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2ℵ0 PAIRWISE NONISOMORPHIC MAXIMAL-CLOSED SUBGROUPS OF
SYM(N) VIA THE CLASSIFICATION OF THE REDUCTS OF THE

HENSON DIGRAPHS

LOVKUSH AGARWALANDMICHAEL KOMPATSCHER

Abstract. Given two structuresM and N on the same domain, we say that N is a reduct ofM if
all ∅-definable relations ofN are ∅-definable inM. In this article the reducts of the Henson digraphs are
classified. Henson digraphs are homogeneous countable digraphs that omit some set of finite tournaments.
As the Henson digraphs are ℵ0-categorical, determining their reducts is equivalent to determining the
closed supergroups G ≤ Sym(N) of their automorphism groups.
A consequence of the classification is that there are 2ℵ0 pairwise noninterdefinable Henson digraphs

which have no proper nontrivial reducts. Taking their automorphisms groups gives a positive answer to a
question of Macpherson that asked if there are 2ℵ0 pairwise nonconjugate maximal-closed subgroups of
Sym(N). By the reconstruction results of Rubin, these groups are also nonisomorphic as abstract groups.

This article contributes to the large body of work concerning the two intimately
related topics of reducts of countable structures and of closed subgroups of Sym(N).
Motivation for this work comes from both areas.
In the topic of reducts, the reducts of the Henson digraphs are classified up to
first order interdefinability. To our knowledge this is the first time the reducts of
uncountably many homogeneous structures have been classified. In all cases only
finitely many reducts appear. This result supports a conjecture of Thomas in [26]
which says that all countable homogeneous structures in a finite relational language
have only finitely many reducts. Evidence for this conjecture has been building
as there have been numerous classification results, e.g., [1, 6, 11, 16, 23, 25, 26]. On
the other hand, recent work gives evidence that the conjecture is false. In [8], it
is shown that the countable homogeneous Boolean-algebra has infinitely many
reducts. (This is not a counter-example to Thomas’Conjecture because the structure
is homogeneous in a functional language, not a relational one.) This conjecture is
unresolved and continues to provide motivation for study.
The main tool used in this classification of the reducts of the Henson digraphs is
that of the so-called ‘canonical functions’. This Ramsey-theoretic tool was devel-
oped by Bodirsky and Pinsker to help analyse certain closed clones in relation
to constraint satisfaction problems, a topic in theoretical computer science. With
further developments [4, 7], canonical functions have become powerful tools in
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studying reducts. The robustness and relative ease of the methodology is becoming
more evident as several classifications have been achieved by their use, e.g.,
[1, 2,6,10,19,23].
In the topic of permutation groups, the main result of this article positively
answers a question ofMacpherson, Question 5.10 in [3], which asked whether there
are 2ℵ0 pairwise nonconjugate maximal-closed subgroups of Sym(N) with Sym(N)
bearing the pointwise convergence topology. Several related questions have recently
been tackled. Independently, [3] and [9] showed that there exist nonoligomorphic
maximal-closed subgroups of Sym(N), the existence of which was asked in [16].
Also, independently, [17] and [9] positively answered Macpherson’s question of
whether there are maximal-closed subgroups of Sym(N) of countable cardinality.
One question that remains open is whether every proper closed subgroup of Sym(N)
is contained in a maximal-closed subgroup of Sym(N), (Question 7.7 in [21] and
Question 5.9 in [3]).
The description of 2ℵ0 maximal-closed subgroups follows from the classification
of reducts by taking the automorphism groups of a suitably modified version of
Henson’s [13] construction of 2ℵ0 pairwise nonisomorphic countable homogeneous
digraphs. A short argument shows that their automorphism groups are pairwise
nonconjugate. However, we can say more: by Rubin’s work on reconstruction [24],
the automorphism groups will be pairwise nonisomorphic as abstract groups.
We outline the structure of the article. In Section 1, we provide the necessary
preliminary definitions and facts on the Henson digraphs, reducts, and canonical
functions.We also describe various notational conventions that we use. In Section 2,
we prove the classification of the reducts of the Henson digraphs. In Section 2.1 we
state the classification. In Section 2.2 we describe the reducts, establishing notation
and important lemmas that are used in the rest of the article. In Section 2.3 we carry
out the combinatorial analysis of the possible behaviours of canonical functions. 2.4
contains the proof of the classification. Section 3 contains the denouement of the
article: the classification is used to show that there exist 2ℵ0 pairwise nonisomorphic
maximal-closed subgroups of Sym(N).
For those who are primarily interested in the construction of the maximal-closed
subgroups, from Section 1 you can skip Section 1.5 and from Section 2 you can skip
everything after Lemma 2.4.

§1. Preliminaries.

1.1. Conventions. If A is a subset of D, Ac denotes the complement of A in D.
We sometimes write ‘ab’ as an abbreviation for (a, b), e.g., we may write “Let ab be
an edge of the digraphD”. Structures are denoted byM,N , and their domains are
M andN , respectively. All of the structures that appear in our article are structures
in a relational language; constant symbols will implicitly be interpreted as unary,
singleton relations. Sym(M ) is the set of all bijectionsM →M and Aut(M) is the
set of all automorphisms ofM. Given a formula φ(x, y), we use φ∗(x, y) to denote
the formula φ(y, x). S(M) denotes the space of types of the theory ofM. If f has
domain A and (a1, . . . , an) ∈ An , then f(a1, . . . , an) ..= (f(a1), . . . , f(an)). For
tuples ā, b̄ ∈ Mn , we say ā and b̄ are isomorphic, and write ā ∼= b̄, to mean that
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the function ai �→ bi for all i such that 1 ≤ i ≤ n is an isomorphism. We say ā is a
proper tuple if all the elements of ā are pairwise distinct.
There will be instances where we do not adhere to strictly correct notational
usage, however, the meaning should be clear from the context. We highlight some
examples. We write ‘a ∈ (a1, . . . , an)’ instead of ‘a = ai for some i such that
1 ≤ i ≤ n’. We write ‘Let ā ∈ A’ instead of ‘Let ā ∈ An, where n is the length of
ā’. Another example is that we sometimes use c to represent the singleton set {c}
containing it.

1.2. Henson digraphs. A directed graph (V,E), or digraph for short, is a set V
with an irreflexive antisymmetric relation E ⊆ V 2. V is the set of vertices, E is the
set of edges and we visualise an element (a, b) ∈ E as being an edge going out of a
and into b. We say a digraph is edgeless if E = ∅. By Ln we denote the linear order
on n-elements, regarded as a digraph.
A tournament is a digraph in which there is an edge between every pair of distinct
vertices. Throughout this article, T will denote a set of finite tournaments. We will
often refer to elements of T as forbidden tournaments.

Definition 1.1. (i) A (relational) structureM is homogeneous if every iso-
morphism f : A → B between finite substructures A,B of M can be
extended to an automorphism g ∈ Aut(M).

(ii) For a (relational) structureM, the age ofM, Age(M), is the class of finite
structures embeddable inM.

(iii) Let T be a set of finite tournaments. We let Forb(T ) be the class of finite
digraphs D such that for all T ∈ T , D does not embed T .

(iv) If T does not contain the 1-element tournament, we let (DT , ET ) be the
unique (up to isomorphism) countable homogeneous digraph whose age is
Forb(T ).

(v) AHenson digraph is a digraph isomorphic to (DT , ET ) where T is nonempty
and does not contain the 1- or 2-element tournament.

The fact that (DT , ET ) exists and is unique follows from the general Fraı̈ssé
theory of amalgamation classes, developed by Fraı̈ssé in [12]. This particular con-
struction of digraphs was used by Henson in [13] to show there exists uncountably
many countable homogeneous digraphs. An accessible account on the theory of
amalgamation classes can be found in [14]; a survey on homogeneous structures
can be found in [20].
IfT = ∅ then (DT , ET ) is the generic digraph, the unique countable homogeneous
digraph that embeds all finite digraphs. The reducts of the generic digraph are
classified in [1]. If T contains the 1-element tournament, then Forb(T ) = ∅. If
T contains the 2-element tournament, then (DT , ET ) is the countable edgeless
digraph. These are degenerate cases which is why we defined the term Henson
digraph to exclude these options.

