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A careful examination of the effects of collisions on resonant wave–particle
interactions leads to an alternate interpretation and deeper understanding of the
quasilinear operator originally formulated by Kennel & Engelmann (Phys. Fluids,
vol. 9, 1966, pp. 2377–2388) for collisionless, magnetized plasmas, and widely used
to model radio frequency heating and current drive. The resonant and nearly resonant
particles are particularly sensitive to collisions that scatter them out of and into
resonance, as for Landau damping as shown by Johnston (Phys. Fluids, vol. 14,
1971, pp. 2719–2726) and Auerbach (Phys. Fluids, vol. 20, 1977, pp. 1836–1844).
As a result, the resonant particle–wave interactions occur in the centre of a narrow
collisional boundary when the collision frequency ν is very small compared to
the wave frequency ω. The diffusive nature of the pitch angle scattering combined
with the wave–particle resonance condition enhances the collision frequency by
(ω/ν)2/3� 1, resulting in an effective resonant particle collisional interaction time of
τint∼ (ν/ω)

2/3/ν� 1/ν. A collisional boundary layer analysis generalizes the standard
quasilinear operator to a form that is fully consistent with Kennel–Englemann, but
allows replacing the delta function appearing in the diffusivity with a simple integral
(having the appropriate delta function limit) retaining the new physics associated with
the narrow boundary layer, while preserving the entropy production principle. The
limitations of the collisional boundary layer treatment are also estimated, and indicate
that substantial departures from Maxwellian are not permitted.
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1. Introduction

The Kennel & Engelmann (1966) quasilinear operator used to simulate radio
frequency (rf) heating and current drive in tokamaks has a velocity space diffusivity
proportional to a delta function at the wave–particle resonances associated with
Landau and Doppler shifts. To deal with this awkward feature the quasilinear operator
is normally assumed to be valid in tokamak geometry so that its transit or bounce
average may be employed (Eriksson et al. 1999; Jaeger et al. 2006; Lee et al. 2017),
even though it was originally derived in a constant magnetic field. Recently a rigorous
high frequency gyrokinetic derivation of the quasilinear operator in tokamak geometry
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(Catto, Lee & Ram 2017) has been performed to provide further justification for this
approach even when magnetic drifts must be retained. Nevertheless, in the absence
of transit averaging the troublesome delta function, now associated with the magnetic
drift as well as Doppler and Landau shifted resonances, remains.

One possible way to remove this singular behaviour is via collisions, which are
normally dismissed as unimportant because the wave frequency ω is so large
compared to the collision frequency ν. However, phenomenological collision models
that attempt to decorrelate wave–particle interactions more strongly than a simple
Krook model (Catto & Myra 1992; Lamalle 1997) rely on transit averaging as well
as uncorrelated sequential passes through resonance. Here, however, a collisional
boundary layer treatment of the resonant particle interactions, as employed by
Johnston (1971) and in more detail by Auerbach (1977), is demonstrated to dramati-
cally enhance the role of collisions. The boundary layer procedure increases the
effective collision frequency by (ω/ν)2/3 � 1, even without recourse to transit
averaging. Unlike the steady state applied rf case, these earlier efforts focused
on Landau damping and bump on tail stability by allowing an imaginary part in
the frequency. They did not consider magnetized plasmas and the quasilinear (QL)
operator that is the main focus herein. The collisional boundary layer behaviour is
shown to be fully consistent with the delta function approximation, while allowing it
to be replaced in the QL operator in a non-singular manner.

The collisional boundary layer procedure considered here provides an estimate of
when the rf wave amplitude becomes large enough that a quasilinear treatment of rf
begins to fail. As might be expected, the estimate indicates this failure typically does
not begin to occur until the unperturbed distribution function becomes appreciably
distorted from Maxwellian, suggesting a possible explanation as to why quasilinear
theory has been rather successful in describing rf heating and current drive. The
failure of QL theory may also indicate the need to more accurately consider the
onset of stochastic behaviour if the rf perturbs the resonant particle trajectories in a
wider boundary layer as the electric field strength increases (Becoulet, Gambier &
Samain 1991).

