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Sinusoidally oscillatory flow around four circular cylinders in an in-line square
arrangement is numerically investigated at Keulegan–Carpenter numbers (KC) ranging
from 1 to 12 and at Reynolds numbers (Re) from 20 to 200. A set of flow patterns
is observed and classified based on known oscillatory flow regimes around a single
cylinder. These include six types of reflection symmetry regimes to the axis of
flow oscillation, two types of spatio-temporal symmetry regimes and a series of
symmetry-breaking flow patterns. In general, at small gap distances, the four structures
behave more like a single body, and the flow fields therefore resemble those around a
single cylinder with a large effective cylinder diameter. With increasing gap distance,
flow structures around each individual cylinder in the array start to influence the
overall flow patterns, and the flow field shows a variety of symmetry and asymmetry
patterns as a result of vortex and shear layer interactions. The characteristics of
hydrodynamic forces on individual cylinders as well as on the cylinder group are
also examined. It is found that the hydrodynamic forces respond in a similar manner
to the flow field to the cylinder proximity and wake interference.

Key words: low-Reynolds-number flows, vortex flows, vortex interactions

1. Introduction
1.1. Motivation and objectives

Sinusoidally oscillatory flow around a circular cylinder has been studied extensively
for decades owing to its relevance to engineering applications, such as wave loads
on cylindrical marine structures (Maull & Milliner 1978; Bearman et al. 1985;
Williamson 1985; Obasaju, Bearman & Graham 1988; Sarpkaya 2002; Saghafian
et al. 2003) and the rich physics displayed by the flow, especially at relatively low
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FIGURE 1. Schematic representation of the four-circular-cylinder system. The cylinders
are represented by four circles 1–4 in a clockwise direction.

oscillation amplitude and frequency (Honji 1981; Tatsuno & Bearman 1990; Dütsch
et al. 1998; Elston, Blackburn & Sheridan 2006; An, Cheng & Zhao 2011). In
contrast, oscillatory flow around multiple cylinders has not attracted the attention that
this interesting problem deserves. Owing to functional requirements, multiple cylinders
are commonly arranged in groups in many offshore engineering applications, where
the structures are routinely exposed to oscillatory flow induced by waves. For example,
a tension leg platform or a semisubmersible platform often has four columns that
are spaced at around three to four diameters apart. The riser systems of floating
offshore platforms often comprise closely spaced multiple pipes. The case of four
cylinders in a square arrangement is unique in terms of the flow characteristics that
it displays. This is because it includes a pair of tandem cylinders in a side-by-side
arrangement, as well as two pairs of staggered cylinders, such that both wake and
proximity interferences may occur.

Steady flow around multiple structures has attracted significant research attention
because of the diversity of fluid forces and flow features in this case. For example,
it has been observed that, when two or more circular cylinders are arranged close to
each other in a steady flow, proximity and wake interferences lead to repulsive forces
and biased vortex shedding (Zdravkovich 1987; Hu & Zhou 2008). Oscillatory flow
around multiple cylinders is expected to exhibit similar responses to these types of
interference. However, our understanding is limited by the scarcity of research on the
subject. This motivates the present study of oscillatory flow around four cylinders in
a square arrangement, as shown in figure 1.

Oscillatory flow around a circular cylinder is mainly governed by two dimensionless
parameters, namely the Keulegan–Carpenter number KC and the Reynolds number Re.
These are conventionally defined as

KC= UmT
D

and Re= UmD
ν
, (1.1a,b)

where D is the diameter of the cylinder, ν is the kinematic viscosity of the fluid, and
Um and T are the amplitude and period of the velocity oscillation, respectively. The
ratio of Re and KC, known as the frequency parameter or Stokes number (β=D2/νT),
is also often referred to in the literature. For oscillatory flow around a four-cylinder
array, flow features are also affected by the gap ratio, which is defined as the ratio of
gap distance, L, to the cylinder diameter (see figure 1),

G= L
D
. (1.2)
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It should be pointed out that the flow is also dependent on the angle between the
direction of the oscillatory flow and the cylinder array. However, this effect is not
investigated in the present study. The main aim of the present work is to investigate
the oscillatory flow features around four circular cylinders arranged in an in-line
square arrangement, as shown in figure 1. The study focuses on comparatively small
KC and Re conditions in the range KC ∈ [1, 12] and Re ∈ [20, 200], at a gap ratio
ranging from 0.5 to 4.

1.2. Previous studies
At low KC and Re values, oscillatory flow around a single cylinder may present
four kinds of two-dimensional (2D) symmetries (Elston, Sheridan & Blackburn 2004;
Elston et al. 2006): one reflection symmetry about the axis of oscillation, Kx, and
two spatio-temporal symmetries, H1 and H2, along with a ‘basic state’, where all
of these three symmetries are preserved. By introducing an oscillatory flow in the y
direction, Uy(t)=Um sin(2πt/T), the symmetry patterns identified for oscillatory flow
around a single cylinder can be represented through the vorticity component in the
axial direction, ωz, as

Kx: ωz(x, y, t) = ωz(−x, y, t), (1.3)
H1: ωz(x, y, t) = −ωz(x,−y, t+ T/2), (1.4)
H2: ωz(x, y, t) = ωz(−x,−y, t+ T/2), (1.5)

where dimensionless ωz is determined as the curl of velocity vector U = (Ux,Uy),

ωz =∇×U
(

D
Um

)
. (1.6)

These symmetries are illustrated in figure 2 based on the present numerical results at
KC= 11 and Re= 60, 80 and 100, respectively. It is noted that both H1 and H2 are
preserved in the Kx symmetry. It was also observed by Elston et al. (2006) that the
Kx symmetry in the cross-sectional flow fields around a single oscillatory cylinder is
identical to the basic state with full symmetry.

Comprehensive flow features induced by sinusoidal oscillations of a circular cylinder
in an otherwise stationary fluid at low KC and low β were experimentally identified by
Tatsuno & Bearman (1990). Eight flow regimes were classified within 1.6 6 KC 6 15
and 5 6 β 6 160. The flow regime map in the range of KC 6 12 and Re 6 400 is
reproduced for the convenience of discussion in figure 3 as a function of KC and
Re. Among the flow regimes, flows in regimes A and A∗ are 2D and symmetric
to the direction of motion, with vortex shedding occurring in regime A but not in
A∗. Regime B features the so called ‘streaked flow’ along the axis of the cylinder,
which is composed of equally spaced streaks of mushroom-shape flow structures
(Honji 1981). Although regime B flows are three-dimensional (3D), cross-sectional
flows (in the x–y plane) preserve Kx symmetry (Elston et al. 2006). Flows in regimes
C–G are apparently 3D and also break the 2D Kx symmetry. A key observation in
regime C is that the vortex does not synchronize with the oscillation period; rather,
it is rearranged into large vortices with a secondary period before emanating in the
direction of motion. The transverse vortex streets are found in regimes D and E,
where vortices are obliquely convected to one side of the axis of oscillation. Irregular
switching of the convection direction is evolved in regime E. Diagonal double-pair
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FIGURE 2. (Colour online) The three symmetries Kx, H1 and H2 of the z-vorticity
component for oscillating flow around a fixed circular cylinder at KC = 11: (a) Kx at
Re = 60, along with the coordinate system; (b) H1 at Re = 80; and (c) H2 at Re = 100.
Instantaneous vorticity contours are obtained from 2D direct numerical simulation at 100th
oscillation. The continuous contours denote positive vorticity, whereas dotted ones are for
negative vorticity, with cutoff level Ω =±0.1. The inlet oscillatory flow is in the vertical
direction.

vortices feature in regime F. The H1 symmetry is largely preserved while Kx and H2
symmetries are broken in regimes C, D and E. The H2 symmetry is roughly preserved,
but Kx and H1 symmetries are broken in regime F. The flow field in regime G breaks
all the Kx, H1 and H2 symmetric patterns, is chaotic and characterized by a circulatory
flow streaming and irregular 3D flow structures.

Many experimental and numerical studies have been carried out within the
parameter ranges covered in the map of regimes shown in figure 3. Some of these
studies are summarized in table 1. Where they were not provided in the original
study, the flow regimes listed in table 1 were estimated based on the ranges of KC
and β. A significant amount of knowledge has been gained through these studies,
which has been reviewed by Bearman (1984) and Elston et al. (2006) and thus
is not repeated here. Only those numerical studies that are closely relevant to the
present study are briefly reviewed. It has been generally accepted that 2D numerical
models are able to predict oscillatory flow features under a reasonably wide range
of flow regimes, including the regimes that harbour 3D flows. By solving the 2D
Navier–Stokes (NS) equations, Justesen (1991) found that the simulated oscillatory
flow structures around a cylinder were in good agreement with those observed in
experimental flow visualizations at about β 6 250 with small KC numbers. The
calculated drag and inertia coefficients for β = 196, 483 and 1035 and 0< KC < 26
were found to agree with the experimental data well. Lin, Bearman & Graham (1996)
investigated oscillatory flow around a circular cylinder at a fixed β = 76 using a 2D
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FIGURE 3. Flow regimes reproduced from Tatsuno & Bearman (1990): regime A,
symmetric with vortex shedding, 2D; A∗, symmetric and attached, 2D; B, longitudinal
vortices, 3D streaked flow; C, rearrangement of large vortices, 3D; D, transverse street,
3D; E, transverse street with irregular switching, 3D; F, diagonal double pair, 3D; and G,
circulatory flow streaming that intermittently changes directions, 3D.

discrete vortex method. It was reported that all major vortex-shedding regimes that
were observed in the experiments at KC values up to 30 were well reproduced by
the numerical simulation. Dütsch et al. (1998) reproduced regimes A, E and F by
2D simulations, and reported a good comparison of drag and inertia coefficients with
experimental data at β = 35 (see figure 3) and KC 6 15. Nehari, Armenio & Ballio
(2004) compared the 2D and 3D numerical results in regimes D and F. It was found
that the in-line force component (in the direction of oscillatory flow) is only weakly
affected by the 3D effect. It was also found that most of the cross-sectional vortex
streets are induced by 2D instabilities and can be reproduced by pure 2D simulations.
The numerical results obtained from 2D numerical studies appear to suggest that
three-dimensionality has limited effects on the principal cross-sectional flow features
and the in-line force at relative low KC and β values.

