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The interplay of particles and viscoelasticity in turbulent channel flow is studied using
direct numerical simulations. The particle concentration is moderate at 20 % solid
volume fraction, and the range of fluid elasticity spans from zero for Newtonian fluid
to high Weissenberg numbers, Wi = 25. Qualitative changes in the flow dynamics are
observed compared with dilute suspensions which were studied previously and are known
to promote the cycles of hibernating and active turbulence. In contrast, at moderate
concentration of particles, these cycles are entirely absent at the same level of fluid
elasticity. In addition, instead of the commonly anticipated polymer drag reduction, a drag
increase is observed when elasticity exceeds a threshold Weissenberg number. The higher
drag is examined at various scales, starting from a global stress balance and down to the
level of the particle microstructure. A key factor is the increase in polymer stresses, while
the Reynolds shear stress is nearly eradicated. An explanation is provided by analysing
the polymer conformation tensor using appropriate measures of its departure from the
equilibrium state, with particular focus on the fluid in the vicinity of the particles. It is
also demonstrated that viscoelasticity markedly affects both the diffusion and migration
dynamics of the particles: diffusion is inhibited due to suppression of turbulent activity
and, as a result, reduced mixing of particles and faster decorrelation of their motion;
migration is preferential towards the channel centre, which leads to appreciable clustering
in that region, which has a direct impact on the local polymer stresses.

Key words: polymers, particle/fluid flow, turbulence simulation

1. Introduction

Suspensions of solid particles are ubiquitous in environmental (landslides), industrial
(waste slurries) and biological flows (blood), and their study has continued to yield
new discoveries (Jeffrey & Acrivos 1976; Stickel & Powell 2005). The vast majority of
previous efforts were dedicated to Newtonian suspensions, while in many applications
the suspending fluid is non-Newtonian (Chhabra 2006). Viscoelasticity is a prominent
non-Newtonian effect that alters the rheological and transport properties of the flow
in complex and often unexpected ways, even in the absence of the particle phase. For
instance, the addition of minute amounts of polymer additives to turbulent pipe flow
renders the fluid viscoelastic, weakens the turbulence activity, and reduces the drag
(Toms 1948). In the absence of turbulence, however, the same practice can destabilize
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the flow in the transitional regime (Samanta et al. 2013; Lee & Zaki 2017) and can
give rise to elastic turbulence in the absence of inertia (Groisman & Steinberg 2000).
In this study, we computationally investigate the combined effects of viscoelasticity and
concentrated particle suspension on the dynamics of turbulent channel flow. We begin with
a brief account of the rheological properties of viscoelastic suspensions in the absence
of turbulence, followed by a summary of the effects of fluid inertia and turbulence on
particle-laden flows; the latter studies being mostly limited to Newtonian fluids.

1.1. Viscoelastic suspensions in inertialess flows
Early theoretical developments by Einstein for dilute Newtonian suspensions in the
absence of inertia predict a relative increase in the so-called effective viscosity, or the
bulk shear viscosity of the mixture, at a rate of ∼ (5/2)ϕ where ϕ is the bulk solid
volume fraction (Happel & Brenner 2012). Einarsson, Yang & Shaqfeh (2018) reported
a correction to the Einstein relation in the same limit of dilute suspension, but when
the background fluid is viscoelastic. The shear dependent rheology of such suspensions,
including for Boger fluids, exhibits shear-thickening (Zarraga, Hill & Leighton 2001;
Scirocco, Vermant & Mewis 2005). Two-dimensional numerical simulations confirmed
this effect in disk suspensions in Oldroyd-B fluids (Hwang, Hulsen & Meijer 2004). In
a linear velocity field and in the limit of Weissenberg number Wi ≡ γ̇ λ� 1, where γ̇
and λ are the shear rate and the viscoelastic relaxation time, Koch & Subramanian (2006)
theoretically explained that the contribution of particles to the bulk stress is two-fold:
(i) polymer stresses modify the particle stresslet; (ii) velocity and pressure disturbances
in the vicinity of the particles alter the polymer stress in the fluid. Recently, Yang
& Shaqfeh (2018a) extended this analysis to moderate and high-Weissenberg numbers
by boundary-fitted numerical simulations of a single sphere. Reportedly, the regions
that contribute most to particle-induced fluid stresses are close to the sphere surface
where streamlines form closed trajectories. In another effort, Yang & Shaqfeh (2018b)
investigated suspensions at finite solid volume fractions (ϕ < 10 %), and concluded that
particle–particle interactions have a negligible influence on the bulk rheology of the flow.

At non-dilute concentrations (10 % < ϕ < 40 %), previous studies reported a nonlinear
relation between the effective viscosity and the solid volume fraction in both Newtonian
and viscoelastic fluids (Denn & Morris 2014; Dai & Tanner 2017). For the latter, studies
of filled molten polymers highlight a complex rheology which primarily depends on the
diffusion time scale of fillers (Brownian or non-Brownian particles), but also their shape,
concentration, and nature of the carrier fluid (see Rueda et al. (2017), for a review). For
other non-Newtonian effects, such as variable-viscosity and yield-stress fluids, we refer
the reader to the review of Tanner (2019).

1.2. Inertial effects and turbulence
In the presence of fluid inertia, the effective viscosity of suspensions increases. In the
laminar regime, this observation is attributed to multiple effects, including the Reynolds
stresses induced by particle fluctuations (Kulkarni & Morris 2008), particle and fluid
phase acceleration (Rahmani, Hammouti & Wachs 2018) and anisotropy in microstructure
leading to higher effective solid volume fractions (Picano et al. 2013). Since viscoelasticity
influences both the hydrodynamic forces experienced by particles (Becker et al. 1994)
and the local microstructure (D’Avino & Maffettone 2015), it is interesting to consider
whether and how the increase in effective viscosity is influenced by viscoelastic effects in
the carrier fluid.
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Beyond a critical Reynolds number, transition to turbulence takes place and the shear
stress increases dramatically – a phenomenon that is modulated by both finite-size
particles (Matas, Morris & Guazzelli 2003) and viscoelasticity (Draad, Kuiken &
Nieuwstadt 1998; Lee & Zaki 2017). Dilute particle suspensions can promote instability
and sustain a turbulent state at lower Reynolds numbers than a single-phase flow
(Matas et al. 2003; Loisel et al. 2013). Beyond the transitional regime, the literature
on particle-turbulence interactions in a Newtonian fluid is extensive (cf. introduction by
Agarwal, Brandt & Zaki (2014); Esteghamatian & Zaki (2019), for a review). In brief,
the effect of particles on Newtonian turbulence primarily depends on the solid volume
fraction and the relative size of particles with respect to the Kolmogorov scale. In a
concentrated suspension of finite-size spherical particles in wall-bounded turbulence, the
Reynolds shear stress is attenuated. However, due to the addition of particle stresses
the overall drag is increased (Shao, Wu & Yu 2012; Picano, Breugem & Brandt 2015).
Hence, the propensity of particles to increase the drag grows with the solid volume
fraction. In viscoelastic single-phase flows, linear theory has been developed to explain
the new phenomenology that arises in the vorticity dynamics of wall-bounded flows,
e.g. re-energization of streaks, reverse-Orr amplification, and non-local amplification
of vorticity away from curved surfaces (Page & Zaki 2014, 2015, 2016). A rigorous
mathematical framework was also developed recently to derive perturbative expansion
of the conformation tensor while maintaining the physical and geometrical consistency
(Hameduddin, Gayme & Zaki 2019). A wealth of studies have been dedicated to the fully
turbulent region (see review by White & Mungal (2008)), and the mathematical theory
has shed light on the appropriate mean polymer conformation tensor and measures of
the disturbances relative to that mean (Hameduddin et al. 2018; Hameduddin & Zaki
2019).