In § 2 a streamlined derivation of the quasilinear operator of Kennel & Engelmann
(1966) is presented to introduce notation and clarify the origin of the resonant
particle delta function. This derivation is just the constant magnetic field limit of the
procedure used in Catto et al. (2017). Section 3 resolves the singular behaviour of the
resonant particles by performing a collisional boundary layer analysis for the particles
participating in the wave–particle interaction. This boundary layer analysis of the
linear response properly accounts for the collisional interaction time of the resonant
particles with the wave. It is a magnetized plasma variation of the treatments of
Johnston (1971) and Auerbach (1977) allowing a Doppler modified Landau resonance
for an applied rf wave field. The QL operator of Kennel & Engelmann (1966) is
generalized to retain collisional boundary layer effects so that the delta function
no longer appears but the entropy production principle is preserved. The section
closes with estimates of the physics associated with the collisional boundary layer
interpretation of quasilinear theory. A brief discussion of the results follows in § 4.
Justification for using a pitch angle scattering collision operator is presented in
appendix A, while appendix B suggests the existence of a collisional boundary layer
in tokamaks for correlated resonant kicks.
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Collisional effects on resonant particles in quasilinear theory 3

2. Quasilinear theory in uniformly magnetized plasma
2.1. Formulation and notation

To illustrate and evaluate the role of collisions in disrupting resonant particles
interacting with applied rf waves, a cylindrical plasma aligned with a constant
magnetic field B,

B= Bz, (2.1)

is considered for simplicity, with z a unit vector along the axis of the cylinder of
length L0. The other cylindrical spatial variables are the radius r and the cylindrical
angle variable ϑ , having the orthonormal unit vectors ∇r and r∇ϑ satisfying r∇r×
∇ϑ = z.

Denoting the applied electric and magnetic fields by e and b, respectively, then the
resulting perturbed acceleration is

a= (Ze/M)(e+ c−1v× b), (2.2)

with Z and M the charge number and mass of the species, e the charge on a proton
and c the speed of light. Then the full kinetic equation is written as

∂f /∂t+ v · ∇f + (a+Ωv× z) · ∇v f =C{ f }, (2.3)

with Ω = ZeB/Mc the species gyrofrequency and C the full collision operator.
Writing

f = f0 + f1 + · · · (2.4)

with f1� f0, f0 is assumed to contain only slow radial and temporal variation and no
ϑ , z, or gyrophase, ϕ, dependence: f0 = f0(r, v, µ, σ , t), where v = |v| is the speed,
µ= v2

⊥
/2B is the magnetic moment, σ = v‖/|v‖| and

v = v⊥ + v‖z= v⊥(cos ϕ∇r+ r sin ϕ∇ϑ)+ v‖z. (2.5)

A combined coarse grain average and gyroaverage is used to remove any fast time
and spatial dependence from any quantity A,

〈A〉cg =
1

2T

∫ t+T

t−T
dτ

1
21

∫ r+1

r−1
dr′

1
2L0

∫ z+L

z−L
dz′A, (2.6)

where the integrals over ϑ and z remove the poloidal mode number (m) and parallel
wavenumber (k‖) variation. The integral over τ removes fast time variation by taking
ω−1
� T � ν−1

eff , and the integral over radius r removes rapid radial variation by
assuming λradial

rf �∆� a, with νeff and ω being the effective collision frequency and
typical rf wave frequency, respectively, and a and λradial

rf being the minor radius and
the typical radial wavelength of the rf wave, respectively.

These scale separation assumptions result in f0 satisfying the QL equation

∂f0/∂t=C{ f0} +Q{ f0}, (2.7)

with the QL operator Q defined as

Q{ f0} =−〈a · ∇v f1〉cg =−〈∇v · (af1)〉cg. (2.8)
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2.2. Gyrokinetic solution for perturbed distribution function
The equation for the perturbed distribution function f1 is

∂f1/∂t+ v · ∇f1 + (Ze/Mc)v×B · ∇v f1 =−a · ∇v f0 +C{ f1}, (2.9)

where the nonlinear term a · ∇v f1 is always neglected as small in QL treatments, and
normally collisions are ignored as well, except possibly for resolving singularities that
arise from wave–particle resonances. In the next section it will be shown that a more
sophisticated collisional boundary layer model leads to a more satisfying and complete
description.

To extract the non-resonant portion of the perturbed distribution function, define

∂h
∂t
=
∂f1

∂t
−

Zev‖
MB

e · z
∂f0

∂µ
, (2.10)

as in Catto et al. (2017), and use Faraday’s law,

c∇× e=−∂b/∂t, (2.11)

to write

∂a
∂t
=

Ze
M

[
∂e
∂t
− v× (∇× e)

]
=

Ze
M

(
∂e
∂t
+ v · ∇e−∇e · v

)
(2.12)

to obtain the more convenient form

∂2h
∂t2
+ v · ∇

∂h
∂t
+Ωv× z · ∇v

∂h
∂t

=C
{
∂h
∂t
+
ε‖v‖

B
∂f0

∂µ

}
−
∂ε

∂t
· v

(
1
v

∂f0

∂v
+

1
B
∂f0

∂µ

)
−
∂ε

∂z
· v
v‖

B
∂f0

∂µ
, (2.13)

where
ε=

Ze
M

e and ε‖ =
Ze
M

e‖ =
Ze
M

e · z. (2.14a,b)

