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ABSTRACT

It is a common belief for actuaries that the heterogeneity of claim severities in
a given insurance portfolio tends to increase its dangerousness, which results in
requiring more capital for covering claims. This paper aims to investigate the
effects of orderings and heterogeneity among scale parameters on the aggregate
claim amount when both claim occurrence probabilities and claim severities are
dependent. Under the assumption that the claim occurrence probabilities are
left tail weakly stochastic arrangement increasing, the actuaries’ belief is ex-
amined from two directions, i.e., claim severities are comonotonic or right tail
weakly stochastic arrangement increasing. Numerical examples are provided
to validate these theoretical findings. An application in assets allocation is ad-
dressed as well.
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1. INTRODUCTION

Consider an insurance portfolio consisting of n policies. In the context of indi-
vidual model of risk theory, let Ii Xi be the claim amount from the i th insured,
where Xi ∈ R+ is the random claim severity (or size), and Ii , independent of
Xi , is a Bernoulli random variable with Ii = 1 if the claim occurs or other-
wise Ii = 0, for i = 1, . . . , n. Then, the total number of claims and aggregate
claim amount can be written as

∑n
i=1 Ii and

∑n
i=1 Ii Xi , respectively. One of

the main issues is to study the effects of heterogeneity and dependence among
claim occurrence probabilities and/or claim severities on the ordering proper-
ties of aggregate claim numbers and amount. For the study of total number of
claims, interested readers are referred to Karlin and Novikoff (1963), Pledger
and Proschan (1971), Wang (1993), Dhaene and Goovaerts (1996, 1997), Hu
and Wu (1999), Dhaene and Denuit (1999), Boland et al. (2002, 2004), Frostig
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(2006) and Xu and Balakrishnan (2011). In this paper, we focus on investigat-
ing the heterogeneity of claim severities on the aggregate claim amount, which
would be helpful for the insurance company to prepare for the amount of capital
needed for covering insured policies.

The past decade has witnessed a large amount of discussion on stochastic
properties of aggregate claim amount. For the case of independent occurrence
level, Ma (2000) proved that if the claim severities are exchangeable, then more
dispersiveness among claim occurrence probabilities leads to smaller aggregate
claim amount in the sense of the convex order. Under the assumption of Xi ’s ar-
rayed with respect to the usual stochastic order, they also showed that

∑n
i=1 Ii Xi

stochastically increases if the vector of claim occurrence probabilities I is ma-
jorized. Frostig (2001) and Hu and Ruan (2004) established sufficient condi-
tions to compare aggregate claim amount by means of the symmetric super-
modular, and multivariate usual and symmetric stochastic orders (see Shaked
and Shanthikumar, 2007). After that, many researchers paid their attention to
comparing the aggregate claim amounts arising from two sets of heterogeneous
insurance portfolios; see, for example, Khaledi and Ahmadi (2008), Barmalzan
et al. (2015) andZhang andZhao (2015). However, these results were only devel-
oped under the independent assumption on the claim occurrence probabilities,
which violates the fact that the occurrences of claims may be dependent in prac-
tice. This study will investigate the ordering properties of the aggregate claim
amount when the occurrence levels are positively dependent through left tail
weakly stochastic arrangement increasing (LWSAI).

Denuit and Frostig (2006) pointed out that spreading maturities by dispers-
ing claim occurrences lessens the need for capital, while more capital is needed
if the uncertainty increases in claim amounts, which validates the general be-
lief of actuaries that the heterogeneity of the risks in a given insurance port-
folio tends to increase its dangerousness. It is worthy noting that their results
were established for independent claim severities. However, in actuarial prac-
tices, both occurrence levels and claim severities in insurance portfolios often
exhibit positively dependency structure, though in most cases such structure is
not easy to be detected. In this paper, we shall relax the independence assumed
in Denuit and Frostig (2006) from two directions: (i) the dependency structure
of X = (X1, . . . , Xn) is unknown, (ii) and X is dependent through right tail
weakly stochastic arrangement increasing (RWSAI). For the first case, we shall
identify the worst dependency structure in terms of comonotonicity, and then
study the heterogeneity of claim severities on the amount of capital needed for
covering insureds. This formulation represents a conservative attitude toward
the uncertainty in the dependency structure from the point of view of the in-
surer.

It is worthy mentioning that the dependency structure imposed on the claim
occurrence probabilities and claim severities are reasonable. For instance, both
the claim occurrence probabilities and claim severities are usually positively de-
pendent for insureds in an area suffering from serious natural disasters such as
drought, floods and earthquakes. Under the assumption that the claim severities
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belongs to the scale family (the claim severity from the i th insured is ai Xi ), we
shall investigate how the ordering and heterogeneity of ai ’s impact on the stop-
loss order of

∑n
i=1 Ii ai Xi in the context that the I is LWSAI and independent

of I the X is comonotonic or RWSAI. Here, the heterogeneity among claim
severities is described by a through majorization, which characterizes the diver-
sity of the components of vectors and plays a key role in establishing various
inequalities arising from many research fields such as actuarial science, applied
probability, reliability theory and operations research; see Pledger and Proschan
(1971), Arnold (2007), Balakrishnan et al. (2018) and the excellent monograph
(Marshall et al., 2011).

For an insurance portfolio comprised of LWSAI occurrence probabilities
and comonotonic or RWSAI claim severities, our results show that the insur-
ance portfolio turns out to be more dangerous from the viewpoint of the insurer
if the vector of scale parameters for the claim severities becomes more hetero-
geneous in the sense of the majorization order. As a result, more capital should
be needed to cover the claims.

The remainder of this paper is rolled out as follows: Section 2 recalls some
pertinent definitions and notions used in the sequel. In Section 3, we study the
effects of orderings and heterogeneity among scale parameters on the aggregate
claim amount when I is LWSAI and X is comonotonic. Section 4 treats the
ordering properties of aggregate claim amount when I is LWSAI and X is RW-
SAI. Section 5 concludes the paper with an application in assets allocation and
some discussions.

Throughout the paper, the occurrence level I is assumed to be independent
of the claim severity X. The term increasing is used formonotone non-decreasing
and decreasing formonotone non-increasing. All random variables are defined on
a common probability space (�,F,P) and expectations exist when they appear.
Let x(1) ≤ · · · ≤ x(n) be the increasing arrangement of x = (x1, . . . , xn). Denote
R = (−∞, ∞), R+ = [0, ∞) and In = {x : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn}.

2. PRELIMINARIES

Before proceeding to the main result, we recall in this section some notions per-
tinent to our discussions in the sequel.

