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SUMMARY
While a robot moves, online hand–eye calibration to
determine the relative pose between the robot gripper/end-
effector and the sensors mounted on it is very important
in a vision-guided robot system. During online hand–eye
calibration, it is impossible to perform motion planning to
avoid degenerate motions and small rotations, which may
lead to unreliable calibration results. This paper proposes
an adaptive motion selection algorithm for online hand–eye
calibration, featured by dynamic threshold determination for
motion selection and getting reliable hand–eye calibration
results. Simulation and real experiments demonstrate the
effectiveness of our method.

KEYWORDS: Adaptive; Motion selection; Online hand-eye
calibration; Polynomial regression.

1. Introduction
The problem of computing the relative three-dimensional
(3-D) position and orientation between a robot gripper and
rigidly attached camera arises in hand–eye calibration.2 In
this process, accuracy is an essential factor, and the goal of
this paper is to improve the accuracy of online hand–eye
calibration. The method we proposed here is an extension of
“motion selection” algorithm in ref. [14], which intends to
exclude degenerate motions and small rotations during the
calibration. Shi et al.’s method14 is achieved by combining
motions until the accumulated motion satisfies the pre-
given thresholds, which are determined by experience. In
this paper, we focus our mind on refining the method and
proposing an adaptive algorithm to set the thresholds for
“motion selection”. Using this method, we can get “good”
motions for online hand–eye calibration and improve the
system accuracy.

The calibration of robotic hand–eye relationship is a
classical problem in robotics.1−17 Algebraically, the problem
can be defined as a linear homogeneous equation in the
unknown pose matrix X, namely, AX = XB,1−10,21 where
A is the rigid motion of the robot gripper, and B is the
corresponding camera motion. A, B and X are all 4 × 4
homogeneous transformation matrices.

Although hand–eye calibration has been studied for many
years, most hand–eye calibration methods are iterative
and time consuming, which are not suitable for online
computation.1−10,15−17 Online hand–eye calibration is a
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useful and necessary technology in many applications.
For example, in hand–eye robotic system for total knee
replacement,20 the camera may be bumped accidentally
during the surgery process, causing the changes of the hand–
eye relationship. Using online calibration, one can judge the
change and correct it quickly.

Andreff et al.12,13 and Angeles et al.11 firstly introduced the
method of online implementation of hand–eye calibration. It
has been shown in ref. [11] that we can finally obtain a solu-
tion based on recursive linear least squares. In refs. [12],[13]
Andreff et al. derived a linear formulation of the problem.
This makes an algebraic analysis possible to extend this
formulation into an online hand–eye calibration, getting
rid of the calibration object required by the conventional
approaches. Boctor et al.22 presented a method performing
accurate online hand–eye partial calibration for ultrasound
probe. The key enabler to this method is “Real-time Tracker”,
which is used to recover the motion of robot gripper.

Whichever method one chooses, two motions with
non-parallel rotation axes must be used to determine the
hand–eye transformation. The algebraic and geometrical
analysis on hand–eye calibration can be seen in refs. [2],[3].
In practical online hand–eye calibration, one cannot know
the movements of a robot beforehand, which precludes the
motion planning for hand–eye calibration in advance. Small
rotations and degenerate motions used in calibration can
ruin the result. However, there are no effective techniques
proposed to solve this problem in refs. [11–13].

Shi et al.14 firstly introduced the concept of “motion selec-
tion”, trying to select the “effective” motions in online hand–
eye calibration to reduce the risk of bad results. They make
“motion selection” by defining the “golden rules” according
to the observations of ref. [2]. If a motion fulfills these rules,
the algorithm will regard the motion as “effective,” and it
will be accepted for further computation. Otherwise, the
algorithm will combine it with its consecutive motions to
form a new motion until the accumulated motion satisfies
the pre-defined thresholds. The selected effective motions
are then used for calibration. Using this method, one can
avoid small rotations and degenerate motions and, hence, can
greatly decrease the calibration error. However, the algorithm
in ref. [14] sets the thresholds by experience, which may not
be flexible for the requirements of different applications.