To solve the linear equation it is convenient to use the gyrokinetic variables
R, v, µ, ϕ of Catto (1978), Lee, Myra & Catto (1983) and Parra & Catto (2008),
where

R= r+Ω−1v× z. (2.15)

Using v⊥ · ∇R+Ωv × z · ∇vR= 0 and f0 a slow function of r, the kinetic equation
becomes

∂2h
∂t2
+v‖

∂2h
∂z∂t
−Ω

∂2h
∂ϕ∂t

=C
{
∂h
∂t
+
ε‖v‖

B
∂f0

∂µ

}
−
∂ε

∂t
·v

(
1
v

∂f0

∂v
+

1
B
∂f0

∂µ

)
−
∂ε

∂z
·v
v‖

B
∂f0

∂µ
,

(2.16)
with h = h(R, v, µ, σ , ϕ, t), but ε = ε(r, t). The distinction between R (the guiding
centre location) and r (the particle location) will lead to the usual Bessel function
modifications.

Fourier decomposing the applied electric field e in space, and considering only a
single wave frequency ω for simplicity, gives

e= e(r, t)= e−iωt
∑

k

ek eik‖z+imϑ+iS(r), (2.17)

https://doi.org/10.1017/S0022377820000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000355


Collisional effects on resonant particles in quasilinear theory 5

with S the eikonal defined such that ∇S= (∂S/∂r)∇r= κ∇r= κ , and

k= κ +m∇ϑ + k‖z= k⊥ + k‖z= k⊥(cos α∇r+ r sin α∇ϑ)+ k‖z. (2.18)

As h depends on gyrophase and R, rather than r, the form

h= h(R, v, µ, σ , ϕ, t)= e−iωt
∑
k,p

hp eik‖z+iS(R)+imΘ−ipϕ, (2.19)

is employed with

R= r+Ω−1v× z · ∇r= r+ rΩ−1v · ∇ϑ, (2.20)
Θ = ϑ +Ω−1v× z · ∇ϑ = ϑ − r−1Ω−1v · ∇r, (2.21)

where Taylor expanding S gives

S(R)= S(r)+Ω−1v× z · κ + · · · . (2.22)

Retaining the distinction between drift kinetic and gyrokinetic variables in exponen-
tials, the preceding yields the alternate and useful form

e= e−iωt
∑

k

ekeik‖z+imΘ+iS(R)−iL, (2.23)

where
L≡Ω−1v× z · k= (k⊥v⊥/Ω) sin(ϕ − α). (2.24)

Using the preceding harmonic forms and Bessel generating function

e−iL
= e−iη sin(ϕ−α)

=

∑
p

e−ip(ϕ−α)Jp(η), (2.25)

where η= k⊥v⊥/Ω , leads to the equation

i
∑

p

e−ipϕ(ω− pΩ − k‖v‖)hp =
∑

p

e−ip(ϕ−α)(εk · zv‖ + εp · v⊥)

×

[
1
v

∂f0

∂v
+
(ω− k‖v‖)

ωB
∂f0

∂µ

]
Jp(η), (2.26)

where collisions are normally replaced by causality to use Imω> 0.
Solving by multiplying by eip′ϕ and gyroaveraging yields the solution

hp =
Wp,k

i(ω− pΩ − k‖v‖)
, (2.27)

with notation essentially the same as (Catto et al. 2017)

Wp,k = eipαεk · [zv‖Jp(η)+ e⊥pv⊥]

[
1
v

∂f0

∂v
+
(ω− k‖v‖)

ωB
∂f0

∂µ

]
, (2.28)

and

e⊥p =
1
k⊥

[
k⊥

p
η

Jp(η)+ iz× k
∂Jp(η)

∂η

]
. (2.29)
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2.3. Standard quasilinear operator form
To form the QL operator, use of Imω> 0 resolves the singularity to give

1
i(ω− pΩ − k‖v‖)

→−πδ(ω− pΩ − k‖v‖), (2.30)

and the usual approximation used to derive the QL operator, namely

hp→−πWp,keiLδ(ω− pΩ − k‖v‖), (2.31)

where the exponential factor eiL is inserted as h in the QL operator must be rewritten
in the drift kinetic variable r (rather that the gyrokinetic variable R) to perform the
coarse grain average. Therefore, using

k ·R= k · r+Ω−1v× z · k= k · r+ L, (2.32)

leads to
h(R, v, µ, σ , ϕ, t)= e−iωt

∑
k,p

hp eik‖z+iS(r)+imϑ−ipϕ+iL. (2.33)

Next, the delta function is used to simplify Wp,k in the QL operator to

Wp,k→ eipαεk · [zv‖Jp(η)+ e⊥pv⊥]

