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The response of a floating elastic plate to the motion of a moving load is studied
using a fully dispersive weakly nonlinear system of equations. The system allows
for an accurate description of waves across the whole spectrum of wavelengths
and also incorporates nonlinearity, forcing and damping. The flexural–gravity waves
described by the system are time-dependent responses to a forcing with a described
weight distribution, moving at a time-dependent velocity. The model is versatile
enough to allow the study of a wide range of situations including the motion of
a combination of point loads and loads of arbitrary shape. Numerical solutions of
the system are compared to data from a number of field campaigns on ice-covered
lakes, and good agreement between the deflectometer records and the numerical
simulations is observed in most cases. Consideration is also given to waves generated
by a decelerating load, and it is shown that a decelerating load may trigger a wave
response with a far greater amplitude than a load moving at constant celerity.
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1. Introduction

Flexural–gravity waves occur naturally in ice sheets floating on various bodies of
water in cold regions, and the study of such waves has a long history. The pace of
scientific inquiries into the nature of flexural–gravity waves intensified in the middle
of the 20th century, prompted by the increasing use of solid ice covers to support
mechanized transportation systems. In Canada for example, ice-covered lakes enabled
the routing of trucks on winter roads built partially on ice, and in some places air
strips and train tracks were built on thick ice covers. As these endeavours met with
varied success, sometimes resulting in loss of life and equipment, it became clear that
there was a need to improve our understanding of engineering properties of ice covers
such as bearing capacity, resonant behaviour and the susceptibility to crack formation.

A number of experimental campaigns were mounted with the goal of understanding
the wave response to moving loads on ice covers. Some of these studies, such as
Wilson (1955) and Takizawa (1987) also included mathematical treatments based
on linear wave theory, and these combined efforts gave some information about
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possible resonances and critical load speeds. In addition, efforts were undertaken
to develop more sophisticated mathematical models that could predict the wave
response to a moving load. Prompted by observed oscillations in the ice cover at
McMurdo Sound (Antarctica) during the approach and landing of transport aircraft a
considerable distance away, Davys, Hosking & Sneyd (1985) used classical techniques
of contour integration to evaluate the integrals appearing in the steady formulation
of the hydro-elastic wave problem with a point load, and found intricate wave
patterns including caustics and zones of zero wave response. In a spectacular
contribution, it was recently shown by Babaei et al. (2016) and Van der Sanden
& Short (2017) that such wave patterns can actually be found in the field by using
satellite synthetic-aperture radar (SAR) radar observations of an ice sheet during the
motion of a vehicle.

The analysis pioneered in Davys et al. (1985) has been used and extended by a
number of authors, but the main restrictions of a point load and constant load speed
have only been partially removed in subsequent works. While the use of a point load
as forcing is unproblematic due to the fact that the shortest waves created by the
load are generally still very much longer than the typical load itself, the adherence to
constant load speed in most works on the subject is somewhat more restrictive. Indeed,
the issue of variable load speed was already raised by Beltaos (1981), but as far as
we know this issue has only been investigated in very few contributions. The authors
of Miles & Sneyd (2003) showed that the wave response to an accelerating load stays
bounded; the landing and deceleration of an airplane on ice cover was investigated in
Matiushina, Pogorelova & Kozin (2016), and the wave resistance due to the unsteady
motion of and air-cushion vehicle on a supporting ice sheet was studied in Pogorelova
(2008).

The necessity of making allowances for time dependency is already implicit in
the works of Kheysin (1971), Davys et al. (1985) and Schulkes & Sneyd (1988)
where it was found that, in addition to transient effects due to an impulsively started
load, some constant load speeds lead to genuinely time-dependent wave responses. In
particular, these authors showed that if the load is moving at the critical speed V= cmin
which is the minimum of the dispersion curve defined in (1.2), the wave amplitude
grows as t1/2, where t is the time variable. Schulkes & Sneyd (1988) investigated
moving line loads and characterized a second critical load speed V =

√
gH, where g

is the gravitational acceleration and H is the depth of the fluid. While the analysis
of one-dimensional wave patterns of Schulkes & Sneyd (1988) showed an amplitude
growth of t1/3, the work of Milinazzo, Shinbrot & Evans (1995) and Nugroho et al.
(1999) implied that the amplitude of a two-dimensional wave response to a point
load moving at the speed V =

√
gH is bounded. Bounded two-dimensional wave

responses were also found using the fully nonlinear three-dimensional study by Părău
& Vanden-Broeck (2011).

