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Abstract. A semi-Lagrangian two-dimensional fully relativistic Vlasov code for
multicomputer environments is developed to study trapped-particle dynamics in
phase space induced by relativistic modulational and Raman instabilities. Atten-
tion is focused on the efficiency properties of the numerical scheme, which allows a
very fine description of particle dynamics in phase space. Vlasov simulations show
the appearance of coherent vortex structures as a result of the nonlinear saturation
mechanism of the relativistic modulational instability. Growth rates are computed
and found to be in good agreement with theoretical values obtained from the dis-
persion relation by Quesnel et al, [Phys. Plasmas 4, 3358–3368 (1997)] and Guérin
et al. [Phys. Plasmas 2, 2807–2814 (1995)]. In the case of coupling between the
relativistic modulational instability and two-plasmon decay, stochastic behaviour
can be observed due to the competition between different plasmas waves.

1. Introduction
As a result of recent progress in optical processing, lasers reaching petawatt power
are becoming available, yielding intensities ranging from 1017 to 1020 W cm−2 for
which relativistic effects become significant for electron. The interaction of such
laser beams with moderately underdense to slightly overdense plasmas is of par-
ticular interest in the ‘fast ignitor’ context and advanced accelerators. As these
high-intensity lasers have very short pulses (< 1 ps), ion motion can be neglected,
so that we only need to consider electron parametric instabilities. At moderate in-
tensities, these instabilities are clearly identified as stimulated Raman scattering
(SRS), relativistic modulational instability (RMI), relativistic filamentation insta-
bility (RFI) and two-plasmon decay (TPD). SRS is a resonant three-wave cou-
pling process where an electromagnetic pump wave (EMW) decays into an electron
plasma wave (EPW) and a scattered light wave. SRS occurs for n 6 1

4nc, where n
is the electron plasma density and nc = meε0ω

2
0/e

2 is the critical density associated
with the laser pump frequency ω0. On the other hand, TPD (also called 2ωp) is
a three-wave interaction process where the transversely polarized electromagnetic
pump wave decays into two EPW, which are longitudinally polarized. In order to
have frequency matching between the pump and both EPW daughter waves, we
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must have ω0 = ω1 + ω2 ≈ 2ωp i.e. ωEPW ≈ 1
2ω0, which means that TPD can only

occur near the quarter-critical density layer, where the density is 1
4nc.

In fact, SRS and TPD are both high-frequency three-wave parametric instabil-
ities. In both cases, the pump wave is transversely polarized. That is, the pump
wave’s electric field is strictly perpendicular to its propagation or k vector. For
both SRS and TPD, one of the two daughter waves is longitudinally polarized (no
vector potential can be associated with this wave). For SRS, the second daughter
wave is assumed to be transversely polarized, while for TPD, the second daughter
wave is assumed to be longitudinally polarized. The mixed polarization instability
has recently been studied by Afeyan and Williams (1997a,b) and is a generaliza-
tion that has SRS and TPD as special cases (the authors examine circumstances
where the polarization of the second daughter wave is not restricted to be either
longitudinal or transverse, but is taken to be an arbitrary admixture of the two).

In the fully relativistic regime, the one-dimensional (1D) dispersion relation has
been established recently by Guérin et al. (1995) for a plasma of any density, in-
cluding the so-called induced transparency regime nc 6 n 6 γ0nc, where γ0 is the
relativistic factor of the electron oscillating in the electric field of the laser wave.
Its analytical and numerical solution shows a wide variety of regimes, depending
on the parameter posc (quiver momentum) and n/nc. The two-dimensional (2D)
fully relativistic case has been studied by Quesnel et al. (1997a,b) by solving the
dispersion relation of the electron parametric instability of a circularly polarized
wave in a cold plasma at any laser intensity and plasma density. The authors have
identified different regimes, and in particular the existence of unstable modes at
high values of k⊥ (the wave vector component perpendicular to the incident pump
wave vector k0). In the relativistic regime, the unstable wavenumber area may ex-
tend to high values of k⊥ with high growth rates. At ultrahigh k⊥, TPD and RMI
tend to merge. In the fully relativistic regime (corresponding to RMI), generally
obtained with a large-amplitude electromagnetic wave with an irradiance of a few
1018 W cm−2, the Lorenz force is no longer negligible, and the EPW can reach the
wavebreaking limit.