(
1
v

∂f0

∂v
+

pΩ
ωB

∂f0

∂µ

)
. (2.34)

Then, as the difference between f1 and h is independent of gyrophase to lowest order,

f1 = h+
iZev‖
MωB

∂f0

∂µ
e‖, (2.35)

and
∮

dϕv⊥ = 0, it is seen that

〈∇v · [a( f1 − h)]〉cg =
v‖∂

v∂v

〈
( f1 − h)ε‖v‖

v‖

〉
cg

+
v‖∂

v∂µ

〈
v( f1 − h)

Bv‖
ε · v⊥

〉
cg

= 0, (2.36)

where ∇vϕ = v−2
⊥ z× v is used to obtain ∇vv×∇vµ · ∇vϕ = 1/vB. Therefore, only

Q{ f0} =−
v‖

v

∂

∂v

(
1
v‖
〈hε · v〉cg

)
−

v‖∂

Bv∂µ

(
v

v‖
〈hε · v⊥〉cg

)
(2.37)

need be considered.
Using the preceding yields ∮

dϕ
2π

eiL−ip(ϕ−α)
= Jp(η), (2.38)

and ∮
dϕ

2πv⊥
v⊥eiL−ip(ϕ−α)

= e∗
⊥p, (2.39)

with ∗ denoting complex conjugate. Then for harmonic fields,

〈εε〉cg =
1
4

∑
k

(εkε
∗

k + ε
∗

kεk), (2.40)
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leading to

〈h ε · v⊥〉cg=−
πΩ

2ωv

∑
k,p

pδ(ω− pΩ − k‖v‖)|εk · [zv‖Jp(η)+ e⊥pv⊥]|
2

(
∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

)
,

(2.41)
where the 〈. . .〉cg replaces the double sum over k and k′ with a single sum over k by
introducing the Kronecker delta function δk′k.

Combining the preceding results, the final form for the QL operator is

Q{ f0} =
∑

p

v‖

v

(
∂

∂v
+

pΩv
ωB

∂

∂µ

) [
D
v

v‖

(
∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

)]
, (2.42)

with

D=
πZ2e2

2M2v2

∑
k

δ(ω− pΩ − k‖v‖)|em · [zv‖Jp(η)+ e⊥pv⊥]|
2, (2.43)

a manifestly positive diffusivity. The preceding QL operator is exactly the same as the
Kennel–Englemann (1966) result, but a gyrokinetic formulation is used to streamline
the derivation, as in the full toroidal version by Catto et al. (2017).

Multiplying Q by `nf0 and integrating over all velocity space (using d3v →
2πvB dv dµ/|v‖|) yields negative definite entropy production as required,∫

d3v`nf0Q{ f0} =−

∫
d3v

∑
ω,p

D
f0

∣∣∣∣∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

∣∣∣∣2 6 0. (2.44)

Reverting to cylindrical velocity space variables v⊥, v‖, and ϕ the quasilinear operator
in vector form is

Q{ f0} =∇v · (
↔

D · ∇v f0), (2.45)

with
↔

D=D‖zz+ v−2
⊥

D⊥v⊥v⊥ + v−1
⊥

D×(zv⊥ + v⊥z), (2.46)

where the various diffusivities are defined as

D‖ =
∑
ω,p

(
1−

pΩ
ω

)2
v2

v2
‖

D, (2.47)

D⊥ =
∑
ω,p

(
pΩv
ωv⊥

)2

D, (2.48)

and

D× =
∑
ω,p

pΩ
ω

(
1−

pΩ
ω

)
v2

v‖v⊥
D. (2.49)

For simulations allowing Q∼C, the delta function is typically removed by assuming
the preceding form remains valid in toroidal geometry and then averaging trapped
particles over a full bounce and passing particles over a poloidal transit.

The next section demonstrates that a collisional boundary layer treatment leads
to the replacement of the delta function with an integral representation dependent
on the collisional physics disrupting the wave–resonant particle resonance, so transit
averaging is no longer needed.

https://doi.org/10.1017/S0022377820000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000355


8 P. J. Catto

3. Collisional boundary layer reformulation of quasilinear theory
3.1. Collisional boundary layer model for resonant particles

Normally collisions are ignored in QL theory except when used to resolve singularities
in the same manner as causality. However, collisions are diffusive and thereby
introduce a narrow boundary layer in which wave–particle resonances are disrupted as
will be shown next. Assuming the boundary layer is narrow, only diffusive scattering
need be retained as it disrupts the resonant interaction. As shown in appendix A for
a general non-isotropic distribution function, pitch angle scattering is normally the
dominant collisional process of interest. As a result, the following linearized pitch
angle scattering collision operator replacement is appropriate,