The experiments conducted by Wilson (1955) at Mille Lacs in Minnesota, USA,
uncovered the existence of a time lag between the passage of the load and the greatest
depression of the ice sheet. The in-depth field campaign coordinated by Takizawa, and
described in detail in Takizawa (1978, 1985, 1987, 1988) confirmed the existence of
the time lag between the passage of the load and the greatest depression of the ice
sheet. In Takizawa (1987, 1988), a linear ordinary differential equation featuring a
simple damping term was put forward, and this model was able to predict a time
lag such as observed in the field measurements. However, since this model was also
based on the assumption of steady-state responses, no time-dependent wave solutions
could be described.
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FIGURE 1. Geometry of the problem. H is the fluid depth, h is the thickness of the elastic
layer, g is gravity, V is the velocity of the load.

FIGURE 2. Two-dimensional wave response to a moving point load.

While damping has the benefit of allowing a time lag between the passage of the
load and the maximum depression of the ice sheet, nonlinearity may also be important
to describe the response exhibited near the critical load speed V = cmin. Părău &
Dias (2002) included nonlinearity in reconsidering the two resonances (singularities)
inherent in previous linear elastic theory for a line load such as studied by Kheysin
(1963) and Schulkes & Sneyd (1988), and demonstrated that the deflection is
consequently bounded near this critical load speed. Hosking, Sneyd & Waugh (1988)
and Wang, Hosking & Milinazzo (2004) showed that incorporating viscoelasticity
in the linear theory via a memory function, corresponding to anelasticity consistent
with the so-called standard model described in Squire et al. (1988b), also predicted a
large but finite response at V = cmin together with some additional observed features
(including the time lag). Thus while it emerged that a bounded response is always
generated by a moving load, the development of a nonlinear viscoelastic theory
was called for to more comprehensively treat the large-amplitude responses near the
critical speed cmin.

The aim of the present contribution is the development of a versatile wave model
which will allow the simulation of the wave response to a moving load under a wide
range of conditions. In particular, we allow for two-dimensional waves created by a
two-dimensional load of arbitrary shape and weight distribution, and moving at an
arbitrary time-dependent speed in the geometric configuration indicated in figures 1
and 2. Our analysis incorporates nonlinearity, damping and non-zero thickness of the
ice cover while retaining accurate treatment of all linear frequencies.

Our work is essentially motivated by an idea due to Whitham (1967), who proposed
weakly nonlinear models in combination with the full dispersion of the water-wave
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Fully dispersive models for moving loads on ice sheets 125

Parameter Symbol Units Lake Saroma Cold Lake Mille Lacs McMurdo Sound

Gravity g m s−2 9.81 9.81 9.81 9.81
Water density ρ kg m−3 1026 1024 1024 1024
Ice density ρI kg m−3 917 917 917 917
Water depth H m 6.8 4.3 3.26 350
Ice thickness h m 0.17 0.59 0.61 2.5
Elastic modulus E N m−2 5.1× 108 4.9× 109 9× 109 5× 109

Flexural rigidity D Nm 2.35× 105 9.4× 107 1.91× 108 7.32× 109

Poisson ratio ν 0.33 0.33 0.33 0.33

TABLE 1. Parameter values for measurements taken at four experimental sites: Lake
Saroma (Takizawa 1987), Cold Lake (Beltaos 1981), Mille Lacs (Wilson 1955) and
McMurdo Sound (Davys et al. 1985).

problem. In the current context, the simplest such model would be the fully dispersive
equation

ηt +
3
2

√
g/Hηηx +

1
2π

∫
∞

−∞

c(ξ)η̂(ξ , t)eiξx dξ = 0, (1.1)

where the linear part of the equation is defined with the help of the dispersion relation
c(ξ). This relation, which describes the phase speed c of a linear periodic wave as a
function of the wavenumber ξ , is given here by

c2(ξ)=
g/ξ +Dξ 3/ρ

coth ξH + hξρI/ρ
. (1.2)

This relation is defined in terms of the thickness of the elastic cover h, the fluid
density ρ, the density of the elastic cover ρI and the flexural rigidity of the elastic
material D in addition to the undisturbed depth H and gravitational acceleration g
defined above. The values of these parameters are tabulated for four experimental sites
in table 1. The unknown η(x, t) in the (1.1) is the deflection of the ice cover at a point
x and a time t, and η̂(ξ , t) is the Fourier transform given by

