average its shape is more planar. Since both
P values are very small, it is difficult to distinguish the differences in planarity with
the naked eye.

It can be seen that the general shape of very complex structures can be captured
by the present scheme. The presence of saddle points and bends on the surface (i.e.
negative principal curvatures) does not affect the capability of this scheme to identify
the general shape of the structure as noted earlier. This is due to the additive property
of the Minkowski functionals (Thompson 1996; Michielsen & Raedt 2001). A smooth
complex and partially concave object can be closely modelled by joining a group of
small convex bodies in the cases observed in this study. For a partially concave body
formed by joining two convex bodies, say A and B, the additivity property implies that
the Minkowski functional Vi can be approximated as:

Vi(A ∪ B)= Vi(A)+ Vi(B)− Vi(A ∩ B). (3.4)

In other words, each Minkowski functional of a large partially concave object can be
obtained by summing the Minkowski functional of each smaller convex body and then
subtracting the value corresponding to the overlapping region. Therefore L , which
scales with V2, for a partially concave body can be closely approximated by summing
L of all the small convex bodies that can be fitted within the larger object. There
will be some discrepancies between the ‘true length’ and L for any complex structure
since there will inevitably be some gaps and/or overlapping parts when modelled
using an ensemble of triaxial ellipsoids. Nonetheless, the additivity property of the
Minkowski functionals enables this method to be a powerful tool in analysing very
complex shapes in the messy world of turbulence.

3.2. Structures in enstrophy and dissipation fields
Isosurfaces in the filtered enstrophy and dissipation fields are constructed based on
the marching cube algorithm in the visualization software VisIt 2.3.1. Each isosurface
is composed of triangulated surface elements and connected elements are counted as
one single structure. For each ensemble of educed structures at a given filter scale
L, a significant portion of the educed structures are very tiny blobs or fragments that
contribute to a negligible part of the total filtered field and are possibly the result of
background noise. Therefore structures that are not composed of a sufficient number
of surface elements are discarded. Since each structure is defined by triangular surface
elements, the discrete numerical scheme proposed by Meyer et al. (2002) is used to
compute the local principal curvatures κ1 and κ2. This discrete scheme can cause some
numerical issues when the curvature is very large, which yield negative values for
P and F , which are unphysical. It was found in the analysis that ∼6–7 % of the
educed structures had negative values, which are excluded from the analysis. Just for
the sake of completeness, the negative P and F values are shown only in figure 7(c).
The volume V of each structure is computed by the visualization tool and the surface
area S is the sum of the area of all surface elements. The Minkowski functionals and
shapefinders can then be obtained for each individual structure using (3.1)–(3.3). The
accuracy and robustness of this method to compute the Minkowski functionals are
discussed by Sheth et al. (2003).

Figure 7 shows the results of geometrical analysis of the enstrophy structures for six
different filters, F2–F7 in table 1. The colour (online) of the data points is consistent
with the visualizations shown in figure 3. First the dimensional shapefinders T , W
and L , normalized by η, are presented in figure 7(a,b). Considering the two smaller
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FIGURE 7. (Colour online) Shape analysis of filtered enstrophy structures.