Very limited studies have been dedicated to the combined effects of finite-size
particles, viscoelasticity and turbulence. For particles smaller than the Kolmogorov scale
(in one-way coupling regime), De Lillo, Boffetta & Musacchio (2012) and Nowbahar
et al. (2013) investigated the influence of viscoelasticity on the particle clustering. In a
weakly viscoelastic duct flow, experimental findings by Zade, Lundell & Brandt (2019)
reported a less effective drag reduction in the particle-laden condition compared with the
single-phase counterpart. For suspensions at dilute limits (ϕ = 5 %), while the particles
significantly contribute to the turbulence suppression, Esteghamatian & Zaki (2019)
showed that they can also modify the cycles of low and high turbulence intensity which
Xi & Graham (2010) termed ‘hibernating’ and ‘active’ turbulence. Extended periods of
hibernating turbulence gives rise to the particles’ migration towards the channel centre,
while the infrequent bursts of active turbulence redistributes the particles across the
channel. Given the dual effect of particles in attenuating the Reynolds stresses while
increasing the polymer stresses, the newly established momentum balance is expected to
depend on the solid volume fraction. However, similar detailed studies of particle-laden
viscoelastic flows at higher particle concentrations are absent from the literature – a matter
that is addressed herein.

The present study reports on direct numerical simulations of particle-laden viscoelastic
turbulent flows at 20 % solid volume fraction and over a wide range of viscoelasticity.
The computations resolve the flow at the scale of particles, and polymer forces are
obtained by solving an evolution equation for the polymer conformation tensors. The flow
configuration, governing equations and computational set-up are described in § 2. Drag
modulations, polymer and turbulence modification, and particle dynamics are analysed in
§ 3. Concluding remarks are provided in § 4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

52
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.525


901 A25-4 A. Esteghamatian and T. A. Zaki

2. Flow configuration and numerical approach

The computational domain is a plane channel, where x , y and z correspond to the
streamwise, wall-normal and spanwise directions (figure 1). The flow is maintained at
a constant mass flux in the x direction. The bulk velocity, Ub, and the channel half-height,
h, are chosen as characteristic scales. The associated Reynolds and Weissenberg numbers
are Re ≡ hUb/ν and Wi ≡ λUb/h, where ν and λ are the fluid total kinematic viscosity
and viscoelastic relaxation time. When present, particles are spherical, their density
matches that of the fluid ρ, and their diameter is denoted dp. The bulk volume fraction
is ϕ ≡ NpVp/Vt, where Np, Vp and Vt are the total number of particles, the volume of a
particle and the volume of the computational domain. The flow is periodic in the x and z
directions, while a no-slip boundary condition is set at the bottom and top walls y = {0, 2},
as well as at the surfaces of particles.

The non-dimensional governing equations for the fluid velocity uf , the hydrodynamic
pressure p, and the conformation tensor c are

∇ · uf = 0, (2.1)

∂uf

∂t
+ uf · ∇uf + ∇p − β

Re
∇2uf − 1 − β

Re
∇ · T − F = 0, (2.2)

∂c

∂t
+ uf · ∇c − c · ∇uf − (c · ∇uf )

T − T = 0. (2.3)

The solvent to total viscosity ratio is denoted β ≡ μs/μs + μp, where μs and μp denote
the solvent and polymer contributions, and F represent a generic force field. Additionally,
the viscoelastic stress tensor T is expressed in terms of the conformation tensor with a
FENE-P model,

T ≡ 1
Wi

(
c

ψ
− I

a

)
, ψ = 1 − tr(c)

L2
max

, a = 1 − 3
L2

max

, (2.4a–c)

where I and Lmax are the unit tensor and maximum extensibility of the polymer chains.
The rigid-body motion of particles is governed by the Newton–Euler equations,

Vp
dup

dt
=

∮
∂Vp

σ f · n dA + F c, (2.5)

Ip
dωp

dt
=

∮
∂Vp

r × σ f · n dA, (2.6)

where up and ωp are the particle translational and angular velocities. The hydrodynamic
stress tensor comprising both Newtonian and viscoelastic contributions is denoted σ f ,
while Vp = πd3

p/6 and Ip = πd5
p/60 are the dimensionless volume and moment of inertia

of a spherical particle. The particle–particle and particle–wall repulsive collision forces,
F c, are adopted from Glowinski et al. (2001), and are applied in the opposite direction to
the outward unit vector n at the surface.

For a detailed description of the herein-adopted numerical algorithm for simulating
particle-laden viscoelastic turbulence, the reader is referred to Esteghamatian & Zaki
(2019). For completeness, only the principal features of the algorithm are summarized
here: the flow equations (2.1) and (2.2) are discretized using a control volume formulation
and marched in time by a fractional step method (Rosenfeld, Kwak & Vinokur 1991).
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y x
z

FIGURE 1. Schematic of the particle-laden flow configuration. Periodic boundary conditions
are imposed in the x and z directions, and no-slip conditions uf = 0 are enforced
at y = {0, 2}.

The diffusion terms are treated implicitly by a Crank–Nicolson scheme, while an explicit
Adams–Bashforth scheme is adopted for advection. The conformation-tensor (2.3) are
solved using a third-order accurate Runge–Kutta method, an explicit Adams–Bashforth
discretization for advection and stretching terms and a semi-implicit approach for the
polymer stress term in order to ensure finite extensibility of the polymers (Dubief et al.
2005; Lee & Zaki 2017). The advection term in (2.3) is evaluated with a second-order
accurate spatial discretization as long as the conformation tensor remains positive definite;
when its smallest eigenvalue approaches zero, the discretization is replaced by the
one-sided difference which maximizes the minimum eigenvalue (see appendix B in
Hameduddin et al. (2018)). A sharp-interface immersed boundary force field (Nicolaou,
Jung & Zaki 2015) is employed to enforce a no-slip boundary condition at the surface
of the particles (F = F IB in (2.2)), and the conformation tensor is set to unity inside
the solid domain. In addition, a short-range repulsive force equivalent to the one
proposed by Glowinski et al. (2001) is used to avoid particle–particle and particle–wall
overlap.

Our numerical method has been previously validated in single-phase Newtonian (Lee
et al. 2013) and viscoelastic turbulence (Lee & Zaki 2017), as well as in several
fluid/particle configurations in both Newtonian and viscoelastic conditions (Esteghamatian
& Zaki 2019). In the Appendix, we present an additional validation case to demonstrate
the accuracy of our particle-laden viscoelastic solver in the simulation of lateral migration
of a sphere in Newtonian and viscoelastic fluids.

Direct numerical simulations were performed for a Newtonian and five viscoelastic
fluids, each without and with the particle phase. The physical and computational
parameters of the simulations are provided in table 1. In the Newtonian single-phase
configuration, the friction Reynolds number Reτ ≡ huτ /ν ≈ 180, where uτ ≡ √〈τw〉/ρ
denotes the friction velocity and 〈τw〉 is the average wall shear stress. In particle-laden
cases, the particle size in wall units dpν/uτ ranges from 18 to 21. A designation is
introduced to identify each flow configuration: the letter W is followed by the Weissenberg
number Wi and P by the bulk solid volume fraction of the system ϕ(%).