η̂(ξ , t)=F{η(x̃, t)}(ξ)=
∫
∞

−∞

η(x̃, t)e−iξ x̃ dx̃. (1.3)

Solutions of (1.1) describe only right-going waves, and there is no forcing or
damping. In the present paper, in order to allow for the most possible flexibility
we will derive a multi-directional system whose linear part corresponds to the full
dispersion relation (1.2). In fact, by incorporating damping and rotatory inertia in
the elastic description of the ice sheet, we obtain an even more general form of the
dispersion relation (see (4.20)) which forms the basis for the linear part of our model.

A few nonlinear time-dependent models of flexural–gravity waves have appeared in
the literature. In particular, long-wave equations of Boussinesq and Korteweg–de Vries
type have been proposed for general settings by Marchenko (1988), Guyenne & Părău
(2012, 2014a) and in particular for the study of waves in ice sheets on frozen rivers by
Xia & Shen (2002). One potential problem with long-wave equations is that they may
model the flexural part of the dispersion relation inaccurately. Figures 3 and 4 show
the dispersion relation for two cases under study in this paper. In the case shown in
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FIGURE 3. Dispersion curves for various approximations of the full dispersion relation.
The phase speed c is plotted as a function of wavenumber ξ = 2π/λ. The solid
curves represent the full dispersion relation (1.2). The dashed-dotted curves represent the
approximation (3.1). The dashed curve (GP) represents the dispersion relation from the
Boussinesq model put forward by Guyenne & Părău (2014a). (a) Shows the parameter
values measured at Lake Saroma by Takizawa (1987). The minimum phase speed using
(1.2) is cmin= 5.94 m s−1, and the corresponding wavelength is λmin= 18.6 m. (b) Shows
the parameter values measured at Cold Lake by Beltaos (1981) (see table 1). The
minimum phase speed using (1.2) is cmin= 6.49 m s−1, and the corresponding wavelength
is λmin = 296.3 m.
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FIGURE 4. Dispersion curves for various approximations of the full dispersion relation.
The phase speed c is plotted as a function of wavenumber ξ = 2π/λ. The solid
curves represent the full dispersion relation (1.2). The dashed-dotted curves represent the
approximation (3.1). The dashed curve (GP) represents the dispersion relation from the
Boussinesq model put forward by Guyenne & Părău (2014a) (this curve is not shown in
(b) where the depth is very large). (a) Shows the parameter values measured at Mille Lacs
(see Wilson 1955). The minimum phase speed using (1.2) is cmin = 5.65 m s−1, and the
corresponding wavelength is λmin = 533 m. (b) Shows the parameter values measured at
McMurdo Sound used by Davys et al. (1985) (see table 1). The minimum phase speed
using (1.2) is cmin = 21.8 m s−1, and the corresponding wavelength is λmin = 237 m.

figure 3(a), the flexural rigidity of the ice sheet is comparatively small, and long-wave
models do not give an accurate description of the true linear dispersion relation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

53
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.530


Fully dispersive models for moving loads on ice sheets 127

Nonlinear models in the spirit of the nonlinear Schrödinger equation were also
put forward for the study of flexural waves on relatively deep fluids. One interesting
feature of these narrow-banded spectrum models is that they can be shown to exhibit
modulational instability, as shown for example in Liu & Mollo-Christensen (1988) and
Marchenko (2016). Finally, fully nonlinear models such as proposed by Bonnefoy,
Meylan & Ferrant (2009) can also be used, but are more expensive with regard
to computational time. The weakly nonlinear approximation coupled with the full
dispersion relation as put forward in the present work allows significant savings
in terms of computational time when compared to solving the full Euler equations
for the underlying fluid flow problem such as used in Bonnefoy et al. (2009) and
Guyenne & Părău (2014b).

The disposition of the present paper is as follows. In the next section, the
hydro-elastic system based on the Kirchhoff–Love plate theory and the inviscid
potential theory of surface waves is introduced. In § 3, the dispersion relation is
analysed, and in § 4, it is explained how this system is reduced to a weakly nonlinear
formulation which nevertheless retains the full dispersion relation in the linear part. In
§ 5, the equations for two-dimensional wave patterns are presented, and in § 6, exact
solutions of the linearized equations are found. These are used in the construction
of the numerical method in § 7, and can also be used to validate the numerical
method. Section 8 contains a number of numerical experiments including comparison
with data from field campaigns and a study of decelerating loads. Our findings are
summarized in § 9. Finally, appendix A contains a comparison of steady wave profiles
of a weakly nonlinear model to solutions of the hydro-elastic full Euler equations.