dimensions T and W of the structures, the ratio of T and W for each group of
educed structures produced by a given filter is very similar as suggested by the small
spread of the data points of a single symbol in figure 7(a). All the data points fall
very close to a straight line, which shows a slight skew towards a greater width
than thickness. This implies that the majority of the enstrophy structures are mildly
flattened with some of them being close to circular. If the educed structures have
a circular cross-section, then the data points are expected to lie very close to the
diagonal line shown in figure 7(a). The data clouds tend to move closer to the
diagonal line as the filter scale L decreases. This also shows that no ribbon-like
structure (W � T ) can be found in the filtered enstrophy fields. The spread in L
is much larger than that in W and T for a given filter scale as one can observe in
figure 7(b). A few structures are significantly longer than others, with the most evident
case being F3 (L = 0.25` or 50η). The length of the entire computational domain is
∼750η, and there are a few F3 structures spanning a sizable portion of the domain.
There are still many longer structures from the three smaller filters, particularly F4 and
F5, but the difference is less dramatic with decreasing L. On the other hand, the larger
filter F2 (L = 0.50` or 100η) produced no structure that was markedly longer than
others in the same group, indicating some kind of change from F2 to F3.
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The dimensionless parameters P and F are examined in figure 7(c), and
additionally the volume fraction V/VL, defined as the volume of each structure over
the total volume of all the structures for a given L, is presented in figure 7(d). This
additional figure is included because the dimensionless parameters P and F do not
indicate the relative spatial dominance of these structures. For instance, the entire
ensemble of eddies can consist of many small structures of one morphology type that
do not occupy a significant portion of the educed total volume, while a handful of
dominant structures of a different morphology type account for the majority of the
educed total volume. The most notable feature found in the P–F plot (figure 7c) is
that P < 0.25 for the vast majority of the enstrophy structures while F ranges from
almost 0 to 0.95. These results suggest that the present structures are mostly tubular or
blob-like with no sheet-like (high P) structures found. The greater scatter in P for
5η (F7) structures is due to a wider range of W values compared to that of T values
as shown in figure 7(b).

Starting at the large filter scale F2, most of the structures can be characterized
as blobs with P and F values less than 0.1 with a couple of exceptions, but no
F value greater than 0.26 is present. For the F3 structures, it appears that there
exist a significant number of blobs whose P and F values are small, as well as
filaments whose F values are large. However, a close examination of figure 7(d)
shows that all blob-like structures with low P and F occupy a very small portion
of the educed volume for F3 in contrast to the F2 structures. In other words, the
ensemble of F3 structures is best characterized by a handful of large dominant
tubular structures accompanied by many small blob-like structures. As L decreases,
F increases gradually through F3–F6 while there is also a slight increase in P . This
suggests that smaller structures are getting stretched out more in one direction, and
are only slightly flattened. Furthermore, the volume distribution becomes more even
as L decreases indicating that the finer structures, which are mostly tubular, are of
comparable size rather than spatially dominated by a few prominent ones.

To further illustrate the variation in P and F with L, the p.d.f.s of P and F
for filter scales F3–F7 are presented in figures 8(a) and 8(b) respectively. It is clear
that the spread of P is much smaller than that of F . For decreasing L, P increases
slightly and distinct peaks can be seen in the p.d.f. Since the bandpass filter can
educe structures whose smallest length scale matches the filter scale L, the ensemble
of structures educed with one filter scale would have a narrow spread of T (i.e. the
smallest dimension). The present analysis shows that most of these structures have
close to circular or slightly elliptical cross-sections resulting in a small spread in
P . The p.d.f. of F shows a more continuous distribution rather than distinct peaks,
indicating that no characteristic length can be conveniently found for these structures.
It has been reported that worm-like structures exist with their diameter of the order of
a few Kolmogorov length scales and their length of the order of the integral length
scale (Jiménez et al. 1993). In this analysis, there are a handful of tubular structures
obtained using filters F3–F6 that have L > `. However, the wide spread in F in
figure 7(c) shows that the length of these tubular vortices can greatly vary. It is likely
that these vortex tubes have an undulating rather than a uniform diameter along their
length. Thus their wider portions will appear in a filtered field obtained using a large
filter while the narrower portions will appear in that of a smaller filter. A similar
observation has been made previously by Jiménez (1994) and Jiménez & Wray (1998).
While they observed fine filaments of length ∼`, such structures are most likely
formed by several short and highly strained regions connected by regions of weaker
stretching or compression.
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FIGURE 8. (Colour online) p.d.f. of (a) planarity, P , and (b) filamentarity, F , for enstrophy
structures from filters F3 to F7.

