
Vlasov–Maxwell simulations of backward Raman
amplification of seed pulses in plasmas

MAGDI SHOUCRI1 AND BEDROS AFEYAN2

1Institut de recherche d’Hydro-Québec (IREQ), Varennes, Québec J3X1S1, Canada
2Polymath Research Inc., Pleasanton, CA 94566, USA

(RECEIVED 11 April 2016; ACCEPTED 2 August 2016)

Abstract

We study the problem of the amplification of an ultra-short seed pulse via stimulated Raman backscattering (SRB) from a
long pump pulse (assumed to have an envelope with a constant amplitude), in an underdense plasma. The SRB interaction
couples the pump light wave to a daughter light seed wave propagating in the opposite direction, scattered off an electron
plasma wave. In recent numerical simulations, it has been observed that besides stimulated Raman backward scattering
(SRBS) and stimulated Raman forward scattering, other high-frequency kinetic instabilities can occur when modified
distribution functions exist during the evolution of the system. In particular, we showed the prominent role played by
kinetic electrostatic electron nonlinear (KEEN) waves (Afeyan et al., 2004). We continue this work by applying a
relativistic Vlasov–Maxwell code to study stimulated KEEN wave scattering (SKEENS) and its role in the SRBS short
pulse amplification processes. An analysis of the full spectrum of waves participating in the amplification processes is
presented. The absence of spurious noise in grid-based Vlasov codes allows us to follow the evolution of the system
with a kinetic (collisionless) description. This affords us a glimpse at the intricate phase-space structures such as
trapped particle orbits, which coexist and interact nonlinearly in the electron distribution function.

Keywords: Laser–plasma instabilities; Raman backward amplification; Stimulated KEEN wave scattering; Stimulated
Raman Scattering; Trapped particle distribution functions

1. INTRODUCTION

Three-wave parametric interactions in plasmas involve the
coupling of two transversely polarized electromagnetic
waves and a longitudinally polarized plasma wave. They
have been extensively studied both theoretically and numer-
ically using plane waves models (see, for instance, Drake
et al., 1974; Max et al., 1974; Forslund et al., 1975; Spat-
schek, 1976; Kruer, 1988). In stimulated Raman scattering,
the plasma response is that of a high-frequency electron
plasma wave (EPW), while in Brillouin scattering it is a low-
frequency ion acoustic wave (IAW). These processes have
also received considerable attention in the context of gener-
ating ultra-intense and ultra-short laser pulses (see, for in-
stance, Ren et al., 2007; Mourou et al., 2012; Riconda
et al., 2013). In these new developments transient pulse,
propagation effects become important, and involve the colli-
sion of an ultra-short seed pulse with a long pump pulse, in

order to amplify the seed pulse intensity by several orders of
magnitude. In the amplification process, the long pump pulse
of high energy but moderate intensity propagating in an
underdense plasma collides with a short seed pulse of
either smaller or higher-intensity propagating in the opposite
direction. The seed pulse convectively grows with interaction
distance as does the plasma mode (EPW or IAW). But as the
seed pulse grows, it eventually depletes the pump field. The
use of plasma as an amplifying medium is needed so as to
achieve ultra-high light intensities via plasma optics, with
laser beams operating in the exawatt and zetawatt regimes
(Mourou et al., 2012). Promising experimental results have
been reported on the way to that ultimate regime (Ren
et al., 2007; Mourou et al., 2012; Riconda et al., 2013;
Lancia et al., 2010; Trines et al., 2011a, b). Stimulated
Raman amplification has been examined in several publica-
tions (Malkin et al., 1999, 2014; Fisch & Malkin, 2003;
Malkin & Fisch, 2005; Benisti et al., 2012), and more
recently in several numerical simulations (Wang et al.,
2010; Trines et al., 2011a, b; Lehmann et al., 2012, 2013;
Lehmann & Spatschek, 2013, 2014; Toroker et al., 2014).
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In other recent simulations, it has been shown that besides
stimulated Raman backward scattering (SRBS) and stimulat-
ed Raman forward scattering (SRFS), other high-frequency
kinetic instabilities can occur when modified distribution
functions exist during the evolution of the system. In the
family of such structures a particularly prominent role is
played by kinetic electrostatic electron nonlinear (KEEN)
waves (Afeyan et al., 2004, 2014; Mehrenberger et al.,
2013) whose role in dictating the dynamics of SRS was ex-
amined in (Shoucri & Afeyan, 2014). These stimulated pro-
cesses are called SKEENS. There have also been associations
made between beam acoustic modes BAM (Yin et al., 2006;
Strozzi et al., 2007, 2010) and SRBS’ nonlinear evolution. A
different perspective has also been promulgated under the
heading of transient enhanced instability levels attributed to
rapidly changing distribution functions which diminish
damping rates and thus allow larger levels of SRS than
would be expected in models ignoring transient tracking of
distribution functions. That trend began with the work of
Afeyan et al. (1998) invoking nonlocal heat transport and fil-
amentation as root causes of distribution function changes
and continued under the heading of inflationary models
(Vu et al., 2007). Of these KEEN waves have the interesting
features that they do not require a pre-flattened (zero slope at
the phase velocity of the wave) distribution function and are
not steady state, time-independent solutions (Afeyan et al.,
2004, 2014; Mehrenberger et al., 2013). KEEN waves are
not single mode structures, but multimode, self-organized
non-stationary states of Vlasov plasmas. In particular, they
can be driven anywhere inside the spectral gap in plasma
(linear response) theory below the EPW dispersion curve
and above the IAW one. An electron acoustic waves EAW
(Sircombe et al., 2006; Valentini et al., 2006), in contrast,
is strictly and rather delicately limited to yet another linear
dispersion curve at a slope (i.e. with a phase velocity) of
around 1.3 × the thermal velocity of electrons. EAWs consti-
tute a set of measure zero compared with KEEN waves in the
drive (ω, k) plane or Brillouin diagram. EAWs require a flat
distribution function of zero slope at the phase velocity of the
driven wave which is very delicate to set up, is by construc-
tion single mode, and stationary unlike KEEN waves which
obey none of these artificial (simplifying) restrictions.
In the work reported here, we utilize a Vlasov–Maxwell

code to study the problem of the amplification of an ultra-
short seed pulse via stimulated Raman backscattering
(SRB) of energy from a long pump pulse at a slightly
higher frequency (and assuming it has a fixed amplitude).
We identify the KEEN wave contribution in the Raman
scatter of energy for pulse amplification, in a way similar
to what has been presented in Shoucri and Afeyan (2014).
The Vlasov code we use solves the one-dimensional (1D)
relativistic Vlasov–Maxwell set of equations, and has been
previously successfully applied to different problems in
laser–plasma interaction, such as wake field acceleration
(Shoucri, 2008a, b). These codes have also been successfully
applied to study stimulated Raman scattering of plane waves

in an underdense plasma (Ghizzo et al., 1990), and more re-
cently to the problem of Raman seed pulse amplification in
Lehmann et al. (2013), Lehmann and Spatschek (2014), Tor-
oker et al. (2014), Shoucri et al. (2015), and to the problem of
Brillouin seed amplification when the plasma response is
provided by an IAW (Shoucri et al., 2015). The absence of
noise in the Vlasov code allows more accurate representation
of the phase-space structures in the distribution function, and
more accurate identification of the modes involved in the
physics of the backscattering process. It avoids numerical
problems like excessive pump scattering from numerical
noise (Shoucri et al., 2015).

2. THE RELEVANT EQUATIONS OF THE
EULERIAN VLASOV CODE AND THE
NUMERICAL SCHEME

The relevant equations for the Eulerian Vlasov code are those
previously presented in references (Ghizzo et al., 1990;
Shoucri, 2008a, b; Shoucri et al., 2015) for instance. We pre-
sent these equations here again just in order to fix the nota-
tion. Time t is normalized to the inverse plasma frequency
ω−1
pe , length is normalized to l0 = cω−1

pe , velocity and momen-
tum are normalized respectively to the velocity of light c and
toMec, whereMe is the electron mass, and c is the velocity of
light. We have the following Vlasov equations for the elec-
trons and the ions distribution functions fe,i(x, pxe,i, t):

∂fe,i
∂t

+ pxe,i
me,iγe,i

∂fe,i
∂x

+
(
∓ Ex − 1

2me,iγe,i

∂a2⊥
∂x

) ∂fe,i
∂pxe,i

= 0, (1)

where the relativistic factor γe,i = (1+ ( pxe,i/me,i)2+
(a⊥/me,i)2)1/2.

