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The turbulence cascade in the near wake of
a square prism
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(Received 24 January 2017; revised 7 April 2017; accepted 31 May 2017;
first published online 20 July 2017)

We present a study of the turbulence cascade on the centreline of an inhomogeneous
and anisotropic near-field turbulent wake generated by a square prism at a Reynolds
number of Re = 3900 using the Kármán–Howarth–Monin–Hill equation. This is the
fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth
equation, does not require homogeneity or isotropy assumptions. Our data are obtained
from a direct numerical simulation and therefore enable us to access all of the
processes involved in this energy balance. A significant range of length scales exists
where the orientation-averaged nonlinear interscale transfer rate is approximately
constant and negative, indicating a forward turbulence cascade on average. This
average cascade consists of coexisting forward and inverse cascade behaviours in
different scale-space orientations. With increasing distance from the prism but within
the near field of the wake, the orientation-averaged nonlinear interscale transfer rate
tends to be approximately equal to minus the turbulence dissipation rate even though
all of the inhomogeneity-related energy processes in the scale-by-scale energy balance
are significant, if not equally important. We also find well-defined near −5/3 energy
spectra in the streamwise direction, in particular at a centreline position where the
inverse cascade behaviour occurs for streamwise oriented length scales.

Key words: turbulence theory, turbulent flows, wakes

1. Introduction
Kolmogorov’s equilibrium cascade theory (Kolmogorov 1941a,b,c) applies to locally

homogeneous turbulence and is perhaps the one firm theoretical pillar underpinning
much of our understanding of turbulent flows as well as much of one-point (e.g.
Reynolds-averaged Navier–Stokes) and two-point (e.g. large-eddy simulation (LES))
modelling of such flows over the past 75 years. However, recent developments have
shown that this theory does not apply in, at least, extended regions of many turbulent
flows where the theory might have been expected to be valid given that local
statistical homogeneity is present. Examples of such flows are unsteady periodic
turbulence (Goto & Vassilicos 2015, 2016), grid-generated decaying turbulence
(Vassilicos 2015), self-similar axisymmetric turbulent wakes (Vassilicos 2015; Castro
2016; Obligado, Dairay & Vassilicos 2016, and references therein) and the outer
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region of turbulent boundary layers (Nedić, Tavoularis & Marusic 2017). Even so,
as Kraichnan (1974) already stated more than forty years ago, ‘Kolmogorov’s 1941
theory has achieved an embarrassment of success. The −5/3-spectrum has been found
not only where it reasonably could be expected but also at Reynolds numbers too
small for a distinct inertial range to exist and in boundary layers and shear flows
where there are substantial departures from isotropy, and such strong effects from
the mean shearing motion that the step-wise cascade appealed to by Kolmogorov is
dubious.’ Kraichnan was referring to the Kolmogorov–Obukhov prediction (Obukhov
1941) that the turbulence energy spectrum is proportional to the −5/3 power of
the wavenumber in the inertial range. This particular prediction has indeed been an
‘embarrassment of success’ because it is present even more widely than Kraichnan
stated. It can indeed be found in relatively low-Reynolds-number flows, boundary
layers, wakes, homogeneous shear flows, atmospheric turbulence and mixing layers
(see, e.g., Klebanoff 1955; Uberoi & Freymuth 1969; Champagne, Harris & Corrsin
1970; Rogers & Moser 1994; Ong & Wallace 1996; Kravchenko & Moin 2000;
Wissink & Rodi 2008), but it can also be found in those flow regions mentioned
above where the Kolmogorov equilibrium is now known to be absent, and it can
even be found in flow regions such as in the very inhomogeneous and anisotropic
very-near-field production region of grid-generated turbulence where it cannot be
expected to apply from the very outset (see Gomes-Fernandes, Ganapathisubramani
& Vassilicos 2015).

Even more fundamental than the −5/3 power law scaling of the energy spectrum
is Kolmogorov’s prediction that, in the inertial range of scales, the interscale energy
transfer rate Π is constant, i.e. independent of length scale and viscosity ν, and
equal to −ε, where ε is the turbulence dissipation rate per unit mass. There are
various ways to derive the −5/3 power law shape of the energy spectrum in the
inertial range (see, for example, the textbooks by Tennekes & Lumley 1972; Frisch
1995; Mathieu & Scott 2000; Pope 2000; Lesieur 2008), but, unlike the constancy
of Π , no way is known that derives it directly from the Navier–Stokes equations
without closure assumptions (Leslie 1973; Kraichnan 1974; McComb 2014). A
straightforward dimensional analysis is typically carried out which starts from the
premise that the energy spectrum depends only on ε and the wavenumber in the
inertial range, a premise that can be justified by the result, itself obtained from the
Navier–Stokes equations, that Π ≈−ε in the inertial range. If the energy spectrum is
a one-dimensional spectrum (as typically measured in laboratory experiments), then
an assumption of small-scale isotropy is also required (Tennekes & Lumley 1972;
Frisch 1995; Mathieu & Scott 2000; Pope 2000; Lesieur 2008).

While recent direct numerical simulations (DNS) (Goto & Vassilicos 2016) have
shown that, in freely decaying periodic turbulence, Π is neither constant nor equal
to −ε even though a −5/3 power law scaling of the energy spectrum is clearly
present, particle image velocimetry (PIV) measurements by Gomes-Fernandes et al.
(2015) suggest that in the very near field of grid-generated turbulence where the
turbulence is very inhomogeneous (even locally), anisotropic and building up, Π/ε
may be approximately independent of scale over a significant range. Adding to
Kraichnan’s ‘embarrassment of success’, Gomes-Fernandes et al. (2015) find that the
energy spectrum has a very well-defined −5/3 power law dependence on frequency
in this region, a result also obtained and discussed in Laizet, Vassilicos & Cambon
(2013), Laizet, Nedić & Vassilicos (2015) and Melina, Bruce & Vassilicos (2016).

The approach taken by Gomes-Fernandes et al. (2015) relies on the Kármán–
Howarth–Monin–Hill (KHMH) equation. This is the fully generalised form of the
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Kármán–Howarth or Kármán–Howarth–Monin equation (see Frisch 1995) derived
by Hill (2002a), which is valid under no assumptions whatsoever, i.e. irrespective
of degrees of inhomogeneity, anisotropy and unsteadiness. The KHMH equation is
an energy balance for the energy associated with eddies of a certain size. It takes
into account both interscale and interspace transfers as well as advection, turbulence
dissipation and production. This equation is the only rigorous way to make statements
concerning Π and ε in a highly inhomogeneous and anisotropic region of a turbulent
flow such as the very-near-field grid-generated turbulence studied by Gomes-Fernandes
et al. (2015). These authors used a planar two-component PIV to compute the various
terms of this equation and therefore had to rely on a number of assumptions to
obtain some of these terms. It is therefore essential to carry out a similar study in
a well-resolved computational setting where all of the terms of the KHMH equation
can be calculated without having to resort to any unjustified assumption.

In this paper, without resorting to any assumption, we calculate every term of
the KHMH equation in a DNS of a turbulent planar wake generated by a square
prism and study its near field up to approximately 10d, where d is the side of the
square. We study the near wake of a square prism because: (i) it is numerically
less demanding than a DNS of the near field of grid-generated turbulence and is
nevertheless a significantly inhomogeneous and anisotropic flow; (ii) power law
energy spectra have already been reported in the very near field of planar wakes
(Ong & Wallace 1996; Braza, Perrin & Hoarau 2006); and (iii) hot-wire anemometry
studies of highly reduced forms of the KHMH equation have already been carried
out in turbulent planar wakes by Thiesset, Danaila & Antonia (2011a), Thiesset
et al. (2011b), Thiesset, Antonia & Danaila (2013a) and Thiesset, Danaila & Antonia
(2014). This approach can give us the opportunity to both confirm and extend the
results of Thiesset et al. (2013a) and Gomes-Fernandes et al. (2015). However, we
go beyond this indeed important and necessary confirmation and extension and offer
some new insights concerning the various terms of the KHMH equation and the
processes they represent.

In § 2, we introduce the KHMH equation and our DNS. In § 3, we examine
energy spectra, second- and third-order structure functions and the Taylor frozen
turbulence hypothesis. Measurements are often made at a point in time, and the Taylor
hypothesis is typically invoked to interpret a measured frequency spectrum in terms
of a wavenumber spectrum. The wavenumber spectrum is related to the second-order
structure function by a Fourier transform, and the scaling of the second-order structure
function follows from that of the third-order structure function if the skewness that
can be constructed from these two structure functions is independent of scale (see
Pope 2000). In turn, the scaling of the third-order structure function may result
from the properties of the interscale energy transfer rate Π and small-scale isotropy.
Small-scale isotropy is discussed in both §§ 3 and 4. Section 4 offers a detailed
analysis of each term of the KHMH equation at various positions along the near-wake
centreline. We conclude in § 5.

2. Methodology and validation
2.1. The generalised scale-by-scale energy budget

The most general forms of the scale-by-scale energy budget for incompressible
turbulent flows have been derived without making any assumption about the nature
of the turbulence by Duchon & Robert (1999) without averaging and by Hill (1997,
2001, 2002a) with averaging. Using the Reynolds decomposition (capital letters and
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x

FIGURE 1. Illustration of the spatial position vectors x = (x1, x2, x3), x+ = (x+1 , x+2 , x+3 )
and x− = (x−1 , x−2 , x−3 ) in a reference frame centred on O, and of the separation vector
r= (r1, r2, r3).

