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In this study we undertook various calculations of the turbulent flow around a
building in close proximity to neighbouring obstacles, with the aim of gaining an
understanding of the velocity and the surface-pressure variations with respect to the
azimuth angle of wind direction and the gap distance between the obstacles. This
paper presents the effects of flow interference among consecutive cubes for azimuth
angles of θ = 0, 15, 30, and 45◦ and gap distances of G = 0.5h, 1.0h, 1.5h, and
∞ (i.e. a single cube), where h is the cube height, placed in a turbulent boundary
layer. A transient detached eddy simulation (DES) was carried out to calculate the
highly complicated flow domain around the three wall-mounted cubes to observe
the fluctuating pressure, which substantially contributes to the suction pressure when
there is separation and reattachment around the leading and trailing edges of the
cubes. In addition, the results indicate that an increasing azimuth angle increases the
pressure variation on the centre cube of the three parallel-aligned cubes. The mean
pressure variation can even change from negative to positive on the side face. Owing
to interference effects, the mean pressure coefficient of the centre cube of the three
parallel-aligned cubes was generally lower than the coefficient of the single cube
and tended to increase depending on the gap distance. Furthermore, when the three
consecutive cubes are in a tandem arrangement, the gap distance has little influence
on the first cube but results in significant interference effects on the second and third
cubes.

Key words: flow-structure interactions, separated flows, turbulent boundary layers

1. Introduction
Over the past several decades, the wind load characteristics around bluff bodies

have been of fundamental interest in the study of fluid dynamics, which has long been
considered a critical design parameter for various engineering disciplines: civil, fluid
mechanical and architectural. Regarding a simple cubic bodies, numerous empirical
and simulated data and comparisons of the flow around the body have been carried
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out (e.g. Castro & Robins 1977 (hereafter, CR); Tieleman & Akins 1996; Richards,
Hoxey & Short 2001 (hereafter, RHS); Lim, Castro & Hoxey 2007 (hereafter, LCH);
Lim, Thomas & Castro 2009 (hereafter, LTC)). However, in terms of practical
applicability, such as a group of structures or an occupied solidity of distributed
houses and buildings, the single bluff body is not appropriate. Therefore, studies
have shifted toward the arrangement and the configuration of a group of building
structures (e.g. Zdravkovich 1977; Khanduri, Stathopoulos & Bedard 1998; Xie &
Gu 2004; Xie & Gu 2007; Kim, Tamura & Yoshida 2011). Most of the previous
studies fall into one of three categories: tandem arrangements, in which one building
is directly in the wake of the other; side-by-side arrangements, in which buildings
are arranged transverse to the incoming flow; and staggered arrangements, in which
buildings are arbitrarily configured (Khanduri et al. 1998). The flow field, pressure
coefficients, force variation, and amplification or suppression of vortex shedding are
highly dependent on the configuration of the building and on the shape and spacing
of the building group because of both the wake- and proximity-induced interference
effects.

Regarding the flow around cylindrical models of consecutive bodies, Zdravkovich
(1977, 1987) are frequently cited because they describe wind-tunnel experiments
that measured the flow around two surface-mounted cylinders. In these papers,
Zdravkovich analysed the problem of flow interference that arises when two cylinders
are placed side-by-side, in tandem, and in staggered arrangements under steady-state
conditions. He observed that the vortex-induced force and the vortex shedding pattern
were considerably different from those calculated for a single cube of the same
Reynolds number. This was one of the first demonstrations of the crucial importance
of the appropriate modelling of the design details of a building configuration.
However, this early work only focused on the appropriate simulation of the building
arrangements. Following Zdravkovich’s study, many other studies examined the
interference phenomenon for two-dimensional (2D) and three-dimensional (3D) bodies.
The 2D obstacles with a sufficient span for eliminating the end effects are traditionally
modelled as long-span pipes or cylinders immersed in a uniform oncoming stream.
Most of the previous research on 2D geometries concentrated on circular cylinders
(e.g. Bearman & Wadcock 1973; Zdravkovich 1977; Sumner, Price & Paidoussis 1999;
Sumner, Richards & Akosile 2005; Kitagawa & Ohta 2008). Bearman & Wadcock
(1973), for example, investigated the effect of interference on two 2D cylinders in a
side-by-side arrangement. They measured the pressure distribution around the bodies
and determined there is a repulsive force between the cylinders for a particular range
of gaps. For a small gap, they observed a marked asymmetry in the flow and different
drag and base pressure coefficients for each of the two cylinders.

Structures with circular cross-sections experience flow-induced instabilities;
structures with fixed flow-separation positions, such as cylinders with square or
rectangular cross-sections, also experience 3D flow instabilities. As an example, 2D
tandem and side-by-side arrangements of two square cylinders represent idealizations
of the flow interference that occurs in an array of cylinders. Previous studies have
established the mean characteristics of the flow and the mean pressure loading,
depending on the bluff-body arrangement. Unsteady phenomena are not studied
extensively, particularly in the case of more complex configurations. Nevertheless,
the vorticity structure and the oscillating velocity components present in the flow
accompanied by periodic events, such as vortex shedding, vortex resonance and
galloping, are the major causes of flow-induced instabilities around square or
rectangular cylinders, which complicates further studies (Zdravkovich 1977).
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The 3D rectangular and square-sectional models have not been studied expansively.
The 3D configuration includes all cases for which the end effects are significant
(Sakamoto & Haniu 1988; Martinuzzi & Havel 2000). Owing to their practical
relevance, this study focused on wall-mounted geometries. These flows differ from
those in the 2D cases because of the advection of the upstream vorticity in the
oncoming boundary layer and the existence of mean streamwise vortices, which
strongly influence the momentum transfer normal to the main stream. The evolution
of the wakes formed behind a pair of cylinders placed side-by-side was also studied
by Williamson (1985). The paper presented that the wakes were synchronized either
in phase or in antiphase for a certain range of gaps between the cylinders. When
the gap between the cylinders decreased below the critical minimum gap, the flow
became asymmetric, which is similar to the result obtained by Bearman & Wadcock
(1973). Other noteworthy experimental studies are published in Arie et al. (1983),
Kim & Durbin (1988) and Sumner, Price & Paidoussis (1998).

A number of findings regarding flow interference were obtained; most of the
studies involved only two bodies in close proximity (Kim et al. 2011). The most
common interference mechanisms include the shelter effect, flow channeling, flow
asymmetry and wake buffeting. When two buildings are in a tandem arrangement,
the upstream building generally provides shielding for the downstream building. This
normally leads to a reduction in the mean in-line force on the downstream building.
However, fluctuating wind forces can increase because of turbulence buffeting (Bailey
& Kwok 1985). The presence of a neighbouring building introduces asymmetry in
the wind flow pattern around the target building, leading to the possibility of highly
magnified, wind-induced torsion (Zhang & Kwok 1994). The upstream building is
not significantly affected by a downstream building, but when two buildings are in
close proximity, the wind flow is channeled to sweep through the building gap.