The upper sign in Eq. (1) is for the electron equation
and the lower sign for the ion equation, and subscripts e
or i denote electrons or ions, respectively. In our nor-
malized units me= 1 and mi=Mi/Me= 1836 for the hy-
drogen ions. In the 1D model, the normalized canonical
momentum �P is related to the particle momentum �p by
the relation �P = �p∓ �a⊥, where �a = e�A/Mec is the normal-
ized vector potential. In the direction normal to x, the ca-
nonical momentum �P⊥e,i is conserved and it can be chosen
initially to be 0, so that �p⊥e,i = ±�a⊥.

The electric field in the transverse direction is calculated
from the relation:

�E⊥ = − ∂�a⊥
∂t

. (2)

The transverse electromagnetic fields Ey, Bz for the linearly
polarized wave obey Maxwell’s equations. Defining E±=
Ey± Bz, we have:

∂
∂t

±
∂
∂x

( )
E± = −Jy. (3)
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In our normalized units, we have the following expressions
for the normal current densities:

�J⊥ = �J⊥e + �J⊥i; �J⊥e,i = − a
⇀

⊥

me,i

∫+∞

−∞

fe,i
γe,i

dpxe,i. (4)

The longitudinal electric field is calculated from Ampère’s
equation: ∂Ex/∂t=−Jx, where

Jx = 1
mi

∫+∞

−∞

pxi
γi

fidpxi − 1
me

∫+∞

−∞

pxe
γe

fedpxe. (5)

Test runs were made in which Poisson’s equation was used
instead of Ampère’s equation to obtain the longitudinal elec-
tric field Ex, with identical results.
The numerical scheme to advance Eq. (1) from time tn to

tn+1 necessitates the knowledge of the electromagnetic field
E± at time tn+1/2. This is done using a centered scheme
where we integrate Eq. (3) exactly along the vacuum charac-
teristics with Δx= Δt, to calculate E±n+1/2 as follows:

E±(x± Δt, tn+1/2) = E±(x, tn−1/2) − ΔtJy(x± Δt/2, tn) (6)

with

Jy x± Δt/2, tn
( ) = Jy(x± Δx, tn) + Jy(x, tn)

2
.

From Eq. (2) we also have �an+1
⊥ = �an

⊥ − Δt�En+1/2
⊥ ,

from which we calculate �an+1/2
⊥ = (�an+1

⊥ + �an
⊥)/2. To calcu-

late En+1/2
x , we use Ampère’s equation: ∂Ex/∂t=−Jx, from

which En+1/2
x = En−1/2

x − ΔtJnx .
The Eulerian Vlasov code we use to solve Eqs. (1)–(5)

has been presented and applied for instance in (Shoucri,
2008a, b; Shoucri et al., 2015). We outline the main steps
for the numerical solution of Eq. (1), using an Eulerian
scheme. Given f ne,i at mesh points at time t= nΔt (we stress
here that the subscript i denotes the ion distribution function),
we calculate the new value f n+1

e,i at the grid points jx, and jp
corresponding to the mesh points (x jx, pxe,ijp ) by writing that
the distribution function is constant along the characteristics.
We assume that at the time tn+1≡ tn+Δt, x is at the grid point
jx, and pxe,i is at the grid point jp. Let (x(tn), pxe,i(tn)) is the
point where the characteristic is originating at tn (not neces-
sarily a grid point). This point is calculated from the solution
of the characteristics equations between tn and tn+1≡ tn+ Δt:

dx
dt

= me,i
pxe,i
γe,i

= Vxe,i(x, pxe,i),

dpxe,i
dt

= ∓Ex − me,i

2γe,i

∂a2⊥
∂x

= Vpxe,i (x, pxe,i).
(7)

We assume that at the time tn+1≡ tn+ Δt, x is at the grid

point jx, and pxe,i is at the grid point jp. The following leap-
frog scheme can be written for the solution of (6):

x jx − x(tn)
Δt

= Vxe,i(xn+1/2, pn+1/2
xe,i )

= Vxe,i
x jx + x(tn)

2
,
pxe,ijp + pxe,i(tn)

2

( )
. (8)

pxe,ijp − pxe,i(tn)
Δt

= Vpxe,i (xn+1/2, pn+1/2
xe,i )

= Vpxe,i
x jx + x(tn)

2
,
pxe,ijp + pxe,i(tn)

2

( )
.

These equations are solved by iteration for:

Δx = x jx − x(tn)
2

; Δ pxe,i =
pxe,ijp − pxe,i(tn)

2
.

From which x(tn) = x jx − 2Δx, pxe,i(tn) = pxe,i − 2Δ pxe,i jp .
We now write that the distribution function is constant
along the characteristics. Then f n+1

e,i (x jx , pxe,ijp ) is equal to
f ne,i(x(tn), pxe,i(tn)), this latter value is calculated from the
values of f ne,i at the grid points by a 2D interpolation
using a tensor product of cubic B-splines (for details,
see Shoucri et al., 2003; Shoucri, 2008a, b).

3. THE RELEVANT PARAMETERS

We first use the same parameters as in Shoucri and Afeyan
(2014), for the study we are presenting here for the SRBS and
SKEENS processes. A characteristic parameter by which to
refer to the amplitude of laser field is the normalized vector
potential or quiver momentum �a⊥| | = e�A⊥/Mec

∣∣∣ ∣∣∣ = a0,
where �A⊥ is the vector potential of the pump wave. For the lin-
early polarized wave, a20 = Iλ20/1.368 × 1018. Here, I is the
laser intensity in W/cm2, and λ0 the laser wavelength in mi-
crons. The pump wave frequency ω0P of the injected laser
beam is such thatω0P/ωpe = 1/








n/ncr

√
, where ncr is the critical

density for the pump. In our calculation, n/ncr= 0.0825, which
corresponds to a pump frequency ω0P= 3.481 (normalized to
ωpe). The amplitude of the vector potential of the pump is
a0P= 0.025. The seed backward pulse has a frequency ω0B=
2.1657. The amplitude of the vector potential of the seed
pulse for the Raman scattered backward wave is a0B= a0P=
0.025. The parameters of the backward KEEN wave will be
discussed in Section 3.1.
The frequency and wavenumber (ω0P, k0P) of the pump

wave are related by the relation ω2
0P = ω2

pe + k20Pc
2, or in nor-

malized units ω2
0P = 1+ k20P, from which k0P= 3.3343. For

the stimulated Raman scattering, or the coupling of a pump
light wave to a daughter scattered light wave and an EPW,
the values of the electron plasma wavenumber keB associated
with SRBS mode, and keF associated with the SRFS mode are
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roots of the equation (Bers et al., 2009):

15Ω
4− 6

( )[ ]
K4 + (μ+ 3Ω− 3)K2 − 2μ1/2 Ω2 − 1+ 5

2μ

( )[ ]1/2
K

+ 2Ω− 1− 5
2μ

( )
(Ω− 1) = 0

(9)

with K= keλDe, where λDe is the Debye length. In our normal-
ized units, the Debye length λDe = υte/c = 0.04424





Te

√
(λDe

normalized to c/ωpe in our units, and Te is in keV), and Ω=
ω0P (normalized toωpe). For the present problemwe use hydro-
gen ions withMi/Me= 1836. We assume an electron temper-
ature Te= 2 keV, so λDe= 0.06256. In Eq. (9), the parameter
μ = mec2/κTe = c2/υ2te = 1/(0.04424 




Te
√ )2 = 255.8. The

resulting roots are keBλDe= 0.3377 for the plasma mode asso-
ciatedwith theSRBS, and keFλDe=0.0666 for the plasmamode
associatedwith theSRFS.Asdiscussed inBers et al. (2009), for
these parameters the SRBS plasma wave is damped, and the
damping of the SRFS plasma wave is small. The heavily
damped regime with keλDe >0.29 is called the kinetic regime
(Shoucri & Afeyan, 2014). We finally get keB= 0.3377/
λDe= 5.398 for the SRBS plasma wave, and keF= 0.0666/
λDe= 1.0645 for the SRFS plasma wave. The corresponding
frequencies for the SRBS plasma wave and the SRFS plasma
wave are solutions of the equation (Bers et al., 2009):