2.1. Majorization

Definition 2.1. A real vector x ∈ R
n is said to

i majorize y ∈ R
n (written as x

m� y), if
∑n

i= j x(i) ≥ ∑n
i= j y(i) for j =

2, . . . , n, and
∑n

i=1 x(i) = ∑n
i=1 y(i);

ii weakly submajorize y ∈ R
n (written as x �w y), if

∑n
i= j x(i) ≥ ∑n

i= j y(i) for
j = 1, . . . , n.
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For any non-negative vectors x, y, it is evident that x
m� y implies x �w y,

while the reverse is not true in general. Majorization is quite useful in establish-
ing various inequalities. For more on majorization and their applications, one
may refer to Marshall et al. (2011).

2.2. Comonotonicity

A subset A ⊆ R
n is said to be comonotonic if, for any (x1, . . . , xn) ∈ A and

(y1, . . . , yn) ∈ A, either xi ≤ yi for i = 1, . . . , n or xi ≥ yi for i = 1, . . . , n. A
random vector X is said to be comonotonic if there is a comonotonic subset A
such that P(X ∈ A) = 1.

Since the comonotonic random vector possesses the strongest positive de-
pendency among its coordinates, it is usually employed to model the association
among risk claims in actuarial science when the real dependency structure is un-
known. LetR(F1, . . . , Fn) be the Fréchet space of all the n-dimensional random
vectors with univariate marginal distributions F1, . . . , Fn. It is known that the
comonotonic randomvector ismaximal within the correspondingFréchet space
in the sense of the convex order of the sum. For comprehensive discussions on
comonotonicity, readers are referred to Dhaene et al. (2002a,b).

2.3. Stochastic orders

Definition 2.2. A random variable X is said to be smaller than the other one Y in
the

i usual stochastic order (denoted by X ≤st Y), if E[φ(X)] ≤ E[φ(Y)] for any
increasing φ : R 	→ R;
ii hazard rate order (denoted by X ≤hr Y), if P(Y ≥ x)/P(X ≥ x) is increasing
in x ∈ R;

iii stop-loss order (denoted by X ≤sl Y), if E[(X − d)+] ≤ E[(Y− d)+] for all
d ∈ R+;

iv convex order (denoted by X ≤cx Y), if E[X] = E[Y] and X ≤sl Y;
v increasing concave order (denoted by X ≤icv Y), if E[φ(X)] ≤ E[φ(Y)] for
any increasing concave φ : R 	→ R.

In the context of applied probability, the stop-loss order is usually termed
as the increasing convex order based on the fact that X ≤sl Y ⇐⇒
E[φ(X)] ≤ E[φ(Y)] for any increasing and convex φ : R 	→ R.
It is known that the hazard rate order implies the usual stochastic or-
der, which in turn implies the stop-loss order and the increasing concave
order.

Recall that a function ψ : R
n 	→ R is said to be supermodular if ψ(x) +

ψ(y) ≤ ψ(x ∧ y) + ψ(x ∨ y) for any x, y ∈ R
n, where “∧” and “∨” denote

coordinatewise minimum and maximum, respectively.
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Definition 2.3. If two n-dimensional vectors X and Y are such that

E[ψ(X)] ≤ E[ψ(Y)] for all supermodular functions ψ : R
n 	→ R,

then X is said to be smaller than Y in the supermodular order (denoted by X ≤sm
Y).

The supermodular order can be used to bound some quite general random vec-
tors through their comonotonic counterparts.

Lemma 2.4 (Shaked and Shanthikumar (2007), Theorem 9.A.21). For a random
vector X with marginal distributions FX1, . . . , FXn and a random vari-
able U uniformly distributed on [0, 1], it holds that (X1, X2, . . . , Xn) ≤sm
(F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn (U)).

For comprehensive discussions and applications on various stochastic or-
ders, one may refer to Shaked and Shanthikumar (2007).

2.4. Risk measures

Let ρ : X 	→ R+ be a risk measure that assigns a non-negative real number
ρ[X] to the risk X ∈ R+. In this paper, we adopt the following meaning of risk
measure: if X is a possible loss of some financial portfolio over a time horizon,
we interpret ρ[X] as the amount of capital that should be added as a buffer
to this portfolio so that it becomes acceptable to an internal or external risk
controller. Prominent examples of risk measures include Value-at-Risk (VaR)
at level α

VaR[X; α] = inf{t : P(X ≤ t) ≥ α}, α ∈ [0, 1],

Tail Value-at-Risk (TVaR) at level α

TVaR[X; α] = 1
1 − α

∫ 1

α

VaR[X; a]da, α ∈ [0, 1]

and other distortion risk measures

ρg[X] =
∫ +∞

0
g (P(X > t)) dt

with the distortion function g increasing with g(0) = 0 and g(1) = 1. For more
discussions on these risk measures and their applications in actuarial problems,
we refer interested readers to Yaari (1987) and Wang (1996, 2000, 2002).

It should be pointed out that TVaR and distortion risk measures associated
with concave distortion functions agree with the stop-loss order in the sense that

X ≤sl Y ⇐⇒ TVaR[X; α] ≤ TVaR[Y; α] for all α ∈ [0, 1];
⇐⇒ ρg[X] ≤ ρg[Y] for all concave distortion functions g.
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For more detailed discussions on these relations, one may refer to Denuit et al.
(2006).

2.5. Stochastic versions of arrangement increasing

For any (i, j) with 1 ≤ i < j ≤ n, let τi j (x) = (x1, . . . , xj , . . . , xi , . . . , xn) and
denote

Gi, jsai (n) = {g(x) : g(x) ≥ g(τi j (x)) for any xi ≤ xj },
Gi, jwsai(n) = {g(x) : g(x) − g(τi j (x)) is increasing in xj },
Gi, jlwsai(n) = {g(x) : g(x) − g(τi j (x)) is decreasing in xi ≤ xj },
Gi, jrwsai(n) = {g(x) : g(x) − g(τi j (x)) is increasing in xj ≥ xi }.

Definition 2.5. A random vector X = (X1, . . . , Xn) or its distribution is said to
be

i stochastic arrangement increasing (SAI), if E[g(X)] ≥ E[g(τi j (X))] for any
g ∈ Gi, jsai (n) and any pair (i, j) such that 1 ≤ i < j ≤ n;
ii weakly stochastic arrangement increasing (WSAI), if E[g(X)] ≥
E[g(τi j (X))] for any g ∈ Gi, jwsai(n) and any pair (i, j) such that 1 ≤ i < j ≤ n;

iii LWSAI, if E[g(X)] ≥ E[g(τi j (X))] for any g ∈ Gi, jlwsai(n) and any pair (i, j)
such that 1 ≤ i < j ≤ n;

iv RWSAI, if E[g(X)] ≥ E[g(τi j (X))] for any g ∈ Gi, jrwsai(n) and any pair (i, j)
such that 1 ≤ i < j ≤ n.