Above all, research on two bluff bodies placed close together is considered to be
important owing to their mutual interaction effects. Ricciardelli & Vickery (1998)
investigated the aerodynamic forces acting on a pair of square cylinders in both
tandem and side-by-side arrangements. They measured the pressure in smooth and
turbulent flows with azimuth angles (e.g. 0◦ is defined as the angle of normal
incidence on the model) ranging from 0 to 90◦ and wide-range separations from 2h
to 13h, where h is the model height. They observed that for large angles of flow
incidence, as the gap increased, the values of the root-mean-square (r.m.s.) force
coefficients increased. In addition, To & Lam (2003) reported some interference
effects not previously observed in past investigations on two buildings and a group
comprising three or more buildings. However, interference effects on a group of three
or more buildings have not been studied in detail thus far, and many problems still
must be investigated Xie & Gu (2004, 2007).

This paper emphasizes the characteristics of a group of cubic bodies with various
gaps. The gap between the bodies is responsible for the type of wakes generated
behind and between bodies and, ultimately, for the structural loading, pressure and, in
particular, structural excitation. For example, with the inclusion of another building in
a side-by-side arrangement, the loading pattern becomes quite complex. The buildings
may experience increased or reduced wind loads depending on their geometries and
spacing, as well as the characteristics of the wind flow and the upstream terrain.
Regarding the gap distance, Tang & Kwok (2004) observed the interference effect
of two CAARC (Commonwealth Advisory Aeronautical Research Council) building
models in a boundary layer wind tunnel. Their goal was to determine the interference
between buildings, where one of the buildings was located far upstream or downstream
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(approximately 2B–10B) of the principal building. Similarly, Thepmongkorn, Wood
& Kwok (2002) also reported the interference effects on wind-induced coupled
translation-torsional motion, with building spacing ranging from 3B to 8B, where
B was the depth of the building. Kim et al. (2011) examined the interference
factors (IFs) of two tall buildings in order to determine the maximum positive
and minimum negative peak pressures of the principal building for a variety of
locations of the interfering building (e.g. 1.5B–8.5B). In addition, Hui, Tamura &
Yoshida (2012), Hui, Yoshida & Tamura (2013) investigated the interference effects
between two rectangular-section buildings, focusing on the local peak pressure for
various configurations with building spacing ranging from 1.5B to 7B. Recently,
Thool, Ashok & Anupam (2013) attempted to study the effect of a small building on
wind loads acting on a comparatively larger building for a wide range of spacings
from 0.25B to 20B. In these study, they targeted the flow-induced load properties
of real towers or buildings in an urban area so that the response characteristics are
closer to the requirements of the engineering field, although the characteristics can
be somewhat out of range for the purpose of fluid mechanics.

This paper consists of a set of simulations on the boundary layer flow for different
azimuth angles around three surface-mounted cubes that in both parallel-aligned
and tandem arrangements. Here, the emphasis is on the effect of the azimuth angle
of the incident flow (i.e. 0, 15, 30 and 45◦) and the gap distance between the
cubes (i.e. G = 0.5h, 1.0h, 1.5h and ∞ (i.e. a single cube), where h is the cube
height). There are numerous key points here. We summarize our major findings as
follows. (i) For flows and wind loads around multiple obstacles, the gap distance
and azimuth angle are significantly important and can be used for the design of the
deployment and arrangement of neighbouring buildings and structures. (ii) Despite
the lack of wind tunnel data, there are new mean flow data, as well as fluctuating
quantities, for the single- and triple-cube cases. In addition, (iii) this paper includes
much more reasonable and improved mean and turbulence quantities, as well as the
interference effect of multiple obstacles according to the detached eddy simulation
(DES) calculation. (iv) We observed that the peak fluctuating pressure and gap
distance have a substantial effect on the central cube of the three parallel-aligned
cubes but not on a single cube; this phenomenon had never been achieved before.

This paper is systematically organized as follows. Section 2 details the computational
techniques, including the set-up of the computational wind tunnel, the selection of
the turbulence model, and the generation of the turbulent boundary layer. Section 3
presents the results and analysis. More specifically, § 3.1 describes the surface pressure
variation around a single cube, which enables a comparison against previous studies.
Sections 3.2 and 3.3 describe the interference effects of the azimuth angle and the
gap distance resulting from the three parallel-aligned cubes, respectively. Section 3.4
describes the gap distance effect resulting from the three tandem cubes. Finally, § 4
outlines the major conclusions.

2. Computational techniques
2.1. Numerical methods

Figure 1 shows the schematic diagram of the numerical domain for a single cube,
three parallel-aligned cubes and three tandem cubes. The entire domain containing
the cube models, internal working section and surface wall as well as the boundary
conditions (e.g. inlet, symmetry, periodicity, outlet, wall conditions, etc.) are shown in
each figure. The symbol G in figure 1(b and c) denotes the gap distance between the
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FIGURE 1. Schematic diagram of the cube models and the domain used for the numerical
tunnel: (a) a single cube; (b) three parallel-aligned cubes; and (c) three tandem cubes.

consecutive cubes. In this study, the values of the gap G were 0.5h, 1.0h, 1.5h and
∞ (i.e. a single cube), where h represents the cube height (i.e. 150 mm). When the
gap distance changed, the entire domain, including the size and the number of mesh
grids, was regenerated to produce small-scale turbulence. To ensure the feasibility of
the numerical domain, the cubes were placed 3h downstream from the inlet domain
and 10h upstream from the outlet. In addition, the distance between the side and roof
surfaces and the far outer boundary surface was at least 3h.

In order to resolve the small-scale turbulent flow, computational meshes were
carefully designed to be dense on the wall surface and to be coarse in the far-field to
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obtain an appropriate solution for the DES. Therefore, the first grid spacing near the
wall was at 0.025h, and the spacing ratio was 1.1 in order to ensure that the value
of y+ (e.g. y+ = 35) for the wall was acceptable, as suggested by Salim & Cheah
(2009). In addition, when the aspect ratio of the model changed in this study, the
entire domain, including the mesh grid and model size, needed to be reconstructed, as
shown in figure 1. The entire domains containing the cube models, internal working
section and surface wall are shown in each figure, along with the boundary conditions
for the flow. Five different boundary conditions were used in the numerical domain:
the inlet and outlet flow conditions for the inlet/outlet domain, periodicity for the side,
symmetry for the upper wall, and wall conditions for the rest of the surface wall. In
this study, the mesh was made using ICEM CFD 14.0, and the DES turbulence model
was selected to calculate these cases. The solver was designed for a pressure-based,
incompressible flow. Standard wall functions, which are provided as a default option in
ANSYS FLUENTr, were applied. Furthermore, for the spatial discretisation solution
methods, we selected the least-squares cell-based method for the gradient, standard
method for the pressure, bounded central differencing method for the momentum and
second-order upwind method for the modified turbulent viscosity. A 3D turbulence
model of the problem was formulated using the CFD commercial software ANSYS
FLUENTr, which employs the finite volume method. We assumed that the present
system comprised a 3D turbulent flow (i.e. channel flow) and a flow with obstacles
(i.e. cube flow). Therefore, we considered two different regions: channel flow and
cube flow (see figure 3). These numerical tunnels were parametrically tested and
considered to be suitable for generating an appropriate turbulence boundary layer to
match the conditions of the wind tunnel measurements.