C{h}→ ν(v)L{h}, (3.1)

where the pitch angle variable is λ= 2µB/v2
= v2

⊥
/v2
= 1− v2

‖
/v2
= 1− ξ 2, and for a

narrow boundary layer in λ or ξ = v‖/v,

L{h} = ∇v · [(v2
↔

I − vv) · ∇vh] =
4v‖
v2

∂

∂λ

(
λv‖

∂h
∂λ

)
= v

∂

∂v‖

(
v2
⊥

v

∂h
∂v‖

)
' v2

⊥

∂2h
∂v2
‖

= (1− ξ 2)
∂2h
∂ξ 2

, (3.2)

where the last four forms are in λ, v; v‖, v; v‖, v; and ξ , v variables, respectively.
Appendix A gives expressions for the collision frequency ν(v) for lower hybrid current
drive and minority heating.

Using the boundary layer collision operator in the particularly convenient form

C{h} ' νv2
⊥
∂2h/∂v2

‖
, (3.3)

with the C{v‖∂f0/∂µ} term ignored as smaller by a boundary layer width, the equation
to be solved in gyrokinetic variables is

i(ω− pΩ − k‖v‖)hp + νv
2
⊥

∂2hp

∂v2
‖

=Wp,k. (3.4)

Notice that spatial variation has no effect on broadening the resonance. This statement
is true even in the presence of parallel gradients as shown in appendix B for
successive correlated passes through resonance.

To solve for h, let

s= (k‖/v2
⊥
ν)1/3[v‖ − (ω− pΩ)/k‖], (3.5)

to obtain
∂2hp/∂s2

− ishp = (k2
‖
v2
⊥
ν)−1/3Wp,k. (3.6)

The solution vanishing as s→±∞ (Su & Oberman 1968) is

hp =−
Wp,k

(k2
‖v

2
⊥ν)

1/3

∫
∞

0
dτ e−is τ−τ 3/3

→
s→±∞

Wp,k

i(ω− pΩ − k‖v‖)
. (3.7)
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The preceding solution means that to account for the collisional boundary layer
physics [i(ω− pΩ − k‖v‖)]−1

→−πδ(ω− pΩ − k‖v‖), should be replaced by

1
i(ω− pΩ − k‖v‖)

→−

∫
∞

0
dτe−isτ−τ 3/3

(k2
‖v

2
⊥ν)

1/3
. (3.8)

Plots of the real and imaginary parts of the integral in (3.8) are given in figure 1 of
Auerbach (1977), where collisional boundary layer effects were considered in great
detail for the unmagnetized Landau limit.

To use the preceding result in the QL diffusivity the following replacement is
required:

πδ(ω− pΩ − k‖v‖)→Re
[
(k2
‖
v2
⊥
ν)−1/3

∫
∞

0
dτ e−is τ−τ 3/3

]
= (k2

‖
v2
⊥
ν)−1/3

∫
∞

0
dτ e−τ

3/3 cos(sτ). (3.9)

Therefore, with the boundary layer physics included, the QL diffusivity becomes

D=
Z2e2

2M2v2

∑
k

|ek · [zv‖Jp(w)+ e⊥pv⊥]|
2(k2
‖
v2
⊥
ν)−1/3

∫
∞

0
dτ e−τ

3/3 cos(sτ), (3.10)

where D maintains non-negative entropy production as required because of the
integration over velocity space in (2.44). The integral in (3.10), and therefore D,
is not manifestly positive. However, it has the required delta function behaviour as
indicated by the real part of (3.8) for ω� ν. Auerbach (1977) gives a plot of the
real and imaginary parts of the integral in his figure 1. The integral in (3.10) is
the negative of the imaginary part plotted there and displays the required behaviour.
The same replacement can also be used in the general tokamak geometry result for
D in Catto et al. (2017) provided the argument of the delta function and then s is
generalized to include the magnetic drift velocity, vd,

s= (k‖/v2
⊥
ν)1/3[v‖ − (ω− pΩ − k · vd)/k‖]. (3.11)

The preceding collisional boundary layer analysis associated with the resonant
particles demonstrates that the delta function in the quasilinear operator is actually the
limiting form of some unspecified physical process. Its more precise form depends
on the details of the relevant physics disrupting the unperturbed resonant particle
trajectories.

Another possible disruptive mechanism is resonant particles moving in a wave.
Then stochastic separatrix crossings associated with wave trapping and detrapping
may occur as resonant interactions are tuned and detuned. If stochasticity leads to
a shorter wave–particle interaction time than collisions, then presumably the delta
function must become the limit of a different functional form representing the
physics linked to the stochastically smeared separatrix between trapped and detrapped
trajectories. A Monte Carlo scheme introducing stochastic kicks into the quasilinear
operator (Johnson, Hellsten & Eriksson 2006) might provide further insight.