It is plain that SAI implies both LWSAI and RWSAI, which in turn imply
WSAI. Also, it is known that multivariate versions of Dirichlet distribution, in-
vertedDirichlet distribution, F distribution and Pareto distribution of type I are
all SAI and hence RWSAI and LWSAI whenever the corresponding parameters
are arrayed in the ascending order. In the literature, SAI is employed to model
the dependence among ordered random risks in actuarial science; see for in-
stance, Hua andCheung (2008), You and Li (2014) and Zhang and Zhao (2015).
LWSAI, RWSAI and WSAI were introduced by Cai and Wei (2014, 2015) and
have been applied in the field of financial engineering and actuarial science to
model dependent stochastic returns and risks, respectively; see for example, Cai
and Wei (2015) and You and Li (2015, 2016).

As pointed out by Cai and Wei (2014, 2015), the notions of RWSAI, LW-
SAI and WSAI are multivariate generalizations of the joint hazard rate order,
joint reversed hazard rate order and joint stochastic order proposed by Shan-
thikumar and Yao (1991). In this paper, we shall employ the two useful notions
LWSAI and RWSAI to characterize the properties of multivariate distributions
of claim occurrence probabilities and claim severities, respectively. It should be
mentioned that LWSAI or RWSAI random vectors can be constructed through
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Archimedean copulas and certain marginal distributions, which will be ad-
dressed in the next part.

2.6. Copulas

Formally, for a random vector X = (X1, . . . , Xn) with univariate marginal dis-
tributions F1, . . . , Fn and survival functions F̄1, . . . , F̄n, there existC : [0, 1]n 	→
[0, 1] and C̄ : [0, 1]n 	→ [0, 1] such that its distribution function F and survival
function F̄ can be represented as, for all xi , 1 ≤ i ≤ n,

F(x) = C
(
F1(x1), . . . , Fn(xn)

)
, F̄(x) = C̄

(
F̄1(x1), . . . , F̄n(xn)

)
.

Then,C(u) and C̄(u) are called the copula and survival copula of X, respectively.
For a decreasing and continuous function φ : [0, +∞) 	→ [0, 1] with φ(0) =

1, φ(+∞) = 0 and the pseudo-inverse ψ := φ−1, the function

Cφ(u1, . . . , un) = φ
(
ψ(u1) + · · · + ψ(un)

)
, for all ui ∈ [0, 1], i = 1, 2, . . . , n,

is called an Archimedean copula with generator φ, if (−1)kφ(k)(x) ≥ 0 for k =
0, . . . , n − 2 and (−1)n−2φ(n−2)(x) is decreasing and convex.

The past decades have witnessed the development of a large number of ap-
plications of copulas in various areas such as risk management, econometrics,
actuarial science and reliability theory, see Kole et al. (2007), Eryilmaz (2014),
Abdallah et al. (2015) and Zhu et al. (2017). According to Cai and Wei (2014),
(X1, . . . , Xn) with X1 ≤hr · · · ≤hr Xn is RWSAI, if it has an Archimedean sur-
vival copula with a log-convex generator. You and Li (2016) adopted this rela-
tion to build the stop-loss order for the scalar product of absolute continuous
RWSAI random vectors. For more on copulas and their properties, one may
refer to Nelsen (2006).

3. COMONOTONIC CLAIM SEVERITIES

To begin with, let us introduce other notations to simplify our discussion. For
real vectors a = (a1, . . . , an), x = (x1, . . . , xn) and λ = (λ1, . . . , λn), denote the
inner product a·x = ∑n

i=1 ai xi , theHadamard productλ◦x = (λ1x1, . . . , λnxn)
and the sub-vector x{i, j} of x with i th and j th entries deleted. In the sequel, we
will frequently use the following compounds:

a · λ ◦ x = a · (λ ◦ x) = ∑n
i=1 aiλi xi , di, j = (a · x){i, j} = (a{i, j} · x{i, j}),

ci, j = (a · λ ◦ x){i, j} = a{i, j} · λ{i, j} ◦ x{i, j} = ∑n
r �=i, j arλr xr .

For ease of reference, we denote 0 = (0, . . . , 0), 1 = (1, . . . , 1), p(λ) = P(I =
λ),

	k = {λ|λi = 0 or 1, i = 1, 2, . . . , n, λ1 + · · · + λn = k}, k = 0, . . . , n,
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and let, for 1 ≤ i �= j ≤ n and k = 1, . . . , n − 1,

	
i, j
k (0, 1) = {λ ∈ 	k|λi = 0, λ j = 1}, 	

i, j
k (0, 0) = {λ ∈ 	k|λi = λ j = 0},

	
i, j
k (1, 0) = {λ ∈ 	k|λi = 1, λ j = 0}, 	

i, j
k (1, 1) = {λ ∈ 	k|λi = λ j = 1}.

It is plain that 	
i, j
1 (1, 1) = 	

i, j
n−1(0, 0) = ∅ and

	k = 	
i, j
k (0, 1) ∪ 	

i, j
k (0, 0) ∪ 	

i, j
k (1, 0) ∪ 	

i, j
k (1, 1).

Lemma 3.1 (Cai and Wei, 2015). A multivariate Bernoulli random vector I is
LWSAI if and only if p(τi j (λ)) ≤ p(λ), for all λ ∈ 	

i, j
k (0, 1), 1 ≤ i < j ≤ n and

k = 1, . . . , n − 1.

As pointed by Cai and Wei (2015), for a multivariate Bernoulli random vec-
tor I , LWSAI, RWSAI, WSAI and SAI are all equivalent. To keep consistent
use of the dependence notion for I in the literature, we hereafter adopt the term
LWSAI to model the occurrence levels.

Being the strongest positive dependence, comonotonicity is usually used
to model the extreme dependency structure when the real dependency struc-
ture sometimes is unknown. The next result shows that the total claim amount∑n

i=1 Ii ai Xi is maximized according to the convex order when the claim sizes
are comonotonic.

Theorem 3.2. Suppose Xc = (Xc
1, . . . , X

c
n) is the comonotonic version of X, and

I has multivariate Bernoulli distribution. Then,
n∑
i=1

Ii ai Xi ≤cx

n∑
i=1

Ii ai Xc
i , for any a ∈ R

n
+.