An obvious way to improve the understanding of relativistic particle trapping,
plasma wavebreaking and/or particle acceleration is to use semi-Lagrangian codes
(Ghizzo et al. 1995; see also Bertrand et al. 1990), where (unlike ‘particles-in-cell’,
PIC, codes) the phase-space resolution is guaranteed, regardless of phase-space
particle density. Such Vlasov codes render possible a detailed examination of the
low-density regions of phase space, especially the description of the tail phenomena
where only a small number of electrons are involved. In this type of problems,
PIC codes suffer from poor statistics. This because they lack a sufficient number of
simulation particles to display the detailed phase-space structure of the distribution
function, which is often obtained in those regions of phase space where particle and
phase velocities are comparable and where trapping or wavebreaking occurs.

In the present paper, examples of TPD and RMI simulations are given using
semi-Lagrangian 1D and 2D Vlasov codes. Details of the semi-Lagrangian method
are given in Begué et al. (1998) and Coulaud et al. (1999), where we discuss the
parallelization of the 2D electrostatic Vlasov code on a distributed memory
architecture. The paper is organized as follows. Section 2 describes an example
of a 1D Vlasov simulation at high laser intensity corresponding to posc/mc =

√
3

and n/ncγ0 = 0.25 related to RMI. Then we present our 2D Vlasov model in Sec. 3.
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Section 4 emphasizes the results of Vlasov simulation concerning the RMI process
in two dimensions without TPD coupling, which is treated in Sec. 5. Finally, our
conclusions are given in Sec. 6.

2. 1D Vlasov simulations of RMI
2.1. Basic equations

We limit our discussion here to a 1D model, which precludes the TPD and Raman
side-scattering instability but retains SRS and longitudinal RMI when a large-
amplitude electromagnetic pump wave is considered. We choose here a couple of
parameters close to n/nc = 0.5 and posc/mc =

√
3 (i.e. n/γ0nc = 0.25, with a

Lorentz factor of γ0 =
√

1 + p2
osc/m

2c2 = 2). Although the parameters are chosen in
the region of the TPD process, the relativistic regime leads to the growth of RMI
located around k⊥c/ωp ≈ 0. In the fully relativistic regime, perturbation theory
cannot be used to take account of nonlinearities of the primary wave (thus the case
of an electromagnetic wave with linear polarization is more complicated to handle).
In order to overcome this difficulty, the nonlinear electromagnetic wave is assumed
to be circularly polarized. It is then well known that for such a polarization the
amplitude of the electric field and of the electron quiver velocity remain constant.

We start from the 1D2/2 relativistic Vlasov model:

∂F

∂t
+

px
mγ3

∂F

∂x
+ e

(
E +

p
mγ3

× B
)
∂F

∂p
= 0, (1)

with the relativistic factor given by

γ2
3 = 1 +

p2
x + p2

y + p2
z

m2c2 (2)

By considering a class of exact solution of (1) in the form

F (x, p, t) = f (x, px, t) δ
(
py − Py(x, t)

)
δ (pz − Pz(x, t)) , (3)

(1) can be written as

∂f

∂t
+

px
mγ1

∂f

∂x
+
(
eEx − mc2

2γ1

∂
(
a2
)

∂x

)
∂f

∂px
= 0, (4)

with the Lorentz factor now given by:

γ2
1 = 1 +

p2
x

m2c2 + a2 (x, t) (5)

and where a(x, t) = eA/mc is the normalized amplitude of the vector potential
A = (0, Ay, Az). Note that the generalized canonical momentum is then given by
P⊥ + eA⊥ = 0. The Vlasov equation is then coupled with the Maxwell equations:

∂Ey
∂t

= −c2 ∂Bz
∂x

+ ω2
pAyρ, (6)

∂Ez
∂t

= c2 ∂By
∂x

+ ω2
pAzρ, (7)

∂By
∂t

=
∂Ez
∂x

, (8)

∂Bz
∂t

= −∂Ey
∂x

, (9)
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where

ρ (x, t) =
∫
f dpx
mγ1

.