ω2 ≈ 1+ 3k2λ2De/ω
2 + 15k4λ4De/ω

4 − 5/(2μ). (10)

We get from Eq. (10) for the SRBS wave ωeB= 1.178, and for
the SRFS plasma wave ωeF= 1.0066. The selection rules give
the following results for the forward scattered electromagnetic
wave (ω0F, k0F) and the backward scattered electromagnetic
wave (ω0B, k0B):

ω0B = ω0P − ωeB = 3.481− 1.178 = 2.303;

ω0F = ω0P − ωeF = 3.481− 1.0066 = 2.4744;
(11)

k0B = keB − k0P = 5.398− 3.3343 = 2.0637;

k0F = k0P − keF = 3.3343− 1.0645 = 2.2698.
(12)

Note the close values of (ω0F, k0F) with (ω0B, k0B). We verify
that the results in Eqs. (11) and (12) obey the dispersion relation
of the electromagneticwave 1+ k20F = ω2

0F (fromwhichwe get
ω0F= 2.48), and 1+ k20B = ω2

0B (from which we get ω0B=
2.293). These results are in very good agreement with the re-
sults calculated in Eq. (11). We note also the possibility of
the anti-Stokes resonance ωas=ω0P+ ωeF= 3.481+
1.006= 4.487, kas= k0P+ keF= 3.3343+ 1.0645= 4.399.
We calculate from the relation 1+ k2as = ω2

as a value ωas=
4.511, close to the value of 4.487 calculated from the selection
rule. In addition, KEENwaves have been identified in (Afeyan
et al. 2004, 2014, Mehrenberger et al. 2013, Shoucri and
Afeyan 2014), which do not belong to the dispersion relations

presented in Eqs. (9) and (10). The KEENwaves resulted from
the scattering of the pumpwith the backward stimulatedwave at
(ω0F,− k0F), where (ω0F, k0F) are the frequency and wavenum-
ber of the SFRSwave calculated inEqs. (9) and (10). Thesewill
be discussed in more details in Section 3.1.

The ions were included in the calculation, but did not play
any role in the physics except establishing a small self-
consistent sheath at the edges. We use a fine resolution
grid in phase space, with N= 30,000 grid points in space,
and 512 grid points in momentum space for the electrons (ex-
trema of the electron momentum are± 0.5). We have initially
a flat profile of a uniform plasma slab with the normalized
density ne= ni= 1. This flat profile of the uniform plasma
extends over a length Lp= 570.8c/ωpe. On either side of
the initial plasma slab the densities are smoothly brought
down to zero through an initial parabolic profile of length
Ledge= 8c/ωpe. An extra vacuum region of length Lvac=
6.6c/ωpe exists on each side of the slab, for a total length
of the system of L= 600c/ωpe. In our normalized units
Δx= Δt= 0.02. We also have Δx/λDe= 0.02/0.0626≈
0.32.

3.1. Stimulated KEEN Wave Backscattering Pulse

The forward propagating linearly polarized wave is
injected in the domain at the left boundary at x= 0 with
E+ = 2E0P cos(ω0Pt), E0P= ω0Pa0P, with a0P= 0.025. The
pump precursor reaches the right boundary at t= 600
(since in our normalized units x= t). As will be explained
below, the KEEN wave is excited when a backward seed
pulse is injected at the frequency of the forward scattered
mode ω0F= 2.474 (Shoucri & Afeyan, 2014). A seed
pulse is injected at x= L in the backward direction in
the form E− = −2E0KP0K(t) cosω0Fτ, where τ= t− t1.
The temporal shape factor of the seed pulse is P0K(t) =
exp(−0.5(t − t0)2/τ2s ), for t1 <t <t2. In this simulation we
have τs= 15, t0= 550, t2= 600, t1= 500, and E0K=
ω0Fa0K, with a0K= a0P. In this way, the seed Gaussian
pulse starts penetrating the domain from the right boun-
dary at t= t1= 500. When the pump precursor has
reached the right boundary x= L= 600 at t= 600, the
seed pulse injected at the right boundary of the domain
in the backward direction has fully penetrated from the
right boundary, and its peak has reached the point at
x= 550 at the time t= 600.

We present first the results obtained for the forward prop-
agating wave before the injection of the pulse. We show in
Figure 1 the wavenumber spectra of the forward propagating
signal E+, the backward propagating signal E−, and the lon-
gitudinal electric field. E+ and E− are defined in Eq. (3).
These spectra are calculated in the domain x= (20,164), at
t= 800, well before the arrival of the seed pulse injected
from the right boundary. The spectrum of E+ shows the
peak of the pump at k0P= 3.3364, the peak of the forward
scattered mode k0F= 2.2626, very close to the value
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calculated in Eq. (12), and a small peak of the anti-Stokes
mode at kas= 4.41, very close to the theoretical value calcu-
lated at 4.399.
In free space, the forward propagating wave E+ and the

backward propagating wave E− are strictly decoupled. In a
plasma, there is a very weak coupling between E+ and E−

due to the nonlinearity of the medium. So the wavenumber
spectrum of the backward wave E− in the same domain
x= (20,164) in Figure 1 shows the same peaks at 2.262,
3.336, and 4.41, but at a much lower level, even though
the injected seed pulse at the right still did not reach the
domain x= (20,164). Finally, we present also in Figure 1
the spectrum of the longitudinal electric field, which shows
a broad peak at keF= 1.035 [theoretical value of 1.064 calcu-
lated from Eq. (9)]. We also see the peak at 6.6728.
Indeed, for the linearly polarized wave, we have a plasma

mode appearing at the harmonic of the pump 2k0P= 6.6728.
This is due to the fact that if we have a linearly polarized
wave: �E = (0,Ey,0), we can write in a linear analysis with
Ey = E0 cos(ψ), ψ = (kx− ωt), using Faraday’s law:

∂�B
∂t

= 0, 0,− ∂Ey

∂x

( )
. (13)

Then �B = (0, 0,Bz) with Bz = B0 cos(ψ), and B0= E0k/ω.
From �E⊥ = −∂�a⊥/∂t from Eq. (2), and �p⊥ = �a⊥, we get
�p = (0, py, 0), with py = −p0 sin(ψ), and p0= E0/ω. The
longitudinal Lorentz force is pyBz = −(1/2)kp20 sin(2ψ).

This drives a longitudinal response at the harmonic of the
laser wave.
Figure 2 presents the frequency spectra of the waves. The

frequency spectrum of the forward wave E+ presented in
Figure 2 shows the peak of the pump wave at ω0P= 3.4898
(calculated at 3.481 in our theoretical results), the forward
scattered frequency at ω0F= 2.474, as calculated in Eq.
(11), and the frequency of the anti-Stokes mode at ωas=
4.51 as calculated in our theoretical results above. As ex-
plained above, there is a weak coupling of E+ and E−

which produces in the spectrum of E− the same frequencies
as for E+, but at a much lower level.
The frequency spectrum of the longitudinal electric field

shows a peak of the plasma wave resonant with the forward
scattering of the pump atωeF= 1.00 (theoretical value calculat-
ed at 1.0066). It also shows a peak at 6.96, which is the forced
oscillation at the harmonic of the pump, as explained in Eq.
(13). The small peaks at 5.963 and 7.976 seem to result from
the resonance of the peak at 1.00 and the forced oscillation
at 6.96, with 1.00+ 5.963= 6.963 and 1.00+ 6.960= 7.96.
As we mentioned above, there is a weak coupling of E+

and E− which produces in the spectrum of E− a weak back-
ward component at (ω0F,− k0F). This backward wave can
couple with the forward propagating pump to produce a
KEEN wave with the selection rule coupling k0p=−k0F+
kkeen, from which kkeen = k0P+ k0F= 3.334+ 2.27= 5.60,
as calculated in Shoucri and Afeyan (2014). The frequency
of this KEEN wave obey the coupling relation ω0P= ω0F+
ωkeen, from which ωkeen= 3.481− 2.474= 1.007. The

Fig. 1. Wavenumber spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, in the
domain x= (20,164) at t= 800.