The brief subsection that follows summarizes the collisional boundary layer physics
in a phenomenological way. It assumes collisions are disrupting the wave–particle
interactions and that a narrow collisional boundary layer forms as evaluated in
this section. It gives estimates of when unperturbed trajectories are applicable, and
suggests that the quasilinear operator begins to fail once it becomes large enough to
cause substantial distortions from a Maxwellian.
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3.2. Phenomenological estimates for the collisional boundary layer model
The physics of the collisional boundary layer model can be summarized by first
estimating the dimensionless velocity space width of the resonant interaction. Using
(3.4) and (2.27), the width w≡ (ω− pΩ − k‖v‖)/ω is estimated from

ωwhp ≡ (ω− pΩ − k‖v‖)hp ∼ νv
2
⊥
∂2hp/∂v

2
‖
∼ νhp/w2, (3.12)

to find
w∼ (ν/ω)1/3, (3.13)

indicating an effective collision frequency of

νeff ∼ ν/w2
∼ ν(ω/ν)2/3� ν, (3.14)

and an effective wave–particle collision time of

τint ∼ 1/νeff ∼ 1/ωw∼ (ν/ω)2/3/ν� 1/ν. (3.15)

Defining the quiver speed vquiv as

vquiv ≡ Ze|e|/Mω, (3.16)

then balancing the first term on the left with the right side of (3.4) gives ωwhp∼Wp,k
or

hp/f0 ∼ vquiv/vthw∼ (vquiv/vth)(ω/ν)
1/3
� 1, (3.17)

where vth ∼ (T/M)1/2 is the thermal speed of the species. Also, recalling (2.30) and
(3.12) and using s∼ 1 in (3.8), leads to the estimate (ω− pΩ − k‖v‖)−1

∼ δ(ω− pΩ −
k‖v‖)∼ 1/ωw, giving the QL diffusivity estimate of

D∼ Z2e2
|em |

2/M2ωw∼ωv2
quiv/w. (3.18)

To ignore the nonlinear term a · ∇vhp in the perturbed equation requires assuming

ωwhp ∼ (ω− pΩ − k‖v‖)hp� a · ∇vhp ∼ (vquivωhp/vthw). (3.19)

Consequently, the unperturbed trajectory, collisional boundary layer treatment of
quasilinear theory assumes

vquiv/vth�w2
∼ (ν/ω)2/3� 1. (3.20)

Notice that (3.20) is consistent with the assumption that a · ∇vhp � a · ∇v f0 or
hp�wf0 if

hp/f0 ∼ (vquiv/vth)(ω/ν)
1/3
�w∼ (ν/ω)1/3� 1. (3.21)

The preceding are important restrictions. In particular QL theory assumes (3.21) holds.
As no resonant behaviour occurs in the unperturbed equation, Q{ f0} ∼ Df0/v

2
th and

C{ f0} ∼ νf0. Therefore, f0 departs appreciably from Maxwellian when Q{ f0} ∼ C{ f0},
or

Df0 ∼ νv
2
th f0, (3.22)

giving
(vquiv/vth)

2
∼ νw/ω∼ (ν/ω)4/3. (3.23)

Comparing (3.21) and (3.23) suggests the collisional boundary layer treatment of
quasilinear theory begins to fail just as it becomes most interesting. Consequently,
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the non-Maxwellian features in the unperturbed distribution function f0 may not
be reliably found by a QL treatment of lower hybrid current drive or minority
heating. For both these processes it is the tail particles that matter, although it is
difficult to refine the estimate for the minorities due to their extended energetic and
anisotropic tail.

However, the preceding estimates can be improved slightly for lower hybrid current
drive (LHCD) by considering tail electrons with speeds about three times the electron
thermal speed, vtail ∼ 3ve. Using appendix A, the collision frequency of these faster
electrons is reduced

ν ∼ νee(ve/vtail)
3, (3.24)

and the extended tail suggests the estimates

∂f0/∂v‖ ∼ f0/vtail, (3.25)

and
∂hp/∂v‖ ∼ hp/vtail, (3.26)

as Wp,k ∼ (ε‖v‖/v)∂f0/∂v ∼ ε‖ f0/vtail. In this LHCD case the reduced collision
frequency narrows the boundary layer further and the altered estimate of (3.12)
gives a width

w∼ (νee/ω)
1/3(ve/vtail)

5/3, (3.27)

in place of (3.13). The effective collision frequency now becomes νeff ∼ (ν/w2)

(ve/vtail)
2, reducing (3.14) to

νeff ∼ νee(ω/νee)
2/3(ve/vtail)

5/3. (3.28)

