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SUMMARY
This paper proposes an adaptive robust impedance control for a single-link flexible arm when it
encounters an environment at an unknown intermediate point. First, the intermediate collision point
is estimated using a collision detection algorithm. The controller, then, switches from free to con-
strained motion mode. In the unconstrained motion mode, the exerted force to environment is
nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In
the constrained motion mode, the reference trajectory is determined by the desired target dynamic
impedance. The simulation results demonstrate the efficiency of proposed control scheme.

KEYWORDS: Impedance control; Adaptive sliding mode controller; Single-link flexible manipu-
lators; Unknown intermediate point; Disturbance observer.

1. Introduction
Flexible robots are widely used in various applications, such as aerospace, medicine, industry, etc.
Flexible robots are mainly introduced with at least one flexible element in their mechanical struc-
ture. Flexible robots have several advantages over the conventional rigid robots which include the
higher speed operation, lower energy consumption, faster maneuverability, better transportability,
and higher payload-to-arm weight ratio. In spite of these useful characteristics, due to the extensive
structural flexibility, the modeling and control of the flexible robots are more complicated over rigid
ones.

Recently, flexible links have been utilized extensively in various new robotic applications.
Important among these applications are the following: industrial new robotics applications with a
focus on the use of lightweight materials; aerospace industry application in which the lightweight
of the manipulators is an essential requirement;1 motion control of large structures, such as boom
cranes and fire rescue turntable ladders, which are treated as flexible link robots;2 motion control of
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a sensing antenna that slides on a surface and detects an object.3, 4 Modeling, control, and some of
the most important applications of the flexible manipulators have been reviewed in refs. [5–9]. Three
control algorithms which are mainly used to accomplish tasks that involve constrained motions are
impedance control, admittance control, and hybrid position/force control. The idea of impedance
control first proposed by Hogan.10

In the recent decades, various control approaches into flexible manipulator interacting with the
environment have been proposed.11–19 Some of these control strategies are in relation to the force
control of the flexible robot. Moreover, in the last two decades, impedance control of the rigid
manipulators interacting with the environment has been widely reviewed that can be found in the
scientific literature.20–29 However, the robust impedance control of the flexible manipulator has been
rarely addressed by the researcher.30–34 In ref. [15], force control of a lightweight single-link flexi-
ble arm is presented based on coupling torque feedback. In ref. [30], the modeling and impedance
control of a single-link flexible arm are proposed for both constrained and unconstrained movements
through sliding mode control algorithm. In ref. [34], robust impedance control of a single-link flex-
ible manipulator interacting with the unknown environment is proposed using sliding mode control
which is valid for both unconstrained and constrained maneuvers.

In many articles which are related to the control of a single-link flexible arm interacting with the
environment, for example, in refs. [15,30], two separate controller are suggested to control the system
for two different operating modes (free and constrained motion). Therefore, two different dynamic
models should also be available for this operating modes. A collision detection algorithm is also
required for switching the controller from the unconstrained to the constrained motion mode. In addi-
tion, the environment parameters (stiffness and damping coefficient) have to be known. Moreover, in
most of the research done with the subject of the impedance control of the flexible manipulators, the
contact point is usually considered at the end point of the manipulator. Whereas, there is a lack of
study on impedance control of the flexible manipulators with collision at an unknown intermediate
point. The ultimate aim of this paper is to apply an adaptive robust impedance control method to
the single-link flexible manipulators interacting with the environment with collision at an unknown
intermediate point of the manipulator. In our novel approach, the controller automatically switches
from the free to the constrained motion mode; therefore, it does not need an algorithm to detect col-
lision between the link and environment. In this regard, an impedance control is proposed based on
the position control. This means that in the free motion, the applied force to the environment is zero
and the reference trajectory for the position control block is the desired trajectory. Whereas, in the
constrained motion mode, the reference trajectory for the position control block is determined by the
desired impedance dynamics.

This paper is structured as follows. Section 2 describes the modeling of the single-link flexible
arm. Section 3 introduces the adaptive robust impedance control algorithm which is based on the
sliding mode control method. Sections 4 and 5 present the stability analysis of closed-loop control
system and the definitions of the performance criteria. Section 6 provides the simulation results to
depict the effectiveness of our proposed control scheme. Finally, Section 7 presents our conclusions.

2. Dynamic Modeling of a Single-Link Flexible Manipulator System
In general, there are two methods which can be used to drive the single-link flexible manipulator
dynamics. The first method is based on ordinary differential equations, which are derived using
approximation methods such as the lumped parameter model,35 the lumped mass model,36 or the
truncation of a distributed parameter model.37 The second method is based on partial differential
equation dynamic models which can accurately reflect the dynamic features of flexible manipula-
tors.38, 39 In the following, the single-link flexible manipulator dynamics and DC motor dynamics are
described.

2.1. Link dynamics: Constrained motion with collision at the intermediate points
In this section, the lumped mass model is used to obtain the reduced flexible link dynamics with tip
mass in order to achieve a simple and convenient design control.15 The dynamics model of a single-
link flexible arm with collision at the end point is presented in ref. [34]. In this work, we pursue to
derive the dynamics model for a single-link flexible manipulator with collision at an intermediate
point. Figure 1 depicts the parametric representation of a single-link flexible arm in constrained
motion mode when it comes into contact with the environment at an intermediate point.
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Fig. 1. Single-link flexible arm with collision at an unknown intermediate point.