M. Shoucri and B. Afeyan580

https://doi.org/10.1017/S0263034616000495 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000495


mode at 1.00 is indeed present in the spectrum of the longi-
tudinal electric field in Figure 2 due to the forward Raman
scattering, but the coupling with the KEEN wave at − k0F
is weak and shows no response at the wavenumber kkeen in
the spectrum of the longitudinal electric field, because the
mode at − k0F in the spectrum of E− in Figure 1 is very
weak. In the results presented in Shoucri and Afeyan
(2014), this mode was stimulated by a backward wave inject-
ed at − k0F. This mode can also be stimulated in the present
simulation by the pulse we injected as described above at the
right boundary with a frequency ω0F, propagating in the
backward direction. We present in Figure 3 the electron den-
sity profile and the longitudinal electric field profile at t=
840, when the pulse injected at the right boundary with a

frequency ω0F and traveling to the left has reached a point
close to x= 300.

We present in Figure 4 the spectra of the longitudinal elec-
tric field at the arrival of this pulse (ω0F,− k0F) in the domain
x= (20,348), at t= 800 and at t= 840. We can verify from
Figure 3 that at this time the signal has just penetrated from
the right into the domain x= (20,348). In Figure 4 at t=
800 (left panel) we see indeed the growing mode (compare
with Fig. 1) with a broad peak at kkeen= 5.58, very close
to the theoretical value of 5.60 calculated in the previous
paragraph. So the wavenumber response of the system to
the backward pulse injected at the right boundary at the fre-
quency ω0F is indeed a KEEN wave at kkeen= 5.58. The right
panel in Figure 4 gives the wavenumber spectrum at t= 840

Fig. 2. Frequency spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, at the po-
sition x= 250, at time t= (260,328).

Fig. 3. Plot of the electron density profile (left frame) and the longitudinal electric field Ex (right frame) at time t= 840.

Vlasov–Maxwell simulations of backward Raman amplification of seed pulses in plasmas 581

https://doi.org/10.1017/S0263034616000495 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000495


in the same domain, showing again the continued growth
of the mode at kkeen= 5.58, which is now developing a
harmonic structure.
We present in Figure 5 the wavenumber spectra of the for-

ward wave E+ and backward wave E− at t= 840. The pres-
ence of the backward mode k0F at 2.262 in the spectrum of
E− is now growing to become dominant, showing a broad
peak. So the system is responding to the arrival of the seed
pulse injected with ω0F= 2.474 from the right boundary in
the backward direction with a growing mode at k0F= 2.262
in the spectrum of E− as it should. The forward wave E+

at k0P= 3.336 can now couple with the backward wave of
the pulse at − k0F=−2.262 with k0p=−k0F+ kkeen to pro-
duce the KEEN wave with kkeen = k0P + k0F= 3.334+
2.262= 5.596, which we observe at 5.58 in Figure 4. The
wavenumber at keF= 1.074 in Figure 4 is the result of the for-
ward scattering k0P= k0F+ keF, calculated at keF= 1.0645 in
our theoretical results in Eq. (12).
The frequency spectra are presented in Figure 6. These spec-

tra are calculated from the registered signals at x= 250 at the
arrival of the pulse, from the time t= 623 to t= 990. We see
in the spectrum of the forward wave E+ the presence of the
pump frequency at ω0P= 3.4898, of the forward scattered
mode at ω0F= 2.474, and the anti-Stokes mode ωas= 4.49.
The frequency spectrum of the backward wave E− shows the

peak at 3.4898, and a broad peak at 2.454 (slightly shifted
from the value of 2.474 observed in Fig. 2). The coupling of
forwardwaveE+ at 3.4898 and the backwardwave at 2.454 ac-
cording to the selection rule ω0P= ω0F+ ωkeen produces the
frequency 3.4898− 2.454= 1.036, very close to the value
of 1.054 in the broad peak appearing the spectrum of the lon-
gitudinal electric field inFigure 6.Wenote also in the spectrum
of the longitudinal electric field in Figure 6 the values of 1.00,
and 6.96 previously identified in Figure 2. Different small
peaks are also appearing. It is important at this stage to insist
on the transient nature of the modes we are studying.
We present in Figure 7 a phase-space plot at t= 840 show-

ing the growth of the KEEN wave at the arrival of the back-
ward pulse around x= 320. The phase velocity of the KEEN
wave is υkeen= 1.054/5.58= 0.19, corresponding to pkeen =
υkeen/












1− υ2keen

√
= 0.1935, which is essentially the value

we see at the center of the vortex at the right in Figure 7.
After the analysis we have presented of the initial KEEN

response of the system to the pulse injected at the right boun-
dary at the frequency ω0F= 2.474, we now look to the final
evolution of the system. We present in Figure 8 a plot at t=
1000 and 1116 of the incident pump (full curve) and the
pulse (dashed curve). The pulse injected at the right boun-
dary in the backward direction as explained before has now
traveled to the left. The incident pump with constant

Fig. 4. Wavenumber spectra of the longitudinal electric field Ex in the domain x= (20,348), at time t= 800 (left frame), and t= 840 (right
frame).

Fig. 5. Wavenumber spectra of the forward pump wave E+ (left frame) and the backward wave E− (right frame), in the domain x=
(20,348) at t= 840.

M. Shoucri and B. Afeyan582

https://doi.org/10.1017/S0263034616000495 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000495


amplitude at the left boundary goes through a phase of partial
depletion after the crossing of the pulse coming from the
right. The growth of the pulse is small in the present case,
and does not show a significant contraction. Its initial peak
value of E− when injected was 2ω0Fa0K= 0.124, and is
reaching toward the end (see the dashed curve in Fig. 8) a
value about 0.4, more than three times higher than the initial-
ly injected amplitude, and about twice bigger than the ampli-
tude of the injected pump E+ field at the left.

Figure 9 presents the plot of the electron density and the
longitudinal electric field at t= 1000. It shows the profile
maintaining a coherent structure.

Figure 10 presents the wavenumber spectra of the pump
E+, the backward wave E−, and the longitudinal electric
field, taken in x= (180,344) at t= 1000, at the edge where
from Figure 9 the spatial structure appears coherent. We
see the now dominant peak of the backward wave E− at
2.186. The peak of the pump E+ appears at k0p= 3.336.

Fig. 6. Frequency spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, at the po-
sition x= 250, at time t= (623,990).

Fig. 7. Phase-space plot of the electron distribution function in the domain x= (320,360), at time t= 840 at the arrival of the KEEN wave
around x= 320.
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Fig. 8. The evolution of the incident forward pump wave E+ (full curve), and the backward seed pulse E− (dashed curve) at t= 1000 (left
frame) and t= 1116 (right frame).

Fig. 9. Plot of the electron density profile (left frame) and the longitudinal electric field Ex (right frame) at time t= 1000.

Fig. 10. Wavenumber spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, in the
domain x= (180,344) at t= 1000.
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We still have a forward scattering, and the forward scattered
mode appears now at k0F= 2.262, previously obtained in
Figures 1 and 5. The plasma mode keF resulting from the for-
ward scattering k0p= k0F+ keF is present in the spectrum of
the longitudinal electric field at keF= 3.336− 2.262=
1.074. The wavenumber of the KEEN wave is now deter-
mined by the pump interacting with the backward dominant
peak at 2.186, at kkeen= 3.336+ 2.186= 5.522, clearly
dominant in the spectrum of the longitudinal electric field
in Figure 10 (slightly shifted from the value of 5.58 initially
calculated in Fig. 4). We see also the harmonic of this peak
appearing in the wavenumber spectrum of the longitudinal
electric field in Figure 10. We note in the spectrum of E+

the peak of the anti-Stoke at 4.37. We now also see the
small peak of the backward Raman scattered mode appearing
at k0B= 2.07 in the spectrum of E− [calculated at 2.0637 in
Eq. (12)]. The now dominant backward mode at 2.186 in the
spectrum of E− can also directly interact with the plasma
KEENmode, generating the mode at−7.67, with the relation
− 2.186=−7.67+ kkeen, from which we get kkeen= 5.484
(appearing at 5.522 in the spectrum in Fig. 10). And in the
spectrum of E+ the pump at 3.336 can also directly interact
with the plasma KEEN mode, generating the mode at
8.858, with the relation 8.858= 3.336+ kkeen, from which
we get kkeen= 5.522, appearing in the spectrum in Figure 10.
Also in the spectrum of E+ the mode 7.7 couples with the
mode at 2.186 through the relation 7.7= 2.186+ kkeen,

from which kkeen= 5.514, very close to the value of 5.52
in Figure 10.