Lemma 1.2. Let (D,E) be a Henson digraph.

(i) Th(D,E) is ℵ0-categorical.
(ii) Let (D′, E ′) be a digraph such that Age(D′, E ′) ⊆ Age(D,E). Then (D′, E ′)
is embeddable in (D,E).
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(iii) (D,E) is connected : for every distinct a, b ∈ D, there is a path from a to b or
from b to a. (In fact, an oriented path of length at most two.)

Proof. (i) The theory of any homogeneous structure in a finite relational
language is ℵ0-categorical. See [14, Theorem 6.4.1] for a proof.
(ii) This follows by using only the ‘forth’ part of a back-and-forth argument.
(iii) Let a, b ∈ D be distinct and without loss of generality suppose that there is
no edge between a and b. Consider the finite digraph {a′, b′, c′} such that there is no
edge between a′ and b′, and there are edges from a′ to c′ and from c′ to b′. Observe
that {a′, b′, c′} lies in Forb(T ), so is embeddable in (D,E). By the homogeneity of
(D,E), we map a′ to a and b′ to b to obtain a c ∈ D with E(a, c) and E(c, b). 

In order to use the canonical functions machinery, we need to expand theHenson
digraphs to ordered digraphs. This is described in the following definition.

Definition 1.3. (i) An ordered digraph is a digraph which is also linearly
ordered. Formally, it is a structure (V,E,<) where (V,E) is a digraph and
(V,<) is a linear order.

(ii) We let (DT , ET , <) be the unique (up to isomorphism) countable homo-
geneous ordered digraph such that a finite ordered digraph (D,E,<) is
embeddable in (DT , ET , <) iff (D,E) ∈ Forb(T ).

(iii) We say (D,E,<) is aHenson ordered digraph if (D,E,<) ∼= (DT , ET , <) for
some T .

Fact 1.4. All Henson ordered digraphs are Ramsey structures.

This fact follows by applying the main theorem of [22]; additionally, the fact is
stated in [15]. For the purposes of this article, it is not necessary to know what it
means to be a Ramsey structure. The definition and examples of Ramsey structures
can be found in [15] and references therein. The importance of the Ramsey property
and of introducing ordered digraphs will become evident in Section 1.5.

1.3. Reducts. LetM,N be two structures on the same domainM . We say N is
a reduct ofM if all ∅-definable relations in N are ∅-definable inM. We say N is a
proper reduct ofM ifN is a reduct ofM butM is not a reduct ofN . In this article,
if two structuresM and N are both reducts of each other, we consider them to be
the same structure.
For any structureM, the reducts ofM form a lattice where N ≤ N ′ if N is a
reduct ofN ′. In addition to classifying the reducts of a Henson digraph, the lattice
they form is also determined.

1.4. The topology of Sym(N) and N
N. Let F ⊆ N

N and g ∈ N
N. We say g

is in the closure of F , cl(F ), if for all finite A ⊂ N there is f ∈ F such that
f(a) = g(a) for all a ∈ A. We say F is closed if F = cl(F ). This defines the
so-called pointwise convergence topology on NN. Equipped with this topology, NN

becomes a topological monoid. Sym(N) inherits this topology, via the subspace
topology, and becomes a topological group (in fact, a Polish group).
As a consequence of the theorem of Engeler, Ryll-Nardzewski, and Svenonius
(see [14, Theorem 6.3.1]), if M is a countable ℵ0-categorical structure then the
lattice of reducts is antiisomorphic to the lattice of closed groups G such that
Aut(M) ≤ G ≤ Sym(M ). This means that determining the lattice of reducts of the
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Henson digraphs is equivalent to determining the lattice of closed supergroups of
the automorphism groups of the Henson digraphs.
ForF ⊆ N

N, we let cltm(F ) denote the smallest topologically closed submonoid of
N

N containing F , and we let 〈F 〉 denote the smallest topologically closed subgroup
of Sym(N) containing F .

1.5. Canonical functions.

Definition 1.5. LetM,N be any structures. Let f : M → N be any function
between the domains of the structures.

(i) The behaviour of f is the relation {(p, q) ∈ S(M)×S(N ) : ∃ā ∈M, b̄ ∈ N
such that tp(ā) = p, tp(b̄) = q and f(ā) = b̄}.

(ii) If the behaviour off is a functionS(M )→ S(N), thenwe sayf is canonical.
Rephrased, we say f is canonical if for all ā, ā′ ∈ M , tp(ā) = tp(ā′) ⇒
tp(f(ā)) = tp(f(ā′)).

(iii) If f is canonical, we use the same symbol f to denote its behaviour.

For example, for any structureM, every automorphismf ∈ Aut(M) is a canon-
ical function, and for all types p ∈ S(M), f(p) = p. A useful property that is
used implicitly in several arguments is that the composition of canonical functions
is canonical.
The benefit of canonical functions is that they are particularly well-behaved and
can be easily manipulated and analysed. Furthermore, the next theorem essentially
reduces the task of determining reducts to the task of analysing the behaviours of
canonical functions.

Theorem 1.6. Let (D,E,<) be a Henson ordered digraph. Let f ∈ Sym(D) and
c1, . . . , cn ∈ D be any vertices. Then there exists a function g : D → D such that
(i) g ∈ cltm(Aut(D,E) ∪ {f}).
(ii) g(ci) = f(ci) for i = 1, . . . , n.
(iii) When regarded as a function from (D,E,<, c̄) to (D,E), g is a canonical

function.

The above theorem holds in general for all homogeneous Ramsey structures, and
as discussed earlier, Henson ordered digraphs are indeed Ramsey structures. In its
general version, Theorem 1.6 was first proved in [7, Lemma 14]. A shorter proof
that uses topological dynamics can be found in [5].

§2. Classification of the reducts. For this section,wefix aHensonordered digraph
(D,E,<) and let T be its set of forbidden tournaments.

2.1. Statement of the classification.

Definition 2.1. (i) Recall that for F ⊆ Sym(D), 〈F 〉 denotes the smallest
closed subgroup of Sym(D) containing F . For brevity, when it is clear we
are discussing supergroups of Aut(D,E), we may abuse notation and write
〈F 〉 to mean 〈F ∪Aut(D,E)〉.

(ii) We let E(x, y) denote the underlying (undirected) graph relation E(x, y) ∨
E(y, x). We let N(x, y) denote the nonedge relation ¬E(x, y).
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(iii) A Henson graph is the Fraı̈ssé limit of the class of all finite Kn-free graphs,
for some integer n ≥ 3.

(iv) Assume (D,E) is isomorphic to the digraph obtained by changing the direc-
tion of all its edges. In this case− ∈ Sym(D) will denote a bijection D → D
such that for all x, y ∈ D, E(−(x),−(y)) iff E(y, x).

(v) Assume (D,E) is isomorphic to the digraph obtained by changing the direc-
tion of all the edges adjacent to one particular vertex of D. In this case
sw ∈ Sym(D) will denote a bijection D → D such that for some a ∈ D:

E(sw(x), sw(y)) if and only if

{
E(x, y) and x, y �= a, OR,
E(y, x) and x = a ∨ y = a.

In words, − is a function which changes the direction of all the edges of the
digraph and sw is a function which changes the direction of those edges adjacent
to one particularly vertex. Note that− is not necessarily an involution, however,−
can be chosen to be an involution (via a back-and-forth argument). The existence
of − or sw depends on which tournaments are forbidden; see Lemma 2.4. This
explains the wording of Theorem 2.2(iii): if, for example, − exists but sw does not,
thenmax{Aut(D,E), 〈−〉, 〈sw〉, 〈−, sw〉} = 〈−〉. Also, note that the groups 〈−〉 and
〈sw〉 are independent from the choice of the specific functions − or sw; again see
Lemma 2.4.

Theorem 2.2. Let (D,E) be a Henson digraph and let G ≤ Sym(D) be a closed
supergroup of Aut(D,E). Then

(i) G ≤ Aut(D,E) or G ≥ Aut(D,E).
(ii) If G < Aut(D,E) then G = Aut(D,E), 〈−〉, 〈sw〉 or 〈−, sw〉.
(iii) (D,E) is the random graph, (D,E) is a Henson graph or (D,E) is not homo-

geneous. In the last case Aut(D,E) is equal to max{Aut(D,E), 〈−〉, 〈sw〉,
〈−, sw〉} and is a maximal-closed subgroup of Sym(D).