The vector potential components are then computed using ∂A⊥/∂t = −E⊥, and the
longitudinal component of the field is obtained by solving the Poisson equation:

∂Ex
∂x

=
e

ε0
[ne(x, t)− ni] . (10)

The well-known fractional step or ‘splitting scheme’ is then used to integrate the
distribution function (see Coulaud et al. 1999): we shift the distribution function
along the x direction, leading to

f∗ (x, px) = f (x− α, px, tn) , (11a)

with

α = ∆t v
(
x− α

2
, px, tn+1/2

)
, (11b)

where v is the function px/mγ1. Then, in the momentum (px) space with the cor-
responding expression

f (x, px, tn+1) = f∗ (x, px − β) (12a)

with

β = ∆t w
(
x, px − β

2
, tn+1/2

)
(12b)

and

w (x, px, t) = eEx − mc2

2γ1

∂
(
a2
)

∂x
. (13)

The Maxwell equations are integrated by using the usual leapfrog scheme with time
subcycling.

2.2. Numerical results

We consider here a circularly polarized electromagnetic pump wave of frequency
ω0 =

√
2ωp and wavenumber k0c/ωp ≈ 1.225. The ratio of the electron density to

the critical density is then n/nc = 0.50, i.e. n/γ0nc = 0.25. Since in the 1D model
the TPD is precluded, RMI starts up in the relativistic regime. Figure 1 shows the
growth rate γ/ωp as a function of the wavenumber kc/ωp directly obtained by an
1D analysis of the dispersion relation (see e.g. Guérin et al. 1995). RMI reaches a
maximum growth rate γmax/ωp ≈ 0.562 at kc/ωp ≈ 2.353, and the corresponding
real frequency is close to ω/ωp ≈ 0.47. To make a comparison with theoretical
results, a numerical simulation has been performed with a plasma length box of
Lx = 2π/k0 ≈ 5.130 c/ωp (the fundamental wavenumber being ∆k = k0), leading to
the appearance of a plasma wave of wavenumber kec/ωp ≈ 2∆kc/ωp ≈ 2.449 chosen
in the region of maximum RMI growth rate. The phase-space sampling is taken as
Nx = 512 and Npx = 256. In order to start the instability from the round-off errors
of the Vlasov code (the Vlasov code being noiseless), we choose as initial condition
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Figure 1. The growth rate γ/ωp has been plotted as a function of the wavenumber kc/ωp in
the case of RMI by solving the 1D dispersion relation. The parameters are ω0/ωp =

√
2 (i.e.

n/γ0nc = 0.25) and posc/mc =
√

3.
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Figure 2. Time evolution of the plasma mode in the Vlasov simulation corresponding to the
most unstable modes. The numerical growth rate is found to be γnum/ωp ≈ 0.550, which is
close to the theoretical value of γRMI/ωp ≈ 0.558.

a Maxwellian distribution function without perturbation and take the following
initial conditions to describe the circularly polarized electromagnetic field:

E = (0, E0 cos k0x, E0 sin k0x) , (14)
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Figure 3 (a–d). For caption see facing page.

B =
(

0, −k
∗
0E0

ω∗0
sin k0x,

k∗0E0

ω∗0
cos k0x

)
, (15)

P =
(

0, −eE0

ω∗0
sin k0x,

eE0

ω∗0
cos k0x

)
, (16)

where

ω∗0 = ω0 sinc
ω0 ∆t

2
, k∗0 = k0 sinc

k0 ∆x
2

,

with

sincx =
sin x
x

.

Using the well-known leapfrog scheme to integrate the Maxwell equations (6)–(9),
a little algebra leads to a numerical expression for the dispersion relation for cir-
cularly polarized electromagnetic waves, ω∗20 = ω2

p/γ0 + k∗20 c
2. Figure 2 shows the

https://doi.org/10.1017/S0022377899008065 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377899008065


2D semi-Lagrangian Vlasov simulations in the relativistic regime 373

2.5

0

–2.5

2.5

0

–2.5
0 2.5 5.0 0 2.5 5.0

xxp/cxxp/c

px
mc

px
mc

(e) (f)

(g) (h)

Figure 3. Phase-space representation of the distribution function of RMI using 1D
semi-Lagrangian Vlasov simulation. The curves are shown from times tωp = 58 (a) until
72 (h) (every 2ω−1

p ). They clearly show a strong modulation followed by particle trapping in
phase space.