The frequency spectra registered at time t= (920,1084),
during the passage of the homogeneous front of the signal
at the point x= 250, are presented in Figure 11. The spec-
trum of the pump E+ shows the frequency ω0P= 3.4898,
the backward wave E− is now dominated by a broad peak
at the frequency 2.377 (evolving by a small shift from the
value of 2.474 in Fig. 2 and 2.454 in Fig. 6). The relation
3.4898= 2.377+ ωkeen gives ωkeen= 1.11, close to the
broad peak at 1.073 in the frequency spectrum of the longi-
tudinal electric field in Figure 11. The frequency of the anti-
Stoke is at 4.487.

We present in Figure 12 the plots of the electron density
and the longitudinal electric field at the end of the simulation
at t= 1116. The front edge is still maintaining coherence,
and hence still maintaining the growth of the pulse, while
the remaining profile is becoming chaotic due to the fusion
of vortices in the phase space. The vortices in the front
edge are presented in Figure 13, in x= (20,60) and x=
(60,100). We present in Figure 14 the distribution function
spatially averaged over a wavelength at t= 1116, taken
from the results in Figure 13, at the position x= 60 and 100.

Figure 15 presents the wavenumber spectra of the pump
E+, the backward wave E−, and the longitudinal electric
field, taken at the front edge in x= (20,102) at t= 1116, at
the end of the simulation. They are close to what is presented

Fig. 11. Frequency spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, at the po-
sition x= 250, at time t= (920,1084).
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in Figure 10. We see the now dominant peak of the backward
wave E− at 2.186. The peak of the pump E+ appears at k0p=
3.374. We still have a forward scattering, and the forward
scattered mode appears now at k0F= 2.3, slightly shifted
from the value of 2.262 obtained in Figures 1 and 5, since
the plasma mode keF resulting from the forward scattering
k0P= k0F+ keF is present in the spectrum of the longitudinal
electric field at keF= 3.374− 2.3= 1.074. The wavenumber
of the KEEN wave is now determined by the pump interact-
ing with the backward dominant peak at 2.186, at kkeen=
3.374+ 2.186= 5.56, very close to the peak calculated at
5.522 in Figure 15 (slightly shifted from the value of 5.58
in Fig. 4). We see also the harmonic of this peak appearing
in the wavenumber spectrum of the longitudinal electric
field in Figure 15. We note in the spectrum of E+ the peak
of the anti-Stoke at 4.41. We now see also a small peak of
the backward Raman scattered mode appearing at k0B=
2.07 in the spectrum of E− [calculated at 2.0637 in Eq.
(12)]. The now dominant backward mode at 2.186 can also
directly interact with the plasma KEEN mode, generating
in the backward direction the mode at 7.746 in the spectrum
of E−, with the relation −2.186=−7.746+ kkeen, from
which we get kkeen= 5.56 (appearing at 5.522 in the
spectrum).
The frequency spectra registered in t= (920,1084), during

the passage of the homogeneous front of the signal at the
point x= 250, are presented in Figure 11.

3.2. Raman Backscattered Wave Pulse

We use the same parameters as in Section 3.1. However, the
pulse injected at the right boundary has a frequency ω0B=
2.30, which is the frequency of the backward scattered
Raman wave, which is calculated in Eq. (11). The pump
and all other parameters remain the same. The first part of
the simulation, when the pump is propagating in the forward
direction, before the injection of the pulse, is therefore iden-
tical to what has been presented in Figures 1 and 2 for the ex-
citation of the Raman forward scattered wave. After the
injection of the pulse from the right boundary in the back-
ward direction in the same way as described above for the
KEEN wave, the propagating pulse will interact with the
pump and start growing. Figure 16 shows the density plot
and the electric field plot at t= 840, to be compared with
Figure 3. There is a difference in the spatial topology of
these plots, compared with the corresponding ones in
Figure 3.
Figure 17 shows the wavenumber spectra of the longitudi-

nal electric field at t= 800 (left panel) and t= 840 (right
panel), at the time the pulse injected from the right boundary
is arriving in the domain x= (20,348), to be compared with
Figure 4. We see in the left panel the system responding with
the appearance of the plasma wave at keB= 5.39 due to the
backward Raman scattering in agreement with Eq. (12), in
addition with the plasma wave at keF= 1.074 due to the for-
ward Raman scattering [calculated at 1.0645 in Eq. (12)], and

Fig. 12. Plot of the electron density profile (left frame) and the longitudinal electric field Ex (right frame) at time t= 1116.

Fig. 13. Phase-space plot of the electron distribution function in the domain x= (20,100), showing the vortices in the front edge at time
t= 1116.
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the mode at the pump harmonic 2k0P= 6.672, as explained in
the previous section at Eq. (13).
The right panel in Figure 17 shows the spectrum of the

electric field at t= 840. The plasma mode is slightly shifted
at keB= 5.426, and has developed harmonics at 10.872 and
16.413. The wavenumber spectra of the forward pump
wave E+ and the backward wave E− at t= 840 are presented
in Figure 18. We see in addition to what is presented in
Figure 5, the appearance of the backward pulse with wave-
number at 2.07 [calculated at 2.063 in Eq. (12)], which is
now the dominant mode in the spectrum of the backward
wave E−. To be compared with Figure 5.
The frequency spectra of the growing waves at the arrival of

the pulse are calculated from the recorded signal at x= 250

from t1= 623 to t2= 951. In Figure 19, we present the fre-
quency spectra of the forward pump wave E+, the backward
pulse wave E− and the longitudinal electric field. We see in
the spectrum of E− the dominant backward pulse wave at
the frequency 2.32 [calculated at 2.30 in Eq. (11)]. This
peak appears in the spectrum of E+, together with the fre-
quency of the forward scattered mode at 2.474, the pump fre-
quency at 3.4898, and the anti-Stoke frequency at 4.48. The
frequency spectrum of the evolving longitudinal wave in
Figure 19 show a broad peak at 1.16, and the frequency at
the harmonic of the pump frequency 2ω0P= 6.96, as ex-
plained in Eq. (13). Figure 19 is to be compared with Figure 6.

We present in Figure 20 a phase-space plot at t= 840
showing the growth of the backward Raman scattered wave

Fig. 14. The distribution function spatially averaged over a wavelength around the positions (a) x= 60 and (b) x= 100, at time t= 1116.

Fig. 15. Wavenumber spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, in the
domain x= (20,102) at t= 1116.
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at the arrival of the backward pulse around x= 320, showing
a much more rapid growth compared with Figure 7.
The density and longitudinal electric field plots at t= 1000

are shown in Figure 21. They are still maintaining the coher-
ent structure. However, the morphology of the modulations
in Figure 21 are sharply different from what we observed
in Figure 9. Figure 22 presents the plots of the forward
pump wave E+ (full curve) and the backward pulse wave
E− (dashed curve) at t= 1000 (left panel) and t= 1116

(right panel). The growth of the pulse is more important to
what is presented in Figure 8.
We present now the final state of the system. Figure 23 pre-

sents the plot of the density and the longitudinal electric field
at t= 1116. It shows the front maintaining a coherent struc-
ture, while to the right the fusion of the excited vortices is
creating a chaotic structure. We look in Figure 24 into the
phase space of the coherent structure at the left in Figure 23,
from x= 20 to 100. It shows a dominant vortex structure.

Fig. 16. Plot of the electron density profile (left frame) and the longitudinal electric field Ex (right frame) at time t= 840.

Fig. 17. Wavenumber spectra of the longitudinal electric field Ex in the domain x= (20,348), at time t= 800 (left frame), and t= 840
(right frame).