In this figure, m is the tip mass, l is the length of the arm, l2 = λl, 0 < λ < 1 is the location of the
contacted intermediate point, Fn is the contact force (the reaction force of the surface on the link), Fe

is the interaction force applied on the object, �l is the coupling torque, θm is the motor angle, θt is the
angular position of the tip mass (load angle), θc represents the angular position of the collision point,
θe is the equilibrium angular position of the impact surface, and c = 3EI

l is the rotational stiffness
coefficient of the arm, which is considered constant throughout the whole flexible structure as occurs
in refs. [15, 19]. Next, the assumptions in ref. [34] and the following assumptions are considered:

• Assumption 1: There are no rebounds.
• Assumption 2: The collision point between the flexible arm and the environment occurs in an

intermediate point of the link.
• Assumption 3: The contact force is defined by its normal component, that is, its component in the

Y axis. Therefore, the tangential component is ignored.
• Assumption 4: The mechanical impedance of the environment is represented by the spring-damper

system.
• Assumption 5: The stiffness parameter EI is constant throughout all of the beam.

Let us decompose the robot link into two segments, the first one from x = 0 to x = l2 and the
second one from x = l2 to x = l. If the assumptions 4–8 and 11 hold, the deflection of each of these
intervals is given by a third-order polynomial:

yi (x) = qi,0 + qi,1 (x − li) + qi,2 (x − li)
2 + qi,3 (x − li)

3 (1)

where i = 1, 2 is the ordinal of the segment, qi,j are the polynomial coefficients (which are different
in each interval), l1 = 0, and l2 = λl. The mechanical impedance of the environment is described by
the well-known spring-damp system:

Fe = ke( y(λl) − ye) + ve
d( y(λl) − ye)

dt
(2)

where ke and ve are the stiffness and damping characteristics of the environment, respectively, ye is
the equilibrium position of the impacted surface (its “y” coordinate in the X-Y frame), and y(λl)
is the position of the point of the link that contacts the object. Substituting y(λl) = l2θc = λlθc and
ye = l2θe = λlθe into (2) results:
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Fe = keλl(θc − θe) + veλl
d(θc − θe)

dt
(3)

Since ye is a fixed point in the plane, we have therefore that d(θe)

dt = 0 and the Eq. (3) is transformed
as follows:

Fe = keλl(θc − θe) + veλl
d(θc)

dt
(4)

Equating rotational moments with respect to the axis Z yields:

�l = ml2θ̈t − l2Fn = ml2θ̈t + keλ
2l2 (θc − θe) + veλ

2l2θ̇c (5)

where it has been taken into account that Fe = −Fn. The equations of arm deflection are as follows:

y1 (x) = q1,0 + q1,1x + q1,2x2 + q1,3x3

y2 (x) = q2,0 + q2,1 (x − l2) + q2,2 (x − l2)
2 + q2,3 (x − l2)

3
(6)

where the coefficients q1,0, q1,1, q1,2, q1,3, q2,0, q2,1, q2,2, and q2,3 are given by:

q1,0 = q1,1 = 0

q1,2 = 1

2EI

(−ml2θ̈t + λlFn
)

q1,3 = 1

6EI

(
mlθ̈t − Fn

)
q2,0 = y1 (l2) = ml4λ2 (λ − 3)

6EI
θ̈t + 2l3λ3

6EI
Fn

q2,1 = dy1 (l2)

dt
= ml3λ (λ − 2)

2EI
θ̈t + l2λ2

2EI
Fn

q2,2 = −ml2 (1 − λ)

2EI
θ̈t

q2,3 = ml

6EI
θ̈t

(7)

On the one hand, the deviation of the contact point of the link of the flexible arm can be expressed as
follows:

y1 (l2) = l2 (θc − θm) = q1,0 + q1,1l2 + q1,2l22 + q1,3l32

= l2λ2

2EI

(−ml2θ̈t + λlFn
)+ l3λ3

6EI

(
mlθ̈t − Fn

) (8)

After simplifying, Eq. (8) can be rewritten as:

2c

l
(θc − θm) = mlλ (λ − 3) θ̈t + 2λ2Fn (9)

On the other hand, the deviation of the contact point at the end point of the flexible arm can be
expressed as follows:

y2 (l) = q2,0 + q2,1 (l − l2) + q2,2 (l − l2)
2 + q2,3 (l − l2)

3

= ml4λ2 (λ − 3)

6EI
θ̈t + 2l3λ3

6EI
Fn +

(
ml3λ (λ − 2)

2EI
θ̈t + l2λ2

2EI
Fn

)
l (1 − λ)

− ml2 (1 − λ)

2EI
l2 (1 − λ)2 θ̈t + ml

6EI
l3 (1 − λ)3 θ̈t

= l (θt − θm)

(10)
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After simplifying, the following equation can be obtained:

2c

l
(θt − θm) = −2mlθ̈t + λ2 (3 − λ) Fn (11)

Considering the system of Eqs. (9) and (11), the angular position of the end point of the beam (θt) and
the angular position of the intermediate point of the beam which has contact with the environment
(θc) can be obtained by solving this system of equations as follows:

X = M−1 × N (12)

Where X, M, and N can be expressed as the following equations:

X =
(

θ̈t

θ̇c

)

M =
(

mlλ (3 − λ) 2veλ
3l

2ml (3 − λ) veλ
3l

)

N =
(

2c
l (θm − θc) − 2keλ

3l (θc − θe)
2c
l (θm − θt) − (3 − λ) keλ

3l (θc − θe)

)
(13)

Unlike the collision at the end point of the beam, in this case, the structure of dynamics model will
not be integrated in the free and constrained motion mode. In the free motion mode, the dynamics
model is described by two state variables. However, after collision at an intermediate point of the link,
in the constrained motion mode, the dynamics model is described by three state variables. Therefore,
the governing dynamical equations in the constrained motion mode can be obtained as Eq. (12).
In the free motion mode, we assumed that the beam tip had hit the object with zero impedance. Thus,
the governing dynamical equations of the beam tip are as follows:19

Fn = 0

ml2θ̈t = c (θm − θt)

�l = c (θm − θt)

(14)

Next, the dynamics model of the single-link flexible arm is completed by introducing the actuator
dynamics.