〈· · ·〉 indicate ensemble- and/or time-averaged quantities), the equation derived by
Hill (1997, 2001, 2002a) (which we refer to as the KHMH equation) takes the form
(see also Danaila et al. 2012)

∂〈δq2
〉

∂t
+

∂
U+i +U−i

2
〈δq2
〉

∂xi
+
∂〈δuiδq2

〉

∂ri
+
∂δUi〈δq2

〉

∂ri
=−2〈δuiδuj〉

∂δUj

∂ri

−〈(u+i + u−i )δuj〉
∂δUj

∂xi
−

∂

〈
u+i + u−i

2
δq2

〉
∂xi

− 2
∂〈δuiδp〉
∂xi

+ ν
1
2
∂2
〈δq2
〉

∂xi∂xi

+ 2ν
∂2
〈δq2
〉

∂ri∂ri
− 4ν

(〈
∂δuj

∂xi

∂δuj

∂xi

〉
+

1
4

〈
∂δuj

∂ri

∂δuj

∂ri

〉)
, (2.1)

where δq2
= δuiδui in terms of the fluctuating velocity differences δui = u+i − u−i (for

components i= 1, 2, 3), δUi=U+i −U−i , where Ui is a mean flow velocity component,
δp=p+−p−, where p is fluctuating pressure, and the superscripts + and − distinguish
quantities evaluated at xi + ri/2 and xi − ri/2 respectively, as illustrated in figure 1.
Equation (2.1) is written in a six-dimensional reference frame xi, ri, where coordinates
xi are associated with a location in physical space, and the scale space is the space of
all separations and orientations r= (r1, r2, r3) between two points (we refer to r= |r|
as a scale). Throughout this paper, in the context of two-point statistics, we refer to
isotropy as the independence of a given quantity from the orientation of the separation
vector r.

We follow Gomes-Fernandes et al. (2015) and Valente & Vassilicos (2015) in the
way that we identify the terms in (2.1) as

At =−A−Π −ΠU +P + Tu + Tp +Dx +Dr − εr, (2.2)

where each term is associated with a physical process in the budget of 〈δq2
〉.

(i) The term 4At = (∂〈δq2
〉)/∂t represents the rate of change in time of 〈δq2

〉 at
a given physical point xi and separation ri. In the present paper, statistics are
collected in time (as opposed to ensemble averages) and therefore At vanishes.

(ii) The term 4A = (∂((U+i +U−i )/2)〈δq2
〉)/∂xi is the advection term. This term

represents the transport of 〈δq2
〉 in physical space xi by the mean flow. In fact,

integration of A over a volume Vx in physical space and use of Gauss’ theorem
yields

˝
Vx
A dV=

‚
∂Vx
((U+i +U−i )/2)〈δq2

〉ni dS, which is the integral of a flux
through ∂Vx, the boundary of Vx. If this volume encompasses a set of mean
streamlines, the flux integral is proportional to the difference of 〈δq2

〉 between
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the downstream and upstream boundaries in the case of homogeneous turbulence,
in which case A accounts for the decay of 〈δq2

〉 in the direction of the mean
flow (Hill 2002b; Thiesset et al. 2013a).

(iii) The term 4Π = (∂〈δuiδq2
〉)/∂ri is the nonlinear interscale transfer rate and

accounts for the effect of nonlinear interactions in redistributing δq2 within the
ri space, and is given by the divergence in scale space of the flux 〈δuiδq2

〉. If
one takes the integral of Π over a volume in scale space Vr, then, similarly
to the discussion above, one obtains the flux integral

‚
∂Vr
〈δuiδq2

〉ni dS. If Vr

is taken to be a sphere of radius `, then
˝

Vr
Π dV is proportional to the

orientation-averaged flux 〈δuδq2
〉 in scale space, corresponding to a length

scale equal to the radius of the sphere.
(iv) The term 4ΠU = (∂δUi〈δq2

〉)/∂ri is the linear interscale transfer rate. Similarly
to Π , this term accounts for transfer of δq2 in scale space ri, but, instead of δui,
it is the two-point difference of mean velocity δUi that transports δq2 in scale
space.

(v) The term 4P = −2〈δuiδuj〉(∂δUj/∂ri) − 〈(u+i + u−i )δuj〉(∂δUj/∂xi) can be
associated with the production of 〈δq2

〉 by mean flow gradients. Writing 4P
in terms of x±i = xi ± ri/2 yields −2〈u+i u+j 〉(∂U+i /∂x+j ) − 2〈u−i u−j 〉(∂U−i /∂x−j ) +
2〈u−i u+j 〉(∂U+i /∂x+j ) + 2〈u+i u−j 〉(∂U−i /∂x−j ), where the first two terms represent
the production terms in the one-point turbulent kinetic energy equation and
the last two represent combined actions of the mean flow gradients and the
two-point correlation tensors 〈u±i u∓j 〉 (see, e.g., Lindborg 1996, where such
terms are related to the equation for 〈δuiδuj〉). Furthermore, if one writes the
interscale energy budget for δQ2

= δUiδUi, which is the mean flow equivalent
to (2.1), the term P appears as it does in (2.1) but with the opposite sign,

∂δQ2

∂t
+

∂
U+i +U−i

2
δQ2

∂xi
+
∂〈δuiδu · δU〉

∂ri
+
∂δUiδQ2

∂ri
= 2〈δuiδuj〉

∂δUj

∂ri

+〈(u+i + u−i )δuj〉
∂δUj

∂xi
−

∂

〈
u+i + u−i

2
δu · δU

〉
∂xi

− 2
∂〈δUiδP〉
∂xi

+ ν
1
2
∂2δQ2

∂xi∂xi

+ 2ν
∂2δQ2

∂ri∂ri
− 4ν

(〈
∂δUj

∂xi

∂δUj

∂xi

〉
+

1
4

〈
∂δUj

∂ri

∂δUj

∂ri

〉)
. (2.3)

It follows that the interscale energy budget for 〈[(U+i + u+i )− (U
−

i + u−i )][(U
+

i +

u+i ) − (U−i + u−i )]〉, which equals δQ2
+ 〈δq2

〉, does not involve P . This
observation consolidates the interpretation of P as a production term. When P
is positive/negative, energy is therefore lost/gained by δQ2 and gained/lost by
〈δq2
〉 at the same rate. This process is only significant at large enough values

of r where δQ2 is not negligible. It should be noted that (∂〈δuiδu · δU〉)/∂ri is
the difference between the interscale energy transfer rate of the total two-point
kinetic energy, (∂〈δui(1/2)(δU+ δu)2〉)/∂ri, and the interscale energy transfer
rate, 2Π = (∂〈δuiδq2

〉)/∂ri of δq2/2. All of the other terms in (2.3) can be
interpreted in the same way as their analogues in (2.1), except for the term
(∂〈((u+i + u−i )/2)δu · δU〉)/∂xi, which we discuss in (vi).

(vi) The term 4Tu =−(∂〈((u+i + u−i )/2)δq2
〉)/∂xi is the transport of δq2 in physical

space due to turbulent fluctuations. It features in (2.1), whereas the term
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(∂〈((u+i + u−i )/2)δu · δU〉)/∂xi, which features in (2.3), is the difference between
the turbulent transport of total two-point kinetic energy (δU+ δu)2/2 in physical
space and 2Tu.

(vii) The term 4Tp =−2(∂〈δuiδp〉)/∂xi is equal to −2 times the correlation between
velocity differences and differences of pressure gradient.

(viii) The term 4Dx = ν(1/2)(∂2
〈δq2
〉)/∂xi∂xi is the diffusion in physical space due

to viscosity. This term is analogous to the diffusion term appearing in the
single-point turbulent kinetic energy equation and thus its contribution to (2.1)
is expected to be small.

(ix) The term 4Dr = 2ν(∂2
〈δq2
〉)/∂ri∂ri is the diffusion in scale space by viscosity.

This term is equal to the dissipation ε when the two points coincide (r= 0) and
can be shown (see appendix B in Valente & Vassilicos 2015) to be negligible
for separations much larger than the Taylor microscale.

(x) The term εr is the two-point average dissipation rate εr = (ε
+
+ ε−)/2 since it

equals (1/2)ν(〈(∂u+j /∂x+i )(∂u+j /∂x+i )〉 + 〈(∂u−j /∂x−i )(∂u−j /∂x−i )〉).

If a turbulent flow is locally homogeneous over length scales r smaller than a
certain inhomogeneity length scale, then (2.3) reduces to the identity 0= 0 and (2.1)
reduces to

At +A+Π ≈Dr − ε (2.4)

for such length scales r. Given that Dr is negligible at length scales r larger than the
local Taylor length scale (see appendix B of Valente & Vassilicos 2015), one is left
with

At +A+Π ≈−ε (2.5)

in the intermediate range of r between the Taylor length scale and the inhomogeneity
length scale (assuming that we are considering a region of a turbulent flow where
such a range exists). Kolmogorov’s hypothesis of local equilibrium then leads to the
equilibrium relation

Π ≈−ε, (2.6)

which is the central property of the Kolmogorov equilibrium cascade in locally
homogeneous turbulence. A further step is needed to obtain Kolmogorov’s 〈δq2

〉 ∼

ε2/3r2/3 and 〈δu2
i 〉 ∼ ε2/3r2/3

i for i = 1, 2, 3 and the Kolmogorov–Obukhov −5/3
energy spectrum (Obukhov 1941). This step requires additional hypotheses of
small-scale isotropy and self-similarity, and proceeds either by dimensional analysis
Kolmogorov (1941a) or by taking the skewness of the velocity differences to be
constant (Kolmogorov 1941c).