In this paper, we propose an algorithm to determine
thresholds adaptively for motion selection in online hand–
eye calibration. The remainder of this paper is decomposed as
follows. Section 2 describes the objective problem. Section 3
gives the detailed algorithm of adaptive motion selection
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Fig. 1. Algorithm of motion selection for online hand–eye calibration.

for online hand–eye calibration. Section 4 conducts some
simulated and real experiments to validate the proposed
algorithm.

2. Problem Formulation
In this section, we first describe the algorithm of Shi, 14 which
is the foundation of our method. Then we will discuss the
problem we attempt to solve.

We use upper-case letters for matrices, e.g. X, and lower-
case letters for 3-D vectors, e.g. x. The angle between
two vectors is denoted by � (x, y). The symbol ‖ · ‖ means
the Frobenius norm of a vector or a matrix A. Rigid
transformation is represented by a 4 × 4 homogeneous
matrix X, which is often referred to as the couple (R, t).
At the ith measurement, camera pose with respect to the
reference object is denoted by homogeneous matrix Pi , and
the recorded gripper pose relative to the robot base is a
homogeneous matrix Qi .

Usually, hand–eye calibration is described by a
homogeneous transformation matrix. We denote the
transformation from gripper to camera by X = (Rx, tx), the
i-th motion matrix of the gripper by Ai = (Ra,i, ta,i), and
the ith motion matrix of the camera by Bi = (Rb,i, tb,i). The
motion of the gripper is computed directly from the joint-
angle readings by a simple composition of A′

i = Q−1
i Qi+1.

With the known intrinsic camera parameters, the camera
poses Pi and Pi+1 relative to the reference object are
estimated. Then the camera motion can also be determined
from B ′

i = P −1
i Pi+1. When dealing with an unknown scene

(such as the scene without special calibration object), we
can use a structure from motion algorithm12,13 to estimate
the camera motion directly. Thus, the well-known hand–eye
equation of AiX = XBi can be established.1,2

Since a rotation matrix R can be expressed as a rotation of
angle θ around a rotation axis k, the relations between θ, k

and R can be determined by Rodrigues theorem.19 Moreover,
Ra and Rb have the same angle of rotation,1 and we can
rewrite Ra and Rb as Rot(ka, θ) and Rot(kb, θ), respectively.
Due to the fact that degenerated motions or small rotations
will introduce large errors in hand–eye calibration, motion
selection is essential to find “good” pairs of consecutive
motions(Ai, Bi) and (Ai+1, Bi+1) for hand–eye computation
from sampled motion series.14

Shi et al.14 made motion selections with the following
observations in ref. [2].

Observation 1: The RMS (root mean square) error of
rotation from gripper to camera is inversely proportional to
the sine of the angle between the interstation rotation axes
(denoted by sin(α)).

Observation 2: The rotation and translation error are
both inversely proportional to the interstation rotation angle
(denoted by β).

Observation 4: The distances between the robot gripper
coordinate centers at different stations (denoted by d)
are also a critical factor in forming the error of trans-
lation.

According to the above three observations, the following
“golden rules” are used for motion selection.

Rule 1: Try to make � (ka,i , ka,i+1) (which is equal to
� (kb,i , kb,i+1)2) large, which is no less than α0.

Rule 2: Try to make θi large, which is no less than β0.
Rule 3: Try to make ‖ta,i‖ small, which is no bigger

than d0.
Let us denote the ith sample of hand–eye pose and motion
by (Pi, Qi) and (Ai, Bi), respectively, in the following paper,
and α0, β0, d0 are thresholds determined by experience. Also
(A′, B ′) and (A′′, B ′′) are selected motion pairs for the
calibration (see Fig. 1). In motions A′ and A′′, the rotation
axis, rotation angle and translation are denoted by (k′

a, θ
′
a, t

′
a)

and (k′′
a , θ

′′
a , t ′′a ), respectively.