2.2. Motor dynamics
In this work, a DC motor with a reduction gear is used, which is a common electromechanical actu-
ator used in many control systems in order to drive robotic links. This actuator is operated by a
current servo-amplifier. The current servo-amplifier controls the input current to the motor which is
proportional to the voltage supplied to the servo-amplifier by the computer. The block diagram of
the actuator (servo-amplifier + motor + gear) is shown in Figure 2 whose equations are given by the
following:

Motor : k̂mî = J ¨̂
θm + v ˙̂

θm + �̂Fm + �̂l (15)

Servo − amplifier : î = k̂au (16)

Gear : θ̂m = θ̂ln; �̂l = �l

n
; �̂Fm = �Fm

n
(17)

where k̂m is the electromechanical constant of the motor, î is the current supplied to the motor by
the servo-amplifier, Ĵ is the motor inertia, v̂ is the viscous friction of the motor, �̂Fm is the unknown
Coulomb friction torque, �̂l is the coupling torque between the flexible slewing link and the motor
shaft, u is the voltage supplied to the servo-amplifier generated by the computer, k̂a is the servo-
amplifier gain, n is the reduction ratio of the gear, θ̂m is the motor angle, and θm is the load angle
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Fig. 2. Block diagram of the actuator.

(or the motor angle in the gear outlet). Variables and parameters with upper hat are referred to the
motor side of the gear. For example, the conversion between angles of the motor is θ̂m = θmn and
the conversion between the torques is �̂l = �l

n . Therefore, by combining the above Eq. (15)–(17), the
complete actuator system dynamics is obtained by the following equation:

knu = Ĵn2θ̈l + v̂n2θ̇l + �Fm + �l (18)

where k = kmka. The Coulomb friction is considered as a perturbation which affects the system
dynamics. This perturbation depends on the sign of the motor angular velocity. Therefore, the model
of the Coulomb friction torque can be defined by the following equation:

�Fm =
{

�c.sign(θ̇m) θ̇m �= 0

sign(u). min(k |nu| ,�c), θ̇m = 0
(19)

where �c is an unknown constant value which is different for each motor and represents the static
friction value which the motor torque must exceed to begin the movement, also called the Coulomb
friction coefficient. The first case shows the Coulomb friction torque when the motor is moving, and
the second case shows the same torque when the motor is stopped.

3. Controller Design
In this section, an adaptive robust control system is designed for the impedance control of the single-
link flexible arm which is valid for both free and constrained motions. Figure 3 illustrates the closed-
loop control system scheme in which Block I demonstrates the linear plant analyzed in the previous
section for constrained motions (servo-amplifier + DC gear motor + arm + environment), Block III
estimates the contact length (l2 = λl), determines the contact angle (θc), and calculates the contact
force which is exerted to the environment (Fe), and Block II and Block IV represent the robust
impedance control based on the position control with force tracking in which the position control
(Block IV) is an adaptive PID controller based on sliding mode control. Figures 4 and 5 detail the
block I and the block III, respectively.

In the case in which the collision between the link and the environment happened at an inter-
mediate point of the link, it is assumed that the environment parameters are known. Instead, the
collision point is unknown (the parameter λ is uncertain). For determining the contact force and the
angular position of the impact point, a fictitious arm is considered that moves simultaneously with
the real arm and hits the environment at a known intermediate point. It should be reminded that the
impact point with the environment can be changed at the fictitious arm length. The fictitious arm is
stimulated by the measured position of the motor (θm). Before we design the controller, it should
be considered that the model must be valid for both constrained and free movements. Therefore, we
utilize the linear dynamic model (12) for constrained motion mode with collision at the intermediate
points and utilize the linear dynamic model (14) in free motion mode. In the free motion mode, it is
assumed that the end-effector in the zero initial contact angle had hit the object with zero impedance.
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Fig. 5. Estimation of the contact length and determination of the contact angle and the contact force.
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After determining the unified model that is able to represent the dynamic characteristics of the flexi-
ble link in both constrained and free motion modes, the unified controller is designed with only one
parameter set which satisfies the control task requirements. As mentioned in the Introduction, in the
free motion, the applied force to the environment is zero and the reference trajectory for the position
control block is the desired trajectory (θd). In the constrained motion, the reference trajectory for the
position is determined by the desired impedance dynamic which is generated by the target impedance
block in Figure 3 (θr). Assuming that the position controller is accurate and assuming the dynamics
and the geometry of the environment are known, the stiffness gain of the desired impedance could
be selected so that the contact force could be regulated to the desired value. Therefore, the precise
design of the position controller is the main part of this work in the robust impedance control. In the
following, the task of the Block II, Block III, and Block IV will be explained.

3.1. Adaptive robust impedance control scheme with force regulation at the intermediate point of the
link (Block II)

Consider the target impedance equation, which combines the position and the interaction force as the
following equation:

Fe = km
(
θ̈d − θ̈r

)+ kd
(
θ̇d − θ̇r

)+ kp (θd − θr) (20)

where θd and θr represent the desired angle and the reference angle for the position controller, respec-
tively. Fe is the reaction force of the surface on the link which is obtained from (4). Moreover, km, kd,
and kp are target parameters for the desired impedance. In the steady state, by assuming the accurate
position control and regulating the contact force to a desired value, the two Eqs. (20) and (11) are
re-written as follows:

Fd = kp (θd − θc) (21)

Fd = keλl (θc − θe) (22)

In Eq. (21), kp is the impedance gain corresponding to the information of the motionless object
to regulate the interaction force to the desired value (Fd). Therefore, using Eqs. (21) and (22), the
impedance stiffness coefficient could be selected such that the interaction force applied on the object
is regulated to the desired value as the following equation:

kp = Fdkeλl

keλl (θd − θe) − Fd
(23)