The computational grid was uniform in the streamwise and spanwise directions. In the
wall-normal direction, the grid spacing was also uniform in the particle-laden simulations
and a hyperbolic tangent grid stretching was adopted in the single-phase simulations. In
order to properly capture the flow field in the vicinity of the particles, the grid-cell size
in those simulation was set to dp/Δx = 16, commensurate with earlier studies (Goyal &
Derksen 2012; Costa et al. 2018).
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Re β, Lmax Wi ϕ(%) Np 1/dp Lx × Ly × Lz Nx × Ny × Nz Case Symbol

2800 Newtonian 0 0 0 — 6 × 2 × 3 96 × 192 × 80 W0
20 10 024 9 6 × 2 × 3 864 × 288 × 432 W0P20

FENE-P 1 0 0 — 10 × 2 × 4.5 160 × 192 × 120 W1
β = 0.97 20 10 024 9 6 × 2 × 3 864 × 288 × 432 W1P20

Lmax = 70 3 0 0 — 10 × 2 × 4.5 160 × 192 × 120 W3
20 10 024 9 6 × 2 × 3 864 × 288 × 432 W3P20

5 0 0 — 10 × 2 × 4.5 160 × 192 × 120 W5
20 10 024 9 6 × 2 × 3 864 × 288 × 432 W5P20

15 0 0 — 10 × 2 × 4.5 160 × 192 × 120 W15
20 10 024 9 6 × 2 × 3 864 × 288 × 432 W15P20

25 0 0 — 10 × 2 × 4.5 160 × 192 × 120 W25
20 10 024 9 6 × 2 × 3 864 × 288 × 432 W25P20

TABLE 1. Physical and computational parameters of the simulations. Reynolds number
Re ≡ hUb/ν and Weissenberg number Wi ≡ λUb/h are based on the channel half-height h, the
bulk velocity Ub, total kinematic viscosity ν and viscoelastic fluid relaxation time λ. The domain
sizes are L{x,y,z} in the {x, y, z} directions, and the numbers of grid cells are N{x,y,z}. The noted
line types and symbols are adopted in all figures unless otherwise stated.

Randomly seeded particles naturally trigger the breakdown to turbulence in the
Newtonian cases, while the single-phase Newtonian case was initialized with a
superposition of laminar Poiseuille flow and random fluctuations. The viscoelastic cases
were initialized with the velocity and pressure fields adopted from their Newtonian
counterparts after the breakdown to turbulence.

Beyond an initial transient, once a statistically stationary state is achieved, conditional
ensemble-averaging is performed in the particle and fluid phases and is denoted 〈o{ f ,p}〉{f ,p}.
By defining a phase indicator χ that is zero and one in the fluid and solid phases, the
unconditional mixture average can be related to the phase-averaged quantities,

〈o〉 = 〈(1 − χ)of 〉 + 〈χop〉 = (1 − φ)〈of 〉f + φ〈op〉p, (2.7)

where φ denotes the solid volume fraction. For brevity, the subscripts {f , p} are hereafter
omitted from the averaging symbol. Fluctuations in fluid and particle phases are
defined relative to their respective means, o′

{f ,p} = o{f ,p} − 〈o{f ,p}〉. Averaging the polymer
conformation tensor requires special care: owing to the Riemannian structure of the
manifold of positive-definite tensors, the arithmetic mean is not physically representative
of the ensemble of polymer conformation tensors. Hameduddin & Zaki (2019) proposed
alternative means, namely a geometric and a log-Euclidean mean, which enable a proper
representation of stretches and volume of the conformation tensor. The log-Euclidean
mean, denoted 〈•〉log, is adopted in this work for conditional averaging of the conformation
tensors.

3. Results

Visualizations of instantaneous fields from the Newtonian (W0P20) and viscoelastic
(W25P20) particle-laden simulations are provided in figure 2, and serve to highlight the
striking differences between the two conditions: in the viscoelastic case, the streamwise
fluid velocity is appreciably higher in the channel centre, as shown by contours of
instantaneous uf (vertical planes) and by the mean velocity profiles. Furthermore, contours
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(a) (b)

FIGURE 2. Instantaneous particles positions and contours of (side view) uf and (top view at
y = dp) uf –〈uf 〉 for (a) Newtonian case W0P20; (b) viscoelastic case W25P20. For clarity,
only particles that are cut by the planes are displayed. Isosurfaces mark (a) u–〈uf 〉 = ±0.2 and
(b) u–〈uf 〉 = ±0.08 in a subregion above the horizontal plane. Wall-normal profiles of the mean
streamwise fluid velocity are also schematically displayed.

of uf –〈uf 〉 (horizontal planes) show that the turbulence motion is highly subdued by
viscoelasticity. Also, the accumulation of particles in the centre of the channel in the
viscoelastic condition is a signature of their migration. In the following, we extensively
analyse the state of the flow, polymers and particles in order to explain the origins of these
contrasting features.

3.1. Drag modulation and stress balance
The fluid viscosity, turbulence, polymers and particle phase all contribute to the total stress
within the channel. In order to assess their relative contributions, the mean total stress τtot
can be expressed in terms of its constituents,

τμ︷ ︸︸ ︷
β

Re
(1 − φ)

d〈uf 〉
dy

τRe︷ ︸︸ ︷
−[(1 − φ)〈u′

fv
′
f 〉 + φ〈u′

pv
′
p〉]

+ (1 − β)

Re
(1 − φ)〈T xy〉︸ ︷︷ ︸
τβ

+φ〈σp,xy〉︸ ︷︷ ︸
τφ

= 〈τw〉(1 − y)︸ ︷︷ ︸
τtot

. (3.1)

From left to right, the components are the viscous stress τμ, the turbulent Reynolds stress
τRe, the polymer stress τβ and the particle stress τφ . When integrated over 0 < y < 1 and
normalized by 0.5〈τw〉W0 from the single-phase Newtonian case, the right-hand side of
(3.1) reduces to 〈τw〉/〈τw〉W0, i.e. the normalized mean wall shear stress (drag), and the
left-hand side expresses the contribution of different stress constituents. Figure 3 reports
the normalized total drag (height of the bars) and its constituents (layering of the bars)
from the various flow conditions. While the primary focus of the present work is on dense
concentration (ϕ = 20 %), for the purpose of comparison two dilute cases (ϕ = 5 %) from
Esteghamatian & Zaki (2019) are also included.

We first focus on the effect of the Weissenberg number (figure 3a). In single-phase flows,
with increasing viscoelasticity, the Reynolds shear stress markedly diminishes while the
polymer stress is marginally enhanced. The net effect is the well-established reduction
in the total drag. At 20 % particle concentration, increasing viscoelasticity results in the
reduction of the Reynolds shear stress, a mild increase in the particle stress and significant
enhancement of the polymer stress.
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FIGURE 3. Contributions of different stress components to the total drag, integrated between
0 < y < 1 and normalized by 0.5〈τw〉W0. Results are arranged to display the effect of
(a) Weissenberg number, (b) solid volume fraction. The intensity of fluctuations of the total
stress in time, measured by the standard deviation of 〈τw〉xz/〈τw〉W0, is shown by uncertainty
bars. Case designations are listed in table 1.