Studies on oscillatory flow around two or more cylinders have not been documented
extensively in the literature, and some available experimental and numerical
investigations are summarized in table 2. The alignment angle α listed in table 2
is the angle between the flow and the line joining cylinder centres. Williamson
(1985) carried out an experimental study to investigate the synchronization of vortex
shedding of two oscillatory cylinders in still fluid and measured the forces on the
cylinders. Uzunoğlu et al. (2001) investigated the flow fields and force coefficients
for two cylinders in the side-by-side and tandem configurations. It is only recently
that oscillatory flow around two or four cylinders has attracted reasonable research
interest, mainly based on 2D numerical models. Chern et al. (2010) and Chern, Shiu
& Horng (2013) simulated oscillatory flow past two side-by-side square cylinders
and four circular cylinders in staggered and in-line arrangements, respectively. It was
found that the gap flow between the cylinders has a significant effect on the flow field
and hydrodynamic forces on the cylinders. Yang et al. (2013) investigated oscillatory
flow around a pair of cylinders of unequal diameters based on a 2D model. The
influence of gap ratio and positional angle on the flow field and hydrodynamic forces
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Reference Method KC and β Regime

Honji (1981) Experimental — B
Hall (1984) Analytical — B
Tatsuno & Experimental 0<KC< 15, A∗–F
Bearman (1990) 0<β < 170
Justesen (1991) Numerical 0<KC 6 26, —

196 6 β 6 1035
Lin et al. (1996) Numerical KC 6 30, A∗, A, B, E, G

β = 76
Iliadis & Numerical (2D) 0<KC< 15, A–F
Anagnostopoulos (1998) 6<β < 100
Dütsch et al. (1998) Experimental and KC 6 30, A, E, F

numerical (2D) β = 20, 35
Uzunoğlu, Tan & Numerical (2D) KC 6 8, A∗,A, C, E, F
Price (2001) β = 35
Nehari et al. (2004) Numerical (3D) KC 6 8.5, D, F

β = 20
Anagnostopoulos & Numerical (2D) 0.1 6 KC 6 6, A∗, A, E
Minear (2004) β = 50
Elston et al. (2006) Numerical KC 6 10, A∗, A, B, C, D

(2D and 3D) β 6 100
Scandura, Armenio & Numerical (3D) KC= 10, F, G
Foti (2009) β = 20 and 50

TABLE 1. A brief summary of reviewed studies of oscillatory flow around a circular
cylinder. The last column was estimated based on KC and β provided, if not specifically
mentioned in the original paper.

were investigated. By solving the 2D NS equations using a finite-element method,
Zhao & Cheng (2014) investigated oscillatory flow around a two-cylinder system in
both side-by-side and tandem arrangements at Reynolds numbers 150 and 100. They
identified several flow regimes based on combinations of the flow regimes observed
around a single cylinder, as well as some new flow features, such as gap vortex
shedding (GVS), where the vortices only shed from the gap side of the system. So
far, there has not been a systematic study on flow regimes around four cylinders, to
the authors’ knowledge.

In the present study, a 2D numerical model is employed to investigate oscillatory
flow regimes around a four-cylinder array in the parameter range of KC ∈ [1, 12] and
Re ∈ [20, 200] with a KC increment of 1 and an Re increment of 20. It is expected
that the 2D model is sufficient to reveal the occurrence of various flow regimes that
are related to the 2D instabilities (Nehari et al. 2004), and this is also tested by a
brief comparison of the 2D and 3D numerical results in the present study.

The remainder of the paper is organized in the following manner. In § 2, the
governing equations, numerical model and model validation exercises are introduced,
while § 3 presents the flow regime classifications. Drag and inertia coefficients
are discussed in § 4, along with a brief analysis on wall vorticity. Finally, major
conclusions are drawn in § 5. In the Appendix we provide further validation of the
numerical model.
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Reference KC and β Cylinder no. G α (deg.)

Williamson (1985) 0<KC< 35, β = 730 2 0.5–4.0 0, 45, 90
Uzunoğlu et al. (2001) KC= 5, Re= 100 2 1 0, 90
Chern et al. (2010) 1<KC< 15, Re= 200 and 300 2 0.5–2.0 90
Anagnostopoulos &
Dikarou (2011)

0.2<KC< 10, β = 50 4 1–4 0

Chern et al. (2013) KC= 2 and 10, Re= 200 4 2 0, 45
Yang et al. (2013) KC= 4, 8, 16 and 24, β = 100 2 — 0–90
Zhao & Cheng (2014) 1<KC< 12, Re= 100 and 150 2 0.5–5 0, 90

TABLE 2. Selected studies of oscillatory flow around multiple cylinders.

2. Numerical method and model validation
2.1. Numerical model

Oscillatory flow around the four-cylinder array shown in figure 1 is simulated by
solving the 2D NS equations. The dimensionless form of the 2D NS equations for
incompressible flow in the Cartesian coordinate system can be expressed as (An et al.
2011)

1
KC

∂Ux

∂t
+Ux

∂Ux

∂x
+Uy

∂Ux

∂y
+ ∂p
∂x
= 1

Re

(
∂2Ux

∂x2
+ ∂

2Ux

∂y2

)
, (2.1)

1
KC

∂Uy

∂t
+Ux

∂Uy

∂x
+Uy

∂Uy

∂y
+ ∂p
∂y
= 1

Re

(
∂2Uy

∂x2
+ ∂

2Uy

∂y2

)
, (2.2)

∂Ux

∂x
+ ∂Uy

∂y
= 0, (2.3)

where Ux and Uy are the velocity components in the x and y directions, respectively,
t is time and p is pressure. The finite-volume method is used and pressure–velocity
coupling is achieved following the pressure implicit with splitting of operators
(PISO) method. The convection terms are discretized using the Gauss cubic scheme,
while the Laplacian and pressure terms in the momentum equations are discretized
using the Gauss linear scheme. The Euler implicit scheme is adopted for the temporal
discretization. The NS equations are solved using the Open-source Field Operation and
Manipulation (OpenFOAMr) C++ libraries, which is an open-source computational
fluid dynamics (CFD) package developed by OpenCFD Ltd.

A rectangular computational domain, as shown in figure 4(a), is employed in this
study, with the cylinder array being placed at the centre of the domain. The initial
values for flow velocity and pressure in the whole domain are set to zero. Flow
velocity and pressure boundary conditions on the bottom boundary are specified as

Uy(t)=Um sin
(

2π

T
t
)
, (2.4)

Ux(t)= 0, (2.5)
∂p
∂y
=Um

2π

T
cos
(

2π

T
t
)
. (2.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

10
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.107


Oscillatory flow regimes around four cylinders in a square 305

–2.0 –1.5

–1.5

–1.0

–1.0

–0.5

–0.5

0

0

0.5

0.5

1.0

1.0

1.5

1.5

2.0

2.0(a) (b)

FIGURE 4. Schematic representation of (a) the computational domain and (b) the mesh
distribution around a single cylinder.

At the top boundary, the velocity gradients in the y direction and the pressure are
set to zero. The symmetry boundary condition is applied at the two lateral boundaries
that are parallel to the flow directions and the no-slip boundary condition is adopted
on the cylinder surfaces.

2.2. Mesh dependence check
The present numerical model is validated extensively against experimental and
numerical results for oscillatory flow around a single cylinder. First of all, suitable
domain and mesh sizes are determined through a domain and mesh size dependence
check. Then the numerically determined force coefficients, velocity distributions and
flow regimes are compared with published results. The detailed validation checks are
reported in this subsection and in the Appendix.

The computational domain size and mesh dependence checks are carried out against
oscillatory flow around a circular cylinder at (Re,KC)= (100, 5), where independent
experimental and numerical results are available. Figure 4(b) illustrates a typical mesh
distribution around the cylinder. Five meshes (as detailed in table 3) with cell counts
ranging from 41 948 to 186 264 corresponding to domain size of 32D × 58D and
100D × 100D, respectively, are generated by changing the mesh distribution around
the cylinder surface, in both the radial and circumferential directions, and also in the
far field The calculated drag and inertia coefficients, CD and CM, are compared with
available data in table 3. CD and CM are derived through the least-squares regression
analysis of the in-line force on the cylinder based on the Morison equation (Morison,
Johnson, & Schaaf 1950),

Fy = 1
2
ρDCD|Uy(t)|Uy(t)+ ρπD2

4
CM

dUy(t)
dt

, (2.7)

where Fy is the force on the cylinder in the in-line direction and is obtained by
integrating the pressure and shear stress along the cylinder surface, and ρ is the
density of the fluid. It can be seen that, despite the large differences in the domain
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Cases Domain size Nv Nc ∆/D CD CM

Mesh 1 32D× 58D 41 948 120 0.003 2.11 2.43
Mesh 2 32D× 58D 47 168 160 0.001 2.11 2.43
Mesh 3 100D× 100D 176 064 140 0.001 2.11 2.42
Mesh 4 100D× 100D 180 804 160 0.001 2.11 2.42
Mesh 5 100D× 100D 186 264 180 0.00075 2.11 2.42

Dütsch et al. (1998), 2D numerical — 98 304 384 — 2.09 2.45
Uzunoğlu et al. (2001), 2D numerical 12D× 12D — — — 2.10 2.45
Nehari et al. (2004), 2D numerical 10D× 36D — 48 — 2.10 2.43
Nehari et al. (2004), 3D numerical 10D× 36D — 48 — 2.13 2.47
Zhao & Cheng (2014), 2D numerical 30D× 30D — 84 0.0024 2.04 2.48

TABLE 3. Influence of the computational domain and mesh sizes on CD and CM for a
single cylinder in oscillatory flow at (Re, KC)= (100, 5). Here Nv is total mesh number;
and Nc is mesh number attached to the cylinder surface.