time evolution of the plasma-wave mode on a logarithmic scale. The numerical
growth rate of this mode is determined by the slope of the curve of Fig. 2, and
can be compared with the theoretical predictions given in Fig. 1. The agreement
is particularly good: the growth rate value obtained by the 1D Vlasov simulation
is γnum/ωp ≈ 0.550, which is close to the theoretical value of γRMI/ωp ≈ 0.558.
Because of its very fine resolution in phase-space, the Vlasov code is capable of
resolving the finest details of particle trapping. As an example, Fig. 3 shows the
phase-space representation of the whole distribution function from time tωp = 58
until 72 (every 2ω−1

p ). Figure 3 show clearly the strong modulation of the distribu-
tion function followed by particle trapping in the longitudinal field and then the
formation of coherent phase-space structures in (x, px) phase space as a result of
the RMI saturation mechanism.
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3. The 2D relativistic Vlasov model
We use 2D semi-Lagrangian electromagnetic Vlasov simulations with circular po-
larization. In most cases, for simplicity, we again restrict the discussion to the case
of fixed ions. Electron parametric instabilities in the relativistic regime have been
extensively studied in 1D and extended to 2D problems (see e.g. Quesnel et al.
1997a,b; Adam et al. 1997). The 2D instability involves the coupling of harmonics
(see Sakharov et al. 1995), TPD, side-scattering and RFI. In this paper, we limit our
study to the RMI–TPD coupling. To model this, we consider an infinite homoge-
neous plasma in the x and y directions with a pump wavevector in the x direction,
all field quantities being functions of the space variables x and y. Choosing the
Coulomb gauge∇ ·A = 0, the vector potential A has three components Ax, Ay and
Az. Recalling that E = −∇φ − ∂A/∂t, the 2D1/2 electron distribution function
F (x, y, p, t) obeys the relativistic Vlasov equation:

∂F

∂t
+

p
mγ3

· ∂F
∂r

+ e

(
E +

p
mγ3

× B
)
· ∂F
∂p

= 0, (17)

where r = (x, y, 0) and p =
(
px, py, pz

)
. But huge memory requirements are neces-

sary to handle a full 2D1/2 kinetic model, i.e. five phase-space variables. It is then
possible to reduce the number of variables by using the fact that Ez = −∂Az/∂t,
which is equivalent to taking a class of exact solutions of (17) in the form

F
(
x, y, px, py, pz, t

)
= f

(
x, y, px, py, t

)
δ (pz − Pz (x, y, t)) (18)

The reduced 2D distribution function f describing particle motion in the plane now
satisfies the 2D reduced Vlasov equation, used in our model:

∂f

∂t
+

px
mγ2

∂f

∂x
+

py
mγ2

∂f

∂y
+ e

(
Ex +

pyBz − PzBy
mγ2

)
∂f

∂px

+ e

(
Ey +

PzBx − pxBz
mγ2

)
∂f

∂py
= 0, (19)

with a new expression for the relativistic factor γ2 given by

γ2
2 = 1 +

p2
x + p2

y + P 2
z (x, y, t)

m2c2 . (20)

The transverse momentum Pz is obtained through conservation of the general-
ized canonical momentum Pz + eAz = 0, giving rise to

∂Pz
∂t

= eEz. (21)

Both TE (transverse electric field:Ez, Bx, By) and TM (transverse magnetic field:
Ex, Ey, Bz) components were taken into account in our model. For TM modes, the
Maxwell equations are then given in the well-known form

∂Ex
∂t

= c2 ∂Bz
∂y
− Jx
ε0
, (22)

∂Ey
∂t

= −c2 ∂Bz
∂x
− Jy
ε0
, (23)

∂Bz
∂t

= −
(
∂Ey
∂x
− ∂Ex

∂y

)
, (24)
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while, for TE modes,
∂Bx
∂t

= −∂Ez
∂y

(25)

∂By
∂t

=
∂Ez
∂x

(26)

∂Ez
∂t

= c2
(
∂By
∂x
− ∂Bx

∂y

)
− Jz
ε0

(27)

where the plasma current density is given by

J =
e

m

∫ ∫
dpx dpy pf

γ2
, (28a)

with

p =
(
px, py, Pz (x, y, t)

)
(28b)

Again the usual leapfrog scheme is used to compute the electromagnetic field at
each time step (see Birdsall and Langdon 1995).