These combined effects give rise to a non-monotonic behaviour in the total stress: the
drag is decreased with an increase in viscoelasticity up to the point where the Reynolds
shear stress is nearly eradicated in case W5P20. Beyond Wi = 5, further increasing Wi
only enhances the polymer and particle stresses and, in turn, the total drag.

The non-monotonic trend is not universal for all particle concentrations. Results from
the earlier study at 5 % particle concentration (Esteghamatian & Zaki 2019) predicted
smaller particle and polymer stresses and lower drag relative to the 20 % cases, and a
consistent reduction in the total stress with increasing elasticity. The Reynolds stress, τRe,
was also eradicated in the dilute case, but only at the highest Weissenberg number (case
W25P5) – an indication that turbulence inhibition in particle-laden viscoelastic flows is
weaker at dilute conditions. A comparison of the drag makeup at both concentrations
suggests that increasing the Weissenberg number beyond Wi = 25 in the dilute case
(ϕ = 5 %) would enhance the polymer stress and potentially increase the total drag,
although additional simulations at the lower concentration would be required to verify
this outcome. Nonetheless, the general conclusion is that increasing Wi in particle-laden
flows reduces drag when the reduction in τRe is appreciable, and hence τRe must be finite.

The intensity of fluctuations of the total stress in time, measured by the standard
deviation of 〈τw〉xz/〈τw〉W0, is shown by uncertainty bars in figure 3. Strong fluctuations
in time are a signature of intermittency, or the alternation of the turbulence between a
hibernating and an active state – an effect that intensifies at higher Wi. In cases where the
turbulence is eradicated, the intermittency thus vanishes. At ϕ = 20 %, the intermittency
is most pronounced at Wi = 3. The results highlight that intermittency sets in and is most
pronounced at lower Wi for larger particle concentrations.

Figure 3(b) draws the focus to the effect of the solid volume fraction on different
components of the total stress. In both Newtonian and viscoelastic conditions, the addition
of particles increases the total drag. In the Newtonian cases, underlying the increase in total
drag is a non-monotonic behaviour of the Reynolds stress: as the particle concentration is
increased, τRe first increases (W0P5) and then reduces (W0P20) relative to the single-phase
configuration. This trend is consistent with a previous study in Newtonian flows and
similar conditions by Picano et al. (2015). The increase in the total drag at higher
particle concentration is more pronounced for the viscoelastic conditions due to the
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FIGURE 4. Wall-normal profiles of (a) solid volume fraction; (b) mean shear rate γ̇ ≡ d〈uf 〉/dy
in particle-laden cases; (c) particle stress τφ ; and polymer stress τβ in (d) single-phase and
(e) particle-laden conditions. Line types are listed in table 1.

significant increase of the particle and polymer stresses with the solid volume fraction.
Also, the non-monotonic trend in the Reynolds stress reported for Newtonian carrier fluids
disappears in the viscoelastic cases: the addition of particles monotonically reduces and
ultimately eliminates τRe.

The particle stress τφ makes an important contribution to the total drag at ϕ = 20 %,
and warrants consideration. Two relevant quantities are the solid volume fraction φ and
the mean shear rate γ̇ ≡ d〈uf 〉/dy (figure 4a,b). For Wi ≥ 5, particles migrate away from
the wall in all the particle-laden cases and the solid volume fraction reaches near 45 %
at the channel centre (figure 4a) – an explanation of this migration trend is provided in
§ 3.4. In all cases, the φ profile has a local maximum near y ≈ dp, due to the asymmetric
interaction of near-wall particles that are stabilized by the wall lubrication. For Wi ≥ 5,
a second local maximum near y ≈ 2dp is indicative of a propensity for the particles to
form a layered structure in the absence of a vertical mixing mechanism. The mean shear
rate (figure 4b) exhibits a non-monotonic behaviour with increasing viscoelasticity. At the
wall, it decreases to a minimum at Wi = 5 and increases beyond that value. Away from the
wall, y ≥ 0.2, that trend is reversed and the mean shear rate is the highest for Wi = 5 and
decreases at higher Wi.

The profile of τφ (figure 4c) is influenced by viscoelasticity in three ways. (i) The
polymers directly increase the stresslet contribution to the particle stress by altering the
surface traction (Einarsson et al. 2018). (ii) The mean shear rates are higher in the region
y ≥ 0.2. Since particles resist deformation under shear, the stresslet contribution to the
particle stress is enhanced in that region. (iii) Due to the migration of particles towards
the channel centre, the particle concentration and in turn the particle stress are larger
at y ≥ 0.65. A combination of all these effects leads to the larger particle stresses in
the viscoelastic cases away from the wall. Near the wall, local peaks in τφ coincide
with the local maxima in the solid volume fraction. In addition, conditions with the
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stronger near-wall shear rates (Wi < 5 cases) have larger peaks in the particle stress
profiles.

The other important contribution to drag in the particle-laden viscoelastic cases is the
polymer stress, especially when compared with the single-phase cases (figures 4d and 4e).
The latter sustain small levels of τβ , with very weak variation in the wall-normal direction.
In contrast, in presence of the particle phase, the polymer stress increases appreciably,
is highest in the near-wall region where particle layering is observed, and decays to
zero towards the channel centre. Evidently, the particles contribute to the deformation
of polymers and, in turn, increasing the polymer stress. It is unexpected, however, that
the polymer stress vanishes in the region where the particles are most accumulated
(0.8 < y < 1.0). In this region, the mean flow is akin to a plug profile with negligible
shear rate due to the high concentration of particles (see figure 4b for the shear rate).
This observation underscores that the presence of particles and of a finite shear rate are
two essential components for effective polymer deformation. The differences between the
polymer conformation in the near-wall region and the channel centre are further examined
in § 3.3.

3.2. Flow structures and statistics
In this section, we examine the effect of particles on turbulent structures, mean flow
statistics and Reynolds stresses. Figure 5 compares the instantaneous contours of uf − 〈uf 〉,
and the correlation of u′

f in the spanwise direction,

Ru′
f u′

f
( y,Δz) = 〈u′

f (x, y, z, t)u′
f (x, y, z + Δz, t)〉

〈u′
f (x, y, z, t)u′

f (x, y, z, t)〉 . (3.2)

In single phase, relative to the Newtonian streaks, viscoelasticity inflates these structures
(see figures 5a and 5b). Addition of particles to a Newtonian flow also increases the width
of the streamwise structures (figure 5c). The particle-laden viscoelastic case is markedly
different: the classical turbulent streaks are nearly absent at Wi = 25 (figure 5d), and the
spanwise correlation length reduces to the order of a particle diameter.

The mean fluid-velocity profiles and their deviation from Poiseuille flow are reported in
figure 6. In single-phase flows, the mean profiles monotonically approach the Poiseuille
condition with increasing elasticity. In particle-laden flows, a non-monotonic behaviour
that is consistent with the change in drag is observed: the flow approaches the laminar
condition with increasing elasticity up to Wi = 5 at which the turbulence is completely
eradicated. Beyond that level, the polymer stress dominates the momentum transfer in the
wall-normal direction. As a result, the mean velocity profiles are flattened with further
increase in elasticity.