The shapefinder values for the enstrophy and dissipation fields filtered using three
different filters are compared in figure 9. It is generally believed that the dissipation,
SijSij, structures are more planar. The present analysis does not show that there is a
significant increase in P for these structures. However, they are more numerous and
show a slightly wider spread in P than the enstrophy structures, suggesting that the
strain field is more irregular in shape than the vorticity field. This point is further
confirmed by the p.d.f. in figure 10. The more varied morphology in the dissipation
field suggests that it is more difficult to ascribe a ‘typical’ shape to the structures
present. This is to be expected since there is no strain equivalent of the ‘freezing-in’ of
vortex lines (as per the Helmholtz theorem) at large Re.

As noted in § 2.2, a threshold of mL + 1.5sL is used to educe structures for this
analysis. These analyses have been repeated with mL + 2.5sL to study the sensitivity to
the choice of the threshold value. The results of P and F (not shown) are observed
to be very similar to those discussed in this paper, suggesting that these findings are
not sensitive to the threshold value.

4. Vorticity and strain field alignment
4.1. Unfiltered strain field

The analysis in the previous section supports the dominance of tubular structures,
which progressively become more elongated down the scale. This is consistent
with the classical picture, in which vortex stretching is presumably the primary
mechanism for energy transfer across different scales. However, this idea is seemingly
in contradiction with previous studies (Ashurst et al. 1987; She et al. 1991; Vincent &
Meneguzzi 1994, for example), which reported that the most probable alignment of the
vorticity was found to be with the intermediate principal strain rate. This is a rather
counter-intuitive result as one would expect the largest extensional strain to have the
dominant role in stretching vortices if vortex stretching is indeed the primary energy
transfer mechanism. Also, the ratio for the three principal strains has been found
numerically (Ashurst et al. 1987) to be λ1:λ2:λ3 = −4:1:3. This is consistent with the
prediction of Betchov (1956), so the intermediate strain is expected to be mostly small
but positive. This favours the presence of biaxial strain and the formation of sheet-like
structures, which do not seem to exist in our DNS data.
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FIGURE 9. (Colour online) Comparison of shapefinders for enstrophy and dissipation
structures filtered using F4, F6 and F7. Points for enstrophy structures are shifted by 0.3
on the P-axis: (a,d) L4 = λ (24η); (b,e) L6 = 10η; (c,f ) L7 = 5η.

The well-established view of vorticity aligning with the intermediate strain has
been confirmed using the current DNS data. Recall that the present analysis is
performed after 15 eddy turnover times in a decaying simulation when the turbulence
is fully developed. The interaction between the strain and vorticity fields would require
some time to develop before such preferential alignment could be firmly established.
Ohkitani (2002) reported that in a decaying simulation such preferential alignment is
established at a relatively early stage even before the maximum enstrophy is reached
at ∼2 eddy turnover times, and it persists throughout the decaying period. The ratio of
the most probable principal strain rates found in the current case is approximately
−4:1:3. The total enstrophy production along each of the three principal strain
directions is ψ1:ψ2:ψ3 =−1:1.41:2.06, where ψi = λi (ω · ei)

2 and ei is the eigenvector
of the principal strain rate λi. All these findings are consistent with previous studies.

In order to further examine whether vortices of various sizes undergo stretching,
compression or a combination of both, enstrophy structures filtered at scale Lω are
considered. The typical alignment of this vorticity with the principal strains of the
unfiltered strain field is shown in figure 11. For a large filter scale Lω = 100η(0.50`),
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FIGURE 10. p.d.f. of (a) P and (b) F for enstrophy and dissipation structures considered
for figure 9.
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FIGURE 11. Typical p.d.f.s of alignment between vorticity filtered at scale Lω and the
principal directions of unfiltered strain field: (a) Lω = 100η, (b) Lω = 15η. Solid line λ3,
chain line λ2 and dashed line λ1.

there is no clear preferential alignment, suggesting the prevalence of random stretching
or compression. The preferential alignment with the intermediate strain begins to
appear at the filter setting Lω = 50η(0.25`), and it becomes more evident as Lω
decreases further.