The reducts of the random graph and the Henson graphs were classified
by Thomas in [25]. If (D,E) is the random graph, its proper reducts are
〈−Γ〉, 〈swΓ〉, 〈−Γ, swΓ〉 and Sym(D), where −Γ ∈ Sym(D) is a bijection which
maps every edge to a nonedge and every nonedge to an edge and swΓ is a bijec-
tion which does the same but only for those edges adjacent to a particular vertex
a ∈ D. A Henson graph has only two reducts, its automorphism group and the full
symmetric group. As an immediate consequence we get the following corollary of
Theorem 2.2:

Corollary 2.3. Let (D,E) be a Henson digraph. Then its lattice of reducts is a
sublattice of the lattice in Figure 1. In particular, the lattice of reducts of (D,E) is
(isomorphic to) a sublattice of the lattice of reducts of the generic digraph ([1]).

2.2. Understanding the reducts. In this section, we establish several important
lemmas that play prominent roles in the proof of the main theorem. We omit most
of the proofs of the lemmas. This is because they are relatively straightforward and
are identical to the lemmas in [1, Section 3]. Before we delve into the lemmas, we
describe some terminology.
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Aut(D,E)

〈sw〉 〈−〉

〈sw,−〉

Aut(D,E)

〈swΓ〉 〈−Γ〉

〈swΓ,−Γ〉

Sym(D)

Figure 1. Lattice of reducts.

• Let f, g : D → D and A ⊆ D. We say f behaves like g on A if for all finite
tuples ā ∈ A, f(ā) is isomorphic (as a finite digraph) to g(ā). If A = D, we
simply say f behaves like g.

• Let A,B be disjoint subsets of D. We say f behaves like sw between A and
B if f switches the direction of all edges between A and B and preserves all
nonedges between A and B.

• Let A ⊆ D. We let swA : D → D denote a function that behaves like id on A
and Ac and that behaves like sw between A and Ac . Note that the existence of
swA will depend on A and on T .

• We overload the symbols − and sw by letting them denote actions on finite
tournaments. We say T is closed under − if for every T ∈ T , the tournament
obtained from T by changing the direction of all its edges is in T . We say T
is closed under sw if for every T ∈ T and t ∈ T , the tournament obtained by
changing the direction of those edges adjacent to t is in T .
Remark. The terminology is somewhat unlucky as the notions of ‘behaviour’ and
‘behaving like’ do notmatch exactly. Iff and g are functionsD → D andf behaves
like g, then f and g have the same behaviour. The issue is that the converse is not
true in general; it is possible that f and g have the same behaviour but f does not
behave like g. Note that the converse is true if f and g are canonical.

Lemma 2.4. (i) − : D → D exists if and only if T is closed under −.
(ii) sw : D → D exists if and only if T is closed under sw.
(iii) If sw exists, then for all A ⊆ D, swA exists.
(iv) 〈−〉 ⊇ {f ∈ Sym(D) : f behaves like −}.
(v) 〈sw〉 ⊇ {f ∈ Sym(D) : there is A ⊆ D such that f behaves like swA}.
Proof. (i) ‘LHS ⇒ RHS’: Suppose − exists. To show T is closed under −, it
suffices to show that if T �∈ T , then −(T ) �∈ T . So suppose a finite tournament T
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is not in T . Then T is embeddable in (D,E). Then applying − shows that −(T ) is
embeddable in (D,E), i.e., that−(T ) �∈ T .
‘RHS ⇒ LHS’: To show − exists, we need to show that (D,E∗) is isomorphic
to (D,E). (Recall that φ∗(x, y) ..= φ(y, x).) By the uniqueness of Fraı̈ssé limits, it
suffices to show that (D,E∗) is homogeneous and that Age(D,E∗) = Age(D,E).
That the ages are equal follows from the assumption that T is closed under −.
That (D,E∗) is homogeneous follows from the observation that for all A,B ⊆ D
and all f : A → B, f : (A,E|A) → (B,E|B ) is an isomorphism if and only if
f : (A,E∗|A)→ (B,E∗|B) is an isomorphism.
(ii) ‘LHS⇒ RHS’: Apply the same argument as in (i) to prove this.
‘RHS ⇒ LHS’: Let a ∈ D, Xout = {x ∈ D : E(a, x)} and Xin = {x ∈ D :
E(x, a)}. Suppose we found an isomorphism f : (Xout, E) → (Xin, E). Then we
can define sw as the function which maps a to a, maps elements of Xout using f
and maps elements of Xin using f−1. Thus to complete this proof, we need to prove
that Xout and Xin are isomorphic digraphs. To do this, we will show that they are
homogeneous and have the same age.
First we show thatXout is homogeneous. Note in advance that the same argument
shows thatXin is homogeneous. Let (a1, . . . , an), (b1, . . . , bn) ∈ Xout be isomorphic.
Then (a, a1, . . . , an) and (a, b1, . . . , bn) are isomorphic, so by homogeneity of (D,E)
there is g ∈ Aut(D,E) mapping (a, a1, . . . , an) to (a, b1, . . . , bn). Since g fixes a, g
fixes Xout setwise. Then the restriction of g to Xout is an automorphism of (Xout, E)
mapping (a1, . . . , an) to (b1, . . . , bn), as required.
Next we show that Age(Xout) = Age(Xin). Let A be a finite sub-digraph of Xout.
Then let A′ = A ∪ {a} and note that A′ is an element of Forb(T ). Now let A′′ be
the digraph obtained from A′ by changing the direction of all the edges adjacent to
a. Since T is closed under sw and A′ ∈ Forb(T ), A′′ is also in Forb(T ), so A′′ is
embeddable in (D,E). By homogeneity, we may assume that the embedding maps
a ∈ A′′ to a ∈ (D,E), so we have embedded A into Xin. Thus we have shown that
Age(Xout) ⊆ Age(Xin). A symmetric argument shows that Age(Xin) ⊆ Age(Xout),
so we are done.
(iii) Let A ⊆ D. Consider the digraph (D,E ′) obtained from (D,E) by changing
the direction of the edges betweenA andAc and leaving all other edges unchanged. If
(D,E ′) is embeddable in (D,E), then swA exists as any embedding (D,E ′)→ (D,E)
has the desired property.
We will prove the contrapositive, so suppose swA does not exist. This implies
that the digraph (D,E ′) is not embeddable in (D,E), which by Lemma 1.2 implies
that Age(D,E ′) �⊆ Age(D,E). This implies there exists T ∈ T which is embed-
dable in (D,E ′); let g be such an embedding. Let B = g−1(g(T ) ∩ A), so B is a
subset of T . Now consider the tournament T ′ obtained by applying the switch
operation on T about every element of B. By choice of T and B, T ′ is iso-
morphic to (g(T ), E|g(T )). Hence T ′ is in the age of (D,E) and so T ′ �∈ T .
To summarise, we have T ∈ T , T ′ �∈ T and T ′ is obtained from T by switch-
ing. This means T is not closed under sw and so by (ii) sw does not exist, as
required.
(iv) and (v) We omit these proofs for the reasons described at the start of this
section. 
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Definition 2.5. Let G be a subgroup of Sym(D) and n ∈ N. G is n-transitive
if for all proper tuples ā, b̄ ∈ Dn, there exists g ∈ G such that g(ā) = b̄. G is
n-homogeneous if for all subsets A,B ⊂ D of size n, there exists g ∈ G such that
g(A) = B.

Lemma 2.6. Let G ≤ Sym(D) be a closed supergroup of Aut(D,E).
(i) If G is n-transitive for all n ∈ N, then G = Sym(D).
(ii) If G is n-homogeneous for all n ∈ N, then G = Sym(D).
(iii) Suppose that whenever A ⊂ D is finite and has edges, there exists g ∈ G such

that g(A) has less edges than in A. Then G = Sym(D).
(iv) Suppose that there exists a finite A ⊂ D and g ∈ G such that g behaves like

id on D\A, g behaves like id between A and D\A, and, g deletes at least one
edge in A. Then, G = Sym(D).