The normal components of the Reynolds stress tensor are plotted in figure 7. In
single-phase flows, the peak of 〈u′

f u
′
f 〉 shifts away from the wall with increasing elasticity

due to the swelling of the streamwise streaks, and the stresses in the cross-flow plane
are progressively attenuated at higher Wi. In particle-laden conditions, the co-presence of
the solid phase and elasticity effectively suppresses the turbulent fluctuations. At Wi ≥ 5,
fluctuations are significantly suppressed in all three directions and become independent
of elasticity. This observation reinforces our previous interpretation of flow perturbations
(figure 5): they are not due to conventional turbulent eddies, but rather fluctuations due to
the particles in shear.

Quadrant analysis of the Reynolds shear stress is reported in figure 8. The second and
fourth quadrants (〈u′

fv
′
f 〉Q2 and 〈u′

fv
′
f 〉Q4) are associated with ejections and sweeps that
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uL (bottom) in (a) single-phase and (b) 20 % particle concentration. Line types are listed in
table 1.

are responsible for the turbulence production, while 〈u′
fv

′
f 〉Q1 and 〈u′

fv
′
f 〉Q3 correspond

to interaction events that counter the wall-normal momentum flux (Wallace, Eckelmann
& Brodkey 1972). In single-phase flows, elasticity reduces the magnitude of u′

fv
′
f in all

quadrants, while the largest drops are associated with 〈u′
fv

′
f 〉Q2 and 〈u′

fv
′
f 〉Q4. As a result, the

net effect is a reduction in the turbulent shear stress and in turn the wall-normal momentum
transfer.

The addition of particles to the Newtonian flow increases the contributions in 〈u′
fv

′
f 〉Q1,

〈u′
fv

′
f 〉Q3 and 〈u′

fv
′
f 〉Q4, while weakening 〈u′

fv
′
f 〉Q2 ejection events. These modifications are

marginal, and their net effect is an 11 % reduction in the turbulent shear stress relative to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

52
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.525


901 A25-12 A. Esteghamatian and T. A. Zaki

 0.5

1.0

 1.5

2.0

 2.5

3.0

0  0.2  0.4  0.6  0.8 1.0

u′ f  
u′

f

v
′ f  
v

′ f

w
′ f  
w

′ f

u′ f  
u′

f

v
′ f  
v

′ f

w
′ f  
w

′ f

(×10–2) (×10–3)

(×10–3)

(×10–3)

(×10–3)(×10–2)

 0.5

1.0

 1.5

2.0

 2.5

3.0

0  0.2  0.4  0.6  0.8 1.0 0

1

2

3

4

5

 0.2  0.4  0.6  0.8 1.0

 0.5

1.0

 1.5

2.0

 2.5

3.0

0  0.2  0.4  0.6  0.8 1.0

y

 0.5

1.0

 1.5

2.0

 2.5

3.0

0  0.2  0.4  0.6  0.8 1.0

y

1

2

3

4

5

0  0.2  0.4  0.6  0.8 1.0

y

(a) (b) (c)

(d ) (e) ( f )

FIGURE 7. Wall-normal profiles of (a,d) streamwise, (b,e) wall-normal and (c,f ) spanwise
fluid velocity fluctuations. Line types are listed in table 1.

2
4
6

00.20.40.60.81.0

2
4
6

2
4
6

0 0.2 0.4 0.6 0.8 1.0

2
4
6

2
4
6

00.20.40.60.81.0

2
4
6

2
4
6

0 0.2 0.4 0.6 0.8 1.0

2
4
6

–〈u′
f v

′
f 〉Q2 (u′

f < 0, v′f > 0)

〈u′
f v

′
f 〉Q3 (u′

f < 0, v′f < 0) –〈u′
f v

′
f 〉Q4 (u′

f > 0, v′f < 0) 〈u′
f v

′
f 〉Q3 (u′

f < 0, v′f < 0) –〈u′
f v

′
f 〉Q4 (u′

f > 0, v′f < 0)

–〈u′
f v

′
f 〉Q2 (u′

f < 0, v′f > 0)〈u′
f v

′
f 〉Q1 (u′

f  > 0, v′f > 0) 〈u′
f v

′
f 〉Q1 (u′

f  > 0, v′f > 0)

y y y y

(×10–3) (×10–3)
(a) (b)

FIGURE 8. Quadrant analysis of the Reynolds shear stress, 〈u′
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f 〉, in (a) single-phase and

(b) particle-laden conditions. Line types are listed in table 1.

the single-phase condition. At Wi = {1, 3} the turbulence is still active, and the addition of
particles results in {15, 31}% decrease in the turbulent shear stress mostly due to weakened
〈u′

fv
′
f 〉Q2 ejection events. Beyond Wi = 5, a steep reduction in the contributions to 〈u′

fv
′
f 〉 is

observed in all four quadrants. The nearly symmetric contributions of 〈u′
fv

′
f 〉Q1 to 〈u′

fv
′
f 〉Q4

highlights that the turbulence production is completely disrupted. Also, the remarkable
drop in the peak values underlines the reduction in correlated motions in the x and y
directions.

3.3. Polymer conformation
Velocity gradients in the fluid phase, whether induced by the mean shear, turbulent
fluctuations or particles, modify the polymer conformation away from equilibrium. As
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FIGURE 9. Wall-normal profiles of (a,b) average logarithmic volume and (c,d) squared geodesic
distance between the conformation and the identity tensors (cf. (3.3)). Line types are listed in
table 1.

explained in detail by Hameduddin et al. (2018), these modifications cannot be accurately
interpreted with reference to isolated components of c. Instead, those authors introduced
three rigorous measures to characterize the conformation tensor and its perturbations:
(i) the logarithmic volume ratio, log(det(c)/ det(c̄)), which compares the volume of the
instantaneous polymer conformation c relative to a reference conformation tensor c̄;
(ii) the squared geodesic distance between c and c̄ on the manifold of positive-definite
matrices; (iii) the anisotropy which is a function of (i) and (ii), and therefore is not
considered in the present study. The squared geodesic distance between a pair of
positive-definite matrices A and B is defined by

d2(A,B) ≡ tr(log2(A−1/2 · B · A−1/2)). (3.3)

Wall-normal profiles of the first two scalar measures are reported in figure 9, where
the reference tensor was selected to be c̄ = I in order to highlight the departure of the
polymer from the isotropic equilibrium state. This choice of the reference state also
affords a fair comparison across the different flow configurations. In both the single-phase
and particle-laden cases, 〈log(det(c))〉 and 〈d2(I, c)〉 increase with Wi, with marginal
difference between Wi = 15 and Wi = 25. In single-phase flows, and at the lowest Wi, the
profiles of both measures decay in the outer flow due to the fast polymer relaxation away
from the peak turbulence production. At the higher Wi cases, the profiles only have weak
variations in the wall-normal direction. Due to the long polymers’ relaxation times in these
cases, the perturbations in polymer conformations are effectively transported by turbulent
motion across the channel, explaining the almost uniform profile of both measures in
the bulk of the channel at Wi = {15, 25}. In the particle-laden cases with Wi ≥ 5, the
wall-normal mixing is inhibited due to the suppression of turbulence (cf. figure 8b), yet
both measures still exhibit small variations in most of the channel, except near the centre.
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FIGURE 10. Wall-normal profiles of the mean squared geodesic distance between instantaneous
and the log-Euclidean mean conformation tensors in (a) single-phase and (b) particle-laden
conditions. Line types are listed table 1.