Due to experimental limitations, which prevent explicit measurement and compu-
tation of many terms in (2.1), the laboratory studies of Thiesset et al. (2011a),
Thiesset et al. (2011b), Thiesset et al. (2013a), Valente & Vassilicos (2015), Hearst
& Lavoie (2014) and Thiesset et al. (2014) have focused on (2.4), mostly in an
intermediate region of planar wakes (at streamwise distances larger than 10d and
typically 40d from the wake generator of size d). Gomes-Fernandes et al. (2015)
attempted to measure and compute as many of the terms in (2.1) as possible from
planar two-component PIV in the very near field of a turbulence generated by a
fractal square grid. Their results suggest that, upstream of the peak of turbulent kinetic
energy where the turbulence is very inhomogeneous and anisotropic and therefore
not decaying but rather building up, the interscale transfer rate Π is approximately
constant within a sizeable range of scales. A constant Π over a range of scales is what
(2.6) would predict for a locally homogeneous turbulence. However, the measurements
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of Gomes-Fernandes et al. (2015) suggested that all of the terms appearing in (2.1)
have a non-negligible contribution, the exact opposite of what the Kolmogorov theory
assumes for the purpose of deriving (2.6). Furthermore, Gomes-Fernandes et al.
(2015) observed a combined forward and inverse cascade in scale space in the region
of their measurements. Specifically, their results suggested that the interscale energy
flux 〈δuiδq2

〉(ri/r) has different signs at different orientations. However, some of the
terms in (2.1) were inaccessible to Gomes-Fernandes et al. (2015) due to experimental
limitations and others required assumptions to be computed from their data. In this
paper, we present DNS evidence that confirms and strengthens the conclusions of
Gomes-Fernandes et al. (2015) and that permits us to go further and obtain new
insights about (2.1) in the near wake of a square prism.

2.2. Numerical method
For the numerical simulations, a cell-centred fully unstructured finite volume (FV)
code called Panta Rhei was employed using the PETSc library (Balay et al. 2016) for
the algebraic solvers. The coupling between pressure and velocity was achieved via the
PISO algorithm (Issa 1986). The time integration was carried out using a second-order
backward method while the spatial central discretisation was of second order. The FV
approach allows the mesh to be stretched so as to better refine the grid in regions of
the flow where small-scale dynamics are relevant, such as the core of the wake and
the separating shear layer. In § 2.3, we show a comparison with experiments and other
simulations of mean flow profiles and integral properties of the flow.

The fluid domain is sketched in figure 2 along with its dimensions and the
reference frame. At the inlet, the velocity was set to U∞, and at the outlet, the
one-dimensional advection equation was solved (convective boundary condition). The
spanwise boundaries were treated as periodic. At the top and bottom boundaries the
Dirichlet condition for pressure and the Neumann condition for the velocity are used
to reduce blockage effects, allowing the flow to be entrained across those boundaries.

The computational grid used had just under 40 million cells. The length of each side
of the square prism in the (x1, x2) plane was d; the smallest cell size was 0.0015d
and was at the corners of the prism. Over each edge, 121 nodes were placed with
most nodes being concentrated close to the corners. Near the inlet and top/bottom
boundaries, the cell sizes were set to 0.325d, while near the outlet, the cell size
was 0.065d. Appropriate care was taken in connecting the different grid sizes using
stretching functions which allowed for a smooth variation of the cell dimensions. The
mesh was extruded in the spanwise direction, generating 150 layers. In order to keep
the computational requirements as low as possible, the mesh was stretched (in the
x1 and x2 directions), allowing the finer cells to be located in the area around the
prism. This ensured appropriate resolution of the thin separating shear layer. In the
core of the wake, the resolution was found to be at worse approximately 4 times the
Kolmogorov length scale η; in fact, along the centreline, the resolution varied between
3.8η and 2.9η at x1/d= 2 and x1/d= 8 respectively.

It was found that a maximum value of the Courant–Friedrichs–Lewy number
CFL = u(1t/1x) of approximately 4 allowed the numerical solution to be stable,
and that led to an average of 0.2 across the whole domain. The largest values of
the CFL were found in areas where the flow was still laminar. The resulting time
step was 0.0025(U∞/d), which corresponds to approximately 3000 time steps per
shedding cycle. In the core of the wake, this value of the time step was smaller by
at least one order of magnitude compared with the Kolmogorov time scale.
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10d

(a)

(b)

15d

10d

10d

FIGURE 2. Domain dimensions. (a) Side view; (b) top view. The origin of our
coordinate system is at the centre of the square prism.

The numerical computation of all of the terms in (2.1) was carried out by rewriting
them as correlations of velocities, pressure and their derivatives between locations x+i
and x−i , where the FV approach was used to compute the derivatives.

2.3. Comparison of mean flow and turbulence intensity profiles with the literature
In order to validate our results, we have compared several statistics with those reported
in the literature. In the present section, we discuss statistics of the velocity, as well
as the shedding frequency associated with the vortex shedding. In appendix A, further
comparisons are made for other quantities, such as force coefficients.

In figure 3, we report values of the normalised shedding frequency, the Strouhal
number St = fsd/U∞ (where fs is the shedding frequency), for three values of the
Reynolds number Re (100, 500 and 3900). In particular, for the Re= 3900 case, the
value of St was found to be 0.13. Only the Re = 3900 simulation is used in the
remainder of this paper, with the exception of appendix A, where the Re= 100 and
500 simulations are used for validation purposes.

In figures 4–7, we show the variation along the centreline of U1, u′1, u′2 and
u′3, which are the mean streamwise velocity and the standard deviations of the
streamwise, cross-stream and spanwise velocity components respectively. Apart from
the DNS results of Arslan et al. (2012) and Trias, Gorobets & Oliva (2015), all
remaining references refer to experimental results. The DNS of Arslan et al. (2012)
employed a code developed for LES simulations. Moreover, they report a resolution
in terms of Kolmogorov length scales of approximately 7η. The DNS of Trias et al.
(2015), on the other hand, report a resolution of approximately 4η and, even though
they simulate a much larger Re flow, we find a very good agreement between our
streamwise profiles and theirs (database available in ref. [36] of their paper).

Significant scatter in the statistics of the velocity is observed when comparing
different references. In particular, the estimation of the maximum recirculation velocity
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102 103 104
0.10

0.12

0.14

0.16

0.18

0.20

Re

St

Okajima (1982) Cheng et al. (1992) Norberg (1993) Lyn et al. (1995)

Sohankar et al. (1999) Saha et al. (2000) Ozgoren (2006) Lindquist et al. (2010)

Lam et al. (2012) Trias et al. (2015) Present

FIGURE 3. Plot of St versus Re from both experiments and DNS. Repeated symbols
(for the same Re) indicate different experimental/numerical conditions.

and rear-stagnation point appears to be drastically different between experiments and
DNS. This is in line with the results reported in Voke (1996) and Sohankar (2006),
where LES simulations at Re= 22 000 are compared with the reference data of Lyn
et al. (1995). On the other hand, significant differences are also observed in the
recovery velocity: while the present results and those of Lyn et al. (1995), Lee &
Kim (2001b) and Trias et al. (2015) show a very slow increase of U1/U∞ along x1/d
from a value of approximately 0.6 at x1/d≈ 3 to approximately 0.7 at x1/d≈ 8, others
find the mean velocity to be over 20 % higher. It is unlikely that these differences are
solely due to wind tunnel blockage and free-stream turbulence. Lyn et al. (1995), Lee
& Kim (2001b) and Arslan et al. (2012) reported a blockage of 7 %, but Hu, Zhou
& Dalton (2006) and Trias et al. (2015) reported a blockage of approximately 2 %,
even though there are differences in their results. The free-stream turbulence, on the
other hand, appears to have a more significant effect on U1/U∞ in the experiment of
Durão, Heitor & Pereira (1988), who report 6 % free-stream turbulence; this explains
the differences observed in the incoming profiles.

As seen in figures 5–7, the disparity between the different references in the statistics
of fluctuating velocities is even more significant than for U1/U∞, particularly in the
very near wake. The large values of u′1 observed at x1/d<−0.5 in the data of Durão
et al. (1988) are due to their fairly high free-stream turbulence of 6 %. While all
references agree that the peak of u′1 should occur just after x1≈ d, the actual value of
u′1/U∞ at its peak varies between 0.28 and 0.56. We find the peak value of u′1/U∞
to be close to 0.41, which is in agreement with the results of Lyn et al. (1995) and
Trias et al. (2015) which were obtained at a larger Re.