At the beginning of the calibration, we need to estimate
(A′, B ′), which is first recovered from (P1, Q1) and (P2, Q2).
If θ ′ ≥ β0 and ‖t ′a‖ ≤ d0, we can claim that (A′, B ′) has
been found. Otherwise, continue to compute (A′, B ′) from
(P1, Q1) and (P3, Q3) and judge the value θ ′ and ‖t ′a‖ in
the same way as before. Repeat this procedure until θ ′ and
‖t ′a‖ fulfill the given conditions. Here, it is assumed that
the first (A′, B ′) is estimated from (P1, Q1) and (Pi, Qi).
After (A′, B ′) has been found, another motion pair (A′′, B ′′)
can be found in the similar way, starting from (Pi, Qi)
and (Pi+1, Qi+1). But the constrained conditions here are
changed to θ ′ ≥ β0, ‖t ′a‖ ≤ d0 and � (k′

a, k
′′
a ) ≥ α0. When

both motion pairs are found, we can make a calibration using
the method of Andreff.12

In the next calibration, we take the motion pair (A′′, B ′′)
of the last process as the new motion pair (A′, B ′), and then
continue to seek for new (A′′, B ′′) from the consecutive series
and make a new hand–eye calibration repeatedly.

The corresponding algorithm of Motion selection
algorithm by Shi et al.14 is as follows:
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1) i ← 2;
2) A′ = Q−1

1 Qi , B ′ = P −1
1 Pi ;

3) Compute θ ′ and t ′a from A′;
4) If θ ′ ≥ β0 and ‖t ′a‖ ≤ d0, then go to 6;
5) i ← i + 1, go to 2; (sample one more motion);
6) j ← i + 1 (begin to search for A′′);
7) A′′ = Q−1

i Qj , B ′′ = P −1
i Pj ;

8) Compute � (k′
a, k

′′
a ), θ ′′ and t ′′a from A′ and A′′;

9) If � (k′
a, k

′′
a ) ≥ α0, θ ′′ ≥ β0 and ‖t ′′a ‖ ≤ d0, then go to 11;

10) j ← i + 1, go to 7 (sample one more motion);
11) Make one hand–eye calibration using the method in

Andreff et al.;12

12) A′ ← A′′, B ′ ← B ′′;
13) i ← j, j ← j + 1, go to 7 for next calibration.

In the above motion selections, α0, β0 and d0 are set by
experience, which are not robust in most cases. In order
to improve the robustness and accuracy of the motion
selection method in online hand–eye calibration, we will
discuss the adaptive algorithm of motion selection in the next
section.

3. Adaptive Selection of Motion for Online Hand–Eye
Calibration

3.1. Adaptive selection algorithm
We initially set the average value of sin(α), β, d of the first
N motions as the initial thresholds

(sin(α0), β0, d0) = 1

N

(
N∑

n=1

sin(αn),
N∑

n=1

βn,

N∑
n=1

dn

)
. (1)

The number N can be chosen based on the real
applications, i.e. if the robot will take large number motions,
we can choose a large N ; otherwise, a small N will be
used. Then, we do motion selection and hand–eye calibration
four times. In each calibration, we compute the RMS error
in rotation and translation and modify the thresholds by
multiplying sin(α0), β0 and d0 with a parameter, respectively.
During this process, if the calibration can not be successfully
carried out after processing “interval” motions (in our
application, we set interval = 5) , which means that these
thresholds are hard to be satisfied, then we will simply reduce
sin(α0), β0 and increase d0 by multiplying parameters.

After doing four calibrations, we begin to adaptively set
the thresholds of (sin(α), β, d) using polynomial-regression
method. In the subsequent calibration, we take the motion
pair (A′′, B ′′) of the last process as the new motion pair
(A′, B ′), and then continue to seek for new (A′′, B ′′) from the
consecutive motion series with new thresholds.

The corresponding algorithm is as follows.