4.2. Filtered strain field
The local and non-local effects of strain on the vorticity have been noted in the
past (Nomura & Post 1998; Hamlington et al. 2008). The total strain at a particular
location x0 can be associated with the global vorticity field via the Biot-Savart law.
Contributions to Sij from the vorticity near x0 are termed ‘local’, while those which
are from remote vorticity are termed ‘non-local’. The alignment of vorticity with
intermediate principal strain rate is observed to decrease when the local strain field
induced by the vortex is eliminated (Hamlington et al. 2008).

In the light of these findings, the alignment between the filtered strain and vorticity
fields is studied. From this point onwards, we shall denote the filter scale used on the
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FIGURE 12. (a) p.d.f.s of alignment between vorticity filtered at scale Lω = 15η and the
principal directions of strain field filtered at different scales Ls given in the figures. The
corresponding enstrophy generation is shown in (b). Solid line λ3, chain line λ2 and dashed
line λ1.

strain field and on the vorticity field as Ls and Lω respectively. If the strain is filtered
at a scale larger than that for the vorticity such that Ls > Lω, then the filtered strain
field does not include the local contribution. Conversely if the strain field is filtered at
a scale comparable to that of the vorticity field (Ls ∼ Lω), then it represents primarily
the local strain field induced by structures associated with the scale Lω.

We focus on the small-scale vortices and two representative filter scales, Lω = 15η
and 10η, are considered for the vorticity field. The alignment p.d.f. for these two
vorticity fields with the strain field filtered at scale Ls is shown in figures 12(a) and
13(a). In both cases, the filtered vorticity field aligns with the largest extensional
strain λ3 when the strain field is filtered at Ls > Lω, and the alignment p.d.f. for the
intermediate strain λ2 is rather flat. The contrast among results shown in figures 12
and 13 and those in figure 11 is strong. This suggests that the alignment statistics
obtained with the total strain field, which includes the local self-induced strain,
can completely mask the non-local effects. The filtered vorticity field only shows
alignment with the intermediate strain when Ls approaches Lω such that Ls/Lω . 1.5.
The p.d.f. for the alignment of vorticity with either extensional strains, λ2 and λ3, is
approximately the same as shown in figures 12 and 13 when Ls/Lω ∼ 1.5. If the strain
field is filtered at the same scale as, or smaller scale than, the vorticity field, a picture
similar to that for unfiltered fields begin to emerge showing a predominant alignment
between the vorticity and the intermediate strain.
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FIGURE 13. (a) p.d.f.s of alignment between vorticity filtered at scale Lω = 10η and the
principal directions of strain field filtered at different scales Ls given in the figures. The
corresponding enstrophy generation is shown in (b). Solid line λ3, chain line λ2 and dashed
line λ1.

The gradual switching of the preferential alignment from the largest extensional
strain to the intermediate strain can perhaps be understood from the solutions
of the restricted Euler equations. Vieillefosse (1982) demonstrated that any flow
would asymptotically align its vorticity with the positive intermediate strain if the
dynamics of a single fluid particle is affected only by local effects in an inviscid and
incompressible flow. It was shown by Nomura & Post (1998) that when the vorticity
is misaligned with the strain field, the largest extensional strain would initially grow
causing the principal axes to rotate such that the alignment with the intermediate strain
is favoured.

The results of our study indicate that small-scale eddies are stretched predominantly
by the largest principal strain originated from the strain field of larger eddies (i.e.
the non-local strain field). This lends support to the view that axial vortex stretching
is an important energy transfer mechanism. It is however obvious that when the
scale separation is very large (Ls � Lω), the interaction between the two scales is
minimal. This becomes evident when comparing the alignment between the strain field
at Ls = 150η and the vorticity field at Lω = 15η and Lω = 5η in figure 14. The former
case, with a scale separation (Ls/Lω) of 10, shows that the vorticity field filtered at
Lω = 15η is still largely aligned with the largest extensional strain of the large-scale
strain field filtered at Ls = 150η. When the scale separation is increased to 30, the
observed preferential alignment is greatly diminished.
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FIGURE 14. p.d.f. of alignment between filtered vorticity and strain fields at: (a) Ls/Lω = 10;
and (b) Ls/Lω = 30.
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FIGURE 15. Probability of perfect alignment (i.e. |cosθ | = 1) for varying filter sizes for the
strain field Ls and filtered vorticity field Lω.