Cases Domain size CD CM

Mesh 1 32D× 58D 1.81 1.90
Mesh 5 100D× 100D 1.80 1.88

TABLE 4. Mesh-independent study at Re= 200, KC= 12.

and mesh sizes, the predicted CD and CM are almost identical, suggesting that
the numerical results are independent of the domain and mesh sizes in the range
employed here. Even mesh 1, with the coarsest mesh on the smallest computational
domain of the tested cases, is sufficient for the case (Re, KC) = (100, 5). CD and
CM showed less than 2 % difference from those predicted by previous 2D and 3D
numerical studies, confirming that three-dimensionality in the flow is weak. The mesh
and domain size adequacy is also checked for the most extreme case covered in this
study at (Re, KC) = (200, 12) and the results are shown in table 4. Again, good
convergence is observed.

Although all the meshes tested in table 3 have been demonstrated to be sufficient
for the flow condition around a single cylinder, the relatively fine mesh 4 with a
large domain size is mostly chosen in the simulations for the four-cylinder array. It
is considered, first of all, that the large domain size of 100D× 100D is well suited
for the planned simulations with the increased blockage ratio. Secondly, the fine mesh
in mesh 4, with the number of cells being more than four times that of mesh 1, is
needed to resolve the fine flow structures in the gaps. Mesh 4, which has a minimum
non-dimensional distance of y+ = 0.03 for the largest Re considered in this study
(y+ = uf∆/ν, where uf is the friction velocity and ∆ is the size of the first layer
next to the cylinder surface), is considered to be sufficiently fine for all the cases in
this study.

The predicted flow regimes agree qualitatively with those reported by Tatsuno &
Bearman (1990). Six selected cases representing the flow regimes A∗, A, C, D, E
and F are visualized through streaklines in figure 5. The streaklines are generated by
releasing massless particles at 100 points around the cylinder surface with a frequency
eight times the oscillatory flow frequency. Care is taken in generating the streaklines
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FIGURE 5. Simulated flow patterns represented by streaklines in different flow regimes for
oscillatory flow past a single cylinder, generated by releasing massless particles around the
cylinder surface. The background dashed square is 2D in size. The inlet oscillatory flow
is in the vertical direction.

to make sure that the choice of the number of points around the cylinder and the
frequency of particle release does not affect the visualization of the flow fields. The
massless fluid particles are released from the cylinder surface after the simulations
become fully established, generally after t= 90T .

In regime A∗, the fluid particles are transported away from the cylinder surface
symmetrically along the axis of flow oscillation without vortex shedding. The flow
patterns in regime A are similar to those observed in regime A∗ except that vortex
shedding is detected. Regimes A∗ and A can be classified as the reflection symmetry,
Kx. The rearrangement of large vortices in regime C and transverse vortex shedding
(Vpattern) in regimes D and E belong to the spatio-temporal symmetry H1. Regime
F falls into the H2 symmetry pattern, with two branches of the vortex streets being
diagonally aligned on opposite sides of the cylinder.

More model validations are presented in the Appendix and these tests demonstrate
that the present numerical model is capable of predicting the force coefficients,
velocity distribution and flow patterns of oscillatory flow past a single cylinder within
KC ∈ [1, 12] and Re∈ [20, 200]. In the remaining part of this paper, we will simulate
oscillatory flow around a four-cylinder array in a square arrangement.
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3. Flow regimes around the cylinder array
A number of flow patterns are observed around a four-cylinder array for 0.56G64,

20 6 Re 6 200 and 1 6 KC 6 12. While a few of the observed flow patterns resemble
the flow fields around a single cylinder in many respects, a number of new flow
structures induced by the interactions of shear layers/vortices from individual cylinders
are discovered and classified. Instead of creating new names for the flow features
around the four-cylinder array, we prefer to classify the flow regimes by adopting and
combining names established for the flow regimes and symmetry patterns by Tatsuno
& Bearman (1990) and Elston et al. (2006).

The flow regimes for gap ratios G= 0.5, 1, 2 and 4 are mapped out on the Re–KC
plane in figure 6, along with the symmetry patterns that describe the flow fields as
a whole. The reflection symmetry and two spatio-temporal symmetries are labelled as
Kx, H1 and H2, respectively, while symmetry breaking is labelled N, i.e. no symmetry
could be found. The areas at the bottom left corner enclosed by the dark dash-dotted
lines (labelled Kx) and the figure frame boundaries in figure 6 belong to Kx symmetry,
while the areas beyond the lines labelled N at the top right corners of figure 6(b–d)
belong to the symmetry-breaking regime N. Regime H1 flows are only observed at
the smallest gap ratio of G= 0.5 in an area enclosed by the Kx line, H1 line and the
top and right figure frame. Regime H2 flows are found at three larger gap ratios in
the Re–KC plane in figure 6(b–d); they fall into an area between Kx and N and are
labelled H2 directly on the corresponding points. The boundaries of flow regimes for
a single cylinder in oscillatory flow are also included as light dashed lines in figure 6
for the purpose of comparison.

In the Kx domain, the flow regimes around the cylinders are named based on the
flow regimes identified by Tatsuno & Bearman (1990) for a single cylinder. For
instance, regime 4A indicates four individual regime A flows, with little influence
from flows induced elsewhere in the array. The structure of the flow in each regime
will be explained in the following subsections.

3.1. Kx symmetry
It is observed that the upper Kx regime boundary lines for G= 0.5 and 1 are located
at the top right corners of figure 6(a,b) and are far different from the boundary lines
dividing flow regimes A and D for a single cylinder. The reason for the dominance
of regime Kx at low gap ratios is twofold. Firstly, oscillatory flow around the four-
cylinder array at small gap ratios behaves in a similar way to oscillatory flow around
a single cylinder with a large effective cylinder diameter. A large effective cylinder
diameter corresponds to a small effective KC number, which shifts the Kx regime
boundary to the bottom right and also suggests a more stable flow based on the flow
regime chart (in the β–KC plane) reported by Tatsuno & Bearman (1990).

Secondly, the jet-like flow through the cylinder gaps in the oscillation direction
plays an important role in maintaining the Kx symmetry. Oscillatory flow structures
are examined to illustrate this point further. Figure 7 shows the contours of Uy
together with a few illustrative streamlines at eight instants with a time interval
of T/8 in an oscillation period at (G, Re, KC) = (0.5, 120, 8). A jet-like flow
pattern is observed through the gap between two cylinder columns in all instants
except for the two instants when the flow changes its direction, as seen from the
upright streamlines. Figure 8(a) shows the measured velocity at three locations
along the oscillation direction in the gap (probes 1 and 3 bisect the faces of the
square normal to the flow, while probe 2 is at the origin of coordinates), together
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FIGURE 6. Classifications of flow regimes of oscillating flow around four circular
cylinders in an in-line square arrangement: (a) gap ratio G= 0.5; (b) G= 1; (c) G= 2;
(d) G= 4. Here, Kx, H1 and H2 are the 2D symmetry states explained in § 1.2; N denotes
that none of the symmetries were found, i.e. the state of symmetry breaking; · · · · · ·,
marginal lines for basic state within Kx symmetry where both H1 and H2 are preserved;
grey dashed lines, the boundary regimes found by Tatsuno & Bearman (1990) for a single
cylinder.
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FIGURE 7. (Colour online) Contours of jet-like flow along with the streamlines at
(G, Re,KC)= (0.5, 120, 8). The inlet oscillatory flow is in the vertical direction.
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FIGURE 8. Measured velocity in the oscillation direction at selected probes compared to
the inlet velocity for cases of (Re,KC)= (120,8) at t=98T–99T . (a) For G=0.5: — · —,
probe 1; - - - -, probe 2; · · · · · ·, probe 3; ——, inlet. (b) For probe 1: — · —, G= 0.5;
- - - -, G= 1; · · · · · ·, G= 2; ——, G=∞.

with the ambient flow velocity imposed at the inlet of the computational domain.
From the velocity contours and the measured velocity at the probe locations, it is
observed that: (i) the velocity magnitudes at the three probe locations are about twice
the ambient velocity at the inlet of the computational domain; (ii) there are phase
differences between the ambient velocity and the velocities measured at the three
probe locations; (iii) the phase differences between the ambient flow and flow at
probes 1 and 3 are somewhat larger than those between the ambient flow and the
flow at probe 2, while the velocities at all three probe locations reach their peaks
at almost the same time; and (iv) the duration of the flow acceleration phase at
probe 2 is shorter than the duration of the deceleration phase at the same location.