4. Results of 2D Vlasov–Maxwell simulations
4.1. Mode analysis

The results presented here were processed on the Cray T3E computing system. A
phase-space grid NxNyNpxNpy of 256 × 643 grid points was used, resulting in a
corresponding number of 67 108 864 particles. The time step is ∆t ωp = 0.01 and the
CPU time is close to 0.45µs per time step, per particle on the T3E computer using
64 processors. We have performed numerical simulations using periodic conditions
in both x and y directions, and a circularly polarized plane electromagnetic wave is
set in the whole box at time t = 0. Both plasma and fields satisfy the zeroth-order
equilibrium given at the beginning of this paper. The initial distribution function
was modified to include an oscillatory term in the py momentum:

f
(
x, y, px, py, t = 0

)
= Fmax

(
px, py − eE0 cos

k0x

ω∗0

)
, (29)

Fmax
(
px, py

)
=

1
2πvTxvTy

exp
(
− p2

x

2m2v2
Tx

)
exp
(
− p2

y

2m2v2
Ty

)
. (30)

We have perturbed all plasma modes (with an amplitude of 10−6) to reduce
the computational time. To make a comparison with results obtained in the 1D
case, we again take the same parameter as used previously. Since the velocities are
normalized to c and the frequency to ωp, while the electromagnetic pump wave was
chosen on mode 2 ∆kx (∆kx being the fundamental mode in the x direction), the
value of

k0 =

√
ω2

0

ω2
p

− 1
γ0

in fact determines the length of the system Lx in term of c/ωp. The plasma length
Ly (= 2π/∆ky) is chosen in order to maximize the TPD growth rate and to re-
duce the computational time by taking c∆ky/ω0 ≈ 1.20. For these parameters,
the growth rate of RMI reaches γRMI/ω0 ≈ 0.38 for (kxc/ω0, kyc/ω0) = (1.730, 0),
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Figure 4. Time evolution of (a) mode 4 of the Ex electric field (plasma mode), (b) mode 2 of
theEy electric field (both pump and Stokes modes) and (c) mode 6 of theEy field (anti-Stokes
mode).

while γTPD/ω0 ≈ 0.28 for (kxc/ω0, kyc/ω0) = (2.60, 1.20), corresponding to TPD
in a relativistic regime (see Fig. 6 of Quesnel et al. 1997b). Note that these values
put the first mode ∆ky at c∆ky/ωp = 0.866 in the region of maximum growth rate.
Figure 4(a) shows the time evolution of mode 4 of the Ex field (plasma mode),
Fig. 4(b) shows that of mode 2 of the Ey field (initially the pump wave), and Fig.
4(c) that of mode 6 of the Ey field. The Ez component is not shown here. A loga-
rithmic scale is used here to represent the distribution function levels. The plasma
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Figure 5. (x, px) phase-space plots of the distribution function at time tωp = 10 (a), 14 (b),
16 (c) and 18 (d), showing clearly the strong modulation and particle trapping that is the
signature of RMI. The numerical 2D Vlasov simulation was carried out with the same
parameters as used in Fig. 1.

mode exhibits a numerical growth rate close to γnum/ω0 ≈ 0.38, in very good agree-
ment with the predicted value. Recalling that RMI is the result of the coupling
of four waves, namely the pump wave (ω0, k0), the plasma wave (ωe, ke) and two
electromagnetic scattered waves, the Stokes daughter (ωs, ks) and the anti-Stokes
daughter (ωas, kas), the matching conditions are

k0 = ks + ke, ω0 = ωs + ωe, (31)

kas = k0 + ke, ωas = ω0 + ωe. (32)

Equations (31) and (32) determine the wavenumbers and frequencies of various
modes once the pump wavelength has been given (we have taken here ck0/ωp ≈
1.225). Analysing the solutions of the dispersion relation, we see that the growth
rate is maximum for a value of the plasma wavenumber close to cke/ωp = 2.353
(with a real part of the frequency close to Re(ωe) ≈ 0.46ωp). From (31) and (32),
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Figure 6. (x, py) phase-space plots of the distribution function (at the same times as in Fig. 5),
illustrating the effect of the electromagnetic wave in the py direction. The modulation is due
to the introduction of the Py (x, y) term in the initial distribution function.