Fig. 18. Wavenumber spectra of the forward pump wave E+ (left frame) and the backward wave E− (right frame), in the domain x=
(20,348) at t= 840.
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Figure 24 shows the growth of the vortices much more rapid
than what is presented in Figure 13.
Figure 25 gives at t= 1116 the distribution function at x=

60 (left frame) and at x= 100 (right frame), spatially aver-
aged over a wavelength. At x= 60, Figure 24 indicates we
still are at in a transition showing growing vortices. At x=
100, the vortices seem to have reach a steady state. We
look for the spatially averaged distribution function at x=
100. It shows a local minimum around pxe= 0.2, around
the phase of the saturated wave. By looking to the spectra

of the system close to the left boundary at the end of the sim-
ulation in the domain x= (20,184) in Figures 26 and 27
below, we get for the frequency of the longitudinal electric
field the value 1.112 in Figure 27, and wavenumber of
5.484 in Figure 26, we deduce a phase velocity υphase≈

0.20, and a momentum pphase = υphase/












1− υ2phase

√
, from

which pphase= 0.204, very close to the local minimum we
see in the plot of the distribution function on the right side
of Figure 25.

Fig. 19. Frequency spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, at the po-
sition x= 250, at time t= (623,951).

Fig. 20. Phase-space plot of the electron distribution function in the domain x= (320,360), at time t= 840 at the arrival of the backward
Raman scattered wave around x= 320.
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Figure 26 presents the wavenumber spectra of the pump
E+, the backward wave E−, and the longitudinal electric
field. The frequency spectra in Figure 27 are obtained by
taking the spectra of E+, E− and the longitudinal electric
field, registered at x= 250 during the passage of the front
of the pulse, from t1= 920 to t2= 1084. The spectrum of
E− has now the dominant modes, with a broad spectrum
for the peak value. In Figure 26, the peak wavenumbers for
E− extend from 2.109 to 2.186. The peak at 2.186 is the
same as the one we got in Figure 15, and the peak at 2.109

is close to the value of 2.063 calculated in Eq. (12) for the
backscattered Raman wave. In Figure 27, the peak frequen-
cies for E− extend from 2.34 to 2.37. We also see the anti-
Stokes at 4.52. The peak at 2.37 is the same as the one we
see in Figure 16, and the peak at 2.34 is close to the fre-
quency of 2.30 calculated in Eq. (11) for the frequency of
the backscattered Raman wave. So in addition to the peaks
we got in the study of the KEEN wave in Section 3.1, we
have in the present case a clear coupling with the backscat-
tered Raman wave. We are far from the picture of a single

Fig. 21. Plot of the electron density profile (left frame) and the longitudinal electric field Ex (right frame) at time t= 1000.

Fig. 22. The evolution of the incident forward pump wave E+ (full curve), and the backward seed pulse E− (dashed curve) at t= 1000
(left frame) and t= 1116 (right frame).

Fig. 23. Plot of the electron density profile (left frame) and the longitudinal electric field Ex (right frame) at time t= 1116.
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Fig. 24. Phase-space plot of the electron distribution function in the domain x= (20,100), showing the vortices in the front edge at time
t= 1116.

Fig. 25. The distribution function spatially averaged over a wavelength around the positions x= 60 (left frame), and x= 100 (right frame),
at time t= 1116.

Fig. 26. Wavenumber spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, in the
domain x= (20,184) at t= 1116.
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peak mode dominating the final spectrum. The dominant E−

mode now dominates the mode coupling process. The wave-
numbers of 2.109 and 2.186 are also appearing in the spec-
trum of E+. The pump has shifted slightly to 3.298. We
also see the anti-Stokes wavenumber at 4.41. We see in
Figure 26, in the spectrum of the longitudinal electric field,
the wavenumber coupling 3.298≈−2.186+ keB leads to
keB≈ 5.484. We also see in Figure 26 the harmonics at
10.968, 16.59, 21.86, and 27.42. The peak in E− at the
wavenumber 2.186 would also interact with the peak at
5.485 of the longitudinal electric field to −2.186=−k+
5.484, from which the mode at k= 7.67, which appears in
the spectrum of E− in Figure 26. It also appears in the for-
ward direction in the spectrum of E+ 7.67= 2.186+
5.484. Also in the spectrum of E+ the peak at 3.298 and
the peak at 8.78 (not indicated in the figure) can couple
8.78= 3.298+ 5.484.
We see in Figure 27 in the frequency spectrum of E− the

dominant backward pulse dominated by the peaks at
2.34–2.37 [calculated at 2.30 in Eq. (11)]. This peak
appears in the spectrum of E+. We also see the anti-Stokes
frequency at 4.52. The plasma wave associated with the for-
ward scattered mode now appears at the frequency 3.4898≈
2.34+ ωeF (and also for the backward scattered mode and
the KEEN wave), from which ωeF≈ 1.15, very close to
the broad peak at 1.112 which appears in the frequency
spectrum of longitudinal electric field (together with
harmonics).

4. ANOTHER EXAMPLE OF SEED PULSE
AMPLIFICATION

We now analyze the results of a simulation using parameters
similar to those presented in Mourou et al. (2012). In the
present calculation, n/ncr= 0.1, which corresponds in this
case to the pump wave frequency of the injected laser beam
ω0P = 1/








n/ncr

√ = 3.481 (normalized to the plasma fre-
quency ωpe, ncr is the critical density for the pump). For
the linearly polarized wave a20 = Iλ20/ 1.368 × 1018, I is the
laser intensity in W/cm2, and λ0 the laser wavelength in mi-
crons In the present calculation the wavelength of the pump
is λ0P= 1.05 μm, and the laser intensity is I0P= 2 × 1015

W/cm2, which corresponds to an amplitude of the vector po-
tential of the pump a0P= 0.04. The seed Raman backscattered
pulse has a frequency ω0B= 2.1657 and a wavelength λ0B=
1.541 μm. The laser intensity is I0B= 1 × 1014 W/cm2,
which corresponds to an amplitude of the vector potential of
the seed pulse is a0B= 0.01318.
The frequency and wavenumber (ω0P, k0P) of the pumpwave

are related in normalized units by the relation ω2
0P = 1+ k20P,

from which k0P= 3.0185. For the stimulated Raman scattering,
or the coupling of a pump light wave to a daughter scattered
light wave and an EPW, the values of the electron plasma
wavenumber keB associated with the stimulated Raman back-
scattered mode SRBS, and keF associated with the stimulated
Raman forward scattered mode SRFS are roots of Eq. (9).
For the present problem we also have hydrogen ions with

Fig. 27. Frequency spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, at the po-
sition x= 250, at time t= (920,1084).
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Mi/Me= 1836. We assume an electron temperature Te=
0.2 keV. In Eq. (9), the parameter μ = mec2/κTe = c2/υ2te =
1/(0.04424 




Te
√ )2 = 2555. The resulting roots of Eq. (9) are

keBλDe= 0.09774 for the plasma mode associated with
the SRBS, and keFλDe= 0.0214 for the plasma mode associ-
ated with the SRFS. In our normalized units the Debye length
λDe = υte/c = 0.04424





Te

√
(Te is in keV), so λDe= 0.0198

for Te= 0.2 keV. We finally get keB= 0.09774/λDe= 4.94
for the SRBS plasma wave, and keF= 0.0214/λDe=
1.0816 for the SRFS plasma wave. The corresponding fre-
quencies for the SRBS plasma wave and the SRFS plasma
wave are solutions of Eq. (10). We get for the SRBS wave
ωeB= 1.0134, and for the SRFS plasma wave ωeF= 1.000.
The selection rules give the following results for the forward
scattered electromagnetic wave (ω0F, k0F) and the backward
scattered electromagnetic wave (ω0B, k0B):

ω0B = ω0P − ωeB = 3.18− 1.0134 = 2.166;

ω0F = ω0P − ωeF = 3.18− 1.000 = 2.18,
(14)

k0B = keB − k0P = 4.94− 3.0185 = 1.9215;

k0F = k0P − keF = 3.0185− 1.081 = 1.9375.
(15)

Note the close values of (ω0F, k0F) with (ω0B, k0B). We verify
that the results in Eqs. (14) and (15) obey the dispersion re-
lation of the electromagnetic wave 1+ k20F = ω2