Proof. For any realized Ii ’s and ai ’s, since the vector (I1a1Xc
1, . . . , InanX

c
n) is

comonotone, by using Lemma 2.4, it then holds that

(I1a1X1, . . . , InanXn) ≤sm (I1a1Xc
1, . . . , InanX

c
n),

which further implies
∑n

i=1 Ii ai Xi ≤sl
∑n

i=1 Ii ai X
c
i by applying Theorem

3.1 of Müller (1997). Therefore, the desired results follows by noting that
E[

∑n
i=1 Ii ai Xi ] = E[

∑n
i=1 Ii ai X

c
i ].

From the perspective of dependence among random numbers from several
collective risk models, it was proved in Corollary 3 of Denuit et al. (2002) that
the total claim amount (or random sums) are bounded from above by means of
the convex order when the claim numbers are comonotonic. Instead, Theorem
3.2 considers the individual risk model and studies the effects of dependence
among claim severities on the aggregate claim amount. We show that the ag-
gregate claim amount in the individual risk model having scaled claim severities
is bounded from above by means of the convex order when the claim severities
are comonotonic. In other words, Theorem 3.2 states that, for any given claim
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occurrence probabilities and scale parameters, the maximum capital needed for
the insurer is attained when the vector of claim severities is comonotonic. As the
comonotonicity case represents the worst scenario from the point of view of the
insurer, it is thus a conservative way on detecting the effect of the heterogeneity
among scale parameters on the amount of capital required for the insurer as if
the comonotonicity were the real dependency structure among claim sizes.

In what follows, we study how the orderings of scale parameters impact on
the total payout with comonotonic claim severities in the sense of the stop-loss
order.

Theorem 3.3. Suppose that X is comonotonic with Xi ≤st Xj for some (i, j) such
that 1 ≤ i < j ≤ n and I is a LWSAI Bernoulli random vector. If ai ≤ a j , then

n∑
r=1

Irar Xr ≥sl Ii a j Xi + Ij ai Xj +
n∑

r �=i, j
Ir ar Xr .

Proof. Denote η(a) = E[u(a · I ◦ X)], where u is increasing and convex. It
suffices to show η(a) ≥ η(τi j (a)). In light of

η(a) =
n∑

k=0

∑
λ∈	k

E[u(a · I ◦ X) | I = λ]p(λ)

= p(0)u(0) + p(1)E [u (a · X)] +
n−1∑
k=1

∑
λ∈	k

p(λ)E [u (a · λ ◦ X)] (3.1)

and

η(τi j (a)) = p(0)u(0) + p(1)E
[
u

(
a j Xi + ai Xj + (a · X){i, j}

)]

+
n−1∑
k=1

∑
λ∈	k

p(λ)E
[
u

(
aiλ j Xj + a jλi Xi + (a · λ ◦ X){i, j}

)]
,

we have

η(a) − η(τi j (a)) =
n−1∑
k=1

∑
λ∈	k

p(λ) {E [u (a · λ ◦ X)]

−E
[
u

(
aiλ j Xj + a jλi Xi + (a · λ ◦ X){i, j}

)]}
+ p(1)

{
E [u (a · X)] − E

[
u

(
a j Xi + ai Xj + (a · X){i, j}

)]}
. (3.2)

Owing to the comonotonicity of X, it holds that Xi ≤ Xj almost surely. There-
fore, ai ≤ a j implies a · X ≥ a j Xi + ai Xj + (a · X){i, j}, and hence

E [u (a · X)] ≥ E
[
u

(
a j Xi + ai Xj + (a · X){i, j}

)]
, for 1 ≤ i < j ≤ n. (3.3)
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On the other hand, for any λ ∈ 	
i, j
k (0, 0), k = 1, 2, . . . , n − 1, it holds that

E [u (a · λ ◦ X)] = E
[
u

(
aiλ j Xj + a jλi Xi + (a · λ ◦ X){i, j}

)]
. (3.4)

For λ ∈ 	
i, j
k (1, 1), similar to (3.3), we have

E[u(a · λ ◦ X)] ≥ E
[
u

(
aiλ j Xj + a jλi Xi + (a · λ ◦ X){i, j}

)]
. (3.5)

By applying (3.3), (3.4) and (3.5) to (3.2), we have

η(a) − η(τi j (a)) ≥
n−1∑
k=1

{ ∑
λ∈	

i, j
k (0,1)

p(λ) (E [u (a · λ ◦ X)]

−E
[
u

(
aiλ j Xj + a jλi Xi + a · λ ◦ X)]) +

∑
λ∈	

i, j
k (1,0)

p(λ) (E [u (a · λ ◦ X)]

−E
[
u

(
aiλ j Xj + a jλi Xi + (a · λ ◦ X){i, j}

)]) }

=
n−1∑
k=1

{ ∑
λ∈	

i, j
k (0,1)

p(λ)
(
E

[
u

(
a j Xj + (a · λ ◦ X){i, j}

)]

−E
[
u

(
ai Xj + (a · λ ◦ X){i, j}

)])
+

∑
λ∈	

i, j
k (0,1)

p(τi j (λ))
(
E

[
u

(
ai Xi + (a · λ ◦ X){i, j}

)]

−E
[
u

(
a j Xi + (a · λ ◦ X){i, j}

)]) }

≥
n−1∑
k=1

∑
λ∈	

i, j
k (0,1)

p(τi j (λ))
{
E

[
u

(
a j Xj + (a · λ ◦ X){i, j}

)]

−E
[
u

(
ai Xj + (a · λ ◦ X){i, j}

)]
+E

[
u

(
ai Xi + (a · λ ◦ X){i, j}

)] − E
[
u

(
a j Xi + (a · λ ◦ X){i, j}

)] }
, (3.6)

where the second inequality stems from Lemma 3.1 and the fact of

E
[
u

(
a j Xj + (a · λ ◦ X){i, j}

)] ≥ E
[
u

(
ai Xj + (a · λ ◦ X){i, j}

)]
.
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In what follows, we show the non-negativity of

�
i, j
1 (a, λ, X) = E

[
u

(
a j Xj + (a · λ ◦ X){i, j}

)] − E
[
u

(
ai Xj + (a · λ ◦ X){i, j}

)]
+E

[
u

(
ai Xi + (a · λ ◦ X){i, j}

)]
−E

[
u

(
a j Xi + (a · λ ◦ X){i, j}

)]
. (3.7)

For any λ ∈ 	
i, j
k (0, 1) and a realization X = x, it then holds that (ai xi +

ci, j , a j xj+ci, j ) �w (ai xj+ci, j , a j xi+ci, j ), which implies (u(ai xi+ci, j ), u(a j xj+
ci, j )) �w (u(ai xj + ci, j ), u(a j xi + ci, j )) upon applying Theorem 5.A.1 of Mar-
shall et al. (2011). So, we have

u(ai xi + ci, j ) + u(a j xj + ci, j ) ≥ u(ai xj + ci, j ) + u(a j xi + ci, j ).