The controlling factors in polymer perturbations in particle-laden cases with Wi ≥ 5 are
the mean shear rate and the particle concentration. From the wall to the centre, the polymer
perturbation is enhanced with an increase in the number of particles, yet hindered by a
decrease in the mean shear rate. These competing effects explain the weak variations in
most of the channel. Nevertheless, near the channel centre where the mean shear decays
to zero and the particles population is the highest, the significant drop in both measures of
polymer deformation is a signature of a different particle–polymer interaction mechanism,
which is further detailed in the following.

Profiles of 〈d2(〈c〉log, c)〉 are reported for the single-phase and particle-laden conditions
in figure 10. This quantity is the average of the squared geodesic distance between the
instantaneous and the log-Euclidean mean conformation, and is therefore a measure
of the intensity of the perturbation from that mean at different y locations. Note that
since volumetric compressions and expansions of polymers with respect to 〈c〉log are
symmetric, the average value of log(det(c)/ det(〈c〉log)) is zero and is therefore not
reported. In the single-phase flows, higher elasticity is associated with larger departures of
the conformation from its mean value, and the profiles of 〈d2(〈c〉log, c)〉 become nearly flat
for Wi ≥ 5. The recorded values are, as can be anticipated, smaller than 〈d2(I, c)〉. Another
notable difference is the appreciable near-wall drop in figure 10(a) relative to figure 9(c):
although the polymers are highly deformed in the near-wall region, the fluctuations away
from their log-Euclidean mean are relatively small. In the particle-laden cases, local
maxima near the wall coincide with the peaks of the solid volume fraction profiles (cf.
figure 4a). In the outer bulk flow, where the particle population is larger, the perturbations
relative to the mean are enhanced at larger Wi. Nevertheless, in all cases the fluctuations
decay significantly beyond y ≈ 0.8, confirming the trends in the profiles of 〈log(det(c))〉
and 〈d2(c, I)〉 in figures 9(b) and 9(d).

We now direct the focus to select y locations where we provide a further detailed account
of the polymer deformation when Wi = 25; the results for Wi = 15 are qualitatively
similar. Figure 11 shows the joint probability density function (JPDF) of 〈d2(I, c)〉 and
log(det(c)). At y = 0.15, polymers depart appreciably from the isotropic state and,
in the particle-laden condition, are more deformed and expanded compared with the
single-phase counterpart (figure 11a). The figure also shows instantaneous realizations
of the polymer conformation, visualized using ellipsoids whose axes are the eigenvectors
of the tensor each scaled by the corresponding eigenvalues; the ellipsoid are also coloured
by the logarithm of the volume of the tensor. These visualizations suggest dissimilar
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FIGURE 11. The JPDF of squared geodesic distance d2(I, c) and the logarithmic volume
log(det(c)) at (a) y = 0.15 and (b) y = 1. Flood (particle-laden) and line (single-phase) contours
are plotted in the same range, and refer to the cases with the Wi = 25 condition. Flow
visualizations show snapshots of uf –〈uf 〉 contours in the single-phase condition and position
of particles that are cut by the x–z plane in the particle-laden case. The ellipsoids represent
instantaneous realizations of the polymer conformation, are coloured by the logarithmic volume
of c, and their axes are the eigenvectors of c scaled by the corresponding eigenvalues.

mechanisms for polymers’ deformation in the single-phase and particle-laden cases. In the
former, polymers are most perturbed in the vicinity of the coherent turbulent structures,
visualized by contours of uf –〈uf 〉. On the other hand, in the particle-laden condition, large
polymer deformation are observed in the vicinity of particles. The JPDF of 〈d2(I, c)〉 and
log(det(c)) at the channel centre (figure 11b) shows appreciable departure of the polymer
from equilibrium in the single-phase condition. In contrast, in the particle-laden case the
polymer conformation is most akin to the isotropic equilibrium state.

The instantaneous visualizations at y = 1 show that the polymer conformation is
relatively small in volume in the two-phase case, in the confined regions between the crowd
of particles. Scattered instances of deformed polymer conformation are still observable,
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although their presence is rare and their magnitude is small (note that the colourbars for
log(det(c)) in the particle-laden condition have different ranges in figures 11a and 11b).

So far, we have shown that the particles appreciably alter the polymer deformation and,
in turn, the associated stresses. We will now examine how these deformations take place at
the particle scale. To this end, we first describe the particles’ microstructure by evaluating
the particle-pair distribution function, q(r, ψ, θ), which depends on the pair separation
r, the polar angle ψ relative to the positive z axis, and the azimuthal angle θ measured
anticlockwise from the positive x axis,

q(r, ψ, θ) = 〈dN(r, ψ, θ)〉/〈dN(r, ψ, θ)R〉, (3.4)

dN(r, ψ, θ) =
Np∑

m=1

δ(r − |rm|)δ(ψ − ψm)δ(θ − θm), (3.5)

rm = Pm − Pref , (3.6)

ψm = cos−1

(
rm · ez

|rm|
)

; θm = arctan
(

rm · ey

rm · ex

)
. (3.7a,b)

The number of neighbouring particles within each bin is denoted dN, and P refers to the
particles’ position vector. Similar to our previous study (Esteghamatian & Zaki 2019), the
particle-pair distribution function q is normalized by dNR which corresponds to a random
distribution of particles with a no-overlap condition and the case-specific wall-normal
profile of the mean solid fraction, in order to eliminate bias in the interpretation of the
results.

Results for reference particles located at y = 0.2 are shown in figure 12(a). Contours of
q(r = 1.05dp) are projected onto the particle surface. In terms of the particle-attached
coordinates, x̃ = x − Pref , the pairwise distribution function shows accumulations of
neighbouring particles in the regions x̃ ỹ < 0 and depletion x̃ ỹ > 0. This microstructure
is generally observed when finite-size particles are suspended in shear flows: particles at
ỹ > 0 advect faster than the reference one and, as a result, are more likely to accumulate
behind it. A similar explanation describes the asymmetry of q with respect to the ỹ axis at
ỹ < 0 locations, where the neighbouring particles advect more slowly than the reference
one.

Figure 12(a) also shows the conditionally averaged log-Euclidean polymer conformation
〈c〉log. In order to aid the discussion, four regions are identified within one diameter
of the particle centre and are designated Ω1 to Ω4. Regions Ω1 and Ω3 correspond to
x̃ ỹ > 0, while Ω2 and Ω4 correspond to x̃ ỹ < 0. The conformation tensors have larger
volumes in Ω1 and Ω3, where polymers are effectively deformed by the presence of the
reference particle and unconstrained by adjacent particles, as demonstrated by the particles
microstructure. In the other two regions, where the neighbouring particles are stabilized
by collision, polymers are overall less deformed and large deformations are only recorded
in the immediate vicinity of the reference particle.