Main Algorithm

1) Compute the initial thresholds of sin(α0), β0, d0 , using
Eq(1);

2) i ← N + 1, calibNo ← 0;
3) A′ = Q−1

N Qi , B ′ = P −1
N Pi ;

4) Compute θ ′ and t ′a from A′;

5) If θ ′ ≥ β0 and ‖t ′a‖ ≤ d0, then go to 8;
6) If i − start ≤ interval, then i ← i + 1, go to 3 (sample

one more motion);
7) If θ ′ < β0, then reduce β0 by multiplying a parameter

less than 1,
If ‖t ′a‖ > d0, then increase d0 by multiplying a parameter
larger than 1, i ← i + 1, start ← i, goto 3;

8) j ← i + 1, start ← j (begin to search for A′′);
9) A′′ = Q−1

i Qj , B ′′ = P −1
i Pj ;

10) Compute � (k′
a, k

′′
a ), θ ′′ and t ′′a from A′ and A′′;

11) If sin(� (k′
a, k

′′
a )) ≥ sin(α0), θ ′′ ≥ β0 and ‖t ′′a ‖ ≤ d0, then

go to 14;
12) If j − start ≤ interval, then j ← j + 1, go to 9

(sample one more motion);
13) If sin(� (k′

a, k
′′
a )) ≤ sin(α0), then reduce sin(α0) by

multiplying a parameter less than 1,
if θ ′ ≤ β0 , then reduce β0 by multiplying a parameter
less than 1,
if ‖t ′′a ‖ ≥ d0, then increase d0 by multiplying a parameter
larger than 1, j ← j + 1, start ← j , go to 9;

14) Make one hand–eye calibration using the method in
Andreff et al.,12 calibNo ← caliNo + 1, compute
RMS of the errors in the rotation matrix and the RMS of
the relative errors ‖t − t̂‖/‖t‖ in the translation (which
are customary error metrics in the literature),2,6,7 record
the value of (sin(α0), β0, d0);

15) if calibNo ≥ 4, then use Algorithms I, II, and III,
respectively, to predict the next set of thresholds;

16) A′ ← A′′, B ′ ← B ′′;
17) i ← j, j ← j + 1, go to 9 for next calibration.

3.2. Adaptive selection of the thresholds
The purpose of our method is to predict the thresholds of
motion selection, which are suitable for the current motion
sequence and improve the calibration accuracy. That is,
if an application needs certain accuracy, we should set
suitable thresholds in selecting motions to get the required
accuracy. (In the following paragraphs, we aggregated all
errors into RMS error. Therefore, when we say “error in
rotation”, we mean RMS error.) We represent the required
rotation accuracy as rmsRMax and the required translation
accuracy as rmsT Max. From the observations in ref. [2],
we can see that there are non-linear relationship between
(sin(α0), β0, d0) and the error in rotation and translation
in hand–eye calibration. Cubic polynomial-regression18 is
suitable for predicting suitable thresholds. In the following
paragraphs, we will represent the rotation error by rmsR

and the translation error by rmsT . Because at least four sets
of independent motions are required to solve the unknowns,
we do four calibrations at the beginning of the process. We
denote the average value of four rmsR and four rmsT as
avgRrms and avgT rms, respectively. The mathematical
model of evaluating the errors and thresholds is given by the
polynomial regression model,18 as depicted by the following
equation:

y = b0 + b1 × x + b2 × x2 + b3 × x3 (2)

where x is rmsR or rmsT , y is the threshold, and
b0, b1, b2and b3 are the parameters to be determined. We
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use four sets of rmsR and rmsT as independent variables,
and four sets of (sin(α0), β0, d0) as dependent variables to
simulate the models of cubic polynomial-regression. After
getting three cubic curves of (sin(α0), β0, d0), we compare
avgRrms with rmsRMax and avgT rms with rmsT Max,
respectively, and then use the smaller couple to predict
the new value of (sin(α0), β0, d0). A smaller avgRrms or
avgT rms implies that the former selection of thresholds
is suitable for the application and, therefore, satisfies the
required accuracy. Otherwise, we should use rmsRMax

and rmsT Max to modify the thresholds. Using the new
thresholds, a new calibration should be done.