the Stokes wavenumber is then cks/ωp ≈ −1.128 (ωs ≈ 0.954ωp) which is close
to mode 2, while the anti-Stokes wavenumber is ckas/ωp ≈ 3.758 (ωs ≈ 1.874ωp),
corresponding approximately to mode 6. A perfect k-matching (since we have a
periodic simulation) leads to a mismatch

δkx = kas − 6 ∆kx = ks + 2 ∆kx = ke − 4 ∆kx ≈ 0.097
ωp
c

(with c∆kx/ωp = 0.6125). Because both pump and Stokes modes are located on
mode 2, Fig. 4 exhibits an oscillatory behaviour while the corresponding anti-Stokes
mode (see Fig. 4c) has a strong growth with a growth rate estimated to be γnum/ω0 ≈
0.375. Note that the products of the instability are purely electrostatic for the
plasma wave (with longitudinal polarization) and electromagnetic for the Stokes
and anti-Stokes wave (with transverse polarization).
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Figure 7. (px, py) momentum-space plots of the distribution function during plasma evolution
(at the same times as in Fig. 5) showing the broadening of the distribution in the px direction.

4.2. Phase-space representation

A semi-Lagrangian Vlasov code allows precise comparison with the available theo-
ries: mode coupling, relativistic detuning and nonlinear saturation. The most strik-
ing advantage, however, of the Vlasov code (already demonstrated in a 1D open
system – see Ghizzo et al. 1996a,b; Bertrand et al. 1995) is the very fine resolution
in phase space, capable of resolving the finest mechanisms of particle dynamics.
As our second example, we present phase-space results for the RMI case using 2D
Vlasov simulations. In Fig. 5, phase-space contour plots are presented of the re-
duced distribution function f (x, px) (integrated over y and py variables) at various
times (tωp = 10, 14, 16 and 18). To improve the presentation of this diagnostic (and
to accentuate the small values of the distribution function) a logarithmic scale has
been used. The corresponding representations in (x, py) space and (px, py) space are
illustrated respectively in Figs 6 and 7 at the same times. The curves at tωp =
10 correspond to the linear region of the instability, with a strong modulation of
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Figure 8. Time evolution of a selection of unstable modes on a logarithmic scale: (a)
Ex (4 ∆kx, 0); (b), Ex (6 ∆kx,∆ky) ; (c) Ex (0,∆ky). The corresponding growth rates, mea-
sured by the slopes of the curves, are respectively γ/ω0 ≈ 0.38, 0.27 and 0.66. The last mode
is due to mode coupling, and has a larger growth rate than that predicted by the linear
theory.

the whole distribution function in (x, px) phase space. The modulation observed
in (x, py) space corresponds to the electromagnetic modulation (via the term Py)
initially injected in the distribution function. The time tωp = 14 corresponds to the
beginning of the nonlinear phase of the development of RMI.

Owing to the very good resolution in phase space afforded by the Vlasov code,
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Figure 9. Time evolution of the y and z components of the electric field. (a) and (b) cor-
respond to the mode (2 ∆kx, 0) (the circularly polarized pump wave mixed with the Stokes
contribution). (c) and (d) are related to the mode (6 ∆kx, 0) (i.e. the anti-Stokes mode): the
anti-Stokes mode increase gives rise to a numerical growth rate of γ/ω0 ≈ 0.36, in good
agreement with the theoretical value of γRMI/ω0 ≈ 0.38.

one can begin to understand much of the details of the interaction. In keeping
with the discussion of Fig. 4(a), one sees the appearance of (x, px) phase-space
structures due to particle trapping in plasma wave. Note the formation of ‘arms’
corresponding to very a small level of the distribution function. Owing to plasma
wavebreaking, there are regions in (x, py) space of high densities, as can be seen
in Fig. 6 at time tωp = 14. Now the description of the transverse behaviour of
the distribution function by a Dirac distribution is not valid in that case. At time
tωp = 18, Fig. 6 shows clearly a break in the distribution function around xωp/c ≈
5. We can note a small oscillatory behaviour in the py direction in time, with a
perfect symmetry of f in this space. Owing to the strong modulation in (x, px) phase
space, followed by particle trapping and the formation of vortices in this space, the
distribution function broadens out in the px direction. Since the vortices remain
coherent structures during plasma evolution without stochasticity generation, the
instability does not lead to a heating process, which is an important result given
by our Vlasov simulations.
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Figure 10 (a–d). For caption see facing page.