Balancing ωwhp ∼Wp,k replaces (3.17) with the more restrictive condition

hp/f0 ∼ vquiv/vtailw∼ (vquiv/ve)(ω/νee)
1/3(vtail/ve)

2/3
� 1. (3.29)

Ignoring the nonlinear term by assuming a · ∇vhp � a · ∇v f0 or hp/f0 � w, now
requires

hp/wf0 ∼ (vquiv/ve)(ω/νee)
2/3(vtail/ve)

7/3
� 1, (3.30)

instead of the less restrictive condition of (3.20) and (3.21). Finally, using Q{ f0} ∼

Df0/v
2
tail, and (A 4) to estimate C{ f0} ∼ νee(ve/vtail)

3f0, as electron drag dominates at
high speeds, then f0 departs appreciably from Maxwellian when Q{ f0} ∼C{ f0}, or

hp/wf0 ∼ (vquiv/ve)(ω/νee)
2/3(vtail/ve)

7/3
∼ (vtail/ve)� 1. (3.31)

Combining (3.30) and (3.31) more strongly suggests that the QL treatment of
LHCD fails when it is most interesting. The preceding estimates imply that the
non-Maxwellian electron tail features are not being reliably found by a QL treatment
of LHCD.

4. Summary

The collisional boundary layer associated with resonant wave–particle interactions
is investigated to demonstrate that it gives a deeper and more complete interpretation
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of quasilinear theory and the delta function appearing in the Kennel & Engelmann
(1966) operator. The balance between particles resonating with the wave and collisions,
allows a narrow collisional boundary layer to form that is shown to be fully consistent
with the collisionless form of the Kennel–Englemann quasilinear operator. Similar
‘plateau’ behaviour occurs whenever collisions enter to resolve a singularity as in the
plateau regime of neoclassical theory (see, for example, p. 291 of Hinton & Hazeltine
(1976)) and the superbanana plateau regime of ripple transport (for example, see
section 5 of Catto (2019)).

The collisional boundary layer enhances the collisions to give an effective
collision frequency of νeff ∼ ν(ω/ν)

2/3
� ν. The quasilinear operator remains fully

self-consistent provided the applied rf amplitude remains small enough that the
quiver speed, vquiv= Ze|e|/Mω, divided by the thermal speed, vth, satisfies vquiv/vth�

(ν/ω)2/3� 1. However, once the applied wave amplitude becomes large enough that
vquiv/vth∼ (ν/ω)

2/3, a collisional boundary layer justification of the Kennel–Engelmann
(1966) quasilinear operator becomes inadequate. In particular, the collisional boundary
layer treatment suggests that quasilinear theory is failing for both lower hybrid current
drive and minority heating once the departure from Maxwellian become significant.
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Appendix A. Boundary layer collision operator

Quasilinear diffusion can become strong enough that it significantly distorts the
high speed tail of the electron and/or minority ion distribution functions away from
Maxwellian. To obtain a reasonable approximation to the collision operator for the
boundary layer particles, only the diffusive portion of the full (unlinearized) Fokker–
Planck collision operator,

Cb`
{ f } '

′∑ 2π(ZZ′e2)2`nΛ
M2

∇v ·

{[∫
d3v′f ′g−3(g2

↔

I − gg)
]
· ∇v f

}
, (A 1)

need be retained, where g= v− v′, the sum
∑
′ is over all relevant species including

self-collisions if needed, and `nΛ is the Coulomb logarithm. For tail particles
colliding with slower thermal particles and for self-collisions of tail particles with the
thermal particles, |v| � |v′| may be assumed to obtain g' v, and thereby find

Cb`
{ f } '

′∑ 2π(ZZ′e2)2n′`nΛ
M2v3

∇v · [(v
2
↔

I − vv) · ∇v f ], (A 2)

as in (3.2), where n′ =
∫

d3v′f ′ is the density of the species that are summed over.
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The two non-Maxwellian cases of most interest are minority heating and lower
hybrid current drive. Before giving the boundary layer forms for these two cases
it is convenient to define the electron and ion thermal speeds, ve =

√
2Te/m and

vi =
√

2Ti/M, and like collision frequencies, νee = 4
√

2π e4ne`nΛ/3m1/2T3/2
e and

νii = 4
√

π Z4e4ni`nΛ/3M1/2T3/2
i .