Terminology. Let a1, . . . , an, b1, . . . , bn ∈ D. We say ā and b̄ are isomorphic as
graphs if E(ai , aj)↔ E(bi , bj) for all i, j.
Lemma 2.7. Let G ≤ Sym(D) be a closed supergroup of Aut(D,E).
(i) Suppose that whenever ā and b̄ are isomorphic as graphs, there exists g ∈ G
such that g(ā) = b̄. Then G ≥ Aut(D,E).

(ii) Suppose that for all A = {a1, . . . , an} ⊂ D, there exists g ∈ G such that for
all edges aiaj in A, E(g(ai ), g(aj)) if i < j and E(g(aj ), g(ai )) if i > j.
(Intuitively, such a g is aligning the edges so they all point in the samedirection.)
Then, G ≥ Aut(D,E).

(iii) Suppose that for all finite A ⊂ D and all edges aa′ ∈ A there is g ∈ G such
that g changes the direction of aa′ and behaves like id on all other edges and
nonedges of A. Then G ≥ Aut(D,E).

(iv) Suppose there is a finite A ⊂ D and a g ∈ G such that g behaves like id on
D\A, g behaves like id between A and D\A, and g switches the direction of
some edge in A. Then, G ≥ Aut(D,E).

Furthermore, in all of these cases we can also conclude that the underlying graph
(D,E) is homogeneous.

2.3. Analysis of canonical functions. To help motivate the analysis we are about
to undertake, we sketch a part of the proof of the main theorem. One task will be to
show that if G > Aut(D,E) then G ≥ 〈−〉 or G ≥ 〈sw〉. Since G > Aut(D,E), G
does not preserve the relationE, so there exist g ∈ G and c1, c2 ∈ D witnessing this.
Then by Theorem 1.6, we find a canonical function f : (D,E,<, c1, c2) → (D,E)
that agrees with g on (c1, c2) and which is generated by G . The behaviour of f
will give us information about G . We only have to consider the behaviour of f on
the 2-types, since (D,E,<, c1, c2) has quantifier elimination and all relations are of
arity ≤ 2. Therefore there are only finitely many possibilities for the behaviour of
f, so we can check each case and show that G must contain 〈−〉 or 〈sw〉.
2.3.1. Canonical functions from (D,E,<). Westart our analysis of the behaviours
with the simplest case, which is when no constants are added.
Notation and facts.

• Let φ1(x, y), . . . , φn(x, y) be formulas. We let pφ1,...,φn (x, y) denote the (partial)
type determined by the formula φ1(x, y) ∧ · · · ∧ φn(x, y).
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• There are four 2-types in (D,E): p=, pE, pE∗ and pN .
• There are seven 2-types in (D,E,<):p=, p<,E , p<,E∗ , p<,N ,p>,E, p>,E∗ andp>,N .

The following lemma contains a little ‘trick’ that proves useful during the analysis
of the behaviours. Roughly, this lemma allows us to manipulate freely how finitely
many elements are ordered, and its benefits will be seen shortly.

Lemma 2.8. Let {a1, . . . , an} ∈ (D,E,<) and let � ∈ Sn . Then there exists
g ∈ Aut(D,E) such that for all i, j, E(ai , aj) if and only if E(g(ai ), g(aj)), and for
all i, j, g(ai ) < g(aj) if and only if �(i) < �(j).

Proof. Follows straightforwardly from the definition of the age of (D,E,<) and
the homogeneity of (D,E). 

Lemma 2.9. Let G be a closed supergroup of Aut(D,E), let f ∈ cltm(G), and let
f be canonical when considered as a function from (D,E,<) to (D,E).

(i) If f(p<,N ) = pN ,f(p<,E) = pE∗ and f(p<,E∗) = pE , then − exists and
− ∈ G .

(ii) If f(p<,N ) = pN ,f(p<,E) = pE and f(p<,E∗) = pE , then (D,E) is a
homogeneous graph and G ≥ Aut(D,E).

(iii) If f(p<,N ) = pN ,f(p<,E) = pE∗ and f(p<,E∗) = pE∗ , then (D,E) is a
homogeneous graph and G ≥ Aut(D,E).

(iv) If f(p<,N ) = pE or pE∗ , f(p<,E) = pN and f(p<,E∗) = pN , then (D,E) is
a homogeneous graph and G ≥ Aut(D,E).

(v) If f has any other nonidentity behaviour, then either we get a contradiction
(i.e., that behaviour is not possible) or G = Sym(D).

Proof. (i) By Lemma 2.4, to show− exists, it suffices to show that if T �∈ T , then
−(T ) �∈ T . So let T be a finite tournament not in T . This means T is embeddable
in (D,E); let T ′ ⊂ (D,E) be isomorphic to T . Then the conditions in the lemma
tell us that f(T ′) ∼= −(T ), so −(T ) is embeddable in (D,E), so −(T ) �∈ T , as
required.
Next we show− ∈ G . SinceG is closed, it suffices to show that for all finite ā ∈ D
there exists g ∈ G such that g(ā) = −(ā). So let ā ∈ D be finite. By the conditions
in the lemma, f(ā) ∼= −(ā). By homogeneity, there exists g1 ∈ Aut(D,E) mapping
f(ā) to −(ā). Since f ∈ cltm(G), there is g2 ∈ G such that g2(ā) = f(ā). Letting
g = g1 ◦ g2 completes the argument.
(ii) We will use Lemma 2.7(ii). Let (a1, . . . , an) ∈ D. By Lemma 2.8, there is
g1 ∈ Aut(D,E) such that g1(a1) < g1(a2) < · · · < g1(an). Then, due to the
conditions in the lemma, applying f aligns the edges of this tuple to point in the
same direction. As f ∈ cltm(G), there exists g2 ∈ G which agrees with f on g1(ā).
Letting g = g2 ◦ g1 completes the argument.
Note: For the remaining arguments, we will no longer comment explicitly on the
fact that f ∈ cltm(G) implies that f can be imitated on a finite set by a function
in G .
(iii) Use the same argument as (ii).
(iv) Let ā be any tuple. Then apply f once to get f(ā). By Lemma 2.8, there is
g ∈ Aut(D,E) such that gf(ā) is linearly ordered the same way as ā. Now apply
f again. Observe that the behaviour of fgf on ā matches the behaviour of the
canonical function in (ii) or (iii). Thus, this case is reduced to one of those.
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Terminology. In future, we use the phrase applying f twice to abbreviate the
procedure of applying f, re-ordering the elements to match the ordering of the
initial tuple, and applying f again.
(v) Case 1: f(p<,N ) = pN . We are left with the behaviours where f(p<,E) = pN
orf(p<,E∗) = pN (or both), as all the other possibilities have been dealt with above.
Now for any finite A ⊂ D that has edges, f(A) has less edges than A does. So by
Lemma 2.6(iii), we conclude that G = Sym(D).
Case 2: f(p<,N ) = pE .
Case 2a: f(p<,E) = pE and f(p<,E∗) = pE . For every proper tuple ā, b̄ ∈ Dn,
f(ā) ∼= f(b̄) ∼= Ln (as digraphs), so G is n-transitive for all n, so G = Sym(D) by
Lemma 2.6(i).
Case 2b: f(p<,E) = pE∗ and f(p<,E∗) = pE∗ . Apply f twice and use the same
argument as in Case 2a to show that G = Sym(D).
Case 2c: f(p<,E) = pE and f(p<,E∗) = pE∗ . We will show that this behaviour is
not possible. Let T ∈ T be of minimal cardinality. Enumerate T as T = (t1, . . . , tn)
so that we have an edge going from t1 to t2 (as opposed to t2 to t1). Now let
A = (a1, . . . , an) be the ordered digraph constructed as follows: Start with T , delete
the edge t1t2, and add a linear order so that a1 < a2. As T was minimal, A can
be embedded in (D,E,<), so then f(A) ⊂ (D,E). But by the construction of A,
f(A) ∼= T , so we have shown that T is embeddable in (D,E). This contradicts that
T ∈ T .
Case 2d: f(p<,E) = pE∗ andf(p<,E∗) = pE . Applying f twice reduces to a case
that is dual to Case 2c.
Case 2e: f(p<,E) = pE and f(p<,E∗) = pN . Applying f twice reduces to
Case 2a.
Case 2f: f(p<,E) = pN andf(p<,E∗) = pE . Applying f twice reduces to Case 1.
Case 2g:f(p<,E) = pE∗ and f(p<,E∗) = pN . We will show that this behaviour is
not possible. Let T ∈ T be of minimal cardinality. Observe that f3 has the identity
behaviour, so that f3(T ) = T . Now observe that f2(T ) is a digraph that contains
nonedges, so by theminimality ofT ,f2(T ) can be embedded in (D,E,<). But then
applying f shows that f(f2(T )) is embeddable in (D,E), i.e., that f3(T ) = T is
embeddable in (D,E). This contradicts that T ∈ T .
Case 2h: f(p<,E) = pN and f(p<,E∗) = pE∗ . Using the same argument as in 2g
shows that this case is not possible.
Case 3: f(p<,N ) = pE∗ . This case is symmetric to Case 2. 