2. The hydro-elastic system
We consider irrotational motion of an inviscid and incompressible fluid of

undisturbed mean depth H, and with gravity g acting in the negative z-direction. The
fluid is covered by an elastic solid layer which is described by the Kirchhoff–Love
plate theory (cf. Squire et al. 1988b). For the sake of readability, we first treat the
two-dimensional problem, and return to the three-dimensional setting in § 5. The flow
of the underlying liquid is described by the velocity potential φ(x, z, t) and by the fluid
surface elevation η(x, t) that coincides with the vertical deformation of the underside
of the elastic cover. The fluid domain is the set {(x, z) ∈ R2

| −H < z < η(x, t)}
extending to infinity in the positive and negative horizontal x direction. The level
z= 0 corresponds to the fluid–solid interface at rest.

As explained for example in Whitham (1974), the fluid flow is governed by the
Euler system consisting of the Laplace equation

φxx + φzz = 0 for x ∈R, −H < z<η(x, t), (2.1a,b)

the Neumann boundary condition at the flat bottom

φz = 0 at z=−H, (2.2)

the kinematic condition at the interface between the cover and the liquid

ηt + φxηx − φz = 0 for x ∈R, z= η(x, t), (2.3)

and the Bernoulli equation

φt +
1
2
|∇φ|2 + gη+

p
ρ
=CB for x ∈R, z= η(x, t). (2.4)
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This constant CB will be specified below. As is common in hydro-elastic problems, we
combine nonlinear equations for the fluid motion with linear elastic equations for the
solid. This choice can be justified by noticing that liquid motions are of a different
order of magnitude than deformations of the elastic solid cover. The presence of the
overlying elastic solid is indicated via the pressure p at the interface between the
liquid and solid. This pressure is obtained from the beam equation for elastic solids.
This equation is written as

D∂4
x η−

ρIh3

12
∂2

t ∂
2
x η+ ρIh∂2

t η+ ρIgh+ P− p= 0. (2.5)

This is a well-known equation describing deflection η(x, t) of beams. The second term
in the equation which is due to horizontal acceleration of media particles is usually
neglected, but in the present analysis, this term will actually allow an improved
handling of the pressure imposed by a point load.

As already indicated in the introduction, it is important to include the effect of
dissipation into the model. For the anelastic ice response to a moving load, the
standard model of viscoelasticity (visualized as a spring in series with a Voigt unit)
is considered to be most appropriate (see Hosking et al. 1988; Squire et al. 1988b;
Wang et al. 2004). However, the simpler approach previously used for beams and
adopted here assumes a damping force proportional to the vertical velocity, which
results in the addition of a damping term −b/h∂tη to the beam equation. The
corresponding proportionality factor b> 0 is assumed to be constant, and needs to be
tuned for any given situation. The resulting equation is the beam equation in presence
of damping which is given by

D∂4
x u2 −

ρIh3

12
∂2

t ∂
2
x u2 + ρIh∂2

t u2 + b∂tu2 + ρIgh+ P− p= 0. (2.6)

At this point one may wonder whether an improvement may be made by using
more advanced beam models such as the Timoshenko theory which takes account of
rotational bending effects, and is usually considered more precise (see Squire et al.
1988b, for example). However, the use of such models is not very common, and it
would also make the weakly nonlinear approximation explained in the next section
much more difficult. Moreover, the Timoshenko theory’s main advantage lies in the
study of the dynamics of either short beams or beams subjected to high-frequency
excitation when the wavelength is near the media thickness, and neither of these are
important in the situation at hand.