2.2. Turbulence model and governing equations
In this study, a transient DES was employed to render the Reynolds-averaged
Navier–Stokes (RANS) equations tractable. In addition, depending on the geometrical
complexity and prediction accuracy, the DES has been superior to that of steady or
unsteady RANS in terms of the prediction of massive separated flows around complex
geometries including the cube arrays (see Squires 2004). For a DES calculation, a
large eddy simulation (LES) model calculates the core turbulent region where large
unsteady turbulence scales play a dominant role, while a RANS model simulates the
near-wall region to reduce the computational cost. Therefore, the DES model denoted
as a hybrid RANS/LES model. In this study, the flow calculation in the DES model
was also based on the realizable k − ε model in the near-wall region. The transport
equations for the turbulence kinetic energy (k) and its dissipation rate (ε) are as
follows:

∂

∂t
(ρk)+ ∂

∂xj
(ρkuj) = ∂

∂xj

[(
µ+ µt

σk

)
∂k
∂xj

]
+Gk +Gb − ρε − YM (2.1)

∂

∂t
(ρε)+ ∂

∂xj
(ρεuj) = ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xj

]
+ ρC1Sε − ρC2

ε2

k+√νε +C1ε
ε

k
C3εGb (2.2)

where C1 =max
[
0.43, η/(η+ 5)

]
, η= S(k/ε), S=√2SijSij.

The model constants are given by C1ε = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2 and
C3ε = tanh |v/u|, where v and u are the components of the flow velocity parallel and
perpendicular to the gravitational vector, respectively.
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Among these coupling equations, the eddy viscosity is computed from

µt = ρCµ

k2

ε
(2.3)

where Cµ = 1/(A0 + As(ku∗/ε)), u∗ ≡
√

SijSij + Ω̃ijΩ̃ij and Ω̃ij = Ωij − 2εijkωk, Ωij =
Ω̄ij− εijkωk, where Ω̄ij is the mean rate-of-rotation tensor viewed in a moving reference
frame with an angular velocity ωk. In addition, the constants are given by A0 = 4.04,
A2 =

√
6 cos φ, where φ = 1/3 cos−1(

√
6W), W = SijSjkSki/S̃3 and S̃ =√SijSij, Sij =

(1/2)
(
(∂uj/∂xi)+ (∂ui/∂xj)

)
.

In these equations, Gk represents the generation of turbulence kinetic energy from
the mean velocity gradients; Gb is the generation of turbulence kinetic energy from
buoyancy, which is not considered in the flow condition, but can be described as
follows:

Gk =−ρu′iu′j
∂uj

∂xi
(2.4)

Gb = βgi
µt

Prt

∂T
∂xi
, β =− 1

ρ

(
∂ρ

∂T

)
p

, Prt = 0.85 (2.5)

Here YM represents the contribution of the fluctuating dilatation in compressible
turbulence to the overall dissipation rate. In the DES model, the realizable k–ε RANS
dissipation term YM is modified by Yk:

Yk = ρk3/2

ldes
(2.6)

where ldes =min
(
k3/2/ε,Cdes∆

)
.

In the equation, Cdes is a calibration constant of 0.61 used in the DES model
and ∆ is the maximum local grid spacing. In the flow region, the DES model will
approximate the LES model for the case of Cdes∆ < k3/2/ε; in the reverse case of
Cdes∆ > k3/2/ε, the model will estimate the behaviour of the realizable k–ε model.
The realizable k–ε model is an enhancement upon the standard k–ε model because it
modifies the dissipation rate (ε), improving the models of the separated flow region
and complex flow.

2.3. Inlet flow conditions
In order to simulate the turbulent boundary layer at the inlet of the flow domain, the
boundary layer was first generated in a channel flow without a cube with a Reynolds
number of Re = 4.6 × 104 based on the velocity at the cube height. The boundary
layer in the domain is continuously regenerated in the channel flow, which is possible
because it uses the periodicity boundary condition that combines the inlet with the
outlet layer and repeatedly recirculates the flow.

There are essentially two methods for generating the necessary inflow. The first
is a statistical method wherein a sequence of random numbers is created and then
filtered to yield appropriate statistical properties and spatial correlations (Xie &
Castro 2008). The second involves performing a separate ‘precursor’ simulation of a
wind environment and sampling the inflow data directly from this (Lim et al. 2009).
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Parameter (wind tunnel) Value

Velocity at cube height Uh 8.1 m s−1

Boundary layer thickness δ 0.9 m
Displacement thickness δ∗ 0.158 m
Momentum thickness θ 0.112 m
Roughness length z0 0.24 mm
Reynolds number Reh 4.6× 104

Reθ 3.3× 104

Cube model w× h× d 0.15 m× 0.15 m× 0.15 m

TABLE 1. Characteristics of undisturbed boundary layer at location of test bodies.

The second method has the desirable property that the generated inflow should
naturally contain physically realistic coherent structures without these having to be
produced artificially; this is the method adopted in the present work. A similar
method was used by Nozawa & Tamura (2002) in their computations of flow over
a half-cube. Results from the separated inflow (precursor) simulation were sampled
after conditioning for approximately 50h/u∗ and the samples were averaged spatially
over the periodic domain and over the period 20h/u∗ (see Lozano-Duran & Jimenez
(2014) for a discussion of computational domain in the streamwise direction).

Figure 2 presents the (a) streamwise velocity profiles of the mean velocity and
(b) turbulence intensity obtained in the channel flow. A fully developed turbulent
flow was clearly reproduced in the middle of the domain. A channel flow is usually
regarded as the flow in a periodic duct between two walls (i.e. smooth walls in this
study), so the current simulation calculated the turbulent flow in the lower half duct
by using the symmetry condition. It was specifically designed to regenerate the (rural)
atmospheric boundary layer in the channel. The natural wind model used a power law
exponent for the mean wind speed profile, α, of approximately 0.14 and a turbulence
intensity at the top of the building model, Iu, of approximately 0.18, classified as
terrain category-2, open terrain, in AS1170.2-1989 (Australian Standards 1989). The
DES model calculations were based on the wind tunnel experiments (hereafter, EXP),
which were conducted in the Wind Engineering Research Centre at Tokyo Polytechnic
University (TPU) in Japan. Table 1 lists characteristics of the undisturbed turbulent
boundary layer at the location of the test bodies.