By applying the iterated expectation on the above inequality, we conclude
�
i, j
1 (a, λ, X) ≥ 0, which in turn implies η(a) ≥ η(τi j (a)). Thus, the desired

result is proved.

As a direct consequence of Theorem 3.3, Corollary 3.4 characterizes the
configuration of the scale parameters that results in the maximum total claim
amount for comonotonic X.

Corollary 3.4. Suppose that X is comonotonic with X1 ≤st · · · ≤st Xn and I is a
LWSAI Bernoulli random vector. If a ∈ In, then

n∑
r=1

Irar Xr ≥sl

n∑
r=1

Iraτ(r)Xr , for any permutation τ of {1, 2, . . . , n}.

With the help of Corollary 3.4, we shall discuss the impact of dispersiveness
among scale parameters on the amount of capital needed for the insurer when
X is strongest positively dependent and I is LWSAI.

Theorem 3.5. For comonotonic X with X1 ≤st · · · ≤st Xn and LWSAI I , the
a

m� b implies

n∑
i=1

Ii ai Xi ≥sl

n∑
i=1

Ii bi Xi , for any a, b ∈ In.

Proof. By exploiting a similar proof method of Theorem 3.3, it is enough to
prove

0 ≤ η(a) − η(b) =
n−1∑
k=1

∑
λ∈	k

p(λ) {E [u (a · λ ◦ X)] − E [u (b · λ ◦ X)]}

+p(1) {E [u (a · X)] − E [u (b · X)]} , (3.8)
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where η(a) is defined in (3.1) and u is increasing and convex. By the nature
of majorization order, it suffices to prove the non-negativity of (3.8) under the

conditions a1 ≤ a2, b1 ≤ b2, (a1, a2)
m� (b1, b2) and ai = bi for i = 3, . . . , n.

Owing to comonotonicity of (X1, X2) with X1 ≤st X2, we have x1 ≤ x2
given X = x. Then, the assumption (a1, a2)

m� (b1, b2) implies (a1x1, a2x2) �w
(b1x1, b2x2), and thus a1x1 + a2x2 ≥ b1x1 + b2x2. Therefore, upon using iterated
expectation formula, it follows that

E [u (a · X)] ≥ E [u (b · X)] . (3.9)

Besides, for any λ ∈ 	
1,2
k (0, 0), k = 1, 2, . . . , n − 1, it holds that

E [u (a · λ ◦ X)] = E [u (b · λ ◦ X)] . (3.10)

For λ ∈ 	
1,2
k (1, 1), in a similar manner, we can obtain

E
[
u

(
a1X1 + a2X2 + (a · λ ◦ X){1,2}

)] ≥ E
[
u

(
b1X1 + b2X2 + (b · λ ◦ X){1,2}

)]
.

(3.11)
By using (3.9)–(3.11), we reach

η(a) − η(b) ≥
n−1∑
k=1

{ ∑
λ∈	

1,2
k (0,1)

p(λ) (E [u (a · λ ◦ X)] − E [u (b · λ ◦ X)])

+
∑

λ∈	
1,2
k (1,0)

p(λ) (E [u (a · λ ◦ X)] − E [u (b · λ ◦ X)])
}

=
n−1∑
k=1

{ ∑
λ∈	

1,2
k (0,1)

p(λ)
(
E

[
u

(
a2X2 + (a · λ ◦ X){1,2}

)]

−E
[
u

(
b2X2 + (a · λ ◦ X){1,2}

)])
+

∑
λ∈	

1,2
k (0,1)

p(τ12(λ))
(
E

[
u

(
a1X1 + (a · λ ◦ X){1,2}

)]

−E
[
u

(
b1X1 + (a · λ ◦ X){1,2}

)]) }

≥
n−1∑
k=1

∑
λ∈	

1,2
k (0,1)

p(τ12(λ))
{
E

[
u

(
a2X2 + (a · λ ◦ X){1,2}

)]

−E
[
u

(
b2X2 + (a · λ ◦ X){1,2}

)] + E
[
u

(
a1X1 + (a · λ ◦ X){1,2}

)]
−E

[
u

(
b1X1 + (a · λ ◦ X){1,2}

)] }
,

where the second inequality is due to Lemma 3.1 and a2 ≥ b2.
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TABLE 1

PROBABILITY MASS FUNCTION OF (I1, I2, I3).

Default λ1 0 0 0 0 1 1 1 1
Default λ2 0 0 1 1 0 0 1 1
Default λ3 0 1 0 1 0 1 0 1

Probability p(λ) 0.12 0.15 0.12 0.16 0.11 0.13 0.09 0.12

Next, we need to show the non-negativity of

�
1,2
2 (a, b, λ, X) = E

[
u
(
a2X2 + (a · λ ◦ X){1,2}

)] −E
[
u
(
b2X2 + (a · λ ◦ X){1,2}

)]
+E

[
u
(
a1X1 + (a · λ ◦ X){1,2}

)]
−E

[
u
(
b1X1 + (a · λ ◦ X){1,2}

)]
. (3.12)

Upon taking some realization X = x, for any λ ∈ 	
1,2
k (0, 1), it holds that

(a1x1 + c1,2, a2x2 + c1,2) �w (b2x2 + c1,2, b1x1 + c1,2), which implies (u(a1x1 +
c1,2), u(a2x2 + c1,2)) �w (u(b2x2 + c1,2), u(b1x1 + c1,2)) upon using Theorem
5.A.1 of Marshall et al. (2011). Hence, we have

u(a1x1 + c1,2) + u(a2x2 + c1,2) ≥ u(b2x2 + c1,2) + u(b1x1 + ci, j ).

By using iterated expectation formula, we conclude that �
1,2
2 (a, b, λ, X) ≥ 0,

and this in turn implies η(a) ≥ η(b), and hence completes the proof.

Note that LWSAI I implies I1 ≤st · · · ≤st In. Theorem 3.5 suggests that in-
creasing the heterogeneity among scale parameters makes the insurance portfo-
lio more dangerous if the larger claim severity has larger occurrence probability.

Since the stop-loss order agrees with the TVaR risk measure and distortion
risk measure with concave distortion function, the following result can be ob-
tained from Theorem 3.5.

Corollary 3.6. For comonotonic X with X1 ≤st · · · ≤st Xn and LWSAI I , if

a
m� b, then for a, b ∈ In,
i TVaR

[∑n
i=1 Ii ai Xi , α

] ≥ TVaR
[∑n

i=1 Ii bi Xi , α
]
, for all α ∈ [0, 1];

ii ρg
[∑n

i=1 Ii ai Xi
] ≥ ρg

[∑n
i=1 Ii bi Xi

]
, for all concave distortion function g.