Assuming that the fluid foundation is always in contact with underside of the
elastic plate (i.e. that there is no cavitation), and choosing the Bernoulli constant
CB = ρIgh/ρ the beam equation (2.6) can be combined with the Bernoulli equation
(2.4) by eliminating the pressure p at the interface. The resulting equation can be
written in terms of the hydro-elastic parameter ~ =D/(ρg) in the form

~g∂4
x η−

ρIh3

12ρ
∂2

t ∂
2
x η+

ρIh
ρ
∂2

t η+
b
ρ
∂tη+ gη+ φt +

1
2
|∇φ|2 +

P
ρ
= 0. (2.7)

This equation holds on the interface z = η(x, t). Note that both rotatory inertia and
nonlinear hydrodynamical effects are taken into account here. The load P is considered
to be a distributed pressure

P(x, t)= ρf (x− x0 − X(t)), (2.8)

moving along the x-axis at a velocity X′(t).
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The main hydro-elastic system to be solved consists of the equation (2.1), together
with the boundary conditions (2.2), (2.3) and (2.7) with the exterior pressure (2.8).
Note that the imposition of a point load will lead to usage of a Dirac delta function
in definition (2.8). This formal approach can be made mathematically precise in a
number of ways (see Nevel (1970) and Davys et al. (1985) for the steady case). In
the present context, a rigorous formulation of an inhomogeneous problem with a
point load will be given in the next section in the framework of the weakly nonlinear
approximation. It is worth mentioning that Guyenne & Părău (2017) have also
examined dissipative effects on wave propagation in ice sheets using fully nonlinear
numerical simulations. It also deserves notice that some authors advocate for taking
account of the vertical inertia of the moving load mass in (2.8). However, this change
would complicate the following analysis considerably. On the other hand, Squire et al.
(1988b) note that rotary inertia (the second term in (2.7)) must be included only if
the loading is applied suddenly, or if it is of high frequency. As will come to light in
§ 4, keeping the second term in (2.7) may actually be advantageous since it permits
the treatment of a point load (2.8) in a mathematically consistent way.

3. The dispersion relation
In the situation depicted in figure 1, but without load forcing, small-amplitude waves

of the form a cos(ξx− ξct) exist if the wavenumber ξ and the phase speed c satisfy
the dispersion relation (1.2). In stating this relation, the assumption is made that the
wavelength λ= 2π/ξ is greater than the thickness of the elastic layer h, so that the
rotatory inertia term containing h3ξ 3 can be ignored. This assumption is generally
reasonable, but for the sake of completeness, the full general dispersion relation is
stated in (4.20), including both rotatory inertia and damping. On the other hand, if
the wavelength is very much longer than h, the term hξ is also negligible, so that the
dispersion relation (1.2) may be approximated by

c2
=

g
ξ
[1+ ξ 4D/gρ] tanh ξH. (3.1)

This approximate dispersion relation is used in Takizawa (1987) and many other
works. Figures 3 and 4 show the two dispersion relations (1.2) and (3.1) for a
number of parameter sets corresponding to different field experiments. Both dispersion
relations have the same minimum wave speed cmin (up to a very small error). These
critical wave speeds and the corresponding critical wavelengths are recorded in the
captions of figures 3 and 4. The wave speed cmin is singular in the sense that linear
elastic theory predicts that the response to a point or distributed two-dimensional
rectangular or circular load moving at this speed is unbounded (see Milinazzo et al.
1995; Nugroho et al. 1999). Thus cmin is a critical load speed in the traditional sense.
A three-dimensional analysis shows that the load speed

√
gH is not a critical speed,

but it does mark the low load speed bound for the shadow zone predicted in Davys
et al. (1985). For loads moving below cmin, no wave response is observed (see § 8),
and this is the quasi-static range according to Takizawa (1987).

Various other approximate dispersion relations have been used in the literature. In
Xia & Shen (2002), an approximation taking into account transversal loading and
background shear was used, such as would be more common in the situation of an
ice cover in a river. In the case of zero transversal loading and no background shear
the dispersion relation reduces to

c2
=

g+Dξ 4/ρ

1/H + hξ 2ρI/ρ
. (3.2)
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The purpose of the work of Xia & Shen (2002) was the study of waves of ice sheets
with axial loading, such as in frozen rivers. As a consequence, the equations are more
similar to the shallow-water equations for river flow, and the authors advocate for
the inclusion of nonlinear effects since the dispersion curve is such that many linear
modes are in near resonance, i.e. with nearly the same linear phase speed. Since the
focus of Xia & Shen (2002) was not on moving loads, this approximation is not given
further consideration.

A Boussinesq-type nonlinear system was found in Guyenne & Părău (2014a), where
the approximate dispersion relation

c2
= (g/ξ +Dξ 3/ρ)(Hξ − (Hξ)3/3+ 2(Hξ)5/15) (3.3)

appears if the system is linearized. As can be seen if figures 3 and 4, the critical wave
speed in the dispersion relation (3.3) differs from the critical wave speed provided by
the full dispersion relation. The value of the critical speed is a matter of great practical
importance for mechanized operations in cold regions, and it is therefore desirable
to utilize a mathematical model which describes the critical speed as accurately as
possible. In the next section, a more general approach is taken, and the full hydro-
elastic system is approximated by a weakly nonlinear system.