3.2. Estimation of the contact length and calculation of contact angle and contact force (Block III)
In this section, we use a fictitious arm to estimate the contact length. In this way, the fictitious arm
is stimulated at the same time that the real arm is stimulated by the motor angle of the real arm.
Therefore, the exact angular position of the collision point at the real arm’s length is determined by
updating the parameter λ according to the following updated equation:

λnew = λold + α
(
�

f
l − �l

)
(24)

Where α represents a learning rate, �
f

l is the coupling torque of the fictitious arm, and �l is the
measured coupling torque of the real arm. It should be noted that both of the arms (real and fictitious
arms) are stimulated by the motor angle of the real arm. Therefore, by choosing an appropriate value
for the α and by starting from an initial value of λ, the contact length of the impact point converges
to its actual value (see convergence proof of the algorithm in Appendix A). Thus, by specifying the
contact length (l2 = λl), the information needed for the impedance controller is obtained by using the
governing dynamical equations.

3.3. Adaptive robust position-based impedance control scheme (Block IV)
As aforementioned, the main part of the impedance control design in this work is related to the design
of the position control. Eliminating the deflection caused by the link flexibility is the significant chal-
lenge of the position control in the flexible link. To solve this challenge, one may consider the flexible
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Fig. 6. Position control block consist of an adaptive PID controller based on sliding mode control equipped by
a disturbance observer.

link as a rigid one by assuming that the deflection of the flexibility is caused by an input disturbance.
The undesirable effect of deflection must somehow be eliminated. Therefore, the proposed adap-
tive sliding mode controller is equipped by a disturbance observer in order to remove this adverse
effect. In the next subsection, the PID adaptive controller based on sliding mode control is described
which is equipped by a disturbance observer. Figure 6 details the position control strategy (Block
IV) consisting of the PID adaptive controller based on the sliding mode controller. As can be seen
from this figure, the adaptive PID sliding mode control (APIDSMC) is equipped by a disturbance
observer.

3.3.1. Adaptive controller equipped by a disturbance observer. The interaction force applied on the
environment is given by Eq. (4). Thus, Eq. (5) can be rewritten as:

�l = ml2�θ̈c + Fel2 (25)

A gain, we consider Eq. (18), which is related to the dynamics of actuator system as follows:

knu = Ĵn2θ̈l + v̂n2θ̇l + �Fm + �l (26)

In this study, the main idea in the position control of the flexible link is based on this assumption that
the deflection of the beam tip can be considered as a disturbance in the control input. Thus, according
to this hypothesis, the contact angle of the beam (θc) is considered as equal as the motor angle (θl).
Instead, the source of the beam deflection is considered in the voltage input. Therefore, the governing
dynamical equation of the flexible link with the motor dynamics becomes a second-order equation
which in the state-space representation can be expressed as follows:{

ẋ1(t) = x2(t)

ẋ2(t) = ax2(t) + b (u(t) + Vd(t)) + z + �d
Fm

(27)

where, x1(t) = �θc(t), x2(t) = �θ̇c(t), a = − vn2

Jn2+ml2 , b = Kn
Jn2+ml2 , and z = − Fel

Jn2+ml2 . �d
Fm

is the
unknown Coulomb friction disturbances, u(t) and Vd(t) represent the control signal (control input
voltage) and the input disturbance, respectively. In the sliding mode control theory, an appropriate
sliding surface is selected and the control input is, then, designed such that the sliding surface satisfies
the sliding sufficient condition. This makes the system robust against uncertainties such as parameter
variations, frictions, and disturbances. In the following, e (x, t) represents the unknown disturbance
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term which is defined as:

e (x, t) = bVd + �d
Fm

(28)

We define the error between the command angular position trajectory θr and the contact angular
position as follows:

ep = θr − θc (29)

In order to achieve a second-order error dynamics, the signal is defined as follows:

θ̇er = θ̈r + K1ėp + K0ep (30)

where K1 and K0 are chosen by designers such that roots of s2 + K1s + K0 = 0 are in the open left-
half complex plane. In general, we can choose K1 = 2ξωn and K10 = ω2

n, where ξ is the damping
ratio and ωn is the natural frequency. A typical sliding surface can be selected as:

σ = θ̇c − θer (31)

If sliding mode occurs, that is, σ = 0, then

θ̇c = θer (32)

Substituting (32) into (30) yields:

ëp + K1ėp + K0ep = 0 (33)

This implies that error will tend to zero (ep → 0) as time goes to infinity (t → ∞). Next, the control
input u which must be designed is split into three parts, namely, uPID, us, and un as follows:

u = uPID + us + un (34)

with

uPID = 1

b

(
KPep + KI

∫
epdt + KDėp

)
(35)

us = −1

b

(
ax2 + z − ∣∣θ̇er

∣∣+ ksσ + kstsat (σ )
)

(36)

sat (σ ) =
{

sgnσ if |σ | > ϕ
σ
ϕ

if |σ | < ϕ
(37)

un = −1

b
ê (38)

where ks, kst, and ϕ are adjustable positive constants. The component un is used to compensate the
unknown disturbance e. The discontinuous sentence us with its smooth approximation is used to
reduce the chattering phenomenon at the reaching phase in the sliding mode control and is also used
to compensate the known terms. The three PID controller gains, KP, KI , and KD, can be updated
by a proper gradient-based adaptation mechanism to provide a robust controller as the following
equations:

K̇P = −η1σep(t)

K̇I = −η2σ
∫ t

0 ep(τ )dτ

K̇D = −η3σ
d
dt ep(t)

(39)

where, ηi > 0, i = 1, 2, 3 is the learning rate. It should be noted that the ηi i = 1, 2, 3, KP, KI , and
KD should be carefully chosen such that lead to guarantee the stability and the convergence of system.
In order to prove the controller stability, let the Lyapunov function be considered as follows:

Vc = 1

2

(
σ 2 + 1

η1
K2

P + 1

η2
K2

I + 1

η3
K2

D

)
(40)
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Taking derivative both sides of (40) yields,

V̇c = σ σ̇ + 1

η1
KPK̇P + 1

η2
KIK̇I + 1

η3
KIK̇I (41)

Substituting adaptive laws (39) into (41) and simplifying, then (41) can be rewritten as:

V̇c = −ksσ
2 − kstsat (σ ) σ + ẽ (42)

In (42), ẽ = e − ê is the disturbance estimation error. If the disturbance estimation (ê) is such that
the estimation error (ẽ) goes close to zero, the V̇ will be negative semi-definite, thereby the stability
of controller is guaranteed. Therefore, the control law given by (34) and adaptive laws (39) guarantee
the reaching and sustaining of the sliding mode. Thus, in spite of the link deflection, the reference
trajectory which is generated by the target impedance block will be tracked. In the next subsections,
a disturbance observer is proposed to estimate the unknown disturbance (e).

3.3.2. Disturbance observer. In this section, a disturbance observer is designed to estimate e such
that the estimation error ẽ tends to zero. The disturbance observer is a modified version of that
presented in ref. [40]. Let the estimate of the uncertainty e be expressed by the following equation:

ê = d̂ (t) + p (σ ) (43)

where d̂ (t) and ê are an update law which can be considered as the internal state of the observer and
the estimate of the unknown disturbance, respectively, and p (σ ) may be a linear or nonlinear scalar
function of σ . The d̂ (t) should be selected in such a way that the ê approaches e and thereby the
estimate error goes to zero. Taking derivative from both sides of Eq. (43) and substituting σ̇ obtains:

˙̂e = ˙̂d (t) + ∂p

∂σ
(−ksσ − kstsat (σ ) + b (uPID + un) + e) (44)

The dynamics of d̂ (t) is considered as follows:

˙̂d (t) = − ∂p

∂σ

(−ksσ − kstsat (σ ) + ê + b (uPID + un)
)

(45)

Therefore, the dynamics of ê can be obtained as:

˙̂e = ∂p

∂σ
ẽ (46)

Subtracting both sides of (46) from ė results:

˙̃e = − ∂p

∂σ
ẽ + ė (47)

For the stability of ẽ, p (σ ) must be chosen such that ∂p
∂σ

be a positive function and the derivative of
e to be bounded as follows:

|ė| < μ (48)

where μ represents a positive number. In the following section, the stability analysis of closed-loop
system and the boundedness of ẽ and σ will be explained.

4. Stability Analysis of Closed-Loop Control System
In this section, the stability condition of closed-loop control system was taken from ref. [42]. For
stability analysis, a candidate Lyapunov function is considered as follows:

V (σ, ẽ) = Vc + 1

2
ẽ2

= 1

2

(
σ 2 + ẽ2 + 1

η1
K2

P + 1

η2
K2

I + 1

η3
K2

D

) (49)
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Taking the time derivative from both sides of (49) and using (42) and (48) obtains:

V̇ (σ, ẽ) = σ σ̇ + ẽ̃̇e + 1
η1

KPK̇P + 1
η2

KIK̇I + 1
η3

KDK̇D

= −ksσ
2 − kstsat (σ ) σ + ẽσ + ẽė − ∂p

∂σ
ẽ2

(50)

Using Young’s inequality, ab ≤ 1
2

(
a2 + b2

)
, and (48), Eq. (50) can be rewritten as:

V̇ (σ, ẽ) ≤ −
(

ks − 1

2

)
σ 2 −

(
∂p

∂σ
− 1

)
ẽ2 + 1

2
μ2 − kst sat (σ ) σ (51)

The control parameter can be chosen such that
(
ks − 1

2

)
and

(
∂p
∂σ

− 1
)

are always positive. From (51),

it can be proved that the dynamics of σ and the uncertainty estimation error ẽ are not asymptotically
stable but ultimately bounded.41 The upper bounds of |ẽ| and |σ | can be obtained from (52) and (53),
respectively.

|ẽ| ≤ γ = μ√
2
(

∂p
∂σ

− 1
) (52)

|σ | ≤ γ +√
γ 2 + 4ksμγ

2ks
(53)

Therefore, from (52) and (53), the uncertainty estimation error ẽ and σ are ultimately bounded and
the control parameter such as ∂p

∂σ
, ks, and kst can be chosen so that the bounds on |ẽ| and |σ | can be

made sufficiently small.

5. Performance Criteria
In this section, the following performance criteria are defined in order to evaluate the performance of
the controller:

• Root-mean-squared error (RMSE) for the trajectrory tracking in the constrained and free motion
phase.

RMSE = ep + ef (54)

where ep =
√

tc∑
t=0

‖θd(t) − θt(t)‖2 T/tf and ef =
√

tf∑
t=tp

‖Fd(t) − Fe(t)‖2 T/tf represent the error value

in the free motion and in the constrained motion mode, respectively.

• Root-mean-square value (RMSV) of the control input voltage .

RMSV =
√√√√ tf∑

0

‖u(t)‖2 T/tf (55)

Both RMSE and RMSV are used as objective numerical measures of tracking performance for an
entire error curve, where T is the sample time, tc is the collision time, tf and tp ∈ (tc, tf

)
represent

the total running time of the simulations and a definite time in the collision phase, respectively. In
our simulation, these parameters are chosen as, T = 1 · 10−3 s, tc = 3 s, tf = 10 s, and tp = 4.5 s. The
criterion RMSV shows the consumption of energy.