The intensity of cross-stream fluctuations is mostly determined by the shedding. In
fact, the distance from the prism to the location of the peak of u′2/U∞ is used to
define the vortex formation length. Both the present results and those of Trias et al.
(2015) show a vortex formation length extending to x1/d≈ 1.5, while the experiments
of Durão et al. (1988), Lyn et al. (1995) and Lee & Kim (2001b) place this further
downstream, at x1/d ≈ 1.9. Apart from the PIV results of Lee & Kim (2001b), the
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–2 0 2 4 6 8 10

0

0.5

1.0

Lee & Kim (2001a)

Trias et al. (2015)

Durão et al. (1988)

Hu et al. (2006)Hu et al. (2006)

Present

Saha et al. (2000)Lyn et al. (1995)

Arslan et al. (2012)

FIGURE 4. Profile of U1 normalised by U∞ along the geometrical centreline for −2.5<
x1/d< 10. Experimental results from different references are indicated by symbols while
the lines indicate numerical (DNS) results.

–2 0 2 4 6 8 10
0

0.2

0.4

0.6

FIGURE 5. Profile of u′1 =
√
〈u2

1〉 normalised by U∞ along the geometrical centreline for
−2.5 < x1/d < 10. The legend is the same as in figure 4. Turbulent statistics of Lee &
Kim (2001a) are shown in Lee & Kim (2001b).

peak value of u′2/U∞ is reported to be close to 0.9 both in the present results and
in Lyn et al. (1995) and Trias et al. (2015) and just over 0.8 in Durão et al. (1988).
Differences are also observed in the decay of u′2/U∞ with increasing streamwise
distance. Although Lee & Kim (2001b) did not measure sufficiently downstream,
their results seem to agree with the present DNS and that of Trias et al. (2015) in
a slower decrease of u′2/U∞ with x1/d in comparison with Durão et al. (1988) and
Lyn et al. (1995).
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–2 0 2 4 6 8 10
0

0.5

1.0

FIGURE 6. Profile of u′2 =
√
〈u2

1〉 normalised by U∞ along the geometrical centreline for
−2.5 < x1/d < 10. The legend is the same as in figure 4. Turbulent statistics of Lee &
Kim (2001a) are shown in Lee & Kim (2001b).

–2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

FIGURE 7. Profile of u′3 =
√
〈u2

3〉 normalised by U∞ along the geometrical centreline for
−2.5< x1/d< 10. The legend is the same as in figure 4.

Fewer results are available for the spanwise fluctuating velocity. The hot-wire
measurements of Hu et al. (2006) at two different values of Re show different
evolutions of u′3/U∞ with x1/d, while the present DNS at Re= 3900 shows the same
profile of u′3/U∞ as in Trias et al. (2015), whose results refer to Re= 22 000. In the
DNS, the peak of u′3/U∞ on the centreline appears to be at the same location as the
mean stagnation point (where U1 = 0).

Finally, we show in figure 8 the contour of the normalised turbulent kinetic energy
((u′21 + u′22 + u′23 )/2)/U

2
∞

. The peak turbulent kinetic energy occurs at the centreline,
due to the large contribution of u′2, which also peaks at the centreline. However, it is
possible to see another peak (of smaller magnitude) roughly at the stagnation point in
between the two large recirculation bubbles at the top/bottom and back (see figure 37
in appendix A). This is most likely due to the flapping of the shear layer as it also
corresponds to a peak in u′1/U∞.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

39
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.390


326 F. Alves Portela, G. Papadakis and J. C. Vassilicos

–2 0 2 4 6 8 10 12 14
0

2

4

0

0.10

0.20

0.30

0.40

0.50

FIGURE 8. (Colour online) Contour of mean turbulent kinetic energy normalised by U2
∞

.

The convergence of the one-point statistics in this section and of two-point statistics
such as those in the following sections is presented in appendix B.

3. Spectra and structure functions
3.1. Energy spectra in the frequency domain and Taylor’s hypothesis

We start by looking at turbulence spectra in the region of the flow where we study
the scale-by-scale energy budget (2.1) in the next section. The energy spectra at
several locations along the centreline are shown in figures 9(a), 10(a) and 10(b) for
the streamwise, cross-stream and spanwise components of the fluctuating velocity
respectively. At these locations, the spectra display a power law that is close to −5/3
over a substantial range of frequencies at x1/d= 2. As the distance x1 from the prism
increases, this power law deteriorates while the range of frequencies narrows. This
is in spite of the flow becoming more homogeneous and undergoing an increase in
local Reynolds number. In figure 9(b), the 5/3 compensated spectra of the streamwise
fluctuations are shown in a linear-logarithmic plot to highlight that the spectra are
close to a −5/3 power law over just under a decade of frequencies, particularly at
x1 = 2d, which is located straight after the peak of turbulent kinetic energy (as seen
in figure 8). As will become fully clear in the following section, this observation is in
line with the comment made by Kraichnan (1974) that such a power law is observed
in regions of flows where Kolmogorov’s theory is not expected to hold. Several other
authors have reported such a power law in simulations and experiments on planar
wakes (see, e.g., Cantwell & Coles 1983; Ong & Wallace 1996; Kravchenko & Moin
2000; Ma, Karamanos & Karniadakis 2000; Braza et al. 2006; Wissink & Rodi 2008;
Lehmkuhl et al. 2013; Trias et al. 2015) at comparable distances from the wake
generator (on the centreline) and similar Reynolds numbers.

Less reported by previous authors, however, is the fact that the range of frequencies
over which a power law is observed appears to decrease with increasing downstream
distance, in agreement with a similar observation made by Laizet et al. (2015) in
near-field grid-generated turbulence. It is also worth mentioning that the local Taylor-
length-based Reynolds number Reλ = u′1λ/ν, where λ =

√
15(ν/ε)u′1, increases from

approximately 120 at x1/d = 2 to approximately 170 at x1/d = 10. This is a first
indication that these near −5/3 power laws do not have much to do with Kolmogorov
theory, where an increase in Reynolds number is expected to lead to a broader inertial
range.

Due to the predominantly planar nature of the vortex shedding, only the spectra
of the streamwise and cross-stream components display pronounced peaks (figures 9a
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4

FIGURE 9. (Colour online) Power spectrum densities of streamwise fluctuating velocity at
eight locations on the centreline (different locations are offset by one decade) normalised
by U∞d. In (a), the dashed line indicates a slope of −5/3 and the dotted line indicates
f = 2fs; in (b), compensated spectra are plotted in linear-logarithmic axes.

10–1 100 101 10–1 100 101
10–14

10–10

10–6

10–2

102(a) (b)

FIGURE 10. (Colour online) Power spectrum densities, normalised by U∞d, of the cross-
stream and spanwise velocity components, (a) and (b) respectively (different locations are
offset by one decade). See figure 9 for the legend. The dashed line indicates a slope of
−5/3. In (a), the dotted line indicates f = fs.

and 10a), while this is not the case for the spectra of spanwise fluctuations
(figure 10b). For the streamwise component, the peak appears at 2fs, while for
the cross-stream component, the peak occurs at fs. This is due to the alternating
vortices shed from the top and bottom sides having spanwise vorticity of opposite
signs, thus inducing on the centreline streamwise fluctuations in the same direction
but cross-stream fluctuations in opposite directions.

The −5/3 power law spectrum obtained by the Kolmogorov theory is for
wavenumber spectra (Obukhov 1941), not frequency spectra. The conversion from
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wavenumber to frequency required to interpret spectra obtained from velocity data
collected over time at a particular point in space is usually based on Taylor’s frozen
turbulence hypothesis (introduced in Taylor 1935). According to this hypothesis, high
enough frequencies f are related to high enough wavenumbers k by k=2πf /Uc, where
Uc is a convection velocity, usually the mean flow velocity at the data collection point.
Given that we find well-defined power laws in our frequency spectra with exponents
more or less close to −5/3, it makes sense to test the validity of Taylor’s hypothesis
at those points where these frequency spectra were found.

To verify Taylor’s hypothesis, we follow the approach of Laizet et al. (2015) and
compute the correlation coefficient

ρu(x1, 1x, 1t)=
〈u1(x1, t)u1(x1 +1x, t+1t)〉√
〈u1(x1, t)2〉〈u1(x1 +1x, t+1t)2〉

, (3.1)

where the velocity component u1 is of course also a function of x2 and x3 in principle
but the correlation is evaluated at x2= x3= 0. In figure 11(a), ρu is plotted for x1/d=
2 and for five different values of the spatial offset 1x. Even at separations as large
as 1x/d = 1, there is a strong correlation of the velocity signals. The peaks of the
correlation ρu can be used to compute Uc by taking the ratio between the values of
1x and 1t where these peaks occur.

As shown in figure 11(b,c), there does seem to be a linear relationship between
1x and 1t, suggesting that Uc is well defined, which supports the validity of the
Taylor hypothesis. As is also clear in figure 11(b,c), Uc is slightly larger than the mean
flow velocity on the centreline. For example, we have found the values Uc/U∞≈ 0.67
and Uc/U∞ ≈ 0.83 at the two centreline locations x1/d= 2 and x1/d= 4 respectively,
which, as can be seen in figure 4, are indeed larger than U1 at the same locations. In
fact, Uc appears to be close to the convection velocity of the large-scale vortices as
reported by Bloor & Gerrard (1966) and Zhou & Antonia (1992). Similar conclusions
can be reached for the components u2 and u3 of the fluctuating velocity in terms of
a correlation coefficient defined as in (3.1) but for u2 and u3 respectively. In fact, we
find Uc(x1, 0, 0)≈ 1.3U1(x1, 0, 0) for all three fluctuating velocity components in the
range x1/d > 3, and Uc/U1 slightly higher but under or close to 1.4 at x1= 2d on the
centreline. While many other considerations regarding the conversion from frequency
to wavenumber can arise (see Lumley 1965; Wyngaard & Clifford 1977), it is beyond
the scope of this paper to delve into such issues. The point of this limited space–
time analysis has simply been to confer a little more substance to our observation
of near −5/3 power law energy spectra by providing some evidence in favour of
the Taylor frozen turbulence hypothesis which therefore suggests that the power law
frequency spectra that we have observed may be reflections of similar underlying
wavenumber spectra. In the following subsection, we briefly report on second-order
structure functions as they are Fourier analogues of wavenumber spectra.