Now we have seen an analysis, we provide more detailed intuition. Given some
closed supergroup G of Aut(D,E), we want to know what functions it contains.
SinceG is closed, this amounts to knowing howG acts on finite tuples inD. But this
is exactly the information a canonical function in cltm(G) provides! For example,
in (i) the canonical function tells us that G can behave like − on any finite tuple,
which implies that G ≥ 〈−〉. The role of homogeneity is that it allows us to move
between isomorphic tuples, so knowing howG acts on one tuple automatically tells
us how G acts on all tuples isomorphic to that one tuple.

2.3.2. Canonical functions from (D,E,<, c̄). We now move on to the general
situation where we have added constants c̄ ∈ D to the structure. For convenience,
we assume that ci < cj for all i < j. Since (D,E) is ℵ0-categorical, (D,E, c̄)
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is also ℵ0-categorical, so the n-types of (D,E,<, c̄) correspond to the orbits of
Aut(D,E,<, c̄) acting on the set of n-tuples ofD. For this reason, we often conflate
the notion of types and orbits.
We need to describe the 2-types of (D,E,<, c̄), and to do that we first need
to describe the 1-types. There are two kinds of 1-types, i.e., two kinds of orbits.
The first is a singleton, e.g., {c1}. The other orbits are infinite and are determined
by how their elements are related to the ci . These infinite orbits are of the form
{x ∈ D :

∧
i

(
φi(x, ci) ∧ �i(x, ci))}, where φi ∈ {<,>} and �i ∈ {E,E∗, N}.

Unlike in the case of the generic digraph, the substructures induced on these
orbits will not necessarily be isomorphic to the original structure. For example, let
T = {L3} and c̄ = (c1). Then consider the orbit X = {x ∈ D : x < c1 ∧E(x, c1)}.
If there was an edge, ab say, in X , then {c1, a, b} would be a copy of L3. However,
L3 is forbidden. Thus, X contains no edges so in particular X is not isomorphic to
(DT , ET , <).
However, there are always orbits such that the substructures induced on them
are isomorphic to the original structure. For example, regardless of T , the orbit
X = {x ∈ D : x < c1 ∧

∧
i N(x, ci)} is isomorphic to (D,E,<). These orbits form

a central part of the argument so we give them a definition.

Definition 2.10. Let c̄ ∈ D and X ⊂ D be an orbit of (D,E,<, c̄). We say X is
independent if X is infinite and there are no edges between c̄ and X .

The following lemma highlights the key feature of independent orbits that makes
them useful.

Lemma 2.11. Let X be an independent orbit of (D,E,<, c̄).

(i) Let v ∈ D\(X∪c̄). LetA = (a0, . . . , an) be a finite digraph in the age of (D,E).
Then there are x1, . . . , xn ∈ X such that (a0, a1, . . . , an) ∼= (v, x1, . . . , xn) as
tuples in (D,E,<, c̄).

(ii) The substructure induced on X is isomorphic to (D,E).

Proof. Let k be the length of the tuple c̄ and let x be any element of X . Con-
sider the finite ordered digraph A′ which is constructed as follows: start with A,
add new vertices c′1, . . . , c

′
k and then add edges and an ordering so that we have

(a0, c′1, . . . , c
′
k) ∼= (v, c1, . . . , ck) and so that (ai , c′1, . . . , c′k) ∼= (x, c1, . . . , ck) for

all i > 0.
A′ is embeddable in (D,E,<) so let f be such an embedding. By composing
with an automorphism of (D,E,<) if necessary, we can assume thatf(c′j) = cj for
j = 1, . . . , k. Then letting xi = f(ai) for i = 1, . . . , n completes the proof.
(ii) From (i), we know that the age of X equals the age of (D,E), so
it suffices to show that X is homogeneous. Let (a1, . . . , an), (b1, . . . , bn) ∈
X be isomorphic tuples, as ordered digraphs. Then (c1, . . . , ck, a1, . . . , an) ∼=
(c1, . . . , ck, b1, . . . , bn). By the homogeneity of (D,E,<), there is f ∈ Aut(D,E,<)
mapping (c1, . . . , ck, a1, . . . , an) to (c1, . . . , ck, b1, . . . , bn). Since f fixes c̄, f fixesX
setwise, and so f|X is an automorphism of X mapping ā to b̄, as required. 

Notation. Let A,B be definable subsets of D and let φ1(x, y), . . . , φn(x, y) be
formulas.We let pA,B,φ1,...,φn(x, y) denote the (partial) type determined by the formula
x ∈ A ∧ y ∈ B ∧ φ1(x, y) ∧ · · · ∧ φn(x, y).
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Using this notation, we can describe the 2-types of (D,E,<, c̄). They are all of
the form pX,Y,φ,� = {(a, b) ∈ D : a ∈ X, b ∈ Y,φ(a, b) and �(a, b)}, where X and
Y are orbits, φ ∈ {<,=, >} and � ∈ {E,E∗, N}.
Our task now is to analyse the possibilities forf(pX,Y,φ,�), where f is a canonical
function. It turns out that it is sufficient to study those cases where we assume X is
an independent orbit. The first lemma deals with the situation when X = Y .

Lemma 2.12. Let G be a closed supergroup of Aut(D,E), let c̄ ∈ D, let f ∈
cltm(G), and let f be canonical when considered as a function from (D,E,<, c̄) to
(D,E). Let X ⊂ D be an independent orbit.
(i) If f(pX,X,<,N ) = pN ,f(pX,X,<,E) = pE∗ and f(pX,X,<,E∗) = pE , then −
exists and − ∈ G .

(ii) If f(pX,X,<,N ) = pN ,f(pX,X,<,E) = pE and f(pX,X,<,E∗) = pE , then (D,E)
is a homogeneous graph and G ≥ Aut(D,E).

(iii) If f(pX,X,<,N ) = pN ,f(pX,X,<,E) = pE∗ and f(pX,X,<,E∗) = pE∗ , then
(D,E) is a homogeneous graph and G ≥ Aut(D,E).

(iv) If f(pX,X,<,N ) = pE or pE∗ , f(pX,X,<,E) = pN and f(pX,X,<,E∗) = pN , then
(D,E) is a homogeneous graph and G ≥ Aut(D,E).

(v) If f has any other nonidentity behaviour, then either we get a contradiction or
G = Sym(D).

Proof. Intuitively, since X ∼= (D,E), the canonical functions here provide us the
same information as the canonical functions in Lemma 2.9, so we are done. More
formally, one can copy the arguments from Lemma 2.9 and add minor adjustments
as necessary. We do this for (i) as an example, and leave the rest to be checked by
the reader.
(i) First we show − exists, so let T be a tournament not in T . This means T is
embeddable in (D,E) and so, by Lemma 2.11, T is embeddable in X ; let T ′ ⊂ X
be isomorphic to T . Then the conditions in the lemma tell us that f(T ′) ∼= −(T ),
so −(T ) is embeddable in (D,E), so −(T ) �∈ T , as required.
Next we show− ∈ G . SinceG is closed, it suffices to show that for all finite ā ∈ D
there exists g ∈ G such that g(ā) = −(ā). So let ā ∈ D be finite. By Lemma 2.11,
there is ā′ ∈ X isomorphic to ā. By the conditions in the lemma, f(ā′) ∼= −(ā).
By homogeneity, there exist g1 ∈ Aut(D,E) mapping ā to ā′ and g2 ∈ Aut(D,E)
mappingf(ā′) to−(ā). Since f ∈ cltm(G), there is g3 ∈ G such that g3(ā) = f(ā).
Letting g = g2 ◦ g3 ◦ g1 completes the argument. 