6. Computer Simulation Results

6.1. Computer simulation results in both constrained and unconstrained motion modes
System numerical simulations are performed using Simulink/MATLAB R2014a. The physical
parameters of the system are shown in Table I which includes the flexible-link parameters, the motor
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Table I. Physical parameters of the system.

Parameter Description Value

Data of the flexible arm
E Young modulus 271 × 109 Pa
I Cross section inertia 3.017 × 10−12 m4

ρ Density 1800 kg/m3

l Length 0.98 m
d Diameter 2.8 × 10−3 mm
m Tip mass 43.71 × 10−3 kg
ξl Friction coefficient 0.0458
c Rotational stiffness 2.51
Data of the motor-gear set
J Total motor inertia+ reduction gear 6.87 × 10−5 kg m2

v Viscous friction 1.041 × 10−3 kg m2/s
n Reduction ratio of the motor gear 50
K Motor constant 2.1 × 10−1 Nm

V
Vsat Saturation voltage of the servo amplifier ±10 V
Data of the environment
ke Stiffness 100 N

m
ve Damping coefficient 1 Ns

m

Table II. Control parameters of the closed loop control system.

Parameter Description Value

Characteristics of the target impedance
kp Target stiffness k∗

p

kd Target damping coefficient
k∗
p
3

km Target inertia coefficient
k∗
p

100

Characteristics of APIDSMC equiped by DO
k0 Control parameter 2
k1 Control parameter 2.5
KP(0) Proportional gain initial value of the APID 1

controller
KI(0) Integral gain initial value of the APID controller 1
KD(0) Derivative gain initial value of the APID controller 1
η1 Learning rate of proportional gain term 6.6

in adaption law
η2 Learning rate of integral gain term in adaption law 0.001
η3 Learning rate of derivative gain term 0.5

in adaption law
ks Control parameter in the feedback control 0.1
kst Switching gain in the feedback control 0.1
∂p
∂σ

Control parameter in both free and constrained 4.5
motion modes

parameters, and the environment parameters. Table II shows the system control parameters which
includes the target impedance parameters and the proposed APIDSMC control strategy parameters.

In the following, the simulation has been carried out for constrained and unconstrained motion,
in the presence of the unknown Coulomb friction disturbances. In the constrained phase, the desired
contact force has been chosen equal to 20 N (Fd = 20 N) and in the unconstrained phase, the desired
trajectory has been defined as the following equation:
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θd (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5t2; 0 ≤ t < 1

10t − 5; 1 ≤ t < 3

10
(

4t − t2

2

)
− 50; 3 ≤ t < 4

30; t ≥ 4

(56)

The simulation results are provided for the APIDSMC controller used in the position control
scheme.

6.1.1. Simulation results for the APIDSMC controller with collision at the contact point length
λ = 0.7 and λ = 0.8. In this section, the simulation has been carried out for λ = 0.7 and λ = 0.8.
Figure 7 illustrates the simulation results for both constrained and unconstrained motion mode.
Figure 7(a) shows the desired trajectory tracking in the free motion mode (position control).
Figure 7(b) depicts the transient response of the desired contact force regulating in the constrained
motion mode (force control). Figure 7(c) shows the coupling torque applied to the arm. Figure 7(d)
illustrates the sliding surface at the reaching phase in the sliding mode control. Figure 7(e) shows the
control input voltage to the DC motor.

As can be seen in Figures 7(a) and (b), before the contact (t < 3 s), in free motion mode, the contact
point is equal to the tip angle. Therefore, the tip angular position follows the desired trajectory, and
the contact force is zero. In this case, the system is controlled in free motion mode and the impedance
controller acts as a position controller until the collision with the environment is detected at time
t = 3 s. After the impact detection, the system firstly estimate the contact point length and then the
contact point is used for the controller. Therefore, the system is controlled in constrained motion
mode (during the contact (t > 3 s)). In this situation, the impedance controller acts as a regulating
force controller and the controller immediately stabilises the system to track the reference trajectory
(desired contact force) with null steady-state error. As shown in Figure 7(e), the control effort is very
small and never saturates the amplifier which supplies the motor at 10 and −10 V, providing a smooth
trajectory tracking without overheating the electrical system. The estimation of the contact point
length and the convergence of the control parameters of the PID controller are shown in Figures 8
and 9, respectively.

6.2. Effects of environment parameters variations upon the system response in the constrained
motion mode

In this work, it is assumed that the dynamics parameters of the environment are known. However,
measuring these parameters in practice is always accompanied by error. Therefore, to investigate the
robustness of the algorithm to variations of the environment parameters, a change of 10% was made
in the environment parameters. The other remaining parameters of the system have been assumed
unchanged. Simulation was performed for λ = 0.8, and the desired forces of 15, 20, and 25 Newton.
In all three cases, the variation of 10% in the environment parameters (stiffness and damping coeffi-
cient) leads to a maximum of 1.14% error rate in the accuracy of force regulating. Figure 10 shows
the simulation results for 10% variation in the environment parameters values (stiffness and damping
coefficient) for regulating the contact force to the 20 Newton as a desired force.

6.3. Effects of link weight variations upon the system response in the constrained motion mode
In this section, effects caused in the system response because of changes in link weight (m) have
been investigated. This payload variations can be occurred, for instance, due to the use of various
tools placed at the end-effector of the manipulator. A range of possible payload values (mn ± 0.5 mn,
mn = 0.044 kg being the nominal value) have been chosen so that the arm could support under normal
operating condition. The other remaining parameters of the system have been assumed unchanged.
Therefore, there is no uncertainty in these parameters. Figure 11 shows the simulation results when
the link weight parameter changes in the defined range.