The effect of the microstructure on the polymer conformation in case W25P20 is
quantified using the JPDF of the squared geodesic distance and logarithmic volume
ratio in figure 12(b). The adopted reference conformation is c̄ = 〈c〉log, that is to say
the polymer deformation is evaluated relative to the log-Euclidean mean conformation.
The line contours in both panels show the unconditional JPDF at y = 0.15. Near
symmetry of positive and negative values of the logarithmic volume ratio confirms that
the log-Euclidean mean is representative of the ensemble. The colour contours display
the JPDF conditional on the fluid points belonging to specific regions: the left panel for
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FIGURE 12. Particle-pair distribution and polymer conformation for case W25P20.
(a) Reference particle located at y = 0.2 coloured by q(r = 1.05dp). Ellipsoids represent
the particle-conditioned log-Euclidean mean conformation 〈c〉log coloured by their logarithmic
volume and plotted in the particle coordinates (x̃ = x − Pref ). Four regions within one diameter
from the particle centre are designated Ω1–Ω4. (b) The JPDF of squared geodesic distance
d2(〈c〉log, c) and logarithmic volume ratio log(det(c)/ det(〈c〉log)) for points located at y = 0.15
(ỹ = −0.05). Line contours are unconditional; colours are points within one diameter of a
particle centre and exclusively located in (left) Ω1 or Ω3 versus (right) Ω2 or Ω4.

points in Ω1 and Ω3, and the right for points in Ω2 and Ω4. In both figures, the colour
contours are skewed towards larger values of the logarithmic volume ratio, highlighting
the role of particles in the deformation of the polymers. The shift of the peak in the
JPDFs towards larger expansions and squared geodesic distances is more appreciable in
Ω1 and Ω3, which is consistent with the interpretation of figure 12(a): polymers are more
deformed in x̃ ỹ > 0 regions, where the reference particle is not immediately constrained
by immediate neighbours.

3.4. Particle dynamics: diffusion and migration
The diffusion of particles is examined by evaluating their mean square displacement in the
wall-normal direction 〈Δy2〉 as a function of the separation time Δt:

〈Δy2〉 ≡ 〈(Py(t + Δt)− Py(t))2〉, (3.8)

where the average is performed over the ensemble of particles which at time t are located in
a wall-parallel bin centred at y. The extent of the bin in the wall-normal direction is 1.5dp,
while in the x and z directions it spans the full domain. The mean square displacements as
a function of Δt are reported in figure 13, and exhibit quadratic and linear growth at small
and large separation times, respectively. The former is indicative of correlated motion
driven by collisions, and the latter is due to uncorrelated diffusive motion. In viscoelastic
conditions, the eradication of turbulence results in faster decorrelation of particles motion
compared with the Newtonian flow. In addition, the mean square displacements are orders
of magnitude smaller in the viscoelastic flow due to the weaker mixing of particles in the
wall-normal direction.

In the Newtonian condition, the first bin for the computation of 〈Δy2〉 is located at y+ ≈
35. At higher wall-normal positions, and during the correlated regime 〈Δy2〉 ∝ Δt2, the
mean squared displacements weakly decrease as the turbulence activity decreases. In the
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FIGURE 13. Particles’ mean squared displacement in the wall-normal direction (cf. (3.8))
normalized by the particle diameter squared 〈Δy2〉/d2

p , for cases (a) W0P20 and (b,c) W25P20.
In panel (c), the ordinate is also normalized by the mean shear rate of the streamwise fluid
velocity γ̇ . The colours indicate different y locations of the reference particle at Δt = 0.

viscoelastic flow, 〈Δy2〉 is a stronger function of y during both the correlated and diffusive
regimes. In the absence of the turbulence, it is expected that the particles’ dynamics
is driven by shear-induced self-diffusion. We examine this hypothesis by normalizing
〈Δy2〉 with the mean shear rate of the streamwise fluid velocity, γ̇ , in figure 13(c). The
better collapse of the curves corresponding to different y locations confirms that the
shear-induced self-diffusion is a dominant mechanism for the dispersion of particles in
the wall-normal direction.

In § 3.1, we have shown that the particles’ concentration increases away from the
wall for Wi ≥ 5 (cf. figure 4a). An explanation was sought by performing an additional
simulation that probes the transient particles’ migration dynamics. The initial condition
was a snapshot from the statistically stationary Newtonian particle-laden flow, where the
particle concentration is almost flat in the majority of the channel. Viscoelasticity was then
suddenly introduced, with Wi = 25. The particles migrated towards the channel centre
over approximately 400 time units, and the migration velocity progressively weakened.
The equilibrium concentration profile for case W25P20 was established beyond t = 500.

A particle in wall-bounded shear has an equilibrium position farther away from the wall
when the carrier fluid is viscoelastic compared with Newtonian (e.g. Karnis & Mason
(1966); Leshansky et al. (2007), and the Appendix). This lateral migration of isolated
particles, or in the very dilute regime, is well documented and is due to an imbalance
of elastic normal stresses (see D’Avino, Greco & Maffettone (2017), for a review). In
the present concentrated suspension, interparticle collisions play an important role in
shear-induced migration towards the channel centre. In order to elucidate the mechanism,
the statistical measures introduced by Sundaram & Collins (1997) are tailored for our
configuration. The propensity of particle interactions to affect a reference particle is
determined by (i) the probability of the presence of a neighbouring particle and (ii) the
intensity of their relative velocity. The first measure is quantified by the particle-pair
distribution function, previously defined as q in (3.4). Here the quantity is redefined with
a different normalization,

q′(r, ψ, θ) = 〈dN(r, ψ, θ)〉/(r2 dθ dψ dr), (3.9)

namely using the volume of the spherical bin, r2 dθ dψ dr. Unlike the previous definition,
q′(r, ψ, θ) is intentionally biased by the inhomogeneity of particles distribution in the
wall-normal direction. As we will show shortly, this inhomogeneity plays an important role
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FIGURE 14. Measures of microstructure for case W25P20 and particles located at
0.6 ≤ y ≤ 0.8, averaged during (top) transient and (middle) statistically stationary intervals.
Lines compare the statistics averaged over 1 ≤ r/dp ≤ 2. (a) Particle-pair distribution function
q′(r, ψ, θ) (3.9), (b) mean approaching velocity 〈Δun,−

p (r, ψ, θ)〉 (3.10) and (c) intensity of
particles collision measured by q′ × 〈Δun,−

p 〉. All quantities are averaged over the polar angle
range of −π/8 < ψ − π/2 < π/8.

in the migration dynamics. The second measure is expressed by the approaching velocity
between the reference and a neighbouring particle m,

Δun,−(r, ψ, θ) =

Np∑
m=1

δ(r − |rm|)δ(ψ − ψm)δ(θ − θm)Δun,−
m

dN(r, ψ, θ)
, (3.10)

Δun,−
m = max

{
0,−(up,m − up,ref ) · rm

|rm|
}
. (3.11)

On average, 〈Δun,−〉(r, ψ, θ) describes the spatial variations in the approaching velocity
of neighbouring particles in the vicinity of the reference one. Finally, the product
of q′ and 〈Δun,−〉, referred to as the collision kernel when r = dp (Sundaram &
Collins 1997), quantifies the intensity of collision events. Note that in addition to direct
collisions, neighbouring particles also indirectly affect the motion of the reference one by
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displacement of the interstitial fluid between them. Hence, the observable q′ × 〈Δun,−〉
will be examined even at r > dp, with the knowledge that values at larger separation
distances are less relevant to the dynamics of the reference particle.