Next we look at the behaviour of f between an independent orbit X and any
other orbit Y . This task is split depending on how X and Y relate with regard to
the linear order.
Facts and notation. There are two ways that two infinite orbits X and Y of
Aut(D,E,<, c̄) can relate to each other with respect to the linear order <:

• All of the elements of one orbit, X say, are smaller than all of the elements of Y .
This is abbreviated by ‘X < Y ’.

• X and Y are interdense: ∀x < x′ ∈ X,∃y ∈ Y such that x < y < x′ and vice
versa.

The next lemma contains the analysis for the case where X < Y or X > Y .

https://doi.org/10.1017/jsl.2017.74 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.74


408 LOVKUSHAGARWAL ANDMICHAEL KOMPATSCHER

Lemma 2.13. Let G be a closed supergroup of Aut(D,E), let c̄ ∈ D, let f ∈
cltm(G), and let f be canonical when considered as a function from (D,E,<, c̄) to
(D,E). Let X ⊂ D be an independent orbit on which f behaves like id and let Y be
an infinite orbit such that X < Y or X > Y .

(i) If f(pX,Y,N ) = pN ,f(pX,Y,E) = pE∗ and f(pX,Y,E∗) = pE , then sw exists
and sw ∈ G .

(ii) If f(pX,Y,N ) = pN ,f(pX,Y,E) = pE and f(pX,Y,E∗) = pE , then (D,E) is a
homogeneous graph and G ≥ Aut(D,E).

(iii) If f(pX,Y,N ) = pN ,f(pX,Y,E) = pE∗ and f(pX,Y,E∗) = pE∗ , then (D,E) is a
homogeneous graph and G ≥ Aut(D,E).

(iv) Iff(pX,Y,N ) = pE orpE∗ , f(pX,Y,E) = pN andf(pX,Y,E∗) = pN , then (D,E)
is a homogeneous graph and G ≥ Aut(D,E).

(v) If f has any other nonidentity behaviour, then either we get a contradiction or
G = Sym(D).

Remark: We do not need to include < or > in the subscripts of the type because
it is automatically determined by how X and Y are related to c̄.

Proof. Assume that X < Y . The proof for the case Y < X is symmetric. Let
y0 ∈ Y be any element.
(i) The proof is analogous to that of Case (i) in Lemma 2.9 and is left as an
exercise for the reader. Note that Lemma 2.11 is needed for this.
(ii) Using Lemma 2.7(ii), it suffices to show that for any finite A ⊂ D we can
align all its edges by using functions in G . Let A = {a1, . . . , an}. First we map an−1
to y0 and the rest of A into X (possible by Lemma 2.11), and then apply f. Then
we repeat but with an−2 instead of an−1, then with an−3, and so on until a1.
(iii) Same as (ii).
(iv) The same argument as in (ii) works but with a slight modification: the intu-
ition is that whenever f was applied to some tuple (a0, . . . , an) in those proofs, here
we applyf twice to get the same effect. To bemore precise, themodification is as fol-
lows. Let (a0, . . . , an) ∈ D. We first map this to an isomorphic copy (y0, x1, . . . , xn)
for some xi ∈ X . Then apply f. Then again we map this to an isomorphic tuple
(y0, x′1, . . . , x

′
n) for some x

′
i ∈ X . Then apply f a second time. The total effect of

this procedure is the same as what the canonical function did in Case (ii) or (iii).
Thus we have reduced this case to either (ii) or (iii).
Remark: For the rest of this proof, we will use the phrase “by applying f twice”
to refer to the procedure described above.
(v) Case 1: f(p<,N ) = pN . By a similar argument as in Case 1 of Lemma 2.9,
G = Sym(D). Note that Lemma 2.11 is needed for this.
Case 2: f(pX,Y,N ) = pE .
Case 2a: f(pX,Y,E) = pE∗ . We will show that this behaviour is not possible,
in a similar fashion to Case 2c of Lemma 2.9. Let T ∈ T be of minimal size and
enumerateT as (t0, t1, . . . , tn) so that t0 has at least one edge going into it. Construct
a digraph A = (a0, a1, . . . , an) as follows: start with A being equal to T and then
replace edges into a0 with nonedges, replace edges out of a0 with incoming edges,
and leave all other edges of A the same.
Since T was minimal, A ∈ Forb(T ) so A can be embedded in D. Furthermore,
by Lemma 2.11 there are xi ∈ X such that (a0, a1, . . . , an) ∼= (y0, x1, . . . , xn).
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Now apply f. By construction of A, f(y0, x1, . . . , xn) ∼= (t0, . . . , tn). Thus, T is
embeddable in D, contradicting T ∈ T .
Case 2b: f(pX,Y,E∗) = pE∗ . Use the same argument as Case 2a to show this is
not possible.
Now there are only three behaviours left to analyse.
Case 2c: f(pX,Y,E) = pE and f(pX,Y,E∗) = pE . We will show that G = Sym(D),
by showing that every tuple (a0, . . . , an−1) ∈ Dn can be mapped to Ln using func-
tions in G . We do this by induction on n. The base case n = 1 is trivial so let n > 1.
By the inductive hypothesis we can assume that (a1, . . . , an−1) ∼= Ln−1. By Lemma
2.11 we map ā to an isomorphic tuple (y0, x1, . . . , xn−1) for some xi ∈ X . Then
applying f maps the tuple to a copy of Ln, as required.
Case 2d: f(pX,Y,E) = pE and f(pX,Y,E∗) = pN . By applying f twice this case is
reduced to Case 2c.
Case 2e: f(pX,Y,E) = pN and f(pX,Y,E∗) = pE . By applying f twice this case is
reduced to Case 1.
Case 3: f(pX,Y,N ) = pE∗ . This case is symmetric to Case 2. 

In the proof above we only had to study the behaviour of f on {y0}∪X for some
element y0 ∈ Y . The key property which allowed this is Lemma 2.11. This feature
allows us to use these arguments withminimal modification to prove the subsequent
lemmas.
The next lemma deals with the case where X and Y are interdense.

Lemma 2.14. Let G be a closed supergroup of Aut(D,E), let c̄ ∈ D, let f ∈
cltm(G), and let f be canonical when considered as a function from (D,E,<, c̄) to
(D,E). Let X ⊂ D be an independent orbit on which f behaves like id and let Y be
an infinite orbit such that X and Y are interdense. Then at least one of the following
holds.

(i) f preserves all the edges and nonedges between X and Y .
(ii) f switches the direction of every edge betweenX andY and preserves nonedges
between X and Y . In this case sw exists.

(iii) G ≥ Aut(D,E) and (D,E) is a homogeneous graph.
(iv) G = Sym(D).

Proof. First just consider the increasing tuples from X to Y . With the same
arguments as in Lemma 2.13 one can show that either

(a) f(pX,Y,N,<) = pN,f(pX,Y,E,<) = pE and f(pX,Y,E∗,<) = pE∗,
(b) f(pX,Y,N,<) = pN,f(pX,Y,E,<) = pE∗ and f(pX,Y,E∗,<) = pE ,
(c) G ≥ Aut(D,E) and (D,E) is a homogeneous graph, or
(d) G = Sym(D).

If (c) or (d) is true we are done, so assume (a) or (b) is true. Similarly we can
assume that f behaves like id or sw between decreasing tuples from X to Y . If
the behaviours between increasing and decreasing tuples are the same, then (i) or
(ii) will be true so we would be done. Thus it remains to check what happens if f
behaves like id on decreasing tuples and sw on increasing tuples. Explicitly we are
assuming that
f(pX,Y,N,<) = pN ,f(pX,Y,E,<) = pE∗ , f(pX,Y,E∗,<) = pE and
f(pX,Y,N,>) = pN ,f(pX,Y,E,>) = pE , f(pX,Y,E∗,>) = pE∗ .
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Let ā = (a0, a1, . . . , an) ∈ Forb(T ) be a digraph with at least one edge E(a0, a1).
We can consider ā as an ordered digraph by setting ai < aj ↔ i < j. Then
by Lemma 2.11 ā has an isomorphic copy b̄ = (b0, b1, . . . , bn) such that b1 ∈ Y
and bi ∈ X for i �= 1. All the edges of b̄ are preserved under f, except for
the edge E(b0, b1) whose direction is switched. By Lemma 2.7, we conclude that
G ≥ Aut(D,E) and (D,E) is a homogeneous graph. 