5. RMI and TPD coupling in the relativistic regime
5.1. Growth-rate estimation in the linear region of the instability

A second series of numerical simulations has been carried out in order to study
the coupling between RMI and TPD in a relativistic regime. A detailed analysis of
coupling, using the 2D dispersion relation, has been given by Quesnel et al. (1997b).
They predict in the fully relativistic regime (in the case of parameters n/γ0nc =
0.25 and posc/mc =

√
3) a maximum growth rate of TPD (γTPD/ω0 = 0.28) for

(kxc/ω0, k⊥c/ω0) = (2.70, 1.20) (see Fig. 6 of Quesnel et al. 1997b). To confirm the
preceding results, we keep exactly the values of the ratio of the electron density to
the critical density and of the quiver momentum used by Quesnel et al. With these
parameters, the first plasma wave appears with a wavevector (k1xc/ωp, k1yc/ωp) =
(3.818, 1.697) close to (6 ∆kx,∆ky), with an error estimated as δkx = k1x− 6 ∆kx ≈
−0.14ωp/c. The second plasma wave (the daughter induced by TPD) is generated
with a wave vector close to (k2xc/ωp, k2yc/ωp) = (2.593,−1.697), which corresponds
now to the Fourier mode (4 ∆kx,−∆ky).
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Figure 10. Coupling between RMI and TPD processes in the (x, px) phase-space representa-
tion afforded by the Vlasov code. While a four-wavelength structure can be observed without
coupling (see Fig. 5), a more complex situation with loss of the phase-space structural co-
herence is now observed.

To start the TPD process, a perturbations in density are added on plasma modes
(6 ∆kx,∆ky) and (4 ∆kx,∆ky) of 0.05 and 0.005 respectively (keeping a perturba-
tion of 10−6 on the other modes to reduce the computational time). We observe
the developments of the modes that are predicted to be unstable according to the
previous results. Figure 8 shows the time evolution of a selection of unstable modes
on a logarithmic scale: Ex(4 ∆kx, 0) in Fig. 8(a), Ex(6 ∆kx,∆ky) in Fig. 8(b) and
Ex(0,∆ky) in Fig. 8(c). The agreement is particularly good for the fastest-growing
modes, which validates the theory. The coupling between RMI and TPD gives rise
to a mixed polarization state of all modes involved in the parametric instabilities.
All modes presented in Figs 8 and 9 are not restricted to be either longitudinal
or transverse, but have a mixed polarization. The growth rates, determined by
the slope of the curves presented in Fig. 8, have been estimated respectively as
γnum/ω0 = 0.38 (in Fig. 8(a), the RMI branch), 0.27 (in Fig. 8(b), the TPD branch)
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Figure 11. The (px, py) phase-space representation corresponding to Fig. 10 at times
tωp = 10 (a), 14 (b), 22 (c) and 24 (d), showing the plasma evolution. Note that the mo-
mentum-space structure now becomes asymmetric.

and 0.65 (in Fig. 8(c), two times γRMI/ω0). Note that we can observe in Fig. 8(c) the
effect of mode coupling on the development of less-unstable modes. For instance,
the mode (0,∆ky) has a growth rate larger than that predicted by linear theory, and
is probably due to a coupling mechanism of type (2∆kx, 0)−(2 ∆kx,−∆ky). Figure 9
shows the time evolution of the Ey and Ez components of the electromagnetic field
of mode (2 ∆kx, 0), corresponding to the pump wave (and also the Stokes mode),
and of mode (6 ∆kx, 0), corresponding to the anti-Stokes mode. While Figs 9(a,b)
exhibit the onset of the beat oscillatory behaviour with a strong modulation of the
envelope of the pump wave, the anti-Stokes mode increases with a growth rate close
to γnum/ω0 = 0.37 relevant to RMI.

5.2. Trapped particle dynamics in phase space

Further progress will depend on improving our understanding of wave–particle dy-
namics in the presence of several plasma waves that have been observed in the
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Figure 12. Further details of the plasma waves present in the plasma are illustrated here by
showing the electron density at times tωp = 4 (a), 6 (b), 10 (c) and 18 (d). The plots show
clearly that the dominant plasma modes are (4 ∆kx,∆ky) and (2 ∆kx,∆ky).