To fulfill the requirement of the least-square, b1, b2 and b3

must satisfy the following equations:⎧⎨⎩L11 × b1 + L12 × b2 + L13 × b3 = L10

L21 × b1 + L22 × b2 + L23 × b3 = L20

L31 × b1 + L32 × b2 + L33 × b3 = L30

(3)

where
L11 = ∑

(x − x̄1)2, L12 = L21 = ∑
(x − x̄1)(x2 − x̄2),

L10 = ∑
(x − x̄1)(y − ȳ),

L22 = ∑
(x2 − x̄2)2, L13 = L31 = ∑

(x − x̄1)(x3 − x̄3),
L20 = ∑

(x2 − x̄2)(y − ȳ),
L33 = ∑

(x3 − x̄3)2, L23 = L32 = ∑
(x2 − x̄2)(x3 − x̄3),

L30 = ∑
(x3 − x̄3)(y − ȳ),

x̄1 = 1
4

∑
x, x̄2 = 1

4

∑
x2, x̄3 = 1

4

∑
x3,

ȳ = 1
4

∑
y,

b0 = ȳ − b1 × x̄1 − b2 × x̄2 − b3 × x̄3

The corresponding algorithm is as follows. In these
algorithms, alphaMin, betaMin are the minimum values
that sin(α0), β0 should satisfy, dMax is the maximum
value that d0 should satisfy. We can estimate them using
Observations 1, 2 and 4 in ref. [2] according to the accuracy
requirement of application.

By the detailed analysis of Observation 1 in ref. [2], we
note that sin(α0) affects the rotation error. Therefore we use
rmsR to predict sin(α0).

Algorithm I

1) Set the four normalised rmsR to form x , four normalised
sin(α0) to form y, and then compute the parameters
b0, b1, b2and b3 of the cubic curve of sin(α0), that is⎡⎢⎢⎢⎢⎢⎣

1 rmsR1 rmsR2
1 rmsR3

1

1 rmsR2 rmsR2
2 rmsR3

2

1 rmsR3 rmsR2
3 rmsR3

3

1 rmsR4 rmsR2
4 rmsR3

4

⎤⎥⎥⎥⎥⎥⎦×

⎡⎢⎢⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
sin(α0)1

sin(α0)2

sin(α0)3

sin(α0)4

⎤⎥⎥⎥⎥⎦; (4)

2) If avgRrms ≤ rmsRMax, use avgRrms as xnew to
compute the new value of sin(α0), namely

sin(α0)new = b0 + b1 × avgRrms + b2

× avgRrms2 + b3 × avgRrms3; (5)

Otherwise, use rmsRMax as xnew to compute the new
value of sin(α0);

3) If sin(α0) < alphaMin, then sin(α0) = alphaMin.

By the detailed analysis on Observation 2 in ref. [2], we
note that beta0 affects both the rotation and translation error.
Thus, we use rmsR and rmsT to predict beta0.

Algorithm II

1) Set the four normalised rmsR to form x , four normalised
β0 to form y, and compute the parameters b0, b1, b2, b3 of
the cubic curve of β0;

2) Use the smaller one of avgRrms and rmsRMax as xnew

to compute the new value β1 = ynew;
3) Use the four normalised rmsT as x ′, four β0 as y ′ to

compute the parameters b′
0, b

′
1, b

′
2, b

′
3 of the second cubic

curve;
4) Use the smaller one of avgT rms and rmsT Max as x ′

new
to compute the new value β2 = y ′

new;
5) β0 = (3×β1 +β2)/4, if β0 < betaMin, then β0 = betaMin

(according to Observation 2 in ref. [2], error of the
rotation is more important than that of the translation in
affecting the value of beta0).

By the detailed analysis on Observation 4 in ref. [2], we
note that d0 affects the translation error. Therefore, we use
rmsT to predict d0.

Algorithm III

1) Set the four normalised rmsT to be x, four normalised
d0 to be y to compute the parameters b0, b1, b2, b3 of the
cubic curve of d0;

2) Use the smaller one of avgT rms and rmsT Max to be
xnew and compute the new value of d0new;

3) If d0new > dMax, then d0new = dMax.