Figure 15 shows the probability, P(0.99 < |cosθ | 6 1), of obtaining a perfect
alignment between the vorticity and the largest extensional strain for different filter
scales. It can be seen that vorticity and strain fields are most perfectly aligned when
Ls/Lω ∼ 3–5. Thus the most significant axial stretching of small-scale eddies is due
to the straining motion of eddies that are approximately 3–5 times larger. This is
also apparent from examining the p.d.f. of cos θ and enstrophy generation for various
filter settings. The largest amount of enstrophy generation occurs when the structures
are being stretched by the largest extensional strain induced by structures that are
3–5 times larger.

Examining figures 12(b) and 13(b), one finds that enstrophy is generated most
significantly in the direction of the largest principal strain, λ3. Most of the enstrophy
generation occurs during stretching by the largest strain λ3 due to non-local straining.
This is evident especially when the alignment between ω and λ3 is the strongest,
which occurs when Ls/Lω ∼ 3–5. Although the intermediate strain remains mostly
positive within the ω2 structures, its role in generating enstrophy is less significant.
These results strongly suggest that the worm-like structures are formed by axial
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stretching rather than by the roll-up of vortex sheets suggested in a recent study
(Bermejo-Moreno et al. 2009).

5. The spatial distribution of enstrophy structures
5.1. Clustering

Based on the visualizations, geometrical analyses and vorticity–strain field alignments,
one can begin to form a conjecture on the spatial distribution of small-scale structures
in relation to their larger counterparts. Small-scale tubular vortices are stretched axially
by the strain field generated by eddies that are ∼3–5 times larger. Since the dissipation
structures are fragmented and reside on the periphery of the enstrophy structures,
smaller vortices on the periphery of the larger ones are likely to be intensified. The
intermittent nature of small-scale vortices is quite apparent in figure 3. These worm-
like structures are more concentrated around and in between the larger structures. As
a result, they appear to be clustered in close proximity to larger structures rather than
distributed randomly.

The small volume fraction occupied by fine-scale structures, as noted by Moisy &
Jimenez (2004) and Worth (2010), highlights their intermittent nature and raises the
question of whether they contribute significantly to the overall dynamics of the energy
cascade. Moisy & Jimenez (2004) investigated small-scale clustering behaviour using
the baricentres of individual structures. However, such an approach does not account
for the spatial extent of structures as each one is represented by a point.

In the present work, volume fraction of the enstrophy structures at three filter scales,
L = λ, 10η and 5η, within a sampling region S is considered instead. These three
filter scales correspond to F4, F6 and F7 in table 1. The total domain can be divided
into a number of cubic sampling regions S , and the volume fraction V = Vs/VL is
computed within each S , where Vs denotes the volume of the structures belonging to
scale L found inside S , and VL denotes the volume of all the structures belonging to
scale L in the entire domain. Sampling regions having V larger than a cut-off value
are shown in figure 16. The sampling region size is S = (0.33`)3, and the cut-off
values are 0.10 for F4, 0.08 for F6 and 0.06 for F7. Since the average volume fraction
decreases with L as the fine structures occupy less volume, the cut-off value is also
decreased with L. Figure 16 shows that structures are concentrated in certain regions
of the domain. For example, there are nine distinct disconnected regions discernible for
L = λ shown in figure 16(a). The regions with large V for L = λ and 10η are shown
in figure 16(b) whereas the last frame of this figure includes such regions for all three
filters. These regions overlap one another only partially, and the finer structures tend to
spread out to fill up the spaces between neighbouring clusters of larger structures.