In order to confirm the feasibility of the boundary layer profiles from the EXP
and DES results, they were compared with previous results (i.e. CR, LCH and Jeong
& Lim (2008) (hereafter, JL)). As shown in figure 2(a), most of the mean velocity
profiles agreed well. However, the mean velocity near the wall (i.e. z/h = 0–0.4)
of the DES model was somewhat higher than the others, which may be caused by
the low-resolution of the mesh grid near the wall in the computational techniques.
Regarding the size of the numerical tunnel, two new supplementary calculations were
also made (i.e. doubling and tripling the domain height). However, even though the
domain sizes are all different (i.e. 4h, 8h and 12h), the overall mean velocity profiles
are almost identical but the velocity profiles of the DES calculation less than a height
of h/2 becomes a bit faster compared with the others due to the wall modelling and
the energy balance of wall shear stresses. Further away from the wall (i.e. z/h> 0.4),
the mean velocity profiles agree well each other. In addition, the wind profiles in
figure 2(a) are highly dependent on the terrain roughness conditions, but in the
figure they are similar to the power law profile in which the power exponent α is
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FIGURE 2. Mean velocity (a) and turbulence intensity (b) profiles in the numerical tunnel.
The symbols (triangles, squares, circles and diamonds) represent the experimental data.
The dashed lines represent the current DES computations.

almost 0.14. An important parameter to characterize the current inlet flow conditions
is the mean velocity ū of approximately 4.2 m s−1 at a cube height of 150 mm.
Interestingly, although the mean velocity profiles were nearly identical, the turbulence
intensity (defined as Iu= u′/Uh× 100, where u′ is the fluctuating velocity) profiles that
depended on the upstream surface conditions were substantially different. In general,
the mean and fluctuating flows are highly dependent on the surface roughness. As
shown in figure 2(b), for instance, the comparison between the EXP and the DES
shows that they have a similar profile, but are substantially different from other
existing results. In particular, LCH and JL evaluated relatively smooth surfaces, while
CR made a tunnel experiment on a rough floor. Specifically, the turbulence intensity
of the EXP and the DES was approximately 18 % at the cube height, which was
lower than CR (26.7 %) but higher than LCH and JL (11.2 % and 12 %, respectively).
Before proceeding further, it can be easily conjectured that the surface pressure on
the bluff body is affected by these different inflow characteristics of the surface
roughness. In particular, the turbulence intensity value is a precursor that explains the
pressure distributions surrounding them in due course.

3. Results and analysis
3.1. Flow around single cube

In this section, we analyse the flow around the single cube model with a height
of 150 mm placed in the open channel to establish the boundary conditions and
the size/shape of the model in the full domain, as well as ensuring that the flow
characteristics are meaningful and can feasibly resolve the mean and fluctuating
components. The blockage ratio (BR) in the current study may be slightly higher
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FIGURE 3. Mean surface pressure coefficient around the single cube: (a) along the
centreline and (b) at the mid-height.

than expected; BR= 3.57 % (single cube), 6.25 % (three parallel-aligned cubes), and
3.57 % (three tandem cubes) (In the case of speed-up around the obstacle, the effect
scales with the ratio of the area of the obstacle’s cross-section to that of the frontal
cross-section in the domain.). In order to study and understand the full effect of
blockage, we performed two new supplementary calculations for the single cube
(i.e. doubling and tripling the domain height) in the numerical tunnel. In addition,
we have changed the shape of the cube (i.e. rectangular prisms with different ratios);
see Gu & Lim (2012). The observed minimum surface pressure coefficient increases
with decreasing BR (−0.98 and −0.93), having values closer to the results obtained
by CR for a single cube, i.e. −0.92. To the best of the authors’ knowledge, it is
acceptable, particularly for a wind tunnel experiment. Of course, the tunnel data must
be corrected on the basis of blockage correction equations such as those of Maskell
(see e.g. Maskell 1963 and Mercker et al. 2005).

It is important to simulate the flow around a single cube, which is a fundamental
indicator. This was done in a reasonable way, and the results essentially support the
rest of the paper. Figure 3 shows the surface pressure variation around the single cube
with the previously published data. The coefficient of the mean surface pressure used
in the figure is defined as

Cp = p− pr

1/2ρU2
h

(3.1)

where p is the mean pressure around the cube and pr and Uh are the mean pressure
and streamwise velocity at the reference point, respectively. The results both along
the centreline (figure 3a) and at the mid-height (figure 3b) are highly dependent on
the measurement location x/h (from 0–1, 1–2 and 2–3), which denotes the position
around the model normalized by the cube height as shown on the left in each figure.
The results indicate that the mean pressure coefficient profiles from DES and EXP are
in better agreement with the CR results than those from LCH and JL. However, there
is some scatter in the measured data, which was explained above (i.e. it is due to the
different turbulence levels). Their study reported that the higher upstream turbulence
levels led to a much earlier reattachment as well as an earlier pressure recovery in the
far downstream from the top and side surfaces of the bodies. As shown in figure 3,
the values of the data from the EXP and DES are in between the values of CR and JL
from the top and side surfaces, which is undoubtedly due to the different turbulence
intensity values (i.e. see figure 2b). In addition, as pointed out earlier, the maximum
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FIGURE 4. Mean axial velocity profiles directly above the top surface (z/h = 1.01) of
three parallel-aligned cubes (G= 0.5h) with a 0◦ azimuth angle.

negative pressures occur just beyond the separation point (directly to the right-hand
side of the position x/h = 1) of the top and side surfaces and are followed by a
substantial pressure recovery associated with the reattachment process. In figure 3(a),
the mean surface pressure along the centreline of the single cube has a typical shape
and agrees remarkably well with the EXP and CR results, whereas, because of the
lack of the data points in the EXP, the surface pressure at the centre of the mid-
height seems to be scattered; however, it looks reasonable. Regarding the feasibility
and reliability of the current work, we believe this section explains the uncertainty
of the data subsequently presented in this paper, which describe the flow around the
consecutive cubes placed in the same turbulent boundary layer.