Explanations of all these observations are proposed. The large velocity magnitudes
at the three probe locations are due to the blockage effects of the structure. The phase
differences between the ambient velocity and the velocity measured at the three probe
locations are the direct results of wall boundary layers around the cylinder surfaces.
The larger phase differences between the ambient flow and the flow at probes 1 and
3 and that between the ambient flow and the flow at probe 2 are because the former
are closer to the cylinder surface. The closer to the wall boundary, the larger is the
expected phase angle difference (based on the Stokes boundary layer solution). The
shorter duration of the acceleration phase at probe 2 is mainly caused by the combined
effects of the phase difference between the velocity at probe 2 and probe 1 (and 3) at
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small velocity magnitudes and the continuity constraint of the strong jet flow through
the cylinder gaps at large velocity magnitudes. This forces the velocity at probe 2 to
reach its peak value at approximately the same time as the velocities at probes 1 and
3 reach their peak values. The strong jet-like flow through the gap forms a distinct
separation of the left two cylinders from their right counterparts and decreases the
chance of vortex and/or shear layer interactions between the flows around the left and
right columns of cylinders. Therefore it plays a significant role in stabilizing the flow
field in the Kx symmetry. We call this flow feature at low gap ratios the ‘stabilization
effect’, since it provides stability to the flow in the streamwise (oscillation) direction.

The stabilization effect weakens with increasing G and/or Re, where vortices start
to be shed alternatively from the inner sides of the cylinders. Figure 8(b) shows the
variation of fluid velocity over an oscillation period at probe 1 for four gap ratios at
(Re,KC)= (120,8). It is seen that the differences in both the magnitude and the phase
angle between the velocity at probe 1 and the ambient velocity at the inlet gradually
diminish with increasing gap distance.

At G= 2 and 4, on the other hand, the increase in gap ratio leads to an increase
in individual flow behaviour around the four cylinders, and more vortex interactions.
Referring to figure 6, much of the Re–KC plane at G = 2 and 4 is dominated by
asymmetric flow fields (regime N), because the symmetric pattern is simply not easy
to achieve with independent vortex shedding from all of the four structures.

Owing to the interaction of flow fields from each of the four cylinders, six types of
Kx symmetry are observed and are labelled 2(A∗-A∗), 2(A-A), 4A∗, 4A, 2(A-D) and
4D. Each of these symmetric patterns is explained below.

3.1.1. Regimes 2(A∗-A∗) and 2(A-A)
In regimes 2(A∗-A∗) and 2(A-A), the left and right columns of two cylinders behave

like two elongated structures in a side-by-side configuration. The flow fields around
both of the elongated structures fall into regime A∗ or A at small values of KC and
Re. Vorticity (ωz) contours and streaklines of a typical regime 2(A∗-A∗) flow with
(G,Re,KC)= (1, 20, 5) and of a typical 2(A-A) flow with (G,Re,KC)= (1, 80, 5) in
one vortex shedding period are shown in figures 9 and 10, respectively. The massless
particles released from different cylinders are denoted by different colours to visualize
the mixing of particles as a consequence of flow interference. It is seen that the
shear layers from each of the two elongated pairs are merged together for most of
an oscillation period, but are divided after flow reversal when the velocity of the
fluid is relatively low, i.e. at t = 99 + 1

8 T and + 5
8 T . The vorticity strengths at the

outer sides of the array are considerably lower than those on the inner sides. The
strong flow through the streamwise gap is an obvious feature of regime 2(A∗-A∗) and
2(A-A) flows. A similar feature of vortex shedding from the gap observed in figure 10
was also reported in oscillatory flow around two side-by-side cylinders by Zhao &
Cheng (2014) and named GVS. Since weak vortex shedding is also observed from
the outsides of the four-cylinder array, we named this regime 2(A-A).

The resemblance of the oscillatory flow features around a four-cylinder array
at small gap ratios to those of a single cylinder is illustrated and explained with
the aid of flow visualization in figure 10. If we view the four-cylinder array as
a single object represented by the shaded square shown at instant 100T , paying
attention to those large merged vortices away from the cylinders and ignoring
the fine vortices close to the cylinder surfaces, then the flow field around the
four-cylinder array is nothing but a regime A flow around a single cylinder, where
vortices A1 and A2 and vortices B1 and B2 are shed from the sides of the square.
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Streaklines

2 3

1 4

–0.5 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.5

FIGURE 9. (Colour online) An example of flow in regime 2(A∗-A∗) in the Kx symmetry
zone at (G, Re, KC)= (1, 20, 5) for oscillatory flow around four circular cylinders in an
in-line square arrangement. The flow field is illustrated by eight instantaneous vorticity
contours at one oscillation period and by the massless particles advected from the surfaces
of each cylinder with different colours. The continuous contours denote positive vorticity,
whereas dotted ones are for negative vorticity, with cutoff level Ω = ±0.1. The inlet
oscillatory flow is in the vertical direction.

Therefore, as a whole, the flow in regime 2(A-A) around four cylinders can be
likened to regime A of the single-cylinder case with a larger equivalent diameter.
From the illustrations of streaklines in figures 9 and 10, on the other hand, regimes
2(A∗-A∗) and 2(A-A) are very similar to those of regime A∗ and A observed in
figure 5, despite the difference in the flow field close to the cylinder surfaces.
The fine-scale vortices near the cylinder surfaces are mostly generated through the
gaps and are quickly merged with surrounding large vortices or simply dissipated,
resembling flow features around a porous structure. At low and medium gap ratios,
the flow fields around the four-cylinder array are characterized by the coexistence of
influences from both individual cylinders and the cylinder array as a whole.

Regimes 2(A∗-A∗) and 2(A-A) dominate the Re–KC parameter plane shown in
figure 6 for gap ratios of 0.5 and 1, but this dominance weakens with increasing gap
ratio and mostly disappears at a gap ratio of 4.

3.1.2. Regimes 4A∗ and 4A
The regimes 4A∗ and 4A occupy a large part of the Re–KC parameter plane at

gap ratios of 2 and 4 as shown in figure 6. Regime 4A∗ and 4A flows comprise
regime A∗ and A fluid flows around each of the four circular cylinders, respectively.
A typical regime 4A flow with (G, Re, KC) = (2, 80, 5) is visualized in figure 11
through four snapshots in an oscillation period, together with the streakline flow
pattern. In one oscillation period, a pair of counter-rotating vortices are generated
at each side of an individual cylinder and this is distinctly different from regime
2(A-A) flows, where the vortex shedding in the transverse gaps is largely suppressed.
The vortices shed in the transverse gaps in regime 4A tend to be convected out
sideways from the area enclosed by the cylinders, where the fluid particles form a
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0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

Streaklines

FIGURE 10. (Colour online) An example of oscillatory flow field in regime 2(A-A) in
the Kx symmetry zone at (G, Re,KC)= (1, 80, 5).

‘mushroom’ shape on each side of the transverse gap. Each ‘mushroom’-shaped flow
pattern comprises two circulation zones, as represented by two arrows in figure 11. It
is seen that each of these circulation zones corresponds to another circulation zone in
the inner space surrounded by the four circular cylinders. These circulation zones are
the direct result of vortex shedding and interaction of vortices shed in the transverse
gaps.

With increasing KC and/or Re, stronger vortices are found in both streamwise and
transverse directions, and therefore the convection of fluid particles in these directions
is stronger, leading to increasingly complex streaming flow patterns. Figure 12 shows
an example at (G, Re, KC) = (2, 200, 5), which has a higher value of Re than the
case shown in figure 11 but identical values of G and KC. Stronger vortices and
longer wakes are observed around each of the four cylinders. This suggests that
vortex interactions between any two adjacent cylinders become more vigorous at
Re= 200. The strong interactions between the wakes around the top two and bottom
two cylinders, respectively, lead to four enlarged circulation zones, which replace the
mushroom-type flow in figure 11. The limited gap space between cylinders 1 and
2 (also between cylinders 3 and 4) allows vortices to be shed from the gap sides
but forces them to be convected horizontally outwards. It is interesting to observe
that the convection of vortices behind the cylinder columns in the +y direction is
weaker than that in the −y direction, resulting in a smaller wake area in the top
than in the bottom, which corresponds to the inclined transverse-gap flow towards the
+y direction. This flow feature can be clearly observed from the streakline patterns
shown in figure 12. It is also observed that only a few fluid particles released from
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Streaklines

–0.5 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.5

2 3

1 4

FIGURE 11. (Colour online) An example of oscillatory flow field in regime 4A in the Kx
symmetry zone at (G, Re,KC)= (2, 80, 5).

cylinder 2 and cylinder 3 are convected in the +y direction. Most of these particles
are trapped and circulated in the inner side circulation zones and are eventually
convected out sideways.

To investigate the transverse mass convection observed in figure 12, the steady
streaming velocity is obtained by averaging flow velocities over 10 consecutive
oscillation periods, as given in figure 13. The temporal mean velocity profile along
a vertical line 2D away from cylinders 3 and 4, as presented in figure 13(a),
demonstrates that the transverse mass convection observed in figure 12 is indeed
due to the large horizontal velocities directed away from the cylinder array. The
magnitude of the mass convection velocity observed in the gap between cylinders 3
and 4 can be much larger than 0.2Um, as given in figure 13(b).

Similar to its counterpart in regime A for the single cylinder, the convection of fluid
particles in regime 4A does not change its direction once the asymmetry pattern about
the x axis has been developed. Figure 14 shows the time histories of the lift coefficient
imposed by the flow fields shown in figure 12, which is defined as FL=Fx/(0.5ρU2

m),
with Fx being the force in the x direction. Only plots for the left pair of cylinders (1
and 2) are given because of the symmetric pattern. It is readily seen that FL is quite
stable over the time period of the simulation, suggesting a stable flow mode.