The p.d.f.s of V for four sizes of sampling regions, S = `3, (0.50`)3, (0.33`)3

and λ3, are shown in figure 17 for F4, F6 and F7 structures. The mean of V
for these three sets of filtered structures sampled over S = `3 is 0.0692, 0.0591
and 0.0458 respectively. The F7 structures occupy less volume and their narrower
p.d.f. in figure 17(a) suggests that the variations in V for these structures is small.
The increase in p.d.f. for V > 0.1 and V 6 0.02 as S decreases suggests that the
structures become more intermittent. For the F4 structures, a notable increase in the
p.d.f. for V < 0.02 occurs when S 6 (0.50`)3. The same occurs when S 6 (0.33`)3

for the other two filter scales, L= 10η and 5η.
The above observations can provide insights into the clustering pattern of small-

scale structures. A relatively small variation for L = 5η suggests little clustering of
the F7 structures within a region of size S = `3, while the broader p.d.f. for F4 and
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F4

F6

F7

(a) (c)(b)

FIGURE 16. Regions, within the entire computational domain, containing high volume
fraction of ω2 structures educed at L= λ (purple), 10η (orange) and 5η (green).
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FIGURE 17. p.d.f. of volume fraction of ω2 structures in different size of sampling region.

F6 suggests some clustering of these structures when S = `3. When increasing S to
(1.5`)3, the p.d.f. for the F4 structures becomes narrower, similar to the F7 case shown
in figure 17(a). This implies little clustering of F4 (λ) structures within a region of
size S = (1.5`)3.
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FIGURE 18. Spatial correlation between the volume fraction of ω2 structures filtered at 5η
and other scales L. Volume fraction is calculated for three different sampling regions.

The size of gaps between clusters of small-scale structures can be estimated. For
L = λ, the probability of finding a nearly empty region, V 6 0.02, is zero when
S = `3. Reducing S to (0.5`)3 and (0.33`)3 raises the probability to 12 % and 20 %
respectively. This suggests that the clusters of λ-scale structures are separated by the
nearly empty regions of size ∼ (0.5`)3. Very few nearly empty regions of size (0.5`)3

can be found for finer structures at L = 10η and 5η, but a significant number of such
regions of size S = (0.33`)3 can be observed in figure 17(c). This suggests that these
structures also form clusters, and they are separated by smaller gaps of the order of
0.33`.

5.2. Spatial correlation
The spatial correlation of clusters at two different scales can be explored using the
cross-correlation coefficient for V given by

K(L;L1,S )= V ′(L1; x,S )V ′(L; x,S )

Vs,1Vs
, (5.1)

where V ′(L; x,S )= V (L; x,S )− Vm(L; x,S ), with the subscript m representing the
mean value and the overbar indicating spatial averaging. The quantities Vs,1 and Vs are
the standard deviations of V (L1; x,S ) and V (L; x,S ) respectively. It is clear that
K = 1 when L = L1. Its variation with L/η for L1 = 5η is shown in figure 18 for the
three values of S considered in § 5.1.

The analysis of fine-scale clustering sizes and their gaps using K is followed here
specifically to gain a global picture of the clustering arrangement over the entire
domain. This is different from Bermejo-Moreno et al. (2009), who studied the local
arrangement of individual structures and their closest neighbours using proximity
analysis.

There is virtually no spatial correlation between structures at 5η and those at
L > 100η irrespective of the size of S . The correlation coefficient increases as L
decreases from 100η and the amount of increase in K depends on S . For S = λ3, the
spatial correlation between 5η and 10η structures is strong with K = 0.76. However,
K drops to 0.31 when the 5η structures are correlated with λ(24η) structures. This
reduction in correlation decreases if S increases, which is because the spatial
granularity of K decreases as S increases. A close examination of figure 18 clearly
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shows that K 6 0.3 when L 'S 1/3. This suggests that the spatial correlation of the
5η structures becomes weaker with the structures having scales of O(S 1/3). This is
not surprising since the high value for K would indicate that the 5η structures are
embedded within the larger ones, for example λ structures, but figure 3 shows the
contrary. However, there appears to be some significant spatial correlation, K ' 0.6,
between the λ and 5η structures within the sampling region of size S = (0.33`)3,
which is (2.7λ)3. Thus 5η structures can be found more frequently within a distance
of 2.7λ from λ structures rather than overlapping them. As a word of caution, the
result in figure 18 gives a qualitative insight into the clustering behaviour of fine-scale
structures. Since this analysis has only been performed with a single snapshot of the
DNS data, the above correlation is not meant to be a definitive correlation length
between the clusters. If such a correlation length exists, it would be related to the
degree of spatial intermittency and is likely to depend on Reλ, which is not addressed
in the present analysis.