3.2. Flow around three parallel-aligned cubes: effect of azimuth angle
If a group of bodies are placed in close proximity or are aligned in series or
parallel, the flow around and between the bodies undergoes interference, inducing
a complicated turbulent flow. Owing to these interference effects, the flow around
three parallel-aligned cubes is more complicated than around a single cube. Figure 4
shows the mean axial velocity profiles along the centreline immediately above the
top surface (z/h= 1.01) of the single cube and the three parallel-aligned cubes. For
the case of the flow around the three parallel-aligned cubes, the gap distance G
between the cubes is first set to 0.5h and the wind is set to a normal incidence on
the cubes (i.e. the azimuth angle is 0◦). The velocity profiles of cubes 1, 2 and 3 are
all dependent on the measurement location x′/h (from 1–2), where x′/h = 1 denotes
the leading edge of the top surface of the cube shown in the figure. In addition, the
results obtained from the DES are also compared with the existing results of LCH
and LTC, which showed a typical mean velocity distribution around the single cube in
both the wind tunnel and the LES simulations. As shown in figure 4, the normalized
velocity u/Uh versus x/h tends to rapidly drop to approximately 1.1 owing to the
separation of the leading edge and then gradually increases downstream of the cube
top surface. While the velocity increases far downstream, it experiences a velocity
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FIGURE 5. Velocity spectra at various measurement locations of three parallel-aligned
cubes (G= 0.5h) with a 0◦ azimuth angle.

change from negative to positive so that the fluid particle from the separation region
reattaches to this point (i.e. reattachment point).

Regarding the single cube, the reattachment length (x′/h = 1.54) is shorter than
that of LCH and LTC (x′/h= 1.75). As previously pointed out, these differences are
likely caused by the different level of turbulence intensities at the inlet. The higher
upstream turbulence disturbs the streamlines separated from the leading edge in the
recirculation region, so this fluctuation tends to promote the earlier attachment of
the separated streamlines and shortens the reattachment length even though there
is always separation flow from the leading edge of the cube. In this study, the
turbulence intensity is 18 %, whereas it is approximately 12 % in LCH and LTC, as
shown in figure 2(b). Regarding the velocity profiles of cubes 1, 2 and 3, the figure
clearly indicates that the reattachment length from the leading edge on the centre
cube, cube 2, occurs near x′/h = 1.8, whereas it occurs near x′/h = 1.56 for cubes
1 and 3 (i.e. the neighbouring cubes). Interestingly, owing to the gap spacing, the
reattachment length of the neighbouring cubes occurs at a length 18 % shorter than
for the centre cube. As a first finding in this paper, this is emphasized by the fact
that the recirculation region on the top surface of the centre cube reaches further
downstream because of the interference effects of the neighbouring body, which
appears to be a 2D wide structural body (i.e. see JL).

In order to observe the spectral characteristics around the three parallel-aligned
cubes (with G= 0.5h and an azimuth angle of 0◦), the power spectra were analysed
at various measurement locations (from point 1 to 6). As shown in figure 5, the
power spectra observed in the fully developed turbulent boundary layer exhibit a
typical shape, which helps to understand the large- and small-structure turbulence
flows and the energy transfer process from large to small scales (i.e. the cascade
process). In the small-scale region (i.e. the high-frequency range), the spectra linearly
decrease with increasing non-dimensional frequency, ending with a sudden drop
that is due to the inherent limitation of the grid size and the domain. Overall, the
profiles of the energy spectra are reasonably comparable. In particular, the solid line
of point 1 represents the velocity spectra of an upstream point in the oncoming
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FIGURE 6. Pressure variation along the centreline around three parallel-aligned cubes
(G=0.5h) under different azimuth angles: (a) mean pressure coefficient and (b) fluctuating
pressure coefficient.
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FIGURE 7. Pressure variation around three parallel-aligned cubes (G = 0.5h) at the
mid-height for different azimuth angles: (a) mean pressure coefficient and (b) fluctuating
pressure coefficient.

boundary layer; it contains the history of the simulated oncoming flow. The other
dotted lines represent the points on the side and the back of the cubes. In the figure,
the overall power spectra at different locations all have a slope of −5/3 in the inertial
subrange region spanning fz/Uh = 1–10. In addition, all of the velocity spectra drop
rapidly when fz/Uh is over approximately 25. These results are also observed and
discussed in LCH.

Figures 6 and 7 show the pressure variation obtained from the DES of the three
parallel-aligned cubes with respect to the azimuth angle (i.e. 0, 15, 30 and 45◦). The
results of the flow around three parallel-aligned cubes are also compared with the
single cube with a 0◦ azimuth angle. Although the azimuth angle was varied, the
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gap distance G was maintained at 0.5h. In addition, this study aims to understand
the surface pressure variation of the centre cube, so it is plotted with respect to the
same coordinate, x/h. With the variation of the azimuth angle, as clearly expected,
the surface pressure changes substantially owing to the sheltering effect, particularly
in the range of the frontal area and the separated leading edge on the top surface.
Figure 6 shows the mean (Cp) (figure 6a) and the fluctuating (C′p) (figure 6b) pressure
coefficients along the centreline of the centre cube. As shown in figure 6(a), regardless
of the azimuth angle, the overall distributions of the surface pressure coefficients have
similar profiles as the previously published data: positive values at x/h= 0–1, negative
values at x/h= 1–3 and approximately constant values on the leeside, x/h= 2–3. As
mentioned earlier, the surface pressure tends to vary as the azimuth angle changes;
it is especially sensitive on the front and top faces. On these faces, the surface
pressure decreases as the azimuth angle increases. Meanwhile, the surface suction
pressure on the top and rear faces gradually decreases with an increasing azimuth
angle. As the azimuth angle increases, the suction peak has a minimum value near
the leading edge of the cube, and then the peak moves closer to the leading edge.
The fluctuating pressure distribution is an important factor for the safety and design
optimization of the structure. In figure 6(b), the fluctuating pressure in the separation
region (immediately right of the position x/h= 1) on the top surface exhibits a rapid
increase, a maximum peak and, finally, an exponential decay. Furthermore, with the
increasing azimuth angle, the fluctuating pressure coefficient decreases not only on
the front face but also on the top and rear faces. This indicates that as the wind
direction changes, the 2D separation at the leading edge becomes 3D complicated
flow. It should also be noted that, depending on the oncoming wind angle, the mean
and fluctuating pressures have a substantial impact on the stability of the buildings
or structures.