Now, we illustrate Theorem 3.3, Corollary 3.4 and Theorem 3.5 by a numer-
ical example.

Example 3.7. For (λ1, λ2, λ3) = (0.6, 0.4, 0.2) and U uniformly dis-
tributed on (0, 1), consider the realizable returns (X1, X2, X3) =( − λ−1

1 logU, −λ−1
2 logU, −λ−1

3 logU
)
with default indicators (I1, I2, I3)

having the joint distribution given in Table 1. It is easy to check that (I1, I2, I3) is
LWSAI and (X1, X2, X3) is comonotonic with X1 ≤st X2 ≤st X3. Consider the
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TABLE 2

STOP-LOSS PREMIUMS E[(
∑3

i=1 Ii si Xi − t)+].

t = 0 t = 1 t = 2 t = 3 t = 4

s = a 11.0000 10.4635 9.9532 9.4678 9.0060
s = b 9.4500 8.7436 8.1263 7.5774 7.0824
s = b∗ 4.3333 3.7012 3.2029 2.7954 2.4533
s = c 7.4333 6.6444 5.9853 5.4214 4.9300
s = c∗ 5.8833 5.0939 4.4378 3.8841 3.4115

following vector of scale parameters: a = (0, 0, 4), b = (0, 1, 3), b∗ = (1, 3, 0),

c = (1, 1, 2) and c∗ = (1, 2, 1). Due to a
m� b

m� c for a, b, c ∈ I3, Theorem 3.5
ensures

n∑
i=1

Ii ai Xi ≥sl

n∑
i=1

Ii bi Xi ≥sl

n∑
i=1

Ii ci Xi .

Note that b∗ /∈ I3 is a permutation of b, and c∗ /∈ I3 is a permutation of c. Accord-
ing to Theorem 3.3 and Corollary 3.4, the amount of capital needed for the insurer
for b and c must be larger than that of b∗ and c∗, respectively. Table 2 collects
stop-loss premiums E[(

∑3
i=1 Ii si Xi − t)+] for different retentions t ∈ R+ under

different scale parameters s = a, b, b∗, c, c∗, which verifies the above analysis.
However, it should be remarked that more dispersive scale parameters may result
in less dangerous portfolio if the concerned vector of scale parameters falls out of
In. For example, the stop-loss premiums for b∗ are less than that for c even though
b∗ m� c.

Naturally, one may wonder whether the usual stochastic order among the
claim severities could be relaxed in Theorem 3.5? The following numerical ex-
ample serves as a negative answer.

Example 3.8. For X1 = − log(1 −U) and X2 = 2U with U ∼ U(0, 1), one can
verify that X1 ≤icv X2, however X1 ≤st X2 does not hold. Set p((0, 0)) = 0.07,
p((0, 1)) = 0.32, p((1, 0)) = 0.31 and p((1, 1)) = 0.3. It is easy to check that
(I1, I2) is LWSAI.

Consider two scale vectors a = (2, 3) and b = (2.5, 2.5) in I2. Although a
m�

b, two stop-loss premium curves are found to cross with each other in Figure 1.
Therefore, the usual stochastic order among claim severities cannot be relaxed to
the increasing concave order.

4. RWSAI CLAIM SEVERITIES

This section studies the effects of orderings and heterogeneity among scale
parameters on the amount of capital needed for the insurer when the claim
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FIGURE 1: Stop-loss premiums corresponding to a and b with t ∈ [3, 4]. (Color online)

occurrence probabilities are LWSAI while the claim severities are RWSAI. To
begin with, we recall one useful lemma.

Lemma 4.1 (You and Li, 2015). (X1, X2) is RWSAI if and only if
E[g2(X1, X2)] ≥ E[g1(X1, X2)] for all g1 and g2 such that

i g2(x1, x2) − g1(x1, x2) is increasing in x2 ≥ x1 for any x1, and
ii g2(x1, x2) + g2(x2, x1) ≥ g1(x1, x2) + g1(x2, x1) for any x2 ≥ x1.

Theorem 4.2. Suppose that X is RWSAI and I is a LWSAI Bernoulli random
vector. If ai ≤ a j for 1 ≤ i < j ≤ n, then

n∑
r=1

Irar Xr ≥sl Ii a j Xi + Ij ai Xj +
n∑

r �=i, j
Ir ar Xr .

Proof. According to the proof of Theorem 3.3, it suffices to show the non-
negativity of (3.2). The RWSAI X guarantees that [(Xi , Xj )|X{i, j}] is RWSAI.
Given X{i, j} = x{i, j}, denote

g2(xi , xj ) = u(ai xi + a j xj + di, j ) and g1(xi , xj ) = u(a j xi + ai xj + di, j ).

For xj ≥ x′
j ≥ 0, ai ≤ a j and xi ≤ xj , we have ai xi + a j xj + di, j ≥ a j xi + ai xj +

di, j , implying

(ai xi + a j xj + di, j , a j xi + ai x′
j + di, j ) �w (a j xi + ai xj + di, j , ai xi + a j x′

j + di, j ).

Upon applying Theorem 5.A.1 of Marshall et al. (2011), we have

(g2(xi , xj ), g1(xi , x′
j )) �w (g1(xi , xj ), g2(xi , x′

j )),

which further implies g2(xi , xj ) − g1(xi , xj ) ≥ g2(xi , x′
j ) − g1(xi , x′

j ), i.e.,
g2(xi , xj ) − g1(xi , xj ) is increasing in xj ≥ xi . On the other hand, it is plain
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that g2(xi , xj ) + g2(xj , xi ) = g1(xi , xj ) + g1(xj , xi ) for any xj ≥ xi . Therefore,
from Lemma 4.1, it follows immediately that

E
[
u
(
ai Xi + a j Xj + (a · X){i, j}

)|X{i, j} = x{i, j}
]

≥ E
[
u
(
a j Xi + ai Xj + (a · X){i, j}

)|X{i, j} = x{i, j}
]
. (4.1)

By applying iterated expectation formula on inequality (4.1), we reach (3.3).
Similarly, (3.4) and (3.5) can be verified for λ ∈ 	

i, j
k (0, 0) and λ ∈ 	

i, j
k (1, 1),

k = 1, 2, . . . , n − 1. As a result, we reach inequality (3.6).
For any given λ ∈ 	

i, j
k (0, 1) and X{i, j} = x{i, j}, let

f2(xi , xj ) = u(a j xj + ci, j ) + u(ai xi + ci, j ) and f1(xi , xj ) = u(ai xj + ci, j )

+ u(a j xi + ci, j ).