One can see that all the three algorithms are analytical,
therefore, the new methods needs no extra computational
time.

4. Experiments
In this section, experiments using synthetic data and real
scenes are carried out to validate the accuracy, adaptability
and real-time quality of our new method.

4.1. Simulated data
4.1.1. Accuracy test. The experiment is carried out to test the
performance of the new method with respect to the computing
error. To make a comparison, we also solve AX = XB

without any motion selection, as the method given by Andreff
et al.12,12′

It is an applicable method to do online hand–eye
calibration now. In the following paragraphs, we denote the
proposed method by “new method” and the direct approach
by “conventional method”.

The simulation is conducted as follows: we establish a
random consecutive motion series with 200 hand positions
Qi . Then add uniformly distributed random noise with
relative amplitude of 0.1% on the rotation matrix and of 1%
on the translation vector. We assume a hand–eye setup and
compute the camera pose Pi , to which we also add uniformly
distributed random noise as before.

With 20 motion series, we perform calibrations for each
one using the new and the conventional method, respectively.
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Fig. 2. (a) Average errors in the rotation matrix and (b) average relative errors ‖t − t̂‖/‖t‖ in the translation, where the solid curve with
label “O” denotes the conventional method while the dotted curve with label “*” denotes the new method.

To qualify the results, we compute average error in each case.
(In the case of one motion series, we get the estimated rotation
matrix R̂ and the translation vector t̂ in each calibration
and compute the errors in the rotation matrix and the the
relative errors ‖t − t̂‖/‖t‖ in the translation vector. Then sum
the errors in the rotation and translation, respectively. The
average error is computed through dividing the sum by the
calibration number). Figure 2 shows the simulation results.
One can see that the adaptive motion selection approach
behaves much better than the conventional method in the
existence of noisy measurements.

4.1.2. Adaptability test. To compare the adaptivity
performances, we also carry out the experiment with “fixed
thresholds method”.14 In this experiment, we establish the
consecutive random motion series with 500 hand positions
Qi . Other conditions are the same as the first simulated
experiment. With 100 such motion series, we calibrate each
using the new method and the fixed thresholds method, and
record the calibration number. The thresholds used in the

fixed thresholds method are set by the average value of
the first five motions. Figure 3 shows the results. It can
be seen that with the new method, we can successfully do
more calibrations than using the fixed thresholds method:
with the new method, the average calibration number is
36.4300, whereas the fixed thresholds method makes only
3.12 calibrations. This test result demonstrates that the new
method is much more adaptive in various applications.

4.1.3. Real-time test. To make further comparison, we make
an additional experiment using optimization approach, called
“optimal method” here. It first selects five “good” motions
using the same algorithm as the new method, then performs
the calibration with these “good” motions by optimization
approach (lease-squares method). In this experiment, we
establish the consecutive random motion series of 100
hand positions Qi . Other conditions are the same as the
first simulated experiment. We record the average error in
the rotation and translation, respectively. We also record
operation time of the calibration. From the result shown in
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Fig. 3. Calibration number in 100 experiments, where the solid curve with label “O” denotes the new method while the dotted curve with
label “*” denotes the fixed threshold method.
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Table I. Results of the real-time test.

Average time for Average error Average error
once calibration (s) of rotation of translation

New method 0.0020 0.0013442 0.0039
Optimal method 6.7114 0.0012907 0.00067138

Fig. 4. A physical setup. Two CCD cameras are rigidly mounted on
the end-effector of an Motorman Robot for performing hand–eye
calibration.

Table I, one can see that the accuracy of optimal method is not
much better than the new method. But the optimal method
operates much longer, which may not satisfy the requirement
of online calibration. Therefore, we do not use optimization
in our method.