Figure 7 describes the same arrangement as figure 6, but it shows the surface
pressure variation at the mid-height of the centre cube. Both the mean (figure 7a)
and the fluctuating (figure 7b) pressure coefficients tend to exhibit a similar shape
with a changing azimuth angle. However, as compared with figure 6, the distributions
in figure 7 have a larger variation, especially for the side face. In figure 7(a), for
example, as the azimuth angle increases, the mean surface pressure at the side face
rapidly changes at the leading edge. As oncoming wind begins to face the side of
the centre cube the sharp leading edge does not generate a separated flow but faces
normal to the flow and has a positive pressure. However, in figure 7(a), the mean
pressure coefficient for a portion of the side face (x/h = 1–1.2) changes drastically
from negative to positive owing to the neighbouring cubes. In addition, as the side
face turns to face a direction normal to the wind, the surface pressure on the side
gradually increases. In fact, the neighbouring cubes interfere and deter the wind from
blowing on the front face and yielding the valley flow. Thus, the overall pressure
distribution is not exactly symmetrical in the range of x/h= 0–2. Furthermore, with
an increase in the azimuth angle, the fluctuating pressure on the front and top faces
weakens; the peak fluctuating pressure occurs on the corner of the leading edge at
approximately x/h= 1.

3.3. Flow around three parallel-aligned cubes: effect of gap distance
Figure 8 shows the axial mean velocity profiles directly above the top surface (z/h=
1.01) of the centre cube, which is in close proximity to two neighbouring cubes with
increasing gap distances (G= 0.5h, 1.0h and 1.5h). The velocity profiles are calculated
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FIGURE 8. Mean axial velocity profiles directly above the top surface (z/h= 1.01) on the
centre cube of three parallel-aligned cubes for different gap distances.

with the DES for the case of an azimuth angle of 0◦ and they are dependent on the
measurement location x′/h (from 1–2) of the centre cube, as shown in the figure. In
addition, the velocity profiles of the three parallel-aligned cubes with different gap
distances are also compared with that of the single cube, as well as the existing results
of LCH and LTC. From their results, the single cube exhibits the shortest reattachment
length, whereas the three parallel-aligned cubes with a gap distance of G= 0.5h has
the longest reattachment length. This clearly indicates that the reattachment length on
the top of the single cube, represented in this figure as G=∞, decreases as the gap
distance increases in the gap distance range of 0.5h<G< 1.5h. Even though the gap
was not a long distance away, the value G= 3 was fairly effective when considering
the condition of a single cube. This method was not appropriate for obtaining the
overall tendency over the cubes, but a different view of this effect can be observed
in a future study.

As shown in figure 9, in order to understand the overall characteristics of the flow
around a group of cubes, the isosurface contours of the vorticity are calculated with
different gap distances: (a) G= 0.5h; (b) G= 1.0h; and (c) G= 1.5h. The dark-shaded
block indicates the cube model and the grey isocontour is the Q-criterion (II) (see also
LTC), which is defined as

II =−LijLji (3.2)

where Lij ≡ ∂ui/∂xj and is a measure of the regions of flow dominated by rotation
rather than shear or stretching. In this study, the Q-criterion is the same value
(II = 600) in the entire domain (i.e. isosurface contour) for different gap distances.
These visualizations qualitatively indicate the features of the flow, which can also
be seen in some existing literature, for example, in Shah & Ferziger (1997) and
Yakhot et al. (2006). As shown in figure 9, although it is not very noticeable, the
vortex structures are fairly different with a change in the gap distance. In particular,
as the gap increases, the necklace vortices in front of the cube arrays separate into
individuals and merge between cubes. They finally disappear because of the speed
increase in the gap space. The vortex structure is not revealed in these visualizations,
but a draft picture is seen of the flow around cube arrays, which was not observed
in previous papers.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

45
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.454


180 H. C. Lim and M. Ohba

(a) (b) (c)

FIGURE 9. Isosurface contours of the vorticity around three parallel-aligned cubes for
different gap distances: (a) G= 0.5h; (b) G= 1.0h; and (c) G= 1.5h.
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FIGURE 10. Pressure variation along the centreline around three parallel-aligned cubes
for different gap distances: (a) mean pressure coefficient and (b) fluctuating pressure
coefficient.

Figure 10 shows the pressure variation around the three parallel-aligned cubes
with respect to the gap distance (G = 0.5h, 1.0h, 1.5h, and ∞), which consists of
the mean (Cp) (figure 10a) and fluctuating (C′p) (figure 10b) pressure coefficients
along the centreline of the centre cube. The marker symbols represent the EXP data
and the solid or dotted lines represent the DES data; the draft figures denoting the
measurement points around the models are shown above the graph. Although the
EXP and DES results differ slightly, the comparison of both profiles indicates nearly
equivalent pressure variations. In figure 10(a), because the neighbouring cubes are
in close proximity to the centre cube with different gap distances, the overall mean
pressure distributions have a similar shape of the single cube. In addition, the group
of cubes has a consistently lower surface pressure than that of the single cube. For
instance, at the separation points (i.e. around x/h= 1), the mean pressure coefficients
are generally similar, but the flow around the single cube recovers faster than that of
the three cubes. This is caused by the effect of the gap flow between the centre cube
and the neighbouring cubes. The flow around the centre cube accelerates between
these gaps, delaying the pressure recovery. Furthermore, as shown in figure 10(b),
the surface fluctuating pressure has a substantial peak at the leading edge region of
the top surface, with a maximum r.m.s. of approximately 0.55. In the figure, it could
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FIGURE 11. Pressure variation at the mid-height around three parallel-aligned cubes
for different gap distances: (a) mean pressure coefficient and (b) fluctuating pressure
coefficient.

be argued that the fluctuating pressure in the EXP and DES results has a substantial
discrepancy, particularly on the top of the cube. We could conjecture that this seems
to be an issue with the DES model, which yields a strong suction pressure on the top
surface. This is also observed in LTC. Interestingly, we also found that the fluctuating
pressure of the single cube is generally higher than that of the three cubes, which
could be caused by an interference effect of the neighbouring cubes making a portion
of the side flow move over the cubes, where a strong suction pressure is generated.

Figure 11 shows the pressure variations at the mid-height of the centre cube
obtained from the EXP and the DES. As shown in figure 11(a), the mean
pressure variation trend is similar to that in figure 10(a). However, in the region
of x/h = 1.1–1.2, there are some minor differences in terms of the mean surface
pressure with respect to the gap distance. As the distance between the cubes
increases, the lowest peak of the mean pressure coefficient gradually recovers.
For example, the lowest peak of the mean surface pressure reaches approximately
−0.95 at G = 0.5h and −0.75 for the single cube. In addition, the interference
effects dominate the fluctuating surface pressure at the mid-height of the centre cube.
Interestingly, as shown in figure 11(b), the variation in the surface pressure tends
to be substantial close to the leading edge, x/h = 1, which is not observed in the
pressure profiles along the centreline of the centre cube. That is, the maximum peak
of the fluctuating pressure at the leading edge does not appear for the single cube or
three parallel-aligned cubes with G= 1.0h and 1.5h, but there is a predominant peak
for the three parallel-aligned cubes with G= 0.5h. The magnitude and location of the
DES results were not exactly consistent with those for the EXP results, but the peak
was also observed in the EXP results. This is a significantly important fact because it
shows that there is a critical point for increasing the fluctuating pressure, which will
be further used for the design of the deployment and arrangement of neighbouring
buildings and structures. This finding also highlights the fact that, depending on the
gap distance, the building arrays have interference effects on each other. Thus, there
should be an optimal design.
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FIGURE 12. Mean pressure at several points along the centreline for different gap
distances: (a) the front face; (b) the top face; and (c) the rear face.
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FIGURE 13. Fluctuating pressure at several points along the centreline for different gap
distances: (a) the front face; (b) the top face; and (c) the rear face.