Regimes 4A∗ and 4A generally occur at smaller KC values than those of regimes
2(A∗-A∗) or 2(A-A). No regime 4A∗ or 4A is found at G= 0.5, and they seem to be
a common feature at large gap ratios.
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Streaklines

–0.5 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.5

2 3
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FIGURE 12. (Colour online) An example of oscillatory flow field in regime 4A in the Kx
symmetry zone at (G, Re,KC)= (2, 200, 5).
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FIGURE 13. (Colour online) Steady streaming velocity from averaged flow fields in 10
oscillation periods at (G,Re,KC)= (2, 200, 5): (a) velocity profile Ūx/Um along x= 3.5D;
(b) velocity contour with streamlines.

3.1.3. Regime 2(A-D)
Regime 2(A-D) flows generally develop at relatively larger gap ratios with slightly

higher KC values than regime 4A, as shown in figure 6. Several cases of regime
2(A-D) flows are presented within the zone of Kx symmetry. A flow in this regime,
as the name suggests, has characteristics of both single-cylinder regimes A and D.
Figure 15 shows a typical regime 2(A-D) flow at (G, Re, KC) = (4, 140, 6), with
vorticity contours in four equally spaced instants of time in an oscillation period and
flow streaklines generated using the data in 10 periods.
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Cylinder 1

Cylinder 2

FIGURE 14. Time history of lift force coefficients on two chosen cylinders at
(G, Re,KC)= (2, 200, 5).
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FIGURE 15. (Colour online) An example of oscillatory flow field in regime 2(A-D) in
the Kx symmetry at (G, Re,KC)= (4, 140, 6).

The vortices shed from the inner sides of cylinders 2 and 3 are considerably
stronger than those shed from the outer sides in each half-period. Consequently, the
fluid mass is obliquely convected to the outer sides of oscillation and the flow field is
classified as regime D. The flow fields around the two bottom cylinders are similar to
those around the two top cylinders in figure 12 at regime 4A but with slightly more
complex features. The fluid mass is not convected sideways through the horizontal
gaps as shown in figure 15, but instead two large circulation zones are formed in the
streamwise gap. This is believed to be due to the strong interactions between the shed
vortices as a result of increased gap space and the blockage of the inclined vortex
streets from the top cylinders. The collisions of the streaklines from the top and
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bottom cylinders as indicated by the arrow S in figure 15 result in three convectional
paths of fluid mass indicated by arrows S1, S2 and S3. The movement of fluid mass
accompanying the vortices generated from the two bottom cylinders is complex but
is highly influenced by the jet flow and thus falls into flow regime A. Since the flow
fields around the right-hand two cylinders are actually a reflection of what occurs on
the left, this regime is named 2(A-D). With several circulation zones, regime 2(A-D)
presents perfect Kx symmetry.

The flow structure observed in figure 15 is unstable, as demonstrated by the lift
coefficient along with the flow fields shown in figure 16. The time histories of the
lift coefficient on cylinders 1 exhibit five distinct time zones (I–V) and each of the
time zones corresponds to an evolving stage of the flow field as shown in figure 16(b).
The flow around each of the four cylinders initially appears to be in regime D over a
long time in zone I. In time zones II and III, the vortices shed from the two bottom
cylinders gradually move closer to the streamwise gap and the flow develops into a
regime 2(A-D). Meanwhile, the direction of the mean lift and the magnitude of the lift
change several times, but the flow field continues to exhibit Kx symmetry. However,
regime 2(A-D) can be stable, as shown in figure 16(c), where the time histories of
the lift force for cylinders 1 and 2 at (G, Re, KC) = (1, 140, 5) remain regular and
repeatable over the entire simulation period, indicating that the flow pattern remains
stable in Kx symmetry. An obvious beating characteristic of lift is found in the time
history for small gap ratios (figure 16c), but the beating characteristic at large gap
ratios is not as significant (figure 16a). This beating feature is due to the impingement
of vortices shed from its neighbouring cylinder in the same column and is one of the
common features for cylinder arrays with small gap ratios.

Regime 2(A-D) flows only occur at several specific values of (G, Re, KC) and it
can be deemed a transitional regime between regimes 4A and 4D.

3.1.4. Regime 4D
Regime 4D flows generally develop at relatively larger gap ratios with slightly

higher KC values than those of regime 2(A-D) flows, as given in figure 6. The
regime D flow around a single cylinder shows H1 symmetry. However, the regime
4D around the four-cylinder array, where a regime D flow occurs around each of the
four cylinders, is found in Kx symmetry.

One of the prominent features of a regime 4D flow is that vortices shed from each
cylinder clearly deviate from the direction of flow oscillation, and tend to be convected
transversely. Figure 17 shows the flow patterns at various stages in an oscillation
period in regime 4D at (G, Re,KC)= (2, 120, 7), together with the streakline pattern
of the flow. Owing to the fact that stronger vortices are developed on the inner sides
of cylinders than on the outer sides, and also due to the weakening of the stabilization
effect, the shed vortices from each cylinder tend to move diagonally. As indicated by
the ellipses at t = + 2

4 T and + 4
4 T , when the flow oscillates upwards, three vortices

are developed around each cylinder, with a pair of counter-rotating vortices along the
inner sides and a single vortex along the outer sides of the cylinders. However, when
the flow reverses, only a pair of vortices is shed along the inner sides of the cylinders.
Hence, the flow fields are asymmetric with respect to the x axis and the fluid mass
is convected downwards. Vortices around cylinders 1 and 2 (also around 3 and 4)
appear to be similar, but, because the movement of vortices in the transverse gaps
is constricted by the space, the fluid mass convected from the top two cylinders is
forced to circulate around the bottom two cylinders and then convected obliquely by
the vortices developed from the two bottom cylinders.
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Zone I, regime 4D Zone II, from 4D to 2(A-D) Zone III, regime 2(A-D) Zone IV, regime 2(A-D)

(c)

(b)

(a)
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0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

FIGURE 16. (Colour online) Time history of lift force coefficients on two chosen cylinders
and the flow fields for regime 2(A-D): (a) lift force coefficients for case of figure 15
at regime 2(A-D); (b) flow fields of different zones as listed in (a); and (c) lift force
coefficients for the case of (G, Re,KC)= (1, 140, 5) at regime 2(A-D).

Figure 18 illustrates the features of regime 4D flows when the flow fields are
symmetric to the x axis at (G, Re, KC)= (2, 160, 6). It is seen that vigorous vortex
pairing and merging take place in this case. For convenience, at t = 99 + 1

4 T , the
three vortices surrounding cylinder 1 are named Ao

1, Bo
1 and Co

1, where ‘o’ denotes
the vertices generated from the last oscillation period. With increasing velocity in
the +y direction, a new positive vortex named N+1 is generated from the surface of
cylinder 1. Vortex N+1 breaks Bo

1 into two parts, i.e. Bo
1−p1 and Bo

1−p2, as Bo
1 moves

upwards along with the flow. Vortex N+1 starts to merge with Ao
1 and Co

1 at + 2
4 T and

a long positive vortex that wraps around the inner side of cylinder 1 is formed before
+ 3

4 T . At the same time, a new negative vortex, named N−1 , starts to emerge from
the cylinder surface. The N−1 gradually grows in strength and cuts the positive vortex
generated at + 3

4 T into two new vortices, An
1 and Cn

1, which replace the vortex Ao
1 and

Co
1. Meanwhile, N−1 , Bo

1−p1 and Bo
1−p2 begin to combine and eventually generate vortex

Bn
1 at the start of the next period of oscillation. It is also observed at + 4

4 T that part
of Bo

1−p2 is merged upwards into the sideways vortex generated from cylinder 2; while
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1 4

32

Streaklines

0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

FIGURE 17. (Colour online) An example of oscillatory flow field in regime 4D in the Kx
symmetry zone at (G, Re,KC)= (2, 120, 7).

1 4

32

0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

Streaklines

FIGURE 18. (Colour online) An example of flow field in regime 4D in the Kx symmetry
zone at (G, Re,KC)= (2, 160, 6).

vortex Co
1 also attracts vortices from cylinder 2 at + 2

4 T . Except for the interaction just
described, the individual regime D flows around each of the cylinders in the array do
not interact with each other actively, and much of the merging and pairing of vortices
occurs among vortices from the same cylinder. Even when no vortex merging takes
place, vortex interactions in the confined space between the transverse gaps are quite
visible.

One difference between the regime 4D flows shown in figures 17 and 18 is that
the flow field maintains all three symmetries in figure 18. Both types of regime 4D
flow are stable, as evidenced by the time history of lift (not shown here), mainly due
to a mechanism that is similar to the stable sideways convection of fluid particles in
regime D for a single cylinder.
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FIGURE 19. (Colour online) Steady streaming velocity averaged from flow fields in 10
oscillation periods at (G,Re,KC)= (2, 160, 6): (a) velocity profile Ūx/Um along x= 3.5D;
(b) velocity contour with streamlines.

The steady streaming velocity fields for the case shown in figure 18 are given
in figure 19(a,b), which show, respectively, the streaming velocity profile along x =
3.5D and the contour of streaming Ūx/Um along with the streamlines. The cylinder
array seems to attract fluid mass from an even larger area than the case in figure 13,
since all streamlines above the top two cylinders and below the bottom two cylinders
are attracted towards the cylinder array and are directed away horizontally from the
transverse gaps.

Regime 4D is only found at large gap ratios (G = 2 and 4 in the present study)
and occupies an area in the Re–KC plane where regime D would normally occur for
a single-cylinder case. It involves vigorous vortex interactions, which result in complex
flow features.