4.2. Real scenes
We demonstrate the foregoing algorithm by a motorman
robot (MOTOMAN CYR-UPJ3-B00) system with Charge-
Coupled Device (CCD) stereo cameras [Watec-902B
(CCIR)], as shown in Fig. 4. We use this setup in our
research on Robot Assisted Surgical System for Total Knee
Replacement.20 The robot operation mode is vertically
articulated. Its repetitive positioning accuracy is 0.03 mm.
The robot is fixed on a workbench, and the cameras are
mounted on the end-effector of the robot, observing the static
infrared marks. After the stereo rig is precisely calibrated,
we mount an infrared filter on each camera. Thus, we get an
infrared navigation system with stereoscopic vision. Without
loss of generality, we compute the hand–eye transformation
between the left camera and the gripper. For each time instant,
the gripper pose Qi can be read from robot controller and the
pose of the reference object Pi related to the camera can be
solved by binocular vision.

We perform the hand–eye calibration using similar
methods as in the synthetic experiments. However, we cannot
have the ground truth of calibrations. Therefore, to predict
thresholds we compute

AiX − XBi =
[

�R3×3 �T3×1

0 1

]
.

In AlgorithmsI, II and III , the RMS of �R3×3 stands for
rmsR, and the RMS of �T3×1 stands for rmsT .

To make further comparison, we also calibrate the system
using Andreff’s “offline method"12 with all the frontal motion
pairs in computation, i.e. at the ith interstation, we use i

motion pairs to compute the result.

4.2.1. Accuracy test. We randomly move the gripper to get 50
locations with different rotation or/and translation controlled
by the program. To qualify the results, we take the errors of all
calibrations according to the pre-computed result (this error
is not used for threshold prediction, but only for accuracy
tests). The pre-computed result was obtained offline using
optimization and motion planning according to ref. [2]. Thus,
it is an accurate result reflecting the real value of hand–eye
relationship.

The results of this experiment are shown in Table II and
Fig. 5. From Table II, we see that, the average error of the
new method and the offline method are similar, both much
lower than that of the conventional method. From Fig. 5, we
can see that the new method and the offline method are much
more stable than the conventional one.

4.2.2. Adaptability test. In this experiment, we try to show
that the adaptability of the proposed algorithm is better than
the “fixed thresholds method" and the “offline method”. We
move the gripper to get 35 locations, with each of which, the
gripper is made closer to the mark than the previous location.

In our method, the threshold d0 can be changed adaptively
based on the characteristic of the motion sequence. Although
the translation becomes larger and larger, it can still
do calibration accurately. In comparison, however, the
thresholds of the fixed thresholds method cannot be changed.
So, it did only few calibrations in this situation.

Numbers and accuracy of the calibration are shown in
Table III. One can see that this test validates our prediction
because the new method makes more calibrations than the
fixed thresholds method and the accuracy of the new method
is superior to the offline method. That means, when the
motion sequence is not suitable to do hand–eye calibration,
the new method can get better result than the fixed thresholds
method and the offline method.

Table II. Results of the first real experiment.

Times of Average error Average error
calibration in rotation in translation

New method 9 0.068417 0.18171
Conventional method 48 0.1747 0.9654
Offline method 48 0.0591 0.1382

Table III. Results of second real experiment.

Calibration Average error Average error
numbers in rotation in translation

New method 7 0.3387 1.1197
Fixed thresholds method 1 0.4233 1.1954
Offline method 35 0.64503 1.6946
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Fig. 5. (a) The errors in the rotation matrix in each calibration and (b) the relative errors in the translation, where the solid curve with label
“O” denotes the conventional method, label “*” denotes the new method and label “+” denotes the offline method.

5. Conclusion
In this paper, we proposed an algorithm of adaptive motion
selection for online hand–eye calibration. There are non-
linear relationships between the motion parameters and the
calibration accuracy. We used cubic polynomial-regression
to predict suitable thresholds for motion selection. Using this
method, we can not only avoid the degenerate case in hand–
eye calibration, but also increase the calibration number by
adaptively modifying the thresholds. Experimental results
from simulated data and the real setup show that the method
greatly increased the quality of the performance of online
hand–eye calibration. It is assumed that the proposed method
is very promising in the vision-guided robot systems.
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