It is easy to see that f2(xi , xj ) − f1(xi , xj ) is increasing in xj ≥ xi by noting the
increasing property of u(a j xj + ci, j ) − u(ai xj + ci, j ) with respect to xj ≥ xi .
Note that f2(xi , xj ) + f2(xj , xi ) = f1(xi , xj ) + f1(xj , xi ) for any xj ≥ xi . Upon
using Lemma 4.1, we can conclude that �

i, j
1 (a, λ, X) ≥ 0 in (3.7). This invokes

η(a) ≥ η(τi j (a)), yielding the desired result.

The following corollary is an immediate result of Theorem 4.2, which depicts
the orderings of scale parameters that lead to the maximum amount of capital
needed for the insurer when X is RWSAI.

Corollary 4.3. If X is RWSAI and I is a LWSAI Bernoulli random vector If a ∈
In, then

n∑
r=1

Irar Xr ≥sl

n∑
r=1

Iraτ(r)Xr , for any permutation τ of {1, 2, . . . , n}.

ByCorollary 4.3, we shall investigate the effects of heterogeneity among scale
parameters under space In on the aggregate claim amount when the claim sever-
ities are dependent through RWSAI and the claim occurrence probabilities are
dependent through LWSAI.

Lemma 4.4 (You and Li (2015), Proposition 4.5). If X is RWSAI, then In � a
m�

b implies
∑n

i=1 ai Xi ≥sl
∑n

i=1 bi Xi .

Theorem 4.5. If X is RWSAI and I is LWSAI, then

a
m� b =⇒

n∑
i=1

Ii ai Xi ≥sl

n∑
i=1

Ii bi Xi , for any b, a ∈ In.

Proof. By adopting the proof of Theorem 3.5, it is equivalent to prove (3.8)
is non-negative. On the one hand, it stems from Lemma 4.4 that E[u(a · X)] ≥
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E[u(b · X)]. Thus, it suffices to prove the non-negativity of the first part of (3.8),
i.e.,

�3(a, b, X) =
n−1∑
k=1

∑
λ∈	k

p(λ) {E [u (a · λ ◦ X)] − E [u (b · λ ◦ X)]} ≥ 0. (4.2)

By the nature of majorization order, it suffices to prove the non-negativity

of (4.2) under the conditions a1 ≤ a2, b1 ≤ b2, (a1, a2)
m� (b1, b2) and ai = bi

for i = 3, . . . , n. For any λ ∈ 	
1,2
k (0, 0) with k = 1, 2, . . . , n − 1, it holds that

E [u (a · λ ◦ X)] = E [u (b · λ ◦ X)] . (4.3)

For any fixed λ ∈ 	
1,2
k (1, 1) and X{1,2} = x{1,2}, let

h2(x1, x2) = u(a1x1 + a2x2 + c1,2) and h1(x1, x2) = u(b1x1 + b2x2 + c1,2).

For x1 ≤ x2, a1 ≤ a2 and b1 ≤ b2, by Lemma 1 of You and Li (2016), we know
that h2(x1, x2)−h1(x1, x2) is increasing in x2 ≥ x1. On the other hand, it is plain
that

(a1x1 + a2x2 + c1,2, a1x2 + a2x1 + c1,2)
m� (b1x1 + b2x2 + c1,2, b1x2 + b2x1 + c1,2).

By applying Theorem 5.A.1 of Marshall et al. (2011), we have

(h2(x1, x2), h2(x2, x1)) �w (h1(x1, x2), h1(x2, x1)),

which implies h2(x1, x2) + h2(x2, x1) ≥ h1(x1, x2) + h1(x2, x1). As a result, by
Lemma 4.1, we have

E [u (a · λ ◦ X)] − E [u (b · λ ◦ X)] ≥ 0.

So, (4.2) is non-negative for λ ∈ 	
1,2
k (0, 0) and λ ∈ 	

1,2
k (1, 1). Similarly, we also

have

�3(a, b, X) ≥
n−1∑
k=1

{ ∑
λ∈	

1,2
k (0,1)

p(λ) (E [u (a · λ ◦ X)] − E [u (b · λ ◦ X)])

+
∑

λ∈	
1,2
k (1,0)

p(λ) (E [u (a · λ ◦ X)] − E [u (b · λ ◦ X)])
}

=
n−1∑
k=1

∑
λ∈	

1,2
k (0,1)

p(τ12(λ))�
1,2
2 (a, b, λ, X),

where �
1,2
2 (a, b, λ, X) is defined in (3.12). Therefore, it suffices to show

�
1,2
2 (a, b, λ, X) ≥ 0.
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For any fixed λ ∈ 	
1,2
k (0, 1) and X{1,2} = x{1,2}, let

l2(x1, x2) = u(a1x1 + c1,2) + u(a2x2 + c1,2) and l1(x1, x2) = u(b1x1 + c1,2)

+ u(b2x2 + c1,2).

Wenotice that l2(x1, x2)−l1(x1, x2) is increasing in x2 ≥ x1, which can be derived
from the previous observation that u(a2x2 + c1,2) − u(b2x2 + c1,2) is increasing
in x2 ≥ x1 for a2 ≥ b2. On the other hand, for x2 ≤ x1 and a2 ≥ b2, we have

(a2x2 + c1,2, a2x1 + c1,2, a1x1 + c1,2, a1x2 + c1,2)
m� (b2x2 + c1,2, b2x1 + c1,2, b1x1 + c1,2, b1x2 + c1,2).

According to Theorem 5.A.1 of Marshall et al. (2011), it holds that

(u(a2x2 + c1,2), u(a2x1 + c1,2), u(a1x1 + c1,2), u(a1x2 + c1,2))

�w (u(b2x2 + c1,2), u(b2x1 + c1,2), u(b1x1 + c1,2), u(b1x2 + c1,2)).

Thus, the submajorization implies l2(x1, x2)+ l2(x2, x1) ≥ l1(x1, x2)+ l1(x2, x1).
In light of Lemma 4.1, we obtain �

1,2
2 (a, b, λ, X) ≥ 0. This completes the

proof.

The next corollary is a direct consequence of Theorem 4.5, which explains
the RWSAI dependence structure among X by using an Archimedean survival
copula and hazard rate order.

Corollary 4.6. For X with X1 ≤hr · · · ≤hr Xn and an Archimedean survival copula

associated with a log-convex generator, if I is LWSAI, then a
m� b implies

n∑
i=1

Ii ai Xi ≥sl

n∑
i=1

Ii bi Xi , for any b, a ∈ In.