3.2. Second-order structure functions and corresponding spectra
Our supporting evidence for the Taylor hypothesis is limited to spatial separations r1
in the streamwise direction and cannot be expected to be valid in other directions.
We therefore extract from our DNS data second-order structure functions 〈δu2

i 〉 for
i= 1, 2, 3 as functions of (r1, 0, 0) at various locations x1 on the centreline. Given the
near −5/3 power law scalings observed in the frequency spectra, one might expect
these second-order structure functions to have a near 2/3 power law dependence on
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0

0.5

1.0(a)

(b) (c)

0.5 1.0 0 0.5 1.00

0.5
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FIGURE 11. In (a), the correlation coefficient (3.1) at x1/d= 2 on the centreline is plotted
for different separations 1x. In (b,c), the symbols indicate the locations of the peaks of
(3.1) at both x1/d = 2 (b) and x1/d = 4 (c) on the centreline, the full lines indicate the
slope Uc/U1 = 1 and the dashed lines indicate linear fits to the data.

r1 in an intermediate range of scales. The power law range in the frequency spectra
is, at most, approximately 0.5 < fd/U∞ < 3. Assuming that we can apply Taylor’s
hypothesis and therefore r1f = Uc, this power law range of frequencies translates to
(1/3)Uc/U∞ < r1/d < 2Uc/U∞, i.e. typically around 0.25 < r1/d < 1.5. However, as
seen in figure 12, the structure functions 〈δu2

i 〉 (for i= 1, 2, 3) do not have a near 2/3
power law in this range. In fact, the approximate slopes of log(〈δu2

1〉) and log(〈δu2
2〉)

vastly exceed 2/3, while the log(〈δu2
3〉) curve reaches it only tangentially in this range.

The striking difference between the planar structure functions 〈δu2
1〉 and 〈δu2

2〉

and the spanwise structure function 〈δu2
3〉 as well as the very steep growth of the

planar structure functions compared with r2/3
1 can be explained in terms of the vortex

shedding which is clearly visible in figures 9(a) and 10(a) but absent in figure 10(b).
The lack of a clear 2/3 power law in the r1 dependence of 〈δu2

3〉 is consistent with
the observation sometimes made (Frisch 1995; Lindborg 1999) that the range of
wavenumbers (or frequencies) over which a well-defined −5/3 power law is observed
is in general larger than the range of scales over which a 2/3 power law for the
second-order structure is clearly present (see also Antonia et al. 2003). We now
illustrate these two points in terms of a simple example.
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10–1 100 10–1 100 10–1 100
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10–2

10–1

100(a) (b) (c)

FIGURE 12. (Colour online) Second-order structure functions of the three different
velocity components along r1 at three different locations on the centreline. The dashed
line indicates a slope of 2/3.

We consider a model spectrum (see Pope 2000) given by

Eu(k)= E0(k)k−5/3Eη(k), (3.2)

where E0(k) and Eη(k) characterise the low- and high-wavenumber behaviour of the
spectrum respectively and are constant in the intermediate range of wavenumbers k
where Eu(k)∝ k−5/3. We take functions E0(k) and Eη(k),

E0(k)=
(

k/k0

[(k/k0)2 + c0]
1/2

)5/3

, (3.3a)

Eη(k)= exp(−cηk/kη), (3.3b)

so that Eu(k)∝ k−5/3 in the range k0� k� kη. We chose the constants c0 and cη and
the inner and outer wavenumbers k0 and kη such that the spectrum takes the form
shown in figure 13. In the same figure, we also plot another model spectrum obtained
in the exact same way but with highly amplified energy around a wavenumber ks (both
spectra integrate to the same total kinetic energy). We do so via

Es(k)= E(k)
{

1+ A exp
[
−(k− ks)

2

21k2
s

]}
, (3.4)

where A is an amplification factor, ks is the wavenumber associated with the shedding
and 1ks represents the spread of the spectral peak. Equation (3.4) attempts to mimic
the model introduced in Thiesset et al. (2014) in scale space, which is effectively
associated with a peak in spectral space. The −5/3 power law is well defined for
over one decade of wavenumbers in both model spectra, as made clear in figure 13(b),
where the spectra have been compensated by k5/3.

We now calculate the second-order structure functions corresponding to the two
model spectra of figure 13 from

〈δu2
〉 = 2u′2[1−F−1(Eu)], (3.5)

where F−1 denotes an inverse Fourier transform. These structure functions are plotted
in figure 14 and one can make two clear observations. First, there is no 2/3 power
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FIGURE 13. (Colour online) Models of a spectrum with one decade inertial range. One
of the spectra (in red) is amplified at a given wavenumber. In (b), the spectra are
compensated by k5/3.
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FIGURE 14. (Colour online) Second-order structure functions obtained by the inverse
Fourier transform of the spectra plotted in figure 13. In (b), the structure functions are
compensated by r−2/3.

law even though there is a well-defined −5/3 power law in the spectrum from which
these structure functions are derived. At best, 〈δu2

〉 reaches r2/3 only tangentially in
the case of the model spectrum without the shedding peak. This is similar to our
result plotted in figure 12 for 〈δu2

3〉, which concerns spanwise fluctuating velocities
unaffected by the planar vortex shedding. Second, the vortex shedding peak of one of
the two model spectra has introduced a growth much steeper than a 2/3 power law in
the corresponding structure function. As noted by Thiesset et al. (2014), one should
indeed expect the effect of the shedding on the second-order structure function to be
reflected by a sinusoid-like function. Figure 14 demonstrates that this sinusoid can,
in fact, very significantly contaminate the power law range of the structure function

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

39
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.390


332 F. Alves Portela, G. Papadakis and J. C. Vassilicos

100 101

10–2

10–1

100

101

102

FIGURE 15. (Colour online) Energy spectra in wavenumber obtained by Fourier transform
of the correlation functions of each velocity component at x1/d= 4.

even when the corresponding energy spectrum has a well-defined k−5/3 range over
more than a decade. The resulting structure function is much steeper than a 2/3 power
law in the range of scales that corresponds to the −5/3 part of the spectrum. This is
similar to our results plotted in figure 12 for 〈δu2

1〉 and 〈δu2
2〉, which concerns planar

fluctuating velocities that are affected by vortex shedding.
Inverting (3.5) and using it to obtain the spectra that correspond to the structure

functions in figure 12 does return −5/3 power law spectra over a range of
wavenumbers comparable to the range of frequencies where figures 9(a), 10(a)
and 10(b) exhibit −5/3 power laws (see figure 15).

In conclusion, the evidence presented in this and the previous subsections supports
the view that there is an underlying approximate r2/3

1 dependence in all three second-
order structure functions on the centreline of our DNS but over a very short r1 range.
In the case of the streamwise and cross-stream structure functions, this range is totally
overshadowed by the vortex shedding signature. The energy spectrum amplifies the
power law region and makes it appear as a clear near −5/3 power law over a wide
range of frequencies/wavenumbers while at the same time disentangling it from the
vortex shedding signature. However, these near −5/3 power law spectra cannot be
obviously explained by the Kolmogorov theory: their range appears to reduce rather
than increase with Reynolds number and, as we show in the following subsection,
there is no isotropy in that range.

3.3. Second-order structure functions and isotropy

In figure 16, 〈δq2
〉 is plotted for r3 = 0 at two different locations in space. The

distribution of 〈δq2
〉 in scale space shows that the energy is distributed anisotropically

in the range 0.26 r/d, which includes most of the range 0.15< r1/d< 1.5 where the
−5/3 power laws are observed. Comparison of figure 16(a) with figure 16(b) shows
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FIGURE 16. (Colour online) Distribution of 〈δq2
〉 normalised by U2

∞
in scale space on

the geometrical centreline at x1/d= 2 and x1/d= 8 in (a) and (b) respectively.
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FIGURE 17. (Colour online) The ith component of the second-order structure function
〈δu2

i 〉 normalised by U2
∞

on the centreline at x1/d= 2.

that there is an overall decrease of the energy and suggests some tendency towards
isotropy with increasing downstream position.

The structure functions associated with each velocity component at x1/d = 2 are
shown in figure 17. It is clear that the large values of 〈δq2

〉 observed in figure 16
are associated with the large contribution of 〈δu2

2〉 compared with the other two
components. In fact, one could have anticipated that, at least for orientations aligned
with the mean flow direction, the structure function associated with the vertical
fluctuations would have a significant contribution to the total energy, as comparison
of figure 6 with figures 5 and 7 shows that it is that component that contributes the
most to the turbulent kinetic energy.