Then for lower hybrid current drive (Z→−1, M→m, Z′→Zi & −1, n′→ ni & ne)
the boundary layer form of the collision operator with both electron–ion and electron–
electron collisions is

Cb`
LH{ fe} =

3
√

π(1+ Zeff)v
3
eνee

8v3
∇v · [(v

2
↔

I − vv) · ∇v fe], (A 3)

with Zeff =
∑

i Z2
i ni/ne and

∑
i a sum over all the background ion species. In

the boundary layer it is not necessary to retain the term that restores momentum
conservation for like collisions. Normally v‖ ' 3ve are the electrons of interest for
lower hybrid current drive. The unperturbed electron distribution function will also
be acted on by drag. As a result, the following must be added to (A 3)

Cb`
drag{ f0} =

3
√

πv3
eνee

4
∇v · (v

−3vfe)=
3
√

πv3
eνee

4v2

∂f0

∂v
. (A 4)

For minority (subscript m) heating (Z→ Zm, M→Mm, Z′→ Zi, n′→ ni)

Cb`
min{ fm} =

3
√

2πZ2
m

8M2
mv

3

∑
i

(
M2

i v
3
i νii

Z2
i

)
∇v · [(v

2
↔

I − vv) · ∇v fm], (A 5)

where electron drag and ion drag are negligible in the boundary layer. Again, electron
drag must be kept for the unperturbed minority distribution function by adding (A 4)
to (A 5).

Appendix B. Collisional boundary layer in tokamak geometry
In tokamak geometry the linearized kinetic equation that replaces (3.4) is

v‖

qR
∂hp

∂Θ
− i
[
ω− pΩ(Θ)+

(n− q−1m)v‖(Θ)
R

]
hp − νv

2
⊥

∂2hp

∂v2
‖

=−

∑
m′

ei(m′−m)ΘWp,m′,

(B 1)
where for a tokamak magnetic field B=Bb= I∇ζ +∇ζ ×∇ψ , and the Fourier form

e(r, t)= e−iωt
∑

m

emeinζ−imϑ+iS(ψ) (B 2)

is employed, along with the ansatz

h(R, v, µ, σ , t)= e−iωt
∑

p

hp(Θ, v, µ, σ )einZ+iS(Ψ )−imΘ−ipϕ. (B 3)

Here, ϑ and ζ are the poloidal and toroidal angles and ψ the poloidal flux function,
with Ψ = ψ +Ω−1v × b · ∇ψ , Θ = ϑ +Ω−1v × b · ∇ϑ and Z = ζ +Ω−1v × b · ∇ζ ,
their gyrokinetic counterparts. To simplify the presentation, drift effects are ignored
and B · ∇ϑ ' B/qR is employed. The definition of Wp,m is now as in Catto et al.
(2017) without drifts,

Wp,m = eipα εm · [bv‖Jp(η)+ e⊥pv⊥]

[
1
v

∂f0

∂v
+
(ω− k‖v‖)

ωB
∂f0

∂µ

]
, (B 4)
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where

e⊥p =
1
k⊥

[
k⊥

p
η

Jp(η)+ ib× k
∂Jp(η)

∂η

]
. (B 5)

Defining k‖ = (qn−m)/qR, gives

v‖

qR
∂hp

∂Θ
− i[ω− pΩ(Θ)− k‖v‖(Θ)]hp − νv

2
⊥

∂2hp

∂v2
‖

=−

∑
m′

ei(m′−m)ΘWp,m′, (B 6)

where for resonant particles and weak collisions the second and third terms on the
left are small giving the lowest-order result

v‖

qR

∂h(0)p

∂Θ
= 0, (B 7)

with hp= h(0)p + h(1)p + · · · and h(0)p � h(1)p . Consequently, hp is slow function of Θ . To
next order

v‖

qR

∂h(1)p

∂Θ
− i[ω− pΩ(Θ)− k‖v‖(Θ)]h(0)p − νv

2
⊥

∂2h(0)p

∂v2
‖

=−

∑
m′

ei(m′−m)ΘWp,m′ . (B 8)

Assuming successive correlated passes through resonance, transit averaging over a full
bounce for the trapped and a single poloidal circuit for the passing to annihilate the
streaming term using

(. . .)=

∮
dτ(. . .)

/∮
dτ , (B 9)

with
dΘ(τ)/dτ = v‖(τ )/qR, (B 10)

leaves

i[ω− pΩ(Θ)− k‖v‖(Θ)]h(0)p + νv
2
⊥

∂2h(0)p

∂v2
‖

=

∑
m′

ei(m′−m)ΘWp,m′, (B 11)

where for the trapped v‖(Θ)= 0. The preceding equation is of the same form as (3.4).
Therefore, a collisional boundary layer is expected to exist about the resonance ω −
pΩ(Θ)− k‖v‖(Θ)= 0 even in the presence of the parallel gradients that are inherent
to a tokamak. However, in this case as particles go out of resonance they are replaced
by new particles, while in the uniform field case the same particles tend to stay in
resonance.

Even though the resonance location depends on poloidal angle in (B 11), it is only
the velocity space diffusion that broadens the resonance as in (3.4).
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