In order to observe the effect of the gap distance, figures 12 and 13 show the mean
and fluctuating pressure coefficients, respectively, around the three parallel-aligned
cubes at several points on the front (figures 12a and 13a), top (figures 12b and 13b),
and rear (figures 12(c) and 13(c)) faces of the centre cube with respect to various
gaps: 0.5h, 1.0h, 1.5h and ∞. Although this assumption can be used as a rule of
thumb, it would be beneficial to use the surface pressure of the gap for G = 3 as
the gap distance for G = ∞. As shown in figures 12(a) and 13(a), the mean and
fluctuating pressures, respectively, at several points along the centreline of the front
face increase with increasing gap distance. These results imply that a narrow gap
between the cubes induces valley flow, resulting in a higher-speed and lower-pressure
region, whereas a wide gap tends mimic single cube flow, decreasing the wind speed
and increasing the surface pressure. However, this variation is not suitable to explain
the pressure variations for the top and rear faces. As shown in figures 12(b) and
13(b), the pressure variations along the centreline of the top face in the upper and
lower range of x/h = 1.5 are substantially different. For instance, in the first half
of the top surface (i.e. the range x/h < 1.5), the mean pressure coefficient remains
approximately constant as the gap increases. In the second half of the top surface
(i.e. the range x/h > 1.5), the mean pressure coefficient noticeably increases with
an increasing gap. These data enable a comprehensive understanding of the effect
of the flow separation and reattachment on the pressure variations of cube surfaces
(see figure 4). That is, the separation region on the first half of the top surface
seems to prevent the mean pressure from remaining a constant value, compared with
that on the second half. In addition, figures 12(c) and 13(c) show the mean and
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FIGURE 14. Non-dimensional IF variations along the centreline with respect to gap
distance: (a) for the maximum mean pressure coefficient and (b) for the minimum mean
pressure coefficient.

fluctuating pressures, respectively, along the centreline of the rear face. The mean
pressure variation exhibits a similar trend as the front face; the pressure coefficients
increase as the gap distance increases. However, the fluctuating pressure on the rear
face remains constant.

In order to explain these interference effects, more adequate parameters must be
defined. The non-dimensional IF is a good candidate, which was originally introduced
by Saunders & Melbourne (1979). The IF is calculated to evaluate the interference
effects of the neighbouring cubes, which is defined as

IF= Surface pressure of the cube with neighbouring cubes
Surface pressure of the cube without neighbouring cubes

. (3.3)

In this study, to investigate the gap distance effects on the maximum and minimum
surface pressures, the IFs (i.e. symbolized as IFmax and IFmin, respectively) are
defined as

IFmax = Cp,max(centre cube of three parallel− aligned cubes)
Cp,max(single cube)

(3.4)

IFmin = Cp,min(centre cube of three parallel− aligned cubes)
Cp,min(single cube)

. (3.5)

Figure 14 shows the IFmax and IFmin along the centreline of the centre cube for
different gap distances. As mentioned previously, G = 3 is approximated as the gap
distance G = ∞; in this case, the IF is unity. As shown in figure 14, the IFmax
increases and the IFmin decreases as the gap distance increases. That is, as the gap
distance approaches G = 3 (i.e. a single cube, ∞ as considered), both IFmax and
IFmin should have values close to one, because the surface pressures should be the
same for the cube with a neighbouring cube a long distance away and that without
neighbouring cubes. Interestingly, when the gap between the buildings is wide, the
positive peak value of the mean pressure on the centre cube grows exponentially,
whereas the minimum value is inversely propositional to the gap distance. In this
regard, the maximum and minimum surface pressures tend to have unique variations
with respect to the gap distance when one is considering the construction design of
consecutive buildings.
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FIGURE 15. Velocity spectra comparison for different measurement locations of three
tandem cubes (G= 0.5h) for a 0◦ azimuth angle.

3.4. Flow around three tandem cubes
For the flow around three parallel-aligned cubes, the neighbouring cubes have a
diverse effect on the interference depending on the gap distance. However, if the
group of cubes has a tandem arrangement, it is not easy to judge how the interference
affects the pressure variation around cubes, because the pressure variation around the
second and third cubes is estimated to be negligible due to the separation of the
leading edge of cube 1. This is an important design parameter for ensuring an
optimal arrangement of a group of bluff bodies. Figure 15 presents the velocity
spectra for three tandem cubes. Figure 15(a) shows the velocity spectra of several
salient points in front of the cubes (point 1), between the cubes (points 2 and 3) and
behind the cubes (point 4). In addition, figure 15(b) shows some unique points on
the top (points 5, 6 and 7) and side (points 8, 9 and 10) faces of the three tandem
cubes. The velocity spectra exhibit gradual changes that depend on the location. In
particular, in the low-frequency region, the spectral peaks, which are not clearly
shown, are located at approximately fz/Uh < 1. The oncoming flow (i.e. see point 1)
does not seem to have any peaks with particular frequencies, which is similar to
points 2–4. However, as shown in figure 15(b), spectral peaks close to the side and
top surfaces are observed at a higher frequency of approximately fz/Uh = 1, which
seem to be caused by the breaking of the oncoming wind flow into small-scale
turbulence yielding a higher frequency of eddies. Furthermore, the spectral decay has
an inertial −5/3 region from fz/Uh = 1 to 10 and a rapid drop when fz/Uh > 25,
which was explained previously.