Let X1, X2, . . . , Xn be independent and identically distributed non-negative
random variables, and let I1, I2, . . . , In be independent Bernoulli random vari-
ables such that E[Ii ] = pi , which are independent of X1, X2, . . . , Xn. Under

the assumptions that p1 ≤ · · · ≤ pn ≤ 1, a ∈ In, b ∈ In and a
m� b, it was

proved in Corollary 4.7 of Denuit and Frostig (2006) (also see Theorem 4.A.39
of Shaked and Shanthikumar (2007)) that

∑n
i=1 Ii ai Xi ≥sl

∑n
i=1 Ii bi Xi . Obvi-

ously, the result in Corollary 4.6 substantially generalizes that of Corollary 4.7
of Denuit and Frostig (2006) to the case of heterogeneous X1, . . . , Xn linked by
an Archimedean survival copula with a log-convex generator and arrayed in the
hazard rate order.
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Corollary 4.7. For RWSAI X and LWSAI I , if a
m� b for any a, b ∈ In, then

i TVaR
[∑n

i=1 Ii ai Xi , α
] ≥ TVaR

[∑n
i=1 Ii bi Xi , α

]
, for all α ∈ [0, 1];

ii ρg
[∑n

i=1 Ii ai Xi
] ≥ ρg

[∑n
i=1 Ii bi Xi

]
, for all concave distortion function g.

Under the assumption that X is RWSAI and I is LWSAI and independent
of X, Theorem 4.5 (Corollary 4.7) asserts that an increase in the heterogene-
ity among scale parameters results in a set of much more dangerous insurance
portfolio when the larger claim severity is accompanied with larger occurrence
probability.

At the end, we employ one example to numerically illustrate Theorem 4.5.

Example 4.8. Set p((0, 0)) = 0.15, p((0, 1)) = 0.46, p((1, 0)) = 0.24 and
p((1, 1)) = 0.15, and let F̄1(x) = x−β1 and F̄2(x) = x−β2 with x ≥ 1 and β1 > β2
be the respective survival functions of X1 and X2. Assume the Clayton survival
copula with generator φ(t) = (θt + 1)−1/θ , θ > 0. Then, the survival function of
X = (X1, X2) is

F̄X(x, y) = (
xθβ1 + yθβ2 − 1

)− 1
θ , x ≥ 0, y ≥ 0, θ > 0.

Consider the utility function u(x) = xγ with γ > 1 and the total wealth ω.
Upon applying Corollary 1.6.12 of Denuit et al. (2006), under the assumption
γ < min{β1, β2} we have

κ(a1) =: E[u(a1 I1X1 + a2 I2X2)]

= p((0, 0))E[u(0)] + p((1, 0))E[u(a1X1)] + p((0, 1))E[u(a2X2)]

+ p((1, 1))E[u(a1X1 + a2X2)]

= γ aγ

1 [p((1, 0)) + p((1, 1))](β1 − γ )−1 + γ (ω − a1)γ [p((0, 1))

+ p((1, 1))](β2 − γ )−1

+ p((1, 1))a1(ω − a1)γ (γ − 1)
∫ +∞

1

∫ +∞

1

(
xθβ1 + yθβ2 − 1

)− 1
θ

× [a1x+ (ω − a1)y]γ−2dxdy.

Setting ω = 4, θ = 1, β1 = 4, β2 = 3 and γ = 2.5. It can be easily verified that
X1 ≤hr X2 holds, (I1, I2) is LWSAI and φ is log-convex. Thus, the assumption
of Theorem 4.5 (in particular, Corollary 4.6) is satisfied. From Figure 2, κ(a1) is
maximized at a1 = 0 for a1 ∈ [0, 2], and thus this confirms that the dispersive-
ness among scale parameters under space I2 increases the dangerousness of the
insurance portfolio as proved in Theorem 4.5. However, as displayed in the figure,
it cannot be judged whether the desired result still holds when a1 ∈ [2, 4].
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FIGURE 2: Plot of the function κ(a1) with respective to a1. (Color online)

5. CONCLUDING REMARKS

For the case of LWSAI claim occurrence probabilities and comonotonic or RW-
SAI claim severities, it is shown the insurance portfolio with the largest vector
of scale parameters in the sense of the majorization order often turns out to be
more dangerous for the insurer. This suggests that more capital is needed for
covering the claims.

It is worth mentioning that the results developed here can be also applied in
providing the optimal allocation policy of assets allocation for risk-seeking in-
vestors. As one eternal theme, an investor always pursues the optimal allocation
of the wealth to multiple risk assets in the sense of maximizing the concerned
potential risk return in financial market. In general, the investor aims to maxi-
mize the expected utility of the total potential return due to the allocation of the
wealth. In modern financial markets, lots of assets such as various break-even
investment financial products and some insurance policies in actuarial science
bear default risks. There is a possibility that a borrower fails to pay the interest
or the principal repayment obligations on a loan agreement due to either dishon-
esty or plain inability to do so, and the default risk plays a part in the expected
total returns. For the case of risk-averse investors, interested readers may refer
to Cheung and Yang (2004), Chen and Hu (2008), Cai and Wei (2015) and Li
and Li (2016) for detailed treatments on optimal allocation policies.

However, there exist situations where the investors may be kind of risk-
seeking; see, for example, Åstebro (2003), Post and Levy (2005) and Seiler and
Seiler (2010). Consider a portfolio of n risk assets with realizable returns X and
the corresponding defaults I , i.e.,

Ii =
{
0, the default of the i th asset occurs,
1, otherwise, for i = 1, . . . , n.
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Under the framework of expected utility, a risk-seeking investor with the initial
wealth ω faces the optimization problem

max
a∈Aω

E
[
u
( n∑

i=1

Ii ai Xi

)]
, (5.1)

where Aω = {a = (a1, . . . , an) : a1 + · · · + an = ω} comprises of all admissible
allocations, X is assumed to be independent of I and u is increasing and convex.
According to Theorems 3.5 and 4.5, the following optimal allocation policy can
be established for the risk-seeking investor, which suggests that all the wealth
should be put on the asset with the largest stochastic return and smallest default
probability.

Proposition 5.1. If I is LWSAI and X is comonotonic or RWSAI, then
(0, . . . , 0, ω) is one solution to Problem (5.1).

It should be remarked that the results of Theorems 3.5 and 4.5 still hold
with b ∈ In removed and a

m� b replaced by a �w b. It is of natural interest to
extend our results to the case of location-scale claim severities, i.e., studying the
heterogeneity among (a, t) on the aggregate payout

∑n
i=1 Ii (ai Xi + ti ).
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