The spatial correlation coefficient in figure 18 shows a marked increase for
L < 100η regardless of the sampling region size. In conjunction with our earlier
results on the strong alignment of the vorticity field filtered at 5η with the largest
principal strain filtered at λ to 15η discussed in § 4, a strong spatial correlation
can be expected between enstrophy structures and those having dominant influence
on stretching them. Therefore, the small-scale structures appear to cluster primarily
around larger structures that are creating the strain field responsible for stretching
them, and in the present study they are approximately 3–5 times larger.

6. Concluding remarks
A bandpass filtering procedure has been applied to a DNS dataset of homogeneous

isotropic turbulence having Reλ = 141 to educe enstrophy and dissipation structures
of various scales. Applying the bandpass filter can effectively educe structures whose
smallest characteristic length matches the chosen filter width, L. The filtered structures
are visualized using a threshold value of mL + 1.5sL for isosurfacing, where m and
s are the mean and standard deviations of the respective fields filtered at scale L. A
classical picture has emerged from this analysis showing that the educed structures
become more worm-like as the filter scale L decreases. The small-scale structures
are observed to concentrate around larger structures, which are mostly ‘empty’ rather
than having smaller structures embedded within them. There is also a qualitative
difference between the enstrophy and dissipation fields. The dissipation structures are
more irregular in shape and are more fragmented, residing near the periphery of the
enstrophy structures.

While a visual examination of the educed structures shows that there is a gradual
change of structure morphology as L decreases, a more systematic and quantitative
method to analyse the morphology of structures is introduced. This method is based on
the Minkowski functionals, from which two dimensionless quantities called planarity
P and filamentarity F are derived for a general shape description. Enstrophy
structures obtained with L = 100η are blob-like, characterized by low P and F
values. They become increasingly tubular as suggested by an increase in F as
L decreases from 50η to 10η. The planarity remains small for all L considered,
suggesting that the enstrophy structures are mildly flattened and do not include any
sheet-like structures for the turbulence considered in this study. This raises doubt on
whether vortex sheets are indeed the precursors to the tubes. The increase in F as
L decreases from 50η to 10η implies that finer structures are being stretched axially.
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However, there is a high degree of variation in F and no distinctive characteristic
length for these tubular structures can be found.

These observations lend support to the hypothesis that axial stretching of tubular
structures acts as an energy transfer mechanism across eddies of different sizes. In
particular, tubular vortices are found to be aligned with the maximum extensional
strain generated by structures that are 3–5 times larger than themselves. The alignment
of vorticity with the intermediate principal strain is only prominent when both of
these fields are filtered at the same scale. These findings support the view that the
strain field has both local and non-local contributions. Such effects cannot be easily
deciphered by studying alignment characteristics in the unfiltered strain and vorticity
fields. They also highlight the importance of the interaction between multiple scales.
In short, we have found that the classical view of the energy cascade is qualitatively
correct, with energy passing down the cascade as large vortices straining the smaller
ones.