Figure 16 shows the axial mean velocity profiles immediately above the top surface
(z/h= 1.01) of the three tandem cubes for different gap distances (G= 0.5h, 1.0h, 1.5h
and ∞). In the figure, the coordinate of x′/h is plotted in the range between the
leading and trailing edges (from 1–2) on the top surface of the single cube and the
three consecutive cubes, cubes 1, 2 and 3, denoted in the top figure. The results
obtained from DES are also compared with the results of LCH and LTC. The flows
around both the single cube and cube 1 for all three gap distances have similar
reattachment points near x′/h= 1.56 (see the velocity in figure 15; note that the three
lines on the graph approximately overlap). These results indicate that the gap distance
has negligible influence on the reattachment of the three tandem cubes after cube 1.
As shown in the figure, the flow around cubes 2 and 3 exhibits no separation or
reattachment. Therefore, the velocity profiles are substantially different from that of
cube 1. However, it also clearly seen that there are gap-dependent velocity variations
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FIGURE 16. Mean axial velocity profiles immediately above the top surface (z/h= 1.01)
of three tandem cubes for different gap distances.
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FIGURE 17. Mean pressure variation along the centreline around three tandem cubes for
different gap distances.

around cubes 2 and 3. Therefore, although the gap distance has a negligible influence
on the reattachment around the first cube, it has a substantial effect on the flow
variations around the second and third tandem cubes.

Figures 17 and 18 show the centreline and mid-height surface pressure variations,
respectively, around the three tandem cubes for different gap distances. In the figures,
most of surface pressure profiles are fairly consistent and constant (i.e. slightly less
than zero) because the upstream cube 1 blocks most of the oncoming flow and
generates a sheltering effect. Thus, the separate flow from cube 1 forms an external
shield that prevents pressure restoration over the two downstream cubes. In this
regard, cubes 2 and 3 do not have typical pressure distributions, whereas cube 1
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FIGURE 18. Mean pressure variation at the mid-height around three tandem cubes for
different gap distances.

tends to have a pressure distribution that is typical for the flow around a single cube.
Overall, the mean pressures on cubes 2 and 3 are generally smaller than that of a
single cube. However, the comparison of the pressure profiles of the single cube,
cube 1 (see G= 0.5h, 1.0h and 1.5h) in both figures 17 and 18, indicates that there
is almost no difference between the pressure profiles of the single cube and cube 1.
Although there are two consecutive cubes directly in the wake of cube 1, the flow
separation and reattachment of cube 1 and the single cube must be nearly equivalent.
This indicates that the cubes behind cube 1 do not affect its pressure variation;
if there are any interference effects, they are minor. For cubes 2 and 3, the gap
distance substantially influences the pressure variation. As the gap distance increases,
the mean pressure coefficients along both the centreline and the mid-height of the
cubes increase. Therefore, an important conclusion is that the gap distance has little
effect on the pressure variation of the first cube (i.e. cube 1), but it has a significant
effect on the pressure variations of the consecutive cubes in a tandem arrangement.

4. Conclusions

Owing to the interference effects of the neighbouring cubes, a detailed analysis
of the flow structure around three consecutive wall-mounted cubes is considerably
complicated. This paper presents transient DES calculations around a single cube,
three parallel-aligned cubes and three tandem cubes placed in a deep turbulent
boundary layer. In addition, the DES results are also compared with the EXP results.
We mainly focused on the effects of different azimuth angles and different gap
distances, and there are numerous key points here. We summarize our major findings
as follows. (i) For flows and wind loads around multiple obstacles, the gap distance
and azimuth angle are significantly important and can be used for the design of the
deployment and arrangement of neighbouring buildings and structures. (ii) Despite
the lack of wind tunnel data, there are new mean flow data, as well as fluctuating
quantities, for the single- and triple-cube cases. In addition, (iii) this paper includes
much more reasonable and improved mean and turbulence quantities, as well as the
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interference effect of multiple obstacles according to the DES calculation. (iv) We
observed that the peak fluctuating pressure and gap distance have a substantial effect
on the central cube of the three parallel-aligned cubes but not on a single cube;
this phenomenon had never been achieved before. This study can be summarized as
follows.

(a) The DES results regarding the surface mean pressure are in overall agreement
with the EXP results, including the existing results of other papers (e.g. CR, LCH and
JL). This confirmed the accuracy and reliability of this study.

(b) Regarding the flow around the three parallel-aligned cubes with a gap distance
of 0.5h, the mean reattachment length of the neighbouring cubes occurs at a relatively
at shorter length than of the centre cube.

Furthermore, the mean reattachment length after the centre cube decreases as
the gap distance increases. However, when the three cubes are placed in a tandem
arrangement, the mean reattachment length of the first cube does not change much
as the gap distance increases. In addition, the flows around the second and third
cubes do not separate or reattach, but the gap distance has a substantial effect on the
velocity variations.

(c) Depending on the variation of the azimuth angle, the surface pressure profiles
on the centre cube of the three parallel-aligned cubes show that both the surface
suction pressure at x/h = 1–3 and the positive pressure at x/h = 0–1 weaken with
an increasing azimuth angle. In particular, on some of the side faces (x/h = 1–1.2),
the mean pressure coefficient can even change from a negative value to a positive
value. In addition, the largest fluctuating pressure occurs at the position near x/h= 1.
Furthermore, all surface fluctuating pressures decrease as the azimuth angle increases.

(d) The mean pressure coefficient of the centre cube placed in the three parallel-
aligned cubes is generally lower than that of the single cube and tends to increase
in polynomial shape depending on the gap distance for the case of an azimuth angle
of 0◦. The peak fluctuating pressure along the centreline of the single cube is higher
than that of the three parallel-aligned cubes. For the case of the mid-height of the
centre cube, while a peak fluctuating pressure does not appear in the flow around
the single cube, it appears at the centre cube of the three parallel-aligned cubes
with a gap distance of 0.5h. In particular, these facts highlight the importance of
interference effects for designing neighbouring structures of buildings. In addition,
once the gap distance changes, the vortex of the structures are also substantially
altered. For example, with increasing gap distance, the vortex in front of the three
parallel-aligned cubes separates into individual shields.

(e) Regarding the fluctuating pressure, the maximum peak at the leading edge does
not appear for the single cube and three parallel-aligned cubes with G=1.0h and 1.5h,
but there is a predominant peak for the three parallel-aligned cubes with G=0.5h. The
magnitude and location of the peak are significantly important because they show that
there should be a critical point to increase the fluctuating pressure, which highlights
the fact that, depending on the gap distance, buildings in an array have interference
effects on each other. Thus, there should be an optimum design.

(f ) The gap distance plays an important role in the pressure variation of the three
parallel-aligned cubes, but it has a negligible effect on the first cube for a flow passing
three tandem cubes. However, it has a significant influence on the consecutive cubes
(i.e. the cubes are directly influenced by the wake of the first cube). For example, with
increasing gap distance, the mean pressure coefficients both along the centreline and
at the mid-height of the second and third cube tend to increase.

More comparisons are still required to validate the conclusions. However, this
study already includes some crucial points for understanding the interference effects
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to designing single and multiple structures. In addition, as this study focuses on the
gap distance effects, more investigations for at least G> 1.5h are required as further
research. In the near future, we will work to conduct a complementary test to obtain
a higher reliability regarding the interference effects among multiple bodies.
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