The plots in figure 17 show very distinct anisotropy except for 〈δu2
3〉, which is

unaffected by the vortex shedding. As seen at the start of this section, the frequency
spectra of u1 and u2 show a persistent peak at the frequency associated with the
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FIGURE 18. (Colour online) Interscale flux of energy due to nonlinear interactions 〈δuδq2
〉

at x1/d=2 (a) and x1/d=8 (b) for r3=0. The arrows indicate the orientation of the vector
〈δuδq2

〉 and the contour indicates the magnitude normalised by U3
∞

.

vortex shedding, indicating that the anisotropy observed in figures 16 and 17 is most
likely due to the coherent motion, as also suggested by Thiesset, Danaila & Antonia
(2013b). However, it is not easy with the tools used in this paper to disentangle
the shedding-induced anisotropy from an underlying potentially isotropic small-scale
turbulence which may or may not be amenable to the Kolmogorov framework. We
leave this issue for a future study based on a triple decomposition of the velocity field
which distinguishes between coherent and incoherent fluctuations. In the following
section, we proceed with the study of the various terms in the KHMH equation, which
in fact brings further, and in fact more substantial, evidence of anisotropy.

4. Scale-by-scale budget of 〈δq2
〉

4.1. Forward and inverse cascades by nonlinear interactions
The nonlinear interscale transfer rate Π is the divergence in scale space of the
nonlinear interscale flux vector 〈δuδq2

〉. The orientation of this flux is directly linked
to the concept of energy cascade as it can characterise the direction where energy
flows in scale space. In the context of the Richardson–Kolmogorov equilibrium
cascade and the assumption of local isotropy, this flux has a radial component that
points from large to small separations for any orientation.

From now on, we concentrate attention on four centreline locations, namely x1/d=
2, 4, 6, 8, all far enough from the recirculation region and from the downstream end
of our DNS domain; see figures 2 and 4. In figure 18, we plot the nonlinear interscale
flux in scale space at two centreline locations. The figure shows the direction of the
vector 〈δuδq2

〉, with its magnitude in the background. While the magnitude of 〈δuδq2
〉

is, in general, larger at large separations, its distribution in scale space is far from
isotropic. Moreover, the orientation of 〈δuδq2

〉 varies drastically with the orientation
of the scale vector r, suggesting that 〈δq2

〉 is, on average, redistributed in scale space,
rather than solely transferred from large to small r.
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FIGURE 19. (Colour online) Radial contributions to the nonlinear interscale flux (a) and
transfer (b) of 〈δq2

〉 at x1/d= 2, (4.1) and (4.2) respectively.

It should be noticed how, at x1=2, the flux is directed outwards (from small to large
r/d) at separations close to the r2= 0 axis. At a location further downstream (x1/d=
8), the fluxes have rotated by 90◦ and the flux is now directed inwards (from large to
small r/d) at separations close to the r2= 0 axis (in agreement with the measurements
of Thiesset et al. 2014) but outwards at separations close to the r1 = 0 axis.

A necessary condition for a forward or inverse cascade is that the radial component

〈δurδq2
〉 = 〈δuiδq2

〉ri/r (4.1)

of the flux 〈δuδq2
〉 is positive or negative.

While the sign of 〈δurδq2
〉 indicates whether the flux is from large to small

(negative) or small to large (positive) scales, it is not sufficient to characterise the
energy cascade as being direct or inverse. For the energy to be truly cascading from
large to small scales, it is necessary that negative values of 〈δurδq2

〉 be associated
with negative values of the radial component of the nonlinear interscale transfer
rate Π written in cylindrical coordinates (with the cylindrical axis in the spanwise
direction), i.e.

Πr =
1
4
∂

∂r
〈δurδq2

〉 +
1
4r
〈δurδq2

〉. (4.2)

Conversely, for the energy to be cascading from small to large scales, positive values
of 〈δurδq2

〉 must be associated with positive values of Πr. In other words, the radial
flux 〈δurδq2

〉 is only responsible for an accumulation (depletion) of energy at a
given separation vector r if the gradient given by (4.2) is positive (negative) at that
separation vector. Figures 19 and 20 map (4.1) and (4.2) in scale space at the same
locations as figure 18.

It is now clear that figures 19 and 20 suggest a coexistence of forward and inverse
nonlinear cascades at both centreline locations x1/d = 2 and x1/d = 8. In agreement
with figure 18, the orientations where these two simultaneous cascades operate differ
at these two locations. The cascade appears inverse in the streamwise and forward
in the cross-stream direction at x1/d = 2, but forward in the streamwise and inverse
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FIGURE 20. (Colour online) Radial contributions to the nonlinear interscale flux (a) and
transfer (b) of 〈δq2

〉 at x1/d= 8, (4.1) and (4.2) respectively.

FIGURE 21. Illustration of the r3 = 0 plane for xi aligned with the centreline. The angle
θ indicates the angle over which the orientations of ri are averaged.

in the cross-stream direction at x1/d = 8. It is important to note that these local,
in scale space, inverse cascade behaviours coexist with energy spectra characterised
by near −5/3 power laws, in particular at x1/d = 2 where these power laws are
closest to −5/3 and the inverse cascade behaviour is in the streamwise direction where
the spectra are effectively evaluated. Such coexistence as the one at x1/d = 2 was
already observed in Gomes-Fernandes et al. (2015) in the very near field of a different
turbulent flow, while the experiments of Thiesset et al. (2014) did not allow capture
of these phenomena because their measurements were carried out further downstream
and because their measurement apparatus was limited to r2 = 0.

Given the presence of simultaneous forward and inverse cascade behaviours along
different scale-space orientations, it is important to average over these orientation
angles (as illustrated in figure 21) and work out whether the nonlinear cascade is,
on average, forward or inverse. The orientation-averaged radial component of the
nonlinear interscale flux, i.e. 〈δurδq2

〉
a
= (1/2π)

´ 2π

0 dθ〈δurδq2
〉 (where θ is the

scale-space orientation angle, i.e. r1/r = cos θ , see figure 21), is a function of r
and is plotted in figure 22 for centreline locations x1/d = 2, 4, 6, 8. Apart from
the location closest to the cylinder (x1/d = 2), 〈δurδq2

〉
a remains negative over all

scales investigated, and even at x1/d = 2 it remains negative over a wide range of
scales, r/d < 0.86. This means that the nonlinear cascade is forward on average on
the centreline near field 2 6 x1/d 6 8 of a square prism turbulent wake, and results
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FIGURE 22. (Colour online) Orientation-averaged radial component of the nonlinear
interscale flux 〈δurδq2

〉
a at four different locations along the centreline.

from combined forward and inverse cascades in different directions, as exemplified
by figures 19 and 20.

We distinguish between ‘forward/inverse cascades’ and ‘forward/inverse cascade
behaviours’ because the possibility remains that turbulent flow inhomogeneities, in
particular at the larger scales but a priori even potentially at some smaller scales,
may have some contribution to the behaviour of the interscale flux vector 〈δuδq2

〉.
Equally, inhomogeneity may be a priori and at least partially responsible for the
predominantly negative values of 〈δurδq2

〉
a, indicating a forward cascade on average.

Untangling of the inhomogeneity from the actual cascade contributions is a delicate
and important question which will need to be carefully addressed in future works.

4.2. Contributions of the different terms in the KHMH equation
As the KHMH equation clearly illustrates, the nonlinear cascade does not happen in
isolation unless the length scales considered are so small that direct viscous diffusion
effects matter and/or the turbulence is sufficiently inhomogeneous for at least one of
the production P , the linear interscale transfer rate ΠU, the spatial transport Tu and
the pressure term Tp to be significant. The type of inhomogeneity that causes the
advection term A to be non-negligible when averaging is over time and At = 0 by
construction is a reflection of the unsteady nature of the small-scale turbulence in the
frame following a mean flow. In this subsection, we examine all of these additional
processes in order to establish the energy exchange context in which the nonlinear
cascade of the previous section occurs.

We first confirmed that the viscous terms Dx and Dr are indeed negligible in
(2.1), except at very small scales (comparable to or smaller than the local Taylor
microscale, which is typically around d/10 at the centreline positions investigated)
(see appendix B in Valente & Vassilicos 2015). We therefore now deal with Π and
Tp, A and Tu, and P and ΠU.

In figures 23 and 24, both Π and Tp are plotted in scale space at two different
locations on the centreline (x1/d = 2 and x1/d = 8 respectively). In § 2.1, Tp is
written as −(∂〈δuiδp〉/∂xi)/2; however, another possible formulation is −(∂〈δui(p++
p−)〉/∂ri)/4, which resembles the expression for Π with −(p++ p−) taking the place
of δq2. At both locations (x1/d= 2 and x1/d= 8), Π acts simultaneously as a source
(Π < 0) and a sink term (Π > 0) in (2.1). However, Tp is initially (at x1/d = 2) a
sink term (Tp < 0) at all orientations and amplitudes of r, while further downstream
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FIGURE 23. (Colour online) Nonlinear interscale transfer Π (a) and pressure term Tp (b)
normalised by εr at x1/d= 2 on the centreline.
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FIGURE 24. (Colour online) Nonlinear interscale transfer Π (a) and pressure term Tp (b)
normalised by εr at x1/d= 8 on the centreline.

(at x1/d= 8), just like Π , it acts as both a source (Tp > 0) and a sink term (Tp < 0)
in (2.1).