We end by looking at how f can behave between the constants c̄ and the rest of
the structure.

Lemma 2.15. Let G be a closed supergroup of Aut(D,E), let (c1, . . . , cn) ∈ D, let
f ∈ cltm(G), and let f be canonical when considered as a function from (D,E,<, c̄)
to (D,E). Suppose that f behaves like id on D− ..= D\{c1, . . . , cn}. Then at least
one of the following holds.

(i) For all i, 1 ≤ i ≤ n, f behaves like id or like sw between ci andD−.
(ii) G ≥ Aut(D,E) and (D,E) is a homogeneous graph.
(iii) G = Sym(D).

Proof. Fix some i , 1 ≤ i ≤ n. Let Xout = {x ∈ D : x < c1 ∧ E(ci , x) ∧∧
j �=i N(cj , x)}. Define Xin and XN similarly, with E(ci , x) replaced with E(x, ci)
and N(x, ci ), respectively. Then for any finite digraph (a0, a1, . . . , an), there exist
x1, . . . , xn ∈ Xout ∪ Xin ∪ XN such that (a0, a1, . . . , an) ∼= (ci , x1, . . . , xn). So by
replicating the proof of Lemma 2.13 we can assume that f behaves like id or sw
between ci and Xout ∪ Xin ∪ XN . Without loss of generality, we assume f behaves
like id, because we can compose f with swci if necessary.
Iff behaves like id between ci andD− we are done, so suppose there is an infinite
orbit X such that f does not behave like id between ci and X . Assume that there
are edges from ci into X—the arguments for the other two cases are similar.
Let A be a finite digraph in the age of D which contains an edge, ab say. Then
observe that there is an embedding of A into D such that a is mapped to ci , b is
mapped into X , and the rest of A is mapped into Xout ∪Xin ∪XN . Then applying f
changes exactly the one edge ab inA, so byLemma 2.6 or Lemma 2.7 as appropriate,
we are done. 


2.4. Proof of the classification. We now piece together these lemmas to prove the
classification theorem, Theorem 2.2.

Proof. (i) Suppose for contradiction that G �≥ Aut(D,E) and G �≤ Aut(D,E).
Because of the second assumption G violates the relation E. By Theorem 1.6 this
can be witnessed by a canonical function. Precisely, this means there are c1, c2 ∈ D
and f ∈ cltm(G) such that f : (D,E,<, c1, c2) → (D,E) is a canonical function,
E(c1, c2) and N(f(c1), f(c2)).
Now let X be an independent orbit of (D,E,<, c1, c2).
Claim 1.We may assume that f behaves like id on X .
By Lemma 2.12 we know that f behaves like id or − on X , otherwise G would
contain Aut(D,E). If f behaves like − on X , then we continue by replacing f by
− ◦ f.
Claim 2.Wemay assume thatf behaves like id betweenX and every other infinite
orbit Y .
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Let Y be another infinite orbit. By Lemmas 2.13 and 2.14,f behaves like id or sw
between X and Y , as otherwise G would contain Aut(D,E). If f behaves like sw
between them, then we simply replace f by swY ◦f. Note that one needs to check
swY is a legitimate function, but this has been done in Lemma 2.4(iii).
Claim 3.Wemay assume thatf behaves like id on every infinite orbit and between
every pair of infinite orbits.
Suppose not, so there are infinite orbits Y1 and Y2 (possibly the same) and there
are distinct y1, y2 ∈ Y1, Y2, respectively, such that (y1, y2) �∼= f(y1, y2). Now for
any finite digraph (a1, a2, . . . , an) ∈ Forb(T ) with (y1, y2) ∼= (a1, a2), we can find
x3, . . . , xn ∈ X such that (y1, y2, x3, . . . , xn) ∼= (a1, . . . , an) (this statement can be
verified analogously to Lemma 2.11). Then f has the effect of only changing what
happens between y1 and y2, since we know f behaves like id on X and between
X and all other infinite orbits. In short, given any finite digraph, we can use f to
change what happens between exactly two of the vertices of the digraph.
There are three options. If f creates an edge from a nonedge, then we can use
f to introduce a forbidden tournament, which gives a contradiction. If f deletes
the edge or changes the direction of the edge, then by Lemma 2.6 or Lemma 2.7, as
appropriate, we get that G ≥ Aut(D,E).
Claim 4.We may assume that f behaves like id between {c1, c2} and the union
of all infinite orbits.
The follows immediately from Lemma 2.15, composing with swci if necessary.
Conclusion.We can assume that f behaves everywhere like the identity, except
on (c1, c2), where it maps an edge to a nonedge. But then we get that G = Sym(D)
by Lemma 2.6, completing the proof of (i).
(ii) The proof follows exactly the same series of claims as in part (i) but withminor
adjustments to howone starts and concludes.We go through one case as an example,
leaving the rest to the reader. We will show that if Aut(D,E) < G ≤ Aut(D,E),
thenG ≥ 〈−〉 orG ≥ 〈sw〉 (if they exist). So suppose Aut(D,E) < G ≤ Aut(D,E).
ThenG preserves nonedges but not the relationE. By Theorem 1.6, there is an edge
c1c2 ∈ D and a canonical functionf : (D,E,<, c1, c2)→ (D,E) which changes the
direction of the edge c1c2. Suppose for contradiction that G �≥ 〈−〉 and G �≥ 〈sw〉.
Let X be an independent orbit. By Lemma 2.12, f must behave like id on X
and then by Lemmas 2.13 and 2.14, f must behave like id between X and all other
infinite orbits. By repeating the argument of Claim 3 above, f must behave like id
on the union of infinite orbits and so by Lemma 2.15f must behave like id between
the constants and the union of infinite orbits. Nowwe are in the situation of Lemma
2.7(iv), so we conclude that G ≥ Aut(D,E), so G ≥ 〈−〉, 〈sw〉.
(iii) (D,E) embeds every finite edgeless graph and is connected (Lemma 1.2(ii)).
Hence, if (D,E) is a homogeneous graph then (D,E) has to be the random graph
or a Henson graph, by the classification of countable homogeneous graphs ([18]).
Thus assume that (D,E) is not a homogeneous graph. Let G ′ ..=
max{Aut(D,E), 〈−〉, 〈sw〉, 〈−, sw〉}. Now let G be a closed group such that
G ′ < G ≤ Sym(D). We want to show thatG = Sym(D). By Theorem 1.6, there are
c̄ ∈ D and a canonicalf : (D,E,<, c̄)→ (D,E) such thatf cannot be imitated by
any function of G ′ on c̄. To be precise, we mean that for all g ∈ G ′, g(c̄) �= f(c̄).
Now we continue as in (i), proving that we may assume f behaves like id on the
union of all infinite orbits and like id between c̄ and the union of infinite orbits.
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In doing so, we may have composed f with − or swA for some A. Since − and swA
are elements of G ′, these compositions do not change the fact that f could not be
imitated byG ′ on c̄. In particular,f(c̄) �∼= c̄. Hence, we are in the situation of either
Lemma 2.6(iv) or Lemma 2.7(iv). Thus, either G = Sym(D) and we are done, or
(D,E) is a homogeneous graph-contradiction.
We have shown that there are no closed groups in betweenG ′ and Sym(D). Since
Aut(D,E) containsG ′ and is a proper subgroup of Sym(D), we must conclude that
G ′ = Aut(D,E), as required. 


§3. 2ℵ0 pairwise nonisomorphic maximal-closed subgroups of Sym(N).
Definition 3.1. Let G be a closed subgroup of Sym(N). We say that G is
maximal-closed if G �= Sym(N) and there are no closed groups G ′ such that
G < G ′ < Sym(N).