3.1.5. Comparisons of the Kx symmetries
One of the interesting features for oscillatory flow around the four-cylinder array is

that both H1 and H2 are frequently broken within Kx zones near the boundary line,
as shown in figure 6, for example, the cases in regimes 2(A-D), 4D and even regime
4A. This is different from the Kx symmetry for a single cylinder, where both H1 and
H2 symmetry are satisfied within the Kx regime.

For a single cylinder, it has been demonstrated that as soon as the 2D Kx symmetry
is broken, 3D secondary instabilities will develop, such as flow changing from regime
A to D (Nehari et al. 2004; Elston et al. 2006). This leads to an interesting scenario,
in that 2D simulations can be used to predict the boundary line in the Re–KC plane
beyond which 3D instabilities occur. In the four-cylinder case considered in the
present study, it is expected that the onset of 3D instabilities will occur within the
zone of Kx symmetry rather than on the boundary, especially at large gap ratios,
because the Kx symmetry around the four-cylinder array is not a basic state as that
in the single-cylinder case where both H1 and H2 are satisfied.

For this reason, a boundary line (dotted) is interpolated at each gap ratio in figure 6
to distinguish the zone of the basic state of Kx from the rest of Kx symmetry. At
G = 0.5, the basic state boundary overlaps the Kx boundary line. At G = 1, H1 and
H2 symmetries are broken only at several cases – (Re,KC)= (200, 4) and (Re,KC)=
(140–160, 5) – where Kx symmetry is still observed. At those two small gap ratios,
both H1 and H2 are satisfied in large parts of the Kx symmetry regime. This is because
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the flow around the cylinder array behaves similarly to that around a single cylinder
and fine flow details around each cylinder have limited effect on the overall behaviour
of the flow.

In contrast, the boundary lines for the basic state at two large gap ratios deviate
noticeably from the Kx boundary lines and are close to the boundary lines of regime
A for the single-cylinder case. The flow regimes 2(A-D) and 4D for the four-cylinder
array generally fall between the boundaries of the basic state and Kx symmetry regime
and thus into an area where regime D would normally occur for a single cylinder.
At those gap ratios, flow features around individual cylinders become important
and the H2 symmetry is broken beyond the basic state lines within the Kx regime
simply because the H2 symmetry for a single cylinder is broken in regime D. The Kx
symmetry occurs beyond basic state lines because the interaction between the flows
around the two cylinder columns is normally weak, inducing a flow field around one
cylinder column that is the mirror image of the other.

3.2. H1 symmetry (regime D)
The H1 symmetry flow for the four-cylinder array is observed at low gap ratios and
relatively high KC and Re, as seen from figure 20 at (G, Re, KC) = (0.5, 200, 9).
Figure 20 is deliberately arranged such that the flow features in the top row are
H1 symmetric with respect to those in the bottom row. It is seen that vortices are
shed both from the streamwise gaps and from the outside of the cylinder array every
oscillation half-period. The generation of a vortex named Ao at t= 99+ 1

8 T is chosen
to explain how vortices are shed, interact and pair in this regime. At 2

8 T , three new
vortices named An

p1, An
p2 and An

p3 are shed from the gap and the outer sides of the
cylinder array. The strengths of those vortices are comparable (with those from the
gap being slightly larger), unlike those in Kx symmetry. The small vortices of the
same sign shed from the gap and from the outer sides of the cylinders quickly merge
before being convected further from the cylinder array. The convection process of
these vortices can be observed from the flow fields at 3

8 T– 6
8 T . Vortices An

p1, An
p2

and An
p3 are fully merged at 7

8 T and a new large vortex An is formed at 8
8 T . The

generation of other large vortex cores is similar to the process just described. The
large vortices generated are convected obliquely to one side of the axis of oscillation,
in the same manner as those observed in regime D in figure 5. The streaklines on
the right-hand side of figure 20 show similarities to those in regime D for a single
cylinder. Therefore, the resultant flow field falls into the H1 symmetry and this kind
of H1 symmetric flow around the four cylinders is named regime D, as in figure 6(a).
It is easily seen that at G = 0.5, H1 symmetry occurs because the four cylinders
behave similarly to a porous single structure, with fine-scale vortices being shed from
different parts of this porous structure, but those of the same sign quickly merged to
a single core. The vortices shed from the gap are significant but do not dominate the
flow field, so fluid mass is obliquely convected with the merged cores.

Similar to regime D for a single cylinder, the convection of fluid particles in H1
symmetry for the four-cylinder array is consistently inclined to one direction. We
extended the simulation at (G, Re, KC)= (0.5, 200, 5) for up to 280 cycles, and the
inclination direction was maintained for the entire period of the simulation.

It is worth pointing out that H1 symmetry for the four-cylinder array only occurs
at the lowest gap ratio in this work. It is also observed from figure 6 that the flow
regime transits directly from regime Kx to regime N or regime H2 at gap ratios of
1, 2 and 4, without H1 symmetry flow. The reason is that, in the four-cylinder array,
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FIGURE 20. (Colour online) The H1 symmetric flow for four circular cylinders in
oscillatory flow at (G, Re,KC)= (0.5, 200, 9).

the flow structures around the left and right columns of cylinders are almost identical
due to the existence of a jet-like flow in the streamwise gaps. The H1 symmetry can
be observed around individual cylinders in regimes 2(A-D) and 4D, but, as a whole,
these regimes represent a Kx symmetry.

3.3. H2 symmetry
The H2 symmetry flow occurs in a narrow area of the Re–KC plane for G=1, 2 and 4,
as shown in figure 6. There are two types of H2 symmetry for the four-cylinder array
investigated. The first one is due to vigorous boundary layer and vortex interactions
at small gap ratios and the other features to gentle wake interactions.

Figure 21 shows consecutive stages of flow development over an oscillation period
for the first type of H2 symmetry at (G,Re,KC)= (1,180,5), along with the streakline.
The process of vortex development and shedding can be clearly observed from the
four snapshots. The snapshots with a half-period time difference have H2 symmetry.
Unlike the cases with Kx symmetry, the vortices in the streamwise gaps start to be
shed unevenly from, for instance, the inner sides of cylinders 2 and 3. So the flow
fields close to the cylinders are quite chaotic, with many fine-scale vortices being
shed, combined and dissipated. However, overall, these fine-scale vortices are evenly
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Streaklines

–0.5 –0.4 –0.3 –0.2 –0.1 0.1 0.2 0.3 0.4 0.5

2 3

1 4

FIGURE 21. (Colour online) The H2 symmetry resulting from severe boundary layer and
vortex interactions at (G, Re,KC)= (1, 180, 5).

arranged in a regular pattern with H2 symmetry. It is interesting to see that two large
vortices of the same sign are developed in the far field shown in figure 21.

Figure 22 gives another example of the first type of H2 symmetry resulting from
vigorous vortex interactions at (G, Re,KC)= (2, 100, 10). The shear layer interaction
in this case is not as significant as that shown in figure 21, and vortex merging occurs
comparatively far from the cylinder surfaces. The merged vortex cores are convected
in the oscillation direction and are roughly H2 symmetric, but the vortex cores in the
+y direction appear to be slightly larger and closer to each other than those in the
−y direction. The merged vortices are staggered at each side in a way resembling the
Kármán vortex street. The flow fields in figure 22 show a quasi-periodic state when
they are convected away from the cylinder surfaces, with a secondary frequency that
is clearly different from the velocity oscillation frequency. This is similar to regime C
for a single cylinder as experimentally observed by Tatsuno & Bearman (1990) and
numerically reproduced by Elston et al. (2006). One primary difference is that regime
C is in H1 symmetry, but here the flow field is in H2 symmetry.

Figure 23 illustrates the second type of H2 symmetry for the cylinder array at
(G, Re, KC) = (4, 120, 8), where the shear layer and vortex interactions are less
intensive than those shown in figures 21 and 22, as observed from the mixture of
particles from different cylinders as they are convected away. It is seen that the
convection of vortices generated around cylinders 2 and 4 is relatively constrained
while those from cylinders 1 and 3 move further away from the cylinder surfaces.
The vorticity contours illustrate that the merging of vortices from different cylinders
only occurs in the transverse gaps. Similar to the behaviour observed in figure 21,
the two large vortex cores away from the cylinder surface tend to rotate in the same
direction. The fluid mass around cylinder 4 is partially forced to circulate around the
cylinder itself and is partially convected upwards before it is attracted by the vortex
developed on cylinder 3 and then convected upwards along with the vortex shed from
cylinder 3. Fluid mass from cylinder 2 is transported downwards in the same way.
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Streaklines

0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

FIGURE 22. (Colour online) The H2 symmetry flow resulting from severe vortex
interactions at (G, Re,KC)= (2, 100, 10).

1 4

32

Streaklines

0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

FIGURE 23. (Colour online) The H2 symmetry resulting from gentle vortex interactions
at (G, Re,KC)= (4, 120, 8).

Similar movements of mass and vortices from cylinders 2 and 4 can also be found
in regime 4D.

The H2 symmetry involves flow field interactions among the four cylinders and
occurs only at a few cases near the symmetry-breaking boundary lines. The flow
features in the H2 symmetry are quite spectacular, owing to the wake and proximity
interferences in the cylinder array. It is noted that none of the H2 flows, except two
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cases at G= 1, are strictly in H2 symmetry, especially close to the cylinder surfaces
where vortex interaction is strong. Unlike those in the single-cylinder case, the H2
symmetry in the four-cylinder case is weakly stable.