It is important to distinguish Π from Πr (see (4.2)) shown in figures 19 and 20.
In § 4.1, Πr is used to describe how δq2 is exchanged from large to small scales
(and vice versa). However, the term that actually appears in the budget of 〈δq2

〉 is
Π , the divergence in scale space of the nonlinear interscale flux 〈δuδq2

〉. Figures 23
and 24 reveal that the nonlinear interactions can act as a source of 〈δq2

〉 independently
from the orientation of 〈δuiδq2

〉, i.e. it is not necessary to have a forward cascade
(〈δurδq2

〉< 0) to observe Π < 0.
What is also, perhaps, surprising from figure 23 and 24 is how Tp loses its

somewhat isotropic distribution as x1 increases. Moreover, it would appear from
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FIGURE 25. (Colour online) Advection A (a) and turbulent transport Tu (b) normalised
by εr at x1/d= 2 on the centreline.

figure 24 that there is some correlation at x1/d = 8 between the distributions of Tp
and Π in scale space, in agreement with recent results by Yasuda & Vassilicos (2017)
for periodic turbulence. The fact that Tp remains a significant term in the KHMH
equation may not be fully unexpected, from the measurements of Gomes-Fernandes
et al. (2015) for example, but it does not seem to have been previously reported.
One may anticipate that Tp reflects the presence of the coherent vortices associated
with the shedding which introduce strong pressure gradients in the flow.

Two other terms that also appear to correlate as the downstream location increases
are the terms responsible for transporting δq2 in physical space, A and Tu. In
figures 25 and 26, these two terms are shown side by side for x1/d= 2 and x1/d= 8
respectively. At all separation vectors r considered, one can observe that A < 0.
This indicates that, regardless of the orientation and amplitude of r, 〈δq2

〉 decays
in the direction of the mean flow. The turbulent transport Tu also appears to be
predominantly negative, especially at the location closest to the prism.

At x1/d=2, A appears to be roughly independent of the orientation of ri, suggesting
that initially the decay of 〈δq2

〉 depends only on r = |ri|. However, as x1 increases
and the production term weakens, A appears to tend to map in scale space in a way
roughly similar to Tu. This suggests the development with downstream distance of a
sweeping mechanism (see Tsinober 2009) whereby small-scale turbulent eddies are
transported by the larger turbulent eddies so that a tendency develops for A and Tu
to more or less balance.

The existence of a strong sweeping correlation between A and Tu is supported by
the measurements of Gomes-Fernandes et al. (2015), which reveal an even stronger
correlation between A and Tu than evidenced here (see figure 22 of that paper),
albeit in a different turbulent flow configuration, and by the recent DNS of periodic
turbulence by Yasuda & Vassilicos (2017).

The two remaining terms to be considered in the KHMH equation are P and
ΠU, which, unlike the previous terms which reflect inhomogeneity of the turbulence,
are associated with inhomogeneity of the mean flow. One therefore expects their
contribution in (2.1) to decrease with increasing downstream location, as is indeed
observed by comparing figures 27 and 28.
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FIGURE 26. (Colour online) Advection A (a) and turbulent transport Tu (b) normalised
by εr at x1/d= 8 on the centreline.
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FIGURE 27. (Colour online) Production P (a) and linear interscale transfer ΠU (b)
normalised by εr at x1/d= 2 on the centreline.

Apart from the clear decrease in magnitude, it is also clear that the distribution of
P undergoes a reorientation in scale space, perhaps similar to the one reported in
figure 18 for the interscale flux. The production P appears to be stratified along the
r1 axis at x1/d= 2, presumably as a consequence of the strong mean flow gradients in
the streamwise direction very close to the prism (see figure 4). Further downstream, at
x1/d= 8, P appears to be stratified along the r2 axis. The largest variations of mean
velocity occur in the cross-stream direction at that position.

It may be interesting to contrast the scale-space maps of P in figures 27 and 28
and those of the interscale flux in figure 18. At both centreline locations, x1/d = 2
and x1/d= 8, the apparently inverse cascading interscale flux which points from small
to large scales along r1 at x1/d = 2 and along r2 at x1/d = 8 also points from low
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FIGURE 28. (Colour online) Production P (a) and linear interscale transfer ΠU (b)
normalised by εr at x1/d= 8 on the centreline.

to high P values. However, in the x1/d = 2 case, it does clearly point from high
to low P values along the r2 axis where the cascade appears to be forward, which
does appear to be natural. We must leave the explanation of the non-intuitive relation
between inverse cascade and scale-space P map for a future study which may involve
all three directions in scale space and a better representation of coherent structures in
the scale-by-scale energy balance.

The scale-space map of ΠU is mostly determined by the alignment of the mean
velocity differences δUi with the gradient (in scale space) of 〈δq2

〉. It should be
recalled from figure 16 that the distribution of 〈δq2

〉 in scale space does not undergo
significant changes between the two locations investigated. On the other hand, the
components of δUi can be expected to decrease significantly as the wake spreads
and recovers towards U∞. In fact, δU1 must remain positive for positive r1 (as U1
increases with x1) and δU2 must remain negative for positive r2 due to the symmetry
of the wake.

The results presented in this subsection illustrate how the present turbulent flow
does not satisfy Kolmogorov’s 1941 premises of equilibrium, local homogeneity and
local isotropy even at separation length scales that correspond to the range where the
energy spectra we have presented have well-defined power laws with exponents close
to −5/3. The nonlinear cascade occurs in a context where various other processes
affecting the turbulent kinetic energy are active, including production, advection
and turbulent transport in physical space, correlations between fluctuating velocity
differences and differences of pressure gradients, and linear interscale transfer by
the mean flow. In the following subsection, we show how these processes balance
when we average over planar orientations, thereby reducing the orientation-averaged
KHMH equation to Π a

≈−εa
r ≈−ε over a growing range of separations r for further

downstream centreline positions x1/d (the superscript a indicates an average over
planar orientation angles, as illustrated in figure 21). We have ascertained that, at
x1/d = 2 and 8 on the centreline, εa

r and ε are very closely equal over the entire
range 0 6 r/d 6 1.1 of the figures discussed in the following subsection, so that if
the quantities plotted in these figures were normalised by ε, then these figures would
look effectively the same.
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FIGURE 29. (Colour online) Orientation-averaged terms of (2.1) normalised by εa
r at

x1/d= 2 (a) and x1/d= 8 (b).

4.3. Orientation-averaged KHMH equation
In figure 29, we plot the planar orientation-averaged terms of (2.1) normalised by εa

r .
These plots are shown for two centreline positions, x1/d = 2 and x1/d = 8. At r = 0,
all terms vanish except εa

r and Da
r , which balance exactly, as can actually be shown

analytically. At both positions, the viscous diffusion terms are negligible except at
separations r smaller than the Taylor length scale, which is approximately 0.06d at
x1/d = 2 and 0.1d at x1/d = 8. None of the other terms are negligible at separations
r larger than the Taylor length scale except ΠU at the larger centreline distance. In
fact, at x1/d = 2, all terms associated with inhomogeneity increase their contribution
to (2.1) as r increases.

As the distance from the prism is increased, the contribution of Π a
u is considerably

reduced (as already observed in figure 28). It can also be seen in figure 29 that even at
the location furthest from the prism, the effect of the fluctuating pressure, included in
T a

p , cannot be neglected, in particular at the largest separations. At the furthest of the
two locations, it appears that the dependences on r of Aa and T a

u mirror each other,
with a tendency for one to partly balance the other. This behaviour is consistent with
the sweeping mechanism referred to in the previous subsection concerning A and Tu
at x1/d= 8.

Finally, at both locations, we find a range of separations r larger than the Taylor
length scale where the orientation-averaged KHMH equation reduces to the following
couple of approximate balances:

Π a
+ εa

r ≈ 0≈−Aa
+ T a

u + T a
p − (Π

a
U −Pa). (4.3)

This range of separations where Π a
≈ −εa

r ≈ −ε increases with increasing x1/d is
clearly seen in figure 30, where Π a/εa

r is plotted at four different locations on the
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FIGURE 30. (Colour online) Orientation-averaged nonlinear interscale transfer Π a

normalised by −εa
r at four different locations along the centreline. See figure 22 for

legend.
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FIGURE 31. (Colour online) Orientation-averaged in-plane and out-of-plane components
of Π at x1/d= 8.

centreline (x1/d = 2, 4, 6, 8). In fact, this range of separations covers one decade at
x1/d = 4, 6, 8, and Π a

≈ −εa
r ≈ −ε appears to increase towards 1 with increasing

x1/d in the range of separations where it is constant. The PIV measurements of
Gomes-Fernandes et al. (2015) also found that Π a is approximately constant over
a range of separations r in the very near field of a different turbulent flow where
the inhomogeneity terms of the KHMH equation are also significant and in fact
dominant. However, their measurements indicated an apparently different value of
−Π a/εa

r , significantly larger than 1. It is not clear whether their different value of
Π a/εa

r is a result of the measurement limitations of their PIV and of the hypotheses
that they were therefore forced to make to extract information on the KHMH equation
from their measurements.