Fourier-mode analysis. Here we give a detailed examination of such a coupling be-
tween RMI and TPD. The presence of the TPD process is due to the choice of the
parameter n/γ0nc close to 0.25, while RMI is induced by relativistic effects. In Fig.
10 we have plotted the (x, px) phase-space representation afforded by the Vlasov
code from time tωp =10 until 24 (using a time step of 2ω−1

p ). While a four-wavelength
(4 ∆kx) structure for the plasma wave was found in the previous simulation, a more
complex situation is now occurring owing to the presence of several plasma modes,
which gives rise to the appearance of stochasticity in phase space. Further confir-
mation of this mechanism is provided by the plots of the distribution function in
the (px, py) space (at times tωp = 14, 14, 22 and 24) shown in Fig. 11. We indeed
see that the momentum-space structures become asymmetric while the TPD pro-
cess goes on increasing in time. The strongly nonlinear regime of the instability
(including RMI and TPD) differs radically from previous behaviour met in Sec.
4 due to the presence of the TPD process. More details of particle dynamics can
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Figure 13. (x, py) phase-space representation afforded by 2D semi-Lagrangian Vlasov
simulation in the case of RMI–TPD coupling.

be found in Figs 12 and 13, in which we have respectively represented the elec-
tron density and the distribution function in (x, py) phase space. Again the levels
of the electron distribution function are represented on a logarithmic scale. Figure
12 illustrates the electron density behaviour at respective times tωp = 4, 6, 10, 18,
showing clearly that the dominant plasma modes are 4 ∆kx and 2 ∆kx in the longi-
tudinal direction and ∆ky in the transverse direction. Figure 13 shows the evolution
of a particle population in (x, py) phase space, which characterizes the transverse
motion of electrons induced directly by the electromagnetic part of the laser field.
Note that the phase-space structures remains coherent in this space.

In an earlier paper (Johnston et al. 1992) dealing with a 1D periodic plasma, we
have shown that the Vlasov code is able to give strikingly clear pictures of phase-
space dynamics, showing impressive correlation with simple orbit theory for steady
waves. It should be noted that this is possible only when the accelerating waves are
well defined and distinct as in stimulated Raman scattering. The phase-space por-
traits in general, however, contain a separatrix, so that orbits sufficiently near the
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separatrix are unstable to structural changes in the system. It is in this sense that
a simple geometry is not trivial and contains the seed for chaos. If more than one
plasma wave is involved (as here), with overlapping separatrices, one would expect
Hamiltonian stochasticity from the resonance overlap. Even if the different plasma
modes involved in the interaction process could be clearly identified, one would not
know to which wave one should ascribe a given region of phase-space distribution,
nor what frequency to use for computing the separatrix limiting trapped orbit tra-
jectories. In effect, one could say that in the chaotic situation the waves could only
quarrel over the electrons without being able to establish a clear title of ownership.
The failure of coherence in Fig. 10 and of symmetry in Fig. 11 is not surprising,
and indicates that the plasma behaviour cannot be inferred from only one plasma
wave.

6. Conclusions
Detailed phase-space simulation results have been obtained using a 21

2 D parallel
semi-Lagrangian Vlasov code for the spatially periodic, initial-value parametric
instability problem of the relativistic modulational instability and two-plasmon
decay coupling. Growth rates in the linear regime of the instability have been sat-
isfactorily verified for RMI and TPD in a strongly relativistic regime.

Although we have restricted ourselves to a few examples concerning RMI and
TPD, striking pictures of the phase-space dynamics of particles have been obtained
in a 2D system. The numerical simulations clearly show the formation of coher-
ent vortex structures in phase space induced by the RMI process. These results
should be a good starting point for understanding the final state and distribution
of trapped or accelerated particles after the appearance of plasma wavebreaking.
In cases where several plasma waves are present in the system, generally induced
by RMI and TPD coupling, the plasma-particle distribution develops a more com-
plex behaviour in phase space, with the onset of Hamiltonian stochasticity. It is
clear that to describe the distribution function of trapped particles will require
very detailed analysis of the kinetics and time history of plasma-wave evolution.
Finally, obtaining this insight into the detailed behaviour was only possible with a
semi-Lagrangian 2 1

2 D Vlasov model, which can provide a great deal of resolution
in phase space.
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