3.4. Symmetry breaking
In a large area at the top right corner of the Re–KC plane with gap ratios of 1,
2 and 4 in figure 6, none of the symmetry patterns discussed above is observed.
The flow falling into this area is classified as regime N. The cross-sectional flow
fields in regime N tend to be chaotic and correspond to those in regime G of a
single cylinder. However, the flow mechanisms responsible for those flow features
are different. Regime G flow for a single circular cylinder is generated by strong
three-dimensionality at larger Re values than those of regime N flows for the
four-cylinder array. On the other hand, regime N flows are mainly attributed to
the results of the interactions among the individual shear layers and vortices shed
from each cylinder in the array and also to the weak three-dimensionality of the
wake flow, as discussed further in the next section.

Much of the flow field beyond the N-line shown in figure 6 cannot be classified
easily. However, for the cases where KC and Re are close to or on the border of
regime N, the flow is usually in a transitional breaking pattern from symmetry to
asymmetry. Several interesting symmetry-breaking flows are given in figure 24 by
streaklines and the instant vorticity contours. Figure 24(a) shows a symmetry-breaking
case from regime D at (G, Re, KC)= (0.5, 200, 11) where streaklines and the wake
in the −y axis direction hook more towards the x axis than those in the +y direction,
leading to an asymmetric pattern. The symmetry-breaking flows from regime 4A and
4D are shown in figure 24(b,c). The streakline pattern in the −y direction illustrated
in figure 24(b) resembles a ‘fishtail’ shape. From a comparison of figures 24(c) and
18, it may be seen that the transverse convection of fluid mass by vortices generated
from the right-hand two cylinders is broken, while the flow field around the two left
cylinders is kept. The flow fields of figure 24(c) are found to be sensitive to both the
computational domain and the length of simulations. A developed chaotic flow field
is shown in figure 24(d), where no symmetric pattern could be observed around any
individual cylinder or the cylinder array as a whole.

Symmetry breaking for a single cylinder, which leads to regime G, can only evolve
from H1 and H2 symmetries In contrast, symmetry breaking in the four-cylinder array
(regime N) can evolve directly from Kx symmetry.

3.5. 3D effects on onset of symmetry breaking
It has been demonstrated in a steady current that the existence of an additional
cylinder in close proximity has a tendency to suppress or enhance the three-
dimensionality of the flow, depending on the distance between the cylinders
(Papaioannou et al. 2006; Carmo, Meneghini & Sherwin 2010). Although the range
of KC and Re was carefully selected to avoid 3D flow regimes, 3D effects are
likely to occur within the parameter space covered in this study, especially in areas
outside and just within the symmetric regimes. To investigate the possible effect
of the three-dimensionality on the onset of symmetry-breaking regime N, a limited
number of 3D simulations close to the symmetry-breaking boundaries were carried
out. They are listed in table 5, along with the reasons for choosing these cases. These
simulations are based on the coarsest mesh 1 in table 3, where a spanwise length of
10D is used, with 100 layers of the 2D mesh.
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(a) (b)

(c) (d)

0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

FIGURE 24. (Colour online) Symmetry breaking for oscillating flow around four circular
cylinders and regime N: (a) symmetry breaking from regime D (H1 symmetry), for
(G, Re, KC) = (0.5, 200, 11); (b) from regime 4D, Kx symmetry, for (G, Re, KC) =
(2, 200, 6); (c) from regime 4D, Kx symmetry, for (G, Re, KC)= (2, 180, 7); (d) regime
N, for (G, Re, KC)= (4, 180, 9). Panels are not to scale and the dashed squares are 2D
in size.

Three-dimensionality affects the flow field differently for different cases. The
isosurfaces of spanwise vorticity (ωz) at a time instant are shown in figure 25. The
high repeatability of hydrodynamic forces over many cycles is considered as evidence
for a saturated simulation. Obvious three-dimensionality is observed in cases I and
III, while organized spanwise repetitions are observed for cases II and IV. The
cross-sectional flow fields at selected heights are compared with the corresponding
2D simulation results in figure 26 for cases I–III. As for case IV, the sectional flow
fields are very similar to those in figure 12 obtained by 2D simulation, although
changes along spanwise directions are noted. A number of observations are made
from the limited number of 3D simulations. First of all, the three-dimensionality does
not appear to affect the onset of symmetry-breaking regime N based on these three
cases located close to the symmetry-breaking boundaries. The Kx symmetry is clearly
observed from the 3D results and the 2D simulation reasonably reproduces the main
cross-sectional flow features for cases II and IV. It is also seen that, despite the strong
three-dimensionality, the cross-sectional flows of case III generally retain H1 symmetry.
The case III flow can still be classified as regime D, although a direction change
of transverse wakes is observed along the spanwise direction of the cylinder array.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

10
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.107


Oscillatory flow regimes around four cylinders in a square 327

(a) (b)

(c) (d )
z

y
x

FIGURE 25. (Colour online) Flow features revealed by instantaneous isosurface of ωz =
±0.5 from 3D simulation (represented by two different colours, with the lighter one
denoting negative): (a) case I at Ut/D= 72.5; (b) case II at 33.625; (c) case III at 27.125;
and (d) case IV at 33.75. Inlet oscillatory flow is in the y direction.

Secondly, the symmetry-breaking case I flow shows the strongest three-dimensionality
among the four 3D cases and is still classified as symmetry-breaking flow. Significant
differences in wake flow structure exist between the cross-sectional flows themselves
and also between the 3D and 2D simulations; however, some major flow structures are
less influenced by the 3D instability. Thirdly, the flows outside the symmetry-breaking
regime (cases II–IV) show relatively weak three-dimensionality and can be classified
based on 2D simulation results.

4. Quantifications on the flow fields
4.1. Vorticity on the wall

As discussed from the above analysis, the oscillatory flow field around the four-
cylinder array displays great diversity and complexity, which makes meaningful

Case G Re KC Reason for the simulation

I 0.5 200 12 Symmetry-breaking case and most extreme case
in the present study

II 0.5 180 12 Regime D, approaching symmetry breaking in terms of Re
III 0.5 200 9 Regime D, approaching symmetry breaking in terms of KC
IV 2 200 5 Regime 4A, vigorous vortex interactions and close to

symmetry breaking

TABLE 5. 3D simulations for selected cases.
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Case I Case II Case III

   

   

   

 
 

 

0.1–0.1–0.2–0.3–0.4–0.5 0.2 0.3 0.4 0.5

FIGURE 26. (Colour online) Comparison on the cross-sectional flow fields between 3D
and 2D (bottom row) simulations. Inlet oscillatory flow is in the horizontal direction.

quantitative analyses more difficult. Nonetheless, the non-dimensional vorticity on the
cylinder surface of selected cylinders in an oscillation period at (Re,KC)= (160, 5) of
the cylinder array cases are compared with that of a single-cylinder case in figure 27.
One prominent observation is that the maximum vorticity on the inner side surface
is consistently larger than that on the outer side surface for the cylinder array, and
the difference between the vorticity on the inner and outer side surfaces appears to
be dependent on the gap ratio. Another interesting feature is that, when the flows
around individual cylinders are in the same regimes, such as at G= 0.5, 2 and 4, the
vorticity generated in the first half-period and the second half-period are quite close
but not identical, especially on the inner surface of the cylinders. It is speculated
that the slight difference in the vorticity generated in the two half-periods contributes
to the asymmetric flow features observed in the oscillatory direction, such as that
shown in figure 12. A noticeable difference between the two half-periods on the wall
vorticity is found at G = 1, where cylinder 3 is in regime D and cylinder 4 is in
regime A. Figure 27( f,g) also illustrates the enstrophy integrated around the wall
(inner sidewall, outer sidewall and the total, respectively) of two diagonal cylinders
in an oscillation period, which is defined as

ε=
∫

T

∫
Ω

(ωz)
2dVdt, (4.1)

where Ω represents the cell volumes surrounding the cylinder. On cylinders 2 and 4,
less than 5 % difference is found in the total enstrophy at G = 0.5 and 1, and the
difference is negligible at G= 2 and 4. The total enstrophy on both cylinders 2 and
4 is smaller than that of the single cylinder for all gap ratios. The enstrophy on the
inner sidewall at G= 0.5 and 1 is larger than that on half of the single cylinder, and
becomes almost identical to that on half of the single cylinder at G= 2 and 4. The
enstrophy on the outer sidewall is significantly smaller than that on half of the single
cylinder.
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FIGURE 27. (Colour online) The change of vorticity on cylinder surfaces with gap
distances at (Re,KC)= (160, 5). (a)–(e) Plots of ωz on the wall of cylinder 4: (a) single
cylinder (G=∞), regime A; (b) G= 0.5, regime D; (c) G= 1, regime 2(A-D); (d) G= 2,
regime 4A; and (e) G= 4, regime 4A. ( f,g) Comparison of the squared integration of ωz
on cylinders 2 and 4 respectively: - - - -, single total; — · —, single 0–π; — · · —, single
π–2π; ——, individual cylinder total;E, individual cylinder outer sidewall;u, individual
cylinder inner sidewall.

4.2. Force coefficients
Hydrodynamic forces on the cylinder array are investigated and the total force
coefficients are illustrated as a function of KC and Re in figure 28. The total in-line
forces Fy,T are calculated by integrating the pressure and shear stress on the surfaces
of all four cylinders. To facilitate the comparison with forces on a single cylinder, the
total in-line force was divided by the number of cylinders before it was expressed as
in (2.7). Thus, the total drag and inertia force coefficients are defined as

Fy,T

4
= 1

2
ρDCD,T |Uy(t)|Uy(t)+ ρπD2

4
CM,T

dUy(t)
dt

, (4.2)
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FIGURE 28. Comparison of drag and inertia coefficients for four circular cylinders in an
in-line square arrangement with gap ratio of 1 and 4 with those of a single cylinder in
the same flow condition: (a) CD, single cylinder; (b) CM, single cylinder; (c) CD,T , G= 1;
(d) CM,T , G= 1; (e) CD,T , G= 4; ( f ) CM,T , G= 4.

where CD,T and CM,T are the total drag and inertia force coefficients for the four-
cylinder array, respectively. CD,T and CM,T are presented here for a medium gap ratio
(G= 1, figure 28c,d) and a large gap ratio (G= 4, figure 28e, f ), along with those of
a single cylinder (figure 28a,b) under the same flow conditions.