We construct 2ℵ0 pairwise nonisomorphic maximal-closed subgroups of Sym(N)
by modifying Henson’s construction of 2ℵ0 pairwise nonisomorphic homogeneous
countable digraphs and taking their automorphism groups. The modification is
needed to ensure that the groups are maximal. A short argument will show that
the automorphism groups are pairwise nonconjugate. The groups are even pair-
wise nonisomorphic, since by a result of Rubin [24] automorphism groups of
Henson digraphs are conjugate if and only if they are isomorphic as abstract
groups.
Henson’s construction in [13] centres on finding an infinite antichain, with respect
to embeddability, of finite tournaments.

Definition 3.2. Let n ∈ N\{0}. In denotes the n-element tournament obtained
from the linear order Ln by changing the direction of the edges (i, i + 1) for i =
1, . . . , n − 1 and of the edge (1, n).
By counting 3-cycles, Henson showed that {In : n ≥ 6} is an antichain.
It is a short exercise to show that the 3-cycles in In are (1, 3, n), (1, 4, n), . . . ,
(1, n − 2, n), (3, 2, 1), (4, 3, 2), . . . , (n, n − 1, n − 2). In particular, observe that In
has at most two vertices through which there are more than four 3-cycles, namely
the vertices 1 and n; this observation is useful in our modification.
The automorphism groups of the Henson digraphs constructed by forbid-
ding any subset of these In ’s are not maximal: 〈−〉 and the automorphism
group of the random graph are closed supergroups. By forbidding a few
extra tournaments, however, we can ensure that the automorphism groups are
maximal.
In a digraph, a source, respectively sink, is a vertex which only has outgoing,
respectively incoming, edges adjacent to it. Then let T be a finite tournament that
is not embeddable in In for any n and that contains a source but no sink. Such a
T can be found, for example, by ensuring there are at least three vertices through
which there are more than four 3-cycles.
Let k = |T |. Let T = {T ′ : |T | = k + 1, T is embeddable in T ′}. Then for
A ⊆ N\{1, . . . , k + 1}, let TA = T ∪ {In : n ∈ A}. Then let DA be the Henson
digraph whose set of forbidden tournaments is TA. The automorphism groups of
these DA is the set of groups we want.
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Theorem 3.3. {Aut(DA) : A ⊆ N\{1, . . . , k + 1}} is a set of 2ℵ0 maximal-closed
subgroups of Sym(N) which are pairwise nonisomorphic as abstract groups.

Proof. Claim 1. For all A ⊆ N\{1, . . . , k + 1},TA is not closed under −.
Let T ′ be obtained as follows: Change the direction of all the edges of T and then
add a new vertex t which is a sink. Since T has no sinks, T can not be embedded
into T ′, hence T ′ �∈ TA. Now consider −(T ′). By construction, T is embeddable in
−(T ′), so −(T ′) ∈ TA. Thus TA is not preserved under −.
Claim 2. For all A ⊆ N\{1, . . . , k + 1},TA is not closed under sw.
Let T ′ be obtained as follows: Change the source s in T to a sink, and then
add a new vertex which will be a sink of T ′. Since T has no sinks, T can not be
embedded into T ′, hence T ′ �∈ TA. Now consider switching T ′ about s , to obtain
T ′′. By construction, T is embeddable in T ′′, so T ′′ ∈ TA. Thus TA is not preserved
under sw.
Claim 3. For all A ⊆ N\{1, . . . , k + 1}, (DA,E) is not a Henson graph nor the
random graph.
Finite linear orders do not embed any element of TA, thus are embeddable inDA.
Removing the direction of the edges in a finite linear order gives a complete graph,
so (DA,E) is not Kn-free for any n, so (DA,E) is not a Henson graph.
Now let U ⊂ DA be isomorphic to T—this is possible as T has not been for-
bidden. Then there is no vertex x ∈ D such that for all u ∈ U , E(x, u) ∨ E(u, x),
because all tournaments containing T are forbidden. Hence (DA,E) does not sat-
isfy the extension property of the random graph and so is not isomorphic to the
random graph.
Claim 4. For all A ⊆ N\{1, . . . , k + 1}, Aut(DA) is a maximal-closed subgroup
of Sym(N).
This follows from the classification Theorem 2.2 and the previous three claims.
Claim 5. Let A = N\{1, . . . , k + 1}. Then TA is an antichain with respect to
embeddability.
Let T1, T2 ∈ TA and suppose for contradiction that T1 is embeddable in T2.
All elements of TA have size at least k + 1 and |T2| must be bigger than |T1|, so
|T2| ≥ k+2.Hence,T2 �∈ T , soT2 = In for some n ∈ A. ByHenson’s arguments,T1
cannot equal Im for any m ∈ A. Thus T1 ∈ T , which implies that T is embeddable
in In , contradicting our choice for T .
Claim 6. If A,B ⊆ N\{1, . . . , k + 1} are not equal, then DA �∼= DB .
Suppose, without loss of generality, that there is some n inA but not inB. Then In
is not embeddable inDA. To prove the claim, it suffices to show that In is embeddable
in DB . Suppose for contradiction that it is not. Hence, In �∈ Forb(TB ) which means
that In embeds an element of TB . But this implies that TB∪{n} is not an antichain,
contrary to Claim 5.
Claim 7. If A,B ⊆ N\{1, . . . , k + 1} are not equal, then Aut(DA) and Aut(DB )
are not conjugate.
We prove the contrapositive so suppose thatAut(DA) andAut(DB) are conjugate.
By the Theorem of Engeler, Ryll-Nardzewski, and Svenonius (see [14, Theorem
6.3.1]), this implies that DA and DB are interdefinable up to isomorphism. Let
φ(x, y) be the definition of EA(x, y) in DB . By quantifier elimination, φ(x, y) =
EB (x, y), E∗

B (x, y) orNB (x, y).NB is a symmetric relation, butE is antisymmetric,
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so φ cannot equal NB . If φ = E∗
B , it implies that if a tournament T is embeddable

in DA, then −(T ) is embeddable in DB . This is not possible because we know from
(the proof of) Claim 1 that T is not closed under−. Hence, φ = EB , which implies
thatDA and DB are isomorphic, which by Claim 6 implies that A = B.
Claim 8. If A,B ⊆ N\{1, . . . , k + 1} are not equal, then Aut(DA) and Aut(DB)
are not isomorphic as pure groups.
This follows from Claim 7 and Rubin’s reconstruction results [24].
Together, Claims 4 and 8 prove the theorem. 
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[8] B. Bodor, P. J. Cameron, and C. Szabó, Infinitely many reducts of homogeneous structures,

preprint, 2016, arXiv:1609.07694.
[9] F. Bogomolov andM. Rovinsky, Collineation group as a subgroup of the symmetric group. Open

Mathematics, vol. 11 (2013), no. 1, pp. 17–26.
[10] F. Bossière, The countable infinite Boolean vector space and constraint satisfaction problems,

Ph.D. thesis, TU Dresden, 2015.
[11] P. J. Cameron, Transitivity of permutation groups on unordered sets.Mathematische Zeitschrift,

vol. 148 (1976), pp. 127–139.
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[22] J. Nešetřil and V. Rödl, Ramsey classes of set systems. Journal of Combinatorial Theory (A),

vol. 34 (1983), pp. 183–201.
[23] P. P. Pach, M. Pinsker, G. Pluhár, A. Pongrácz, and C. Szabó, Reducts of the random partial

order. Advances in Mathematics, vol. 267 (2014), pp. 94–120.
[24]M. Rubin, On the reconstruction of ℵ0-categorical structures from their automorphism groups.

Proceedings of the London Mathematical Society, vol. 69 (1994), no. 3, pp. 225–249.
[25] S. Thomas, Reducts of the random graph, this Journal, vol. 56 (1991), pp. 176–181.
[26] , Reducts of random hypergraphs. Annals of Pure and Applied Logic, vol. 80 (1996),

pp. 165–193.

SCHOOL OFMATHEMATICS
UNIVERSITY OF LEEDS
LEEDS, LS2 9JT
UK

E-mail: lovkush@gmail.com

DEPARTMENTOF ALGEBRA
MFF UK
SOKOLOVSKA 83
186 00 PRAHA 8
CZECH REPUBLIC

E-mail: michael@logic.at

https://doi.org/10.1017/jsl.2017.74 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.74