It is important to point out that the near constancy of Π a requires the inclusion
of both its in-plane (Π a

r ) and out-of-plane (Πz ≡ Π3) components (the angular
contribution Π a

θ = (1/2π)
´ 2π

0 (1/r)((∂〈δuθδq2
〉)/∂θ) dθ is zero). This is illustrated in

figure 31, where these two components are plotted as functions of r. Albeit small, the
contribution of Π a

3 is particularly relevant especially at the smaller separations, where
both Π a

r and Π a
3 are not constant but contribute to make Π a

=Π a
r +Π

a
3 constant. It

is likely that the inability of the experimental PIV of Gomes-Fernandes et al. (2015)
to access all velocity field components may have affected their results.
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As a final comment which echoes the last paragraph of § 4.1, the possibility remains
that the inhomogeneity of the turbulence might be contributing to the constancy of Π a.

5. Conclusions

The KHMH equation offers the possibility to study energy exchanges in any
turbulent flow irrespective of its particular inhomogeneous or anisotropic character,
and suggests that well-defined energy-related laws may exist and may perhaps even
be the same for a range of such flows. Remarkably, some of these laws seem to be
similar to those predicted by the Kolmogorov theory of homogeneous turbulence, but
their underlying causes can of course not be explained by this theory.

In this paper, we have investigated the turbulence in the very near wake of a
square prism at Re = 3900. Our results reveal that the power spectrum densities of
the fluctuating velocity exhibit a near −5/3 slope over a wide range of frequencies
on the centreline even though the flow is highly inhomogeneous and anisotropic. This
slope is more evident at the location closest to the prism. We also find support for
a Taylor frozen turbulence hypothesis. These spectra may therefore be the reflection
of a Kolmogorov-like r1 dependence of second-order structure functions, even if this
dependence is masked by coherent structure signatures.

The local inhomogeneity and local anisotropy in the region of the flow that we
have focused on are made amply manifest by our study of all of the terms in the
fully generalised scale-by-scale energy balance, the KHMH equation. The energy
exchange processes caused by inhomogeneity are all active, and some of them,
specifically advection, turbulent transport in physical space and the term representing
the effects of fluctuating pressure, are, along with the nonlinear interscale cascade,
the dominant processes in play. The strong dependence of all inhomogeneity terms
on the orientation of the two-point separation vector shows that a conclusive study of
the KHMH equation cannot be made by investigating pairs of points along a single
orientation in a turbulent flow region such as the present one.

In spite of this extremely inhomogeneous and anisotropic setting and its related
turbulent energy processes, the orientation-averaged interscale transfer rate Π a is
approximately independent of separation r over a range of r that increases with
increasing x1/d from x1/d = 2 to at least x1/d = 8 on the centreline. Even more
remarkably, this constant Π a tends towards −εa

r ≈−ε, i.e. Π a
≈−εa

r ≈−ε, as x1/d
increases, at least up to x1/d= 8. The computational domain of our DNS is not large
enough to allow us an insight into what happens at normalised distances x1/d larger
than 8.

Even in the majority of cases (different values of r and x1) where the orientation-
averaged interscale transfer rate Π a is negative and the nonlinear cascade is therefore
forward on average, this overall cascade consists of a mix of forward and inverse
nonlinear cascade behaviours in different orientations of the separation vector r.
These local, in scale space, inverse cascade behaviours coexist with energy spectra
characterised by near −5/3 power laws. At x1/d = 2, where energy spectral power
laws are best defined with exponents closest to −5/3, the inverse cascade is in the
streamwise direction where the spectra are effectively evaluated. Such coexistence
between −5/3 spectral scalings and an inverse nonlinear cascade behaviour was
already observed in Gomes-Fernandes et al. (2015) in the very near field of a
different fully three-dimensional turbulent flow.
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At the furthest downstream distance from the prism that our DNS can reliably
reach, an approximate alignment appears to form between the scale-space maps of
the pressure term Tp and Π on the one hand and between the advection A and
the turbulent transport Tu on the other. The latter may suggest the appearance of
a sweeping mechanism whereby the largest turbulent eddies transport small-scale
turbulence as it evolves.

Finally, our results reveal that the effects of the fluctuating pressure on the scale-
by-scale energy balance cannot be neglected, at least in the near field of a turbulent
wake.
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Appendix A. Further comparisons with experiments and DNS
The shedding frequency fs was obtained by taking the power spectrum of the

time signal of the lift coefficient CL (shown in figure 32). The alternating peaks
and valleys correspond to the instances in time when each vortex departs from the
vortex formation region. The drag coefficient CD fluctuates with twice the shedding
frequency (as seen in figure 32) since each alternating vortex induces the same low
pressure on the downstream face of the prism.

In figures 33–35 we report, respectively, values of CD, C′L and C′D/C
′

L at different
vaues of Re. Despite the low availability of statistics for the force coefficients at
Re ∼ O(103), we find our results to fall within the experimental and numerical data
of the listed references. For the present Reynolds number of 3900, the fluctuating lift
coefficient has a standard deviation of C′L = 1.52 and the drag coefficient has a mean
value of CD= 2.15 with a standard deviation of C′D= 0.2. Even though it appears that
for the present Re the St and CD are independent of Re, this appears not to be the
case for both C′L and C′D, as can be seen in figures 34 and 35.

In figure 36, the distribution of the mean spanwise averaged pressure coefficient

Cp =
P− P∞

1
2ρU2

∞

(A 1)

over the surface of the square is shown.
Good agreement is found when comparing the obtained distribution of Cp along the

surface with the literature. Despite the scatter in the experimental results, we find
that in our DNS, the distribution of Cp along the back face of the prism (CD in
figure 36) and on the top and bottom faces (BC and DA in figure 36) is within the
data of Bearman & Obasaju (1982), Norberg (1993), Chen & Liu (1999) and Trias
et al. (2015).

In figure 37, the mean streamlines are shown in the vicinity of the prism (only the
top half of the domain is shown). The large recirculation bubbles (connected by a
saddle point at x1/d≈ 0.49, x2/d≈ 0.6) can be clearly identified above the top surface
of the prism and just downstream of its back face. In addition to these recirculation
regions, two small separation bubbles exist on the top surface: an elongated one near
the front face and a much smaller one closer to the back face. These separation
bubbles have also been reported in Mizota & Okajima (1981), Sohankar (2006) and
Trias et al. (2015) for flows at higher Reynolds numbers.
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FIGURE 32. Time signals of CL (full line) and CD (dashed line) versus number of
shedding periods ns = tfs.
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FIGURE 33. Mean drag coefficient at different values of Re. The symbols are the same
as in figure 3.
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FIGURE 34. Root mean square of the lift coefficient at different values of Re. The
symbols are the same as in figure 3.

Appendix B. Statistical convergence

Statistics were collected for approximately 30 shedding periods. Both single- and
two-point statistics were then averaged in the spanwise direction. Traditionally,
statistical convergence is assessed by computing a confidence interval which is
computed from the standard deviation of the variable being sampled and knowledge
regarding the number of independent samples in the dataset (related to the integral
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FIGURE 35. Ratio between the root mean squares of the drag and lift coefficients at
different values of Re. The symbols are the same as in figure 3.
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Bearman & Obasaju (1982) Trias et al. (2015) Mizota & Okajima (1981)

Present

C

A D

FIGURE 36. Distribution of the spanwise averaged mean pressure coefficient Cp over
the sides of the prism. Experimental data are indicated by symbols and DNS by lines.
The data from Norberg (1993) were taken from Sohankar, Norberg & Davidson (1999).
Bearman & Obasaju (1982) only measured Cp over the top half of the prism (from the
midpoint of AB to the midpoint of CD).

time scale, see George 1978; Benedict & Gould 1996). As the wake is strongly
affected by the shedding, computation of the integral time scale is not trivial due to
long correlations introduced by the coherent motion.
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FIGURE 37. Mean streamlines in the vicinity of the prism. Only the top half of the
domain is shown.

5 10 15 20 25 300

0.1

0.2

FIGURE 38. (Colour online) Running average of the spanwise averaged streamwise
second-order structure function 〈δu2

1〉 at three midpoints and for two different separations
in the streamwise direction.

Figures 38 and 39 show the running averages of two-point statistics at the centreline
of the wake for some combinations of midpoints and separations. Large variations are
observed only in the first few shedding cycles. It can also be seen that the statistics
of smaller separations fluctuate the least as the integral scales associated with the
smallest separations (or smallest length scales) are indeed smaller, as noted in Valente
& Vassilicos (2015), where the integral scales associated with each separation were
computed in order to determine (for each scale) the number of independent samples.

A final assessment of the quality of the statistics collected is made by looking at
the transient term of (2.1), At. In (2.1), this term is written as ∂〈δq2

〉/∂t since the
averaging and time differentiation are assumed to commute. If one instead writes At

as 〈δq2/∂t〉, then it will converge to zero with T−1, where T is the integration time.
Checking how close At is to the expected value of zero is then also an indication of
how well converged the statistics are.

In figure 40, we plot the absolute value of 〈δq2/∂t〉 normalised by the two-point
dissipation, highlighting its relevance in the budget (2.1). The transient term At

remains at least one order of magnitude smaller than the dissipation at all orientations
and locations considered.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

39
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.390


The turbulence cascade in the near wake 349
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FIGURE 39. (Colour online) Running average of the spanwise averaged streamwise third-
order structure function 〈δu1δq2

〉 at three midpoints and for two different separations in
the streamwise direction.
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FIGURE 40. (Colour online) Distribution in scale space (for r3= 0) of the absolute value
of the time-averaged transient term |At| normalised by the two-point dissipation εr at two
different locations on the centreline at x1 = 2d (a) and x1 = 8d (b).
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