For a single cylinder, CD generally decreases with increasing Re and KC, with
much steeper gradients at low KC and Re than that at high KC and Re, as indicated
by the density of the contour lines. On the other hand, CM exhibits much more
intricate features. For regimes A∗ and A (refer to figure 32), CM is diagonally
distributed in a trend of increase in step with the increase of KC, and a decreasing
trend with increasing Re. However, for regime F, the coefficient is in a pattern
of reverse-diagonal distribution compared with those of regimes A∗ and A. At the
interface between those two areas of diagonally distributed CM, regimes D and E
present very irregular patterns in CM distribution.
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For the four cylinders at G = 1, CD,T at small Re shares the same pattern of
distribution as that of a single cylinder where the contour lines are diagonally
distributed. Large differences are observed beyond Re > 100, especially at the high
end of the Re range (KC= 5–6), where an H2 symmetric pattern is found in the flow
patterns. Overall, CD,T is larger than that of a single cylinder at low KC but smaller
at high KC, and it is more evenly distributed. The large area of sparse contour lines
at high Re for a single cylinder almost disappears in the four-cylinder case, except in
a small region where H2 symmetry occurs. CM,T at G= 1 across the map is similar
to that of the single-cylinder case at regimes A∗ and A, and the reverse-diagonal
distribution of CM at large KC values is not observed in CM,T .

The total drag and inertia coefficients at G= 4 are very similar to those on a single
cylinder, not only in distribution, but also in magnitude (only CM,T is smaller). For
instance, the drag shows similar contour lines with mild slopes at high Re but steep
slopes at low Re; in addition, the distribution of CM,T shows two zones of diagonally
distributed contours and an irregular pattern in the area where presumably regime D
and E would occur if there were only one cylinder.

To summarize, the drag distribution at G=1 overall resembles an area at low KC of
the single-cylinder case, because the cylinder array behaves as a single structure. This
is consistent with the flow features observed in figure 6. At large gap ratios, such as at
G= 4, the drag distribution is almost equivalent to that of a single cylinder. Although
the flow fields around a four-cylinder array at this gap distance are much different
from those around a single cylinder, the in-line forces are less affected.

The total lift coefficients (CL,T) from two selected gap ratios are presented in
figure 29, which is defined as

Fx,T

4
= 1

2
CL,TρDU2

m, (4.3)

where Fx,T is the total lift force on all cylinders. It is evident that, in zones of Kx
symmetry, CL,T is zero, because the lift forces on the left pair and right pair are
equal but with opposite signs. Whenever the flow regime breaks the Kx symmetry,
the asymmetric flow fields (with respect to the x axis) leads to a non-zero total lift
coefficient. This is why the contour lines of CL,T are very similar to the regime
boundary lines seen in figure 6. It seems the lift coefficient experiences a dramatic
rise with increasing Re in both H2 and N regimes, consistent with the increasingly
chaotic flow fields.

5. Conclusions
The flow structures around four circular cylinders in an in-line square arrangement

induced by sinusoidally oscillatory flow were numerically investigated. Two-
dimensional simulations were carried out at relatively low frequencies and amplitudes
of oscillations within KC ∈ [1, 12] and Re ∈ [20, 200]. The flow fields around the
four-cylinder array are composed of many combinations of established flow regimes
around a single cylinder identified by previous studies. These combinations show
an even more captivating set of flow patterns around four circular cylinders than
those which occur around a single cylinder. The flow features are classified into six
types of reflection symmetry with respect to the axis of oscillation, two types of
spatio-temporal symmetry and a series of symmetry-breaking flow patterns, which are
mapped out in the Re–KC plane. The reflection symmetry with respect to the axis
of oscillation dominates the maps of flow regimes, especially at low gap distances,
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FIGURE 29. Lift force coefficients (CL,T) for four circular cylinders in an in-line square
arrangement with gap ratio of 1 and 4: (a) CL,T , G= 1; (b) CL,T , G= 4.

owing to the stabilization effect induced by the jet-like flow through the gap formed
by cylinder columns that are parallel to the direction of flow oscillation. In general, at
small gap distances, the four structures behave as a single porous body, and therefore
the flow fields resemble those around a single cylinder. With increasing gap distance,
the individual flow behaviour around each cylinder in the array starts to influence
the overall flow patterns, and thus the flow shows a variety of symmetry patterns as
a result of vortex interactions from each cylinder, though the symmetric patterns are
also found to be prone to asymmetry. It is also found that three-dimensionality of
the flow does not appear to significantly influence the cross-sectional flow fields or
the onset of the symmetry-breaking regime. The drag force coefficient of the four
cylinders as a whole at low gap distance shows a trend of variation similar to an area
at low KC of the single-cylinder case, but gradually changes to the same pattern with
increasing distance between the cylinders. The drag force seems to be less influenced
than the flow fields at large gap distances. The lift coefficient is zero for the cylinder
array at the reflection symmetry regimes, and experiences a dramatic increase with
KC and Re once the symmetry of the flow is broken.

Acknowledgements
This work was supported by Australian Research Council Discovery Grant (Project

ID: DP110105171) and by iVEC through the use of advanced computing resources
(Epic and Magnus supercomputers). F.T. would like to acknowledge the support of
the Australian Government and the University of Western Australia by providing SIRF,
UIS and Completion scholarships for a doctoral degree.

Appendix. Further model validations
The predicted velocity distributions around a single cylinder are compared with the

experimental data of Dütsch et al. (1998) for (Re,KC)= (100, 5) in figure 30. Since
the tests were carried out with an oscillatory cylinder in still water, the present data
were converted into those in the coordinate system used in Dütsch et al. (1998) to
facilitate the comparison, detailed in the caption of figure 30. The calculated velocity
profiles along four straight lines of ξ/D=−0.6, 0, 0.6 and 1.2 at two phase angles
of ψ = 180◦ and 330◦ are compared with the experimental data. The comparison
suggests that the numerical results agree well with the measured data. The predicted
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FIGURE 30. Comparison between the present results (lines) of velocity components and
the experimental data (symbols) by Dütsch et al. (1998) for KC = 5, β = 20: @/ ——,
ξ/D=−0.6;A/ - - - -, ξ/D= 0.0; ♦ / — · —, ξ/D= 0.6;E/ — · · —, ξ/D= 1.2. Since
in the study by Dütsch et al. (1998) the cylinder was forced to oscillate in otherwise
still water, while in the present study the cylinder was kept still, the coordinates and
velocity were transformed through: ξ = y+ A sin(ψ), ψ = ϕ − 90◦, ua =Uy(t)−Um sin(ϕ)
and va = Ux(t), where ξ , ψ , ua and va are the vertical coordinate, the phase angle, the
velocity in the vertical direction and the velocity in the horizontal direction, respectively,
and correspondingly, y, ϕ, Uy and Ux are those parameters in the present study; A is the
amplitude of the movement in the experimental study, and Um is the maximum velocity
in the present study.

velocity profiles are also compared with the numerical results reported by Zhao &
Cheng (2014), and the predicted velocity profiles from the two numerical simulations
match exactly.

The predicted drag and inertia coefficients at β = 35 are compared with those
reported by Kuehtz (1996) and Dütsch et al. (1998) in figure 31. Both drag and
inertia coefficients derived from the numerical results are found to be in good
agreement with the published data. The drag coefficient decreases monotonically with
increasing KC before KC = 4, then it stays almost constant until KC = 16. On the
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FIGURE 32. Comparison on flow regimes around a single cylinder identified by the
present study and by Tatsuno & Bearman (1990).

other hand, CM does not show much change before KC = 7, followed by a sudden
reduction until KC = 16. It is also observed that the numerical results agree with
experimental data slightly better at low KC (66) than at high KC values, probably
due to the occurrence of 3D flow at high KC values.

The oscillatory flow regimes identified by the present numerical model based
on mesh 2 for a single cylinder are shown and compared with those reported by
Tatsuno & Bearman (1990) in figure 32. The dashed lines shown in figure 32 are
the regime boundaries, based on Tatsuno & Bearman (1990), and the letters denote
results from the present study. Letter A marks the location where the highest Re is
detected for regime A at a constant KC, while all other letters indicate the location
of the smallest Re detected for the corresponding regimes at constant KC values. It
is seen that all the flow regimes are captured at the same corresponding areas as
identified by Tatsuno & Bearman (1990). Although the flows in regimes C, D, E
and F are 3D, they are successfully captured by the present 2D model. This supports
the conclusion by Nehari et al. (2004) that the three-dimensionality of the flow has
a negligible effect on the cross-sectional flow features of oscillatory flow around a
circular cylinder.
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It should be noted, however, that the regime B flow, which is often observed
in the range Re > 180 and 2 < KC < 4.5 and was first reported by Honji (1981),
corresponds to the onset of 3D instability. The cross-sectional flow fields in regime B
are similar to those in regime A∗ or A. Therefore, regime B cannot be distinguished
from regimes A∗ and A based on 2D simulations. Partly for this reason, Re is limited
to approximately 200 in the present study.
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