As it can be observed from Figure 11, in the free motion mode, the maximum deviation of the
system response with respect to the nominal case (mn) is almost 0.7◦, when m is equal to mmin = mn −
0.5mn. In the constrained motion mode, the steady-state error of the desired contact force regulating
is zero.
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(a) (b)

(c) (d)

(e)

Time (s) Time (s)

Time (s) Time (s)

Time (s)

Fig. 7. System transient response in both free and constrained motion modes. (a) tracking of the prescribed
desired trajectory (position control), (b) regulating the contact force to the desired value (force control), (c)
coupling torque, (d) sliding surface, and (e) control input voltage.

Next, some simulation results are presented for simultaneous variations in the parameters of the
DC motor.

6.4. Effects of inertia and viscous friction variations upon the system response
Viscous friction and inertia parameters of the DC motor only affect on the system in free motion
mode in which there is a movement. Thus, by changing these parameters, the contact force profile in
the steady state will remain intact. Therefore, in order to investigate the robustness of the proposed
control method against the variations of the motor parameters, a change of 20% was made in these
parameters (v and J). The other remaining parameters of the system have been assumed unchanged.
Figure 12 illustrates the simulation results when the motor parameters change in the defined range.

As it can be observed from Figure 12, in the free motion mode, the maximum deviation of the
system response with respect to the nominal case (Jn, vn) is 0.8◦, when J is equal to Jmax = Jn + 0.2Jn

and v is equal to vmax = vn + 0.2vn. In the constrained motion mode, the steady-state error of the
desired contact force regulating is zero. Next, some simulation results are presented for simultaneous
variations in the weight of the link and in the viscous friction of the DC motor.
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Time (s)

Fig. 8. Estimation of the contact point lenght.

(a) (b)

(c)

Fig. 9. Convegence of the PID controller. (a) KP Convergence, (b) KI Convergence. (c) KD Convergence

6.5. Effects of payload and viscous friction variations upon the system response
In this section, effects caused in the system response because of changes in payload (m) and viscous
friction (v) have been investigated. This payload variations can be occurred, for instance, due to
the use of various tools placed at the end-effector of the manipulator. A range of possible payload
values (mn ± 0.25mn, mn = 0.044 kg being the nominal value) have been chosen so that the arm could
support under normal operating condition. The control system has also been studied under variations
in the viscous friction parameter (vn ± 0.1vn). The other remaining parameters of the system have
been assumed unchanged. Therefore, there is no uncertainty in these parameters. Figure 13 shows
the simulation results when both parameters vary at the same time in the defined range.
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Fig. 10. System transient response in the constrained motion mode with 10 percent variation in the environment
parameters values. (a) regulating the contact force to the desired value (force control), (b) coupling torque, (c)
sliding surface, and (d) control input voltage.

(a) (b)

(c) (d)
Time(s) Time(s)

Time(s)Time(s)

Fig. 11. System transient response in both free and constrained motion modes with 50 percent variation in the
link mass value. (a) tracking of the prescribed desired trajectory (position control), (b) regulating the contact
force to the desired value (force control), (c) coupling torque, and (d) control input voltage.
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(a) (b)

(c) (d)
Time(s) Time(s)

Time(s)Time(s)

Fig. 12. System transient response in both free and constrained motion modes with 20 percent variation in the
motor parameters.(a) tracking of the prescribed desired trajectory (position control), (b) regulating the contact
force to the desired value (force control), (c) coupling torque, and (d) control input voltage.

(a) (b)

(c) (d)
Time(s) Time(s)

Time(s)Time(s)

Fig. 13. System transient response in both free and constrained motion modes when payload mass and viscous
friction vary simultaneously. (a) tracking of the prescribed desired trajectory (position control), (b) regulating
the contact force to the desired value (force control), (c) coupling torque, and (d) control input voltage.
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(a) (b)

(c) (d)

(e)

Time(s) Time(s)

Time(s)Time(s)

Time(s)

Fig. 14. System transient response in both free and constrained motion modes. (a) tracking of the prescribed
desired trajectory (position control), (b) regulating the contact force to the desired value (force control), (c)
coupling torque, and (d) control input voltage.

As can be seen from Figure 13(a), the free motion mode, the maximum deviation of the system
response with respect to the nominal case (mn, vn) is almost 0.5◦ when m is equal to mmin = mn −
0.25mn and v is equal to vmax = vn + 0.1vn. In the constrained motion mode, the steady-state error of
the desired contact force regulating is zero.

Next, some simulation results are presented for the APIDSMC equipped by disturbances observer
and the conventional APIDSMC.

6.6. Comparison between the proposed APIDSMC equipped by DO and the conventional APIDSMC
In this section, in order to investigate the capability of the APIDSMC equipped by disturbance
observer (the proposed control approach) in comparison to the conventional APIDSMC without
disturbance observer, several simulations are carried out for both constrained and unconstrained
motions mode. Figure 14 illustrates the transient response of the system for both constrained and
unconstrained motions phase. Figure 14(a) shows the desired trajectory tracking (position control in
the free motion phase). Figure 14(b) depicts the transient response of the desired contact force regu-
lating (force control in the constrained motion phase). Figure 14(c) shows the coupling torque applied
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Table III. Results simulation of the proposed controller performances, in
presence of the unknown Coulomb friction disturbances disturbances.

Position control strategy ep ef RMSE RMSV

APIDSMC equipped by DO 0.3132 0.2422 0.554 1.8618
APIDSMC without DO 0.6520 0.8060 1.4580 7.9284

(a) (b)

(c)

Time(s) Time(s)

Time(s)

Fig. 15. Convegence of the PID controller. (a) KP Convergence, (b) KI Convergence. (c) KD Convergence.

to the beam. Figure 14(d) illustrates the sliding surface. Figure 14(e) shows the control input voltage
to the DC motor. The convergence of the control parameters of the PID controller is illustrated in
Figure 15.