0F, (from
which we get ω0F= 2.18), and 1+ k20B = ω2

0B (from which
we get ω0B= 2.166). These results are in very good agree-
ment with the results in Eq. (14). We note also the possibility
of the anti-Stokes resonance according to the selection
rules ωas= ω0P+ ωeF= 3.18+ 1.00= 4.18, kas= k0P+
keF= 3.0185+ 1.081= 4.099. We calculate from the rela-
tion 1+ k2as = ω2

as a value ωas= 4.219, close to the value
of 4.18 calculated from the selection rule. As discussed in
Section 3, KEEN waves have been identified in Shoucri
and Afeyan (2014), which do not belong to the dispersion re-
lations presented in Eqs. (9) and (10) and resulted from the
backscattering of the pump with the backward stimulated
wave at (ω0F,− k0F). This results in a coupling very close
to the coupling of the backscattered Raman wave (ω0B,−
k0B), since as we previously noted in Eqs. (14) and (15),
these values are very close.
The ions were included in the calculation but did not play

any role in the physics except establishing a small self-
consistent sheath at the edges. We use a fine resolution
grid in phase space, with N= 30,000 grid points in space,
and 800 grid points in momentum space for the electrons (ex-
trema of the electron momentum are± 1.2). We use the same
plasma profile as in Section 3, with the same total length of
the system of L= 600c/ωpe. In our normalized units Δx=
Δt= 0.02. We also have Δx/λDe≈ 1.01.
The forward propagating linearly polarized wave is in-

jected in the domain at the left boundary at x= 0 with E+ =
2E0P cos(ω0Pt), E0P=ω0Pa0P, with a0P= 0.04. The pump
precursor reaches the right boundary at t= 600 (since in

our normalized units x= t). A seed pulse is injected at x= L
in the backward direction in the form E− = −2E0BP0B(t)
cosω0Bτ, where ω0B= 2.166 and τ= t− t1. The temporal
shape factor of the seed pulse is P0B(t) similar to the ex-
pression in Section 3, with τs= 6.2, t2= 600, t0= 580, t1=
560, t1< t< t2. E0B=ω0Ba0B with a0B= 0.01318. In this
way, the seed Gaussian pulse starts penetrating the domain
from the right boundary at t= t1= 560. When the pump pre-
cursor has reached the right boundary x= L= 600 at t=
600, the seed pulse has fully penetrated from the right boun-
dary, and its peak has reached the point at x= 580 at the
time t= 600.

For the parameters used in this simulation, the SRFS
plasma mode with keFλDe= 0.0214 is very weakly damped
(Bers et al., 2009). No seed or initial perturbation is added
to stimulate the more damped SRBS mode with keBλDe=
0.09774. We present in Figure 28 the evolution of the inci-
dent pump E+ wave (full curve) and the backward seed
pulse E− (dashed curve) at: (a) t= 820, (b) t= 920, (c) t=
1160, (d) t= 1220. The growth and contraction of the seed
pulse (dashed curves), propagating toward the left, is obvi-
ous, and also the detachment of the front of the growing
seed pulse. The constant amplitude full curve at the left is
for the constant amplitude incident pump. Once the seed is
reaching the same amplitude as the pump, we enter the
regime of pump depletion. The smaller peaks we see
behind the front pulse of the growing seed are due to the
fact that when the pump depletes, the seed pulse can lose
energy again for the pump, which results in the oscillations
in the tail of the seed we observe (i.e. the amplified seed
beats with the plasma wave to regenerate the pump, which re-
sults in the depletion of the seed). Also, the exchange with
the anti-Stokes resonance can play a similar role in this
oscillation.

We present in Figure 29 a plot of the electron density at t=
1160 and 1220, corresponding to Figures 28c and 28d, and in
Figure 30 the electron density in the region of the front edge
in x ∈ (15, 65) at t= 1220. We observe regular oscillations
in the front edge in x ∈ (15, 65). The wavelength associated
with these regular oscillations is the wavelength of the grow-
ing seed pulse, which is λeB= 2π/keB=1.27, which is also
very close to the value of λeF as we have mentioned from
the results of Eq. (15). We shall see below that this corre-
sponds to coherent vortical structures in phase-space, while
the part of the density plots in Figure 29, which shows a
rather noisy density profile to the right, corresponds to a
region in phase space where vortices were actively merging.

This is also shown in Figure 31, where we present in the
phase-space the contour plots of the electron distribution
function in x ∈ (15, 65), and in x ∈ (65, 115) at t= 1220.
In x ∈ (15, 65), we observe a more coherent vortices struc-
ture (corresponding to the profile we see in Fig. 30), while
in x ∈ (65, 115) we see the vortices at the right of the
figure who are coalescing together, leading to the somewhat
noisy structure we see at the right the density plots in
Figure 29.
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We present in Figure 32 the wavenumber spectra of the in-
cident wave E+, the backward wave E− and the longitudinal
electric field in the domain x ∈ (140, 468) at the time t=
640, well before the backward injected seed reaches this
part of the domain. The only excited waves in this case are
due to the forward propagating pump E+. We recognize
the peak of the pump E+ at k0P= 3.01 [calculated at
3.0184 in our theoretical calculations in Eq. (15)]. The
pump is exciting a weakly damped, forward propagating
wave with wavenumber k0F= 1.936, in agreement with our
theoretical results in Eq. (15). We have also a very small
peak for the anti-Stokes wavenumber at kas= 4.1034

(calculated at 4.099 in our theoretical calculations). Since
the plasma is a nonlinear medium, the same modes are ap-
pearing in the spectrum of the backward wave E− at much
lower amplitude, as previously explained. The wavenumber
spectrum of the excited longitudinal electric field show the
wavenumber of the resonant plasma mode for the forward
wave at keF= 1.0738 (calculated at 1.081 in our theoretical
calculations). The values of k0B and k0F in Eq. (15) are
very close. The pump at 3.0104 in the spectrum of E+ in
Figure 32 can couple with the mode at 1.9366 in the
spectrum of E− to produce the plasma mode at 3.0104=
−1.9366+ kkeen, or kkeen= 4.977, very close to the

Fig. 28. Evolution of the incident pump E+ wave (full curve) and the backward seed pulse E− (dashed curve) at: (a) t= 820, (b) t= 920,
(c) t= 1160, (d) t= 1220; τs= 6.2 and a0P= 0.04.

Fig. 29. Plot of the electron density profile at t= 1160 and 1220; τs= 6.2 and a0P= 0.04
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calculated plasma wave keB= 4.94 associated with the back-
scattered Raman wave (the spectrum of the longitudinal elec-
tric field shows a peak at 4.966 in Fig. 32). So even though
the seed pulse is still far away, there is a small plasma mode at
4.966 excited well before the arrival of the seed pulse, asso-
ciated with the backward resonance due to the coupling of
the pump at k0P= 3.0104 in E+ (which is exciting the for-
ward scattered mode at k0F= 1.936), with the backward
mode appearing at 1.936 in the spectrum of E− in Figure 31.
So the pump is exciting the plasma mode around 4.96
through two backward resonances. A backward resonance
with the KEEN wave 3.0104=−1.936+ 4.977, and the res-
onance with the seed pulse, which still did not take place in
the spectra in Figure 32 at t= 600. Finally for the linearly po-
larized wave, we have a plasma mode appearing in the spec-
trum of the longitudinal wave at the harmonic of the pump
2k0p= 6.04 (calculated at 6.036 in our theoretical results),
as explained in Eq. (13). The forced oscillations at the wave-
number 6.04 further stimulate the mode at 4.966, by coupling
with the plasma wave at 1.0738, through the selection rule
6.04= 4.966.+ 1.0738. Also a longitudinal mode appears
at 7.1138 through the coupling 7.1138= 6.040+ 1.0738.

Figure 33 presents the frequency spectra of the pump wave
E+, the backward wave E− and the longitudinal electric field,
from the data recorded at the position x= 150 between t1=
492 and t2= 819, before the arrival of the backward propa-
gating pulse. The spectrum of E+ in Figure 33 shows the
pump frequency at 3.183 [calculated 3.18 in Eq. (14)], the
forward scattered mode at 2.183 [calculated at 2.18 in Eq.
(14)]. The anti-Stokes mode is at 4.18 (calculated at 4.18).
These same modes appear in the spectrum of E− in Figure 33
as previously explained. We see a mode of frequency 1.00 in
the frequency spectrum of the longitudinal electric field ex-
cited though the forward coupling 3.183= 2.183+ 1.00.
We also see the mode at the harmonic of the pump 2ω0p=
6.366 as explained in Eq. (13). And the coupling of the
pump with the wave at (ω0F,− k0F) produces a KEEN
wave as explained in Section 3, with frequency 3.183=
2.183+ ωkeen, from which ωkeen= 1.00. Note the mode at
5.369 which can be excited through the forced oscillation
1.00+ 5.369= 6.369, very close to the forced oscillation
at 6.366. We also note in Figure 33 the possible further
forced resonance 3.183+ 2.183= 5.366, very close to the
mode at 5.369.