These statistical measures are reported in figure 14 for case W25P20. The figure
compares the initial transient of the simulation and a statistically stationary interval.
During the former, the profile of solid volume fraction is similar to its initial condition
adopted from the Newtonian flow, i.e. it increases away from the wall at a relatively weak
rate compared with its statistically stationary state. As a result, q′ is slightly larger above
the reference particle than below it during the transient, and this asymmetry becomes
much more pronounced in the statistically stationary state (figure 14a). Due to the positive
mean shear rate, neighbouring particles experience a finite approaching velocity only
in regions Ω2 and Ω4 (cf. figure 12a for a definition). Also, the values of 〈Δun,−

p 〉 are
larger in Ω4 due to the curvature of the mean streamwise velocity profile: the mean
shear rate decreases away from the wall, giving rise to a stronger approaching velocity
for neighbouring particles below the reference one (figure 14b). The combination of these
two effects is shown in figure 14(c). While in the statistically stationary state q′ × 〈Δun,−

p 〉
is symmetric about the origin, it is larger inΩ4 during the initial transient. Hence, stronger
collisions from below drive the reference particle towards the channel centre. In short, the
curvature in mean streamwise velocity profile induces the migration of particles towards
the channel centre, and this effect is eventually counterbalanced by the gradient of solid
volume fraction in the wall-normal direction.

The results presented herein showed that, while both the presence of particles
and viscoelasticity can suppress and even eradicate turbulence at moderate particle
concentrations and high elasticity, drag can increase appreciably. Both the particle and
polymer stresses become important in these conditions. The large contribution to the
polymer stress takes place in the high-shear region of the flow, where the polymers undergo
appreciable deformation in the vicinity of the particles, and decays in the channel centre.
The particle contribution to the stress shifts away from the wall at higher Wi due to the
change in the preferential migration of the particles.

4. Conclusion

Direct numerical simulations of particle-laden viscoelastic flow in a channel were
performed at moderate particle concentration and a wide range of Weissenberg numbers,
and the results were analysed in detail. The flow was resolved at the scale of particles with
an immersed boundary method, and the viscoelastic effects were modelled by solving
the evolution equations of the polymer conformation tensor for a FENE-P fluid. The
particle-laden cases with a bulk solid volume fraction ϕ = 20 % were contrasted to their
single-phase counterparts. Key features of the flow were also contrasted to data at dilute
concentration (ϕ = 5 %) from a previous study (Esteghamatian & Zaki 2019); differences
are striking all the way from the global stress balance and down to the particle migration
and microstructure.

In a regime where single-phase and dilute two-phase viscoelastic flows exhibit drag
reduction with increasing elasticity, the concentrated suspension of particles leads to a
non-monotonic change in drag. At low Weissenberg numbers, the turbulent shear stress
is effectively reduced along with the total drag. Beyond Wi = 5, turbulence is nearly
eradicated and the drag increases with increasing elasticity, due primarily to an increasing
contribution from the polymer stress.
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Consistent with the change in drag, the mean flow approaches the Poiseuille profile
as the Weissenberg number approaches Wi = 5. Beyond that level, in the particle-laden
flows, the mean flow flattens with further increase in elasticity. While this effect is
reminiscent of the transition from laminar to elasto-inertial turbulence in single-phase
viscoelastic flows (Choueiri, Lopez & Hof 2018), turbulence does not play a role here.
The diagonal components of the Reynolds stresses, although highly suppressed, are still
finite and are primarily driven by particle-induced perturbations which are insensitive to
the level of elasticity. In addition, the shear component of Reynolds stresses is nearly
eradicated, and quadrant analysis shows that each quadrant has nearly equal contribution to
u′

fv
′
f .

The influence of particles on the polymer stresses is examined by comparing the
deformation and expansion of polymers in the single-phase and particle-laden conditions.
Following Hameduddin & Zaki (2019), special care is exercised in characterizing the mean
and deformations of the conformation tensor.

In the single-phase flow polymers are deformed in regions of the flow with high
turbulence activity, while in the particle-laden case the strong polymer deformations
and expansions are recorded in the vicinity of the particles’ surfaces. By examining the
particles microstructure, we showed that polymers are effectively perturbed in the straining
regions near a reference particle, where the presence of neighbouring particles is less
probable.

The dynamics of the particles was investigated by examining their diffusion and
migration mechanism. Here too the findings are qualitatively different from the dilute
case, where particles can promote the cycles of hibernating and active turbulence during
which they synchronously migrate away from and towards the wall (Esteghamatian &
Zaki 2019). In the present concentrated suspension and at the same level of elasticity,
these cycles are entirely absent and the wall-normal particle mixing is markedly hindered
due to the eradication of turbulence. A shear-induced self-diffusion is identified as the
primary mechanism for mixing of particles in the viscoelastic conditions. In addition,
transient migration towards the channel centre was observed exclusively in viscoelastic
cases with Wi ≥ 5 condition. Theoretical studies generally ascribe such migration trend
to an imbalance in the particle-phase normal stresses (Morris 2009). We provided
an explanation by comparing the microstructure and the collision statistics during the
transient and statistically stationary stages of the simulations, starting from the Newtonian
configuration and suddenly introducing viscoelasticity. The collision kernel shows that the
curvature of the mean velocity profile leads to preferential migration towards the channel
centre, which is counterbalanced by the gradient of solid volume fraction in the statistically
stationary state.

Taken all together, at high elasticity and particle concentration, the migration pattern of
the particles leads to clustering in the channel centre where the polymers in the interstitial
space are inappreciably perturbed away from equilibrium. Yet, away from the channel
centre, a significant increase in the polymer stresses is recorded near the particles’ surfaces
and becomes sufficiently large at high elasticity to ultimately cause an increase in the total
drag – a reversal in the commonly anticipated effect of polymers.
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FIGURE 15. Configuration of validation test: lateral migration of a sphere in duct flow of
Newtonian and Oldroyd-B fluids. No-slip boundary conditions uf = 0 are imposed at y = {0, 1}
and z = {0, 1}, and periodicity is enforced in the x direction.

dp/h Rec β Wic yeq/h yeq/h (Li et al. 2015) Error %

0.25 18.9 1.0 0 0.773 0.776 0.39
0.189 0.678 0.674 0.59

0.1 0.567 0.5 0.5 0
0.945 0.5 0.5 0

TABLE 2. Parameters of the simulations of isolated particle in duct flow and the final
equilibrium positions.
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Appendix. Validation of the numerical algorithm

The particle-laden viscoelastic solver was extensively validated (see Esteghamatian &
Zaki 2019). An additional validation case is presented here, where the lateral migration of
a sphere in Newtonian and Oldroyd-B fluids is simulated and compared with data by Li,
McKinley & Ardekani (2015). The computational domain is a duct geometry as illustrated
in figure 15. The flow is periodic in x , and no-slip boundary conditions are imposed at
y = {0, 1} and z = {0, 1}. A neutrally buoyant sphere of diameter dp is initially located
at (0 × 0.75 × 0.5)H, where H is the height of the square channel. Computations were
performed in a domain spanning over 16dp and the particle blockage ratio is dp/H = 0.25.
The prescribed Reynolds number based on centre velocity is Rec ≡ UcH/ν = 18.9, and the
Weissenberg number and the viscosity ratio are Wic = λUc/H and β = 0.1. The particles’
equilibrium positions yeq for three viscoelastic cases, Wic = {0.189, 0.567, 0.945}, are
contrasted to the Newtonian condition in table 2. The results demonstrate the accuracy
of our prediction of the particle migration and equilibrium condition.
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