The enstrophy structures at 10η and 5η are found to be more concentrated near
the periphery of the larger λ structures. Hence there is a spatial correlation between
small-scale vortices and others that are slightly larger. There is virtually no spatial
correlation between 5η and 100η structures, while the correlation between the 5η
structures and those that are ∼3–5 times larger is pronounced. Since these dissipation-
scale vortices are found to be stretched primarily by the strain field filtered at a scale
that is 3–5 times larger, one might conclude that they cluster around those whose
strain fields exert the most dominant effect on stretching them.
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Appendix. Examples of bandpass filtering
A simple illustration of bandpass filtering, using the Gaussian filter, is provided by

an axisymmetric eddy of size ` in (r, θ, z) coordinates. The velocity field of this eddy
is given by

u=Ωr exp
[−2(r2 + z2)

`2

]
êθ , (A 1)

where Ω is the characteristic angular velocity and êθ is the unit vector in the θ -
direction. The bandpass filtered velocity field can be obtained using (2.5) and (2.6)
as

√
LuL

b =
L2`5

4h7
Ωr exp

[
−r2 + z2

h2

]{
5− 2(r2 + z2)

h2

}
êθ , (A 2)

where

h2 = L2 + `
2

2
. (A 3)
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FIGURE 19. (Colour online) Plane cut (normal to the z-axis) of the unfiltered ,(a), and
filtered velocity field, uθ , for the superposition of two axisymmetric eddies of characteristic
sizes `1 and `2. All filtered velocity fields shown are normalized to the same colour scaling
as the unfiltered field: (a) L = 1.2`1; (b) L = `1; (c) L = 0.5`1; (d) L = 0.2`1; (e) L = 1.2`2;
(f ) L= `2; (g) L= 0.5`2; (h) L= 0.2`2.

It can be seen that eddies of sizes L� ` and L� ` are significantly attenuated:

√
L|uL

b| ∼
(
`

L

)5

|u| for L� ` (A 4)

and

√
L|uL

b| ∼
(

L

`

)2

|u| for L� `. (A 5)

The effect of dilatation on the eddy is evident due to the change in the characteristic
radius from ` to

√
2h. Eddies that are smaller than the filter width, L, can be

suppressed quite effectively by the bandpass filter. However, the filter is less sharp
for eddies with size larger than L. For a spherical eddy filtered at L, the resulting
bandpass filtered field will predominantly contain traces of eddies with characteristic
radii ranging from L to 4L with a maximum at `=√5L.

To further examine the effectiveness of this filter in a multi-scale situation,
superposed axisymmetric eddies are considered as a second example. The two eddies
have characteristic sizes of `1 and `2 = 0.1`1 with characteristic angular velocities of
Ω1 and 10Ω1 respectively. The unfiltered original field is shown in figure 19(a), which
clearly shows a stronger small eddy embedded in a weaker large eddy. It can be seen
that the large eddy is most effectively extracted by setting L = 0.5`1. Similarly, the
small eddy can be clearly extracted by setting L = 0.5`2, and the large eddy becomes
negligible in the background.

Next consider a three-dimensional elliptical eddy of arbitrary aspect ratio with
velocity field

u=Ωr exp
[
−2r2

`2
r

− 2z2

`2
z

]
êθ . (A 6)
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The bandpass filtered velocity field is readily shown to be

√
LuL

b =
L2`4

r`z

2h4
r hz

Ωr exp
[
− r2

h2
r

− z2

h2
z

]{
2− r2/h2

r

h2
r

+ 0.5− z2/h2
z

h2
z

}
êθ , (A 7)

where

h2
r = L2 + `

2
r

2
h2

z = L2 + `
2
z

2
. (A 8)

For a tubular eddy, `z � `r, the maximum
√

L|uL
b| is obtained when L = 0.5`r and

it falls off as (`r/L)
4 for L� `r and (L/`r)

2 for L� `r. Moreover, for a pancake-like
eddy with `r� `z,

√
L|uL

b| has a maximum at L= `z and falls off as (`z/L) for L� `z

and (L/`z)
2 for L� `z. Evidently, for vortices with more than one length scale, the

filter predominantly educes structures whose smallest length scale matches that of the
filter width L. The above analysis is obviously overly simplistic compared to the wide
range of eddy shapes and sizes that are found in turbulent flows. Nevertheless, the
examples demonstrate the effectiveness and shortcomings of the procedure used in this
paper.
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