In order to compare the performance of the proposed APIDSMC controller equipped by distur-
bance observer over the conventional APIDSMC controller, the results of simulation are summarized
in Table III. From Table III, it can be seen that the proposed APIDSMC controller equipped by
disturbance observer has the smaller error and better tracking as compared with the conventional
APIDSMC controller in both free and constrained motion mode.

As can be seen from Figure 14, the APIDSMC equipped with disturbance observer used in posi-
tion control block (black curve) has better performance over the conventional APIDSMC without
disturbance observer in both unconstrained and constrained movement mode. In the unconstrained
motion phase, as depicted in Figure 14(a), the tip angular position (black curve) follows com-
pletely the desired angular position trajectory. Whereas, the simulation result of the conventional
APIDSMC shows that the tip angular position (red curve) is unable to track the desired angu-
lar position trajectory. In the constrained motion phase, as illustrated in Figure 14(b), the desired
contact force regulating is well done without any steady-state error. However, the conventional
APIDSMC simulation result shows that the contact force oscillates around the desired value in the
steady state. From Figure 14(c), it is obvious that the fluctuation amplitude of the coupling torque
of the classical APIDSMC, specially in free motion phase, is much larger than that over the pro-
posed control approach which is equipped by a disturbance observer. As shown in Figure 14(e),
the control input voltage obtained in the proposed control method is much smoother and with less
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oscillation amplitude than the control input obtained from the conventional APIDSMC. It should
be noted that the disturbance observer used in the APIDSMC, apart from compensation of param-
eter uncertainties and unknown Coulomb friction disturbances, compensates the input disturbance
caused by the flexibility of the link. Thus, the proposed APIDSMC equipped by disturbance observer
has better performance as compared with the conventional APIDSMC in both free and constrained
motion mode. Moreover, as shown in Figure 14(d), the chattering phenomenon has been eliminated
using the proposed control approach along with the use of the smoothing function (sat(σ )) in the
control law.

7. Conclusion
In this study, an adaptive robust impedance control was presented for a single-link flexible manip-
ulator through APIDSMC scheme when it comes into contact with the environment at an unknown
intermediate point. The proposed APIDSMC strategy was also equipped with a disturbance observer.
In this work, it was assumed that the environment parameters (stiffness and damping coefficient) are
known and the collision point between the environment and an intermediate point of the arm is
unknown. Therefore, an algorithm was proposed to estimate the collision point. First, a dynamic
model of a single flexible arm is derived based on a lumped masses model for the constrained
maneuver mode. A comprehensive control strategy is, then, designed based on the model with col-
lision at unknown intermediate point. The main contribution of this work is that the collision point
is unknown. Moreover, only one model is used to design the controller that is applicable to both
constrained and unconstrained motions. In our novel method, the contact length is estimated by a
contact length estimation algorithm and then the controller switching will be done automatically from
the unconstrained to the constrained movement mode. In this regard, the position-based impedance
control scheme is provided for force tracking. The position controller is the main part of the pro-
posed impedance control strategy in which an adaptive PID controller based on sliding mode control
(APIDSMC) method is used. The combination of the adaptive control and the sliding mode control
equipped by a disturbance observer is used to improve the performance of the system response. This
hybrid system makes the system more robust against uncertainties. To investigate the performance
and the capability of the proposed method, several simulations have been carried out under distur-
bance and variation in parameters of system consisting of variation in the environment parameters,
the flexible link parameter, and the DC motor parameters. Real-time simulation was performed in
MATLAB/Simulink to show the robustness and effectiveness of the proposed controller. The simu-
lation results indicate the effectiveness of the proposed control scheme for both unconstrained and
constrained movements mode where the flexible link interacting with the environment at unknown
intermediate point. Besides, the proposed control system depicts robustness against the parameter
variations of environment parameters, payload, and viscous friction variations in the defined range.
Such that with 50% variation in the link weight, 20% variation in the DC motor parameters (viscous
friction and inertia parameters), and for simultaneous variations in the weight of the link (25%) and
in the viscous friction of the DC motor (10%), in the unconstrained motion mode, the maximum
deviation from the nominal case is less than 0.7◦, 0.8◦, and 0.6◦, respectively. In the constrained
motion mode, the steady-state error of the desired contact force regulating is zero. Moreover, the
variation of 10% in the dynamics parameters of the environment parameters (stiffness and damping
coefficient) leads to a maximum of 1.14% error rate in the accuracy of force regulating. Besides, the
practical implementation of the proposed control approach is quite possible due to the control input
voltage features which is smooth and never exceeds the positive or negative saturation voltages (the
saturation periods which supplies the motor at 10 and −10 V).
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Appendix A. Convergence Proof of the Contact Length Estimation Algorithm
Let us again consider the contact length estimation algorithm (Equation(24)) as follows:

λnew = λold + α
(
�

f
l − �l

)
(A.1)

We define the error between the coupling torque of the fictitious arm (� f
l ) and the measured

coupling torque of the real arm (�l) as follows:

e� = �
f

l − �l (A.2)

Now we make claim that if the e� goes down to zero (�l
f → �l), then the λold convergences to

λnew. To prove this claim, we pursue the following equations. By substituting (5) in (A.2) the the
Eq. (A.2) can be rewritten as:

e� = ml2θ̈t + keλ
2
newl2 (θc − θe) + veλ

2
newl2θ̇c − ml2θ̈t − keλ

2
oldl2 (θc − θe) − veλ

2
oldl2θ̇c = 0 (A.3)

After simplifying, the Eq. (A.3) can be rewritten as:

l2
(
λ2

new − λ2
old

) (
keθc + veθ̇c

)= 0 ⇒ keθc + veθ̇c = 0 ⇒ θc = ke e−vet, t > 0 (A.4)

This implies that θc will tend to zero (θc → 0) as time goes to infinity (t → ∞). Therefore, we can
claim that the (e� → 0) and then λold convergences to λnew.
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