We look again in Figure 34 to the wavenumber spectra in
the same domain x ∈ (140, 468), the same domain as in
Figure 32, but at the time t= 740, when the backward
pulse has entered the domain x ∈ (140, 468). The spectrum
of E+ is essentially the same as in Figure 32, however the
mode at 1.936 is more stimulated. The spectrum of E− in
Figure 34 however shows the effect of the arrival of the
pulse. There is a broad peak. We are still in a transient
phase, and this broad peak is due to the presence of the
mode at 1.936 which results from the forward coupling of
the pump 3.010= 1.936+ 1.074 (the mode in the spectrum
of the longitudinal electric field appears at 1.073), the KEEN
wave coupling 3.010=−1.936+ kkeen, from which kkeen=
4.946, which we see in the spectrum of the longitudinal elec-
tric field. Finally, the frequency of the arriving pulse from
Eq. (14) is at ω0B= 2.166, and should result in a wavenum-
ber response in E− at k0B= 1.921 (precisely in the broad
peak we observe in the spectrum of E− in Fig. 34), and in

Fig. 30. Plot of the electron density in the region of the front edge in
x ∈ (15, 65) at t= 1220.

Fig. 31. Phase-space plot of the electron distribution function in x ∈ (15, 65) and in x ∈ (65, 115), at t= 1220.
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Fig. 32. Wavenumber spectra of (clockwise) the incident wave E+, the backward wave E− and the longitudinal electric field in the domain
x ∈ (140, 468) at time t= 640.

Fig. 33. Frequency spectra of (clockwise) the incident wave E+, the backward wave E−, and the longitudinal electric field Ex, at the po-
sition x= 150, at time t= (192,819).
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a wavenumber of the longitudinal electric field at keB= 4.94
(see the broad peak in Fig. 34). So the peak at 4.947 results
from the excitation of the KEEN wave kkeen= 4.946 and of
the plasma wave to the SRBS at keB= 4.94. See also the
growing harmonics of the mode at 4.947, in the spectrum
of the longitudinal electric field in Figure 34.
Figure 35 presents the wavenumber spectra at the end of

the simulation at t= 1220, in the domain x ∈ (30, 194).
The peak of the pump is now at 3.03 in the spectrum of
E+, also appearing in a broad spectrum around 3.1 in the
spectrum of E− in Figure 35. The dominant mode is now
in the spectrum of the amplified seed in E−, where we see
in Figure 35 a broad spectrum between 1.917 and 2.147
(these are peaks of the backward seed wave initially calculat-
ed at 1.921, and the peak at 1.937 identified as a backscat-
tered KEEN wave as discussed for the spectrum of E− in
Fig. 34). These two peaks are appearing also in the spectrum
of E+ in Figure 35. These are also analogous to the broad
double peaks we observe in the spectrum of E− in Figure 26,
due to the backscattered Raman wave and the backscattered
KEEN wave. The anti-Stokes at kas≈ 4.1 is also present in
E+ and E−. The spectrum of the longitudinal electric field
in Figure 35 shows the peak of the plasma wave associated
with the forward Raman scattering at keF= 1.073 [calculated
at 1.081 in our theoretical results from Eq. (14)]. Also the
plasma wave associated with the backward Raman scattering
at keB= 5.023 [calculated at 4.94 in our theoretical results in
Eq. (15)], and the scattering of the pump with the mode at
2.147 in the spectrum of E−, which results in a KEEN

wave as previously explained in the results presented in
Figure 35.

The frequency spectra we present in Figure 36 are calculat-
ed by monitoring the fields at the position x= 150, for the
values of time t ∈ (1050, 1214). The theoretical value of
the pump frequency at ω0P= 3.18 is appearing in the fre-
quency spectrum of E+ in a broad peak around 3.144. The
frequency spectrum is now dominated by the backward
seed wave, we see a broad peak around 2.147 and 2.3 in
the frequency spectrum of E− [theoretical values calculated
in Eq. (14) are for the backscattered Raman wave at 2.166
and for the backscattered KEEN wave 2.18]. These peaks
are also present in frequency spectrum of E+ around the
peaks at 2.186 and 2.3. The dominant E− wave is now inter-
acting with the pump and shifting frequency at 3.22 in the
frequency spectrum of E−. The anti-Stokes frequency calcu-
lated at 4.18 is indeed at 4.18 in the frequency spectrum of
E+, and appears also around 4.29 in the frequency spectrum
of E−. The frequency spectrum of the longitudinal electric
field shows a broad peak at ωeB= 1.00. The frequency of
the plasma wave associated with the backward Raman scat-
tering is calculated at 1.0134 in our theoretical results. The
theoretical value of the frequency of the plasma wave associ-
ated with forward Raman scattering is ωeF= 1.00. We have
in Figure 36 for the longitudinal plasma wave a broad fre-
quency around 1.00, extending to lower values with respect
to the plasma frequency, which would denote a variation of
the nature of the plasma wave to that of a KEEN wave
(Afeyan et al., 2004, 2014; Mehrenberger et al., 2013;

Fig. 34. Wavenumber spectra of (clockwise) the incident wave E+, the backward wave E− and the longitudinal electric field in the domain
x ∈ (140, 468) at time t= 740.
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Fig. 36. Frequency spectra at the position x= 150 for the time t = (1050, 1214), for (clockwise) the forward wave E+, the backward wave
E−, and the longitudinal electric field.

Fig. 35. Wavenumber spectra of (clockwise) the incident wave E+, the backward wave E− and the longitudinal electric field in the domain
x ∈ (30, 194) at time t= 1220.
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Shoucri & Afeyan, 2014). Note the multiple harmonics struc-
tures in the plasma wave.

5. CONCLUSION

The amplification of ultra-short seed pulses by SRB has been
investigated using a relativistic Vlasov–Maxwell code in one
spatial and one velocity dimension, which allows the inclu-
sion of kinetic (non-collisional) effects in the modeling.
We have identified the excitation of KEEN waves (Afeyan
et al., 2004, 2014; Mehrenberger et al., 2013; Shoucri &
Afeyan, 2014) and their participation in the SRBS process,
when self-consistently modified distribution functions arise
during the evolution of the system. In Shoucri and Afeyan
(2014), KEEN waves were shown to result from the beating
of the pump wave with the mode at (ω0F,− k0F), where the
mode (ω0F, k0F) is the SRFS mode. Here too, we see that phe-
nomenon occur. The interesting physics demonstrated here is
how SKEENS coexisting with SRBS segregate into a double
vortex structure where SKEENS enhances SRBS amplifica-
tion and where vortex merging causes more turbulent final
states which are far less hospitable to clean, three mode
amplification.
The fundamental question is whether SKEENS can be

relied upon to amplify pulses instead of SRBS or whether
it is their combined two-step action that is most beneficial.
In addition, the long standing assertion that pi pulses,
which are self-similar solutions, are viable when beams
are finite in transverse extent and with intensity fluctua-
tions (speckle patterns) that can be as large as 10:1 in in-
tensity inside and out of speckles. Such intensity variations
will not allow spatially uniform pump depletion based
pulse compression, or amplification-halting to occur uni-
formly inside the beam volume. That means the beam
will not be of one temporal width but be made up of com-
ponents of different pulse shapes, as one traverses in and
out of laser speckles. Such pulses will not have the desir-
able properties of being uniformly amplified and com-
pressed at the same time. Other kinetic effects due to
phase space vortices and their merger further complicate
the pulse amplification and compression reliability of
SRBS. This is seldom acknowledged in the pi pulse invok-
ing literature. We caution against this expectation and point
out that no experimental attempt to achieve such pulses has
succeeded in plasmas to date. A new avenue of investiga-
tion is to generate and exploit KEEN waves and SKEENS
as a means of nonlinearly transferring energy from a pump
to a series of scattered waves with correlated features as de-
scribed in this paper.
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