4. Weakly nonlinear approximation
The main aim of this section is to find an approximation of the system (2.1)–(2.3),

(2.7) in the weakly nonlinear framework. The system will also include a time- and
space-dependent pressure forcing (2.8) in order to simulate a moving load on the ice
sheet.

Considering the deflection of the ice cover η(x, t) as above, and assuming
irrotational flow in the fluid under the ice sheet, we introduce the surface trace of
the velocity potential Φ(x, t)= φ(x, η(x, t), t). Then the variable u=Φx= φx+ ηxφz=

φτ
√

1+ η2
x , where φτ is the fluid velocity tangent to the surface. It should be noted

that due to the assumption of irrotational flow, and the resultant existence of the
velocity potential, the unknowns η and Φ can be used to describe the complete fluid
motion as well as the deflection of the ice sheet.

We define the Dirichlet–Neumann operator G(η) associated with the problem (2.1),
(2.2) and (2.3) by the formula

G(η)Φ = (∂zφ − ∂xη∂xφ)z=η(x). (4.1)

The dependence of the Dirichlet–Neumann operator G on the deflection η is nonlinear,
but it is analytic in the sense explained in Nicholls & Reitich (2001) and can be
expanded as a power series as

G(η)Φ =
∞∑

j=0

Gj(η)Φ, (4.2)

where each operator Gj(η) is homogeneous of degree j in powers of η. There is a
well-known recursion formula for the Gj(η), and following Craig & Sulem 1993, Craig
& Groves 1994 and Craig, Guyenne & Kalisch (2005), the first three terms have the
form

G0(η)=D tanh(HD), G1(η)=DηD−G0ηG0,

G2(η)=−
1
2(|D|

2η2G0 +G0η
2
|D|2 − 2G0ηG0ηG0),

}
(4.3)
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Fully dispersive models for moving loads on ice sheets 131

where D=−i∂x is the operator given by multiplication with ξ in wavenumber space.
Using (2.3) and definition (4.1) leads to the equation

ηt =GΦ. (4.4)

Note that this equation describes the kinematic boundary condition exactly. The second
equation which is needed to describe the flow is found as follows. We first express
derivatives of φ in terms of derivatives of η and Φ. The gradient ∇φ is found from
the definitions of Φ and G in the form

∇φ =

(
1 ηx
−ηx 1

)−1 (
Φx
GΦ

)
=

1
1+ η2

x

(
Φx − ηxGΦ
GΦ + ηxΦx

)
. (4.5)

Now differentiation of the surface potential Φ with respect to t and applying (4.4)
results in

Φt = φt + φzηt = φt + φzGΦ. (4.6)

This equation together with the velocity ∇φ from (4.5) yields the acceleration
potential of the inviscid fluid on surface in the form

φt +
1
2
|∇φ|2 =Φt +

1
2(1+ η2

x)
(Φ2

x − (GΦ)
2)−

1
1+ η2

x

ηxΦxGΦ. (4.7)

Substituting expression (4.7) into the Bernoulli equation (2.7) gives us the second
governing equation for the unknowns η and Φ. Thus by means of the Dirichlet–
Neumann operator G(η) we transformed the two-dimensional problem (2.1)–(2.3),
(2.7) to the one dimensional problem (4.4), (2.7) with (4.7). Note again that so
far all manipulations have been formally exact, and no approximations have been
introduced.

In order to approximate the one-dimensional problem above in the case of small
surface deflections, we use a weakly nonlinear, but linearly fully dispersive system of
evolution equations. In effect, in the equations (4.4) and (2.7) we discard all terms
of cubic or higher order, and also all nonlinear dispersive terms. This procedure was
justified in Moldabayev, Kalisch & Dutykh (2015) by using an exponential scaling, but
it can also be viewed as simply keeping all linear error terms as they do not change
the order of the approximation. The equation is thus formally of the same order as the
corresponding Boussinesq equation, but including the exact form of the linear terms
gives a decisive advantage when it comes to describing flexural–gravity waves. The
idea of keeping various corrections of a lower order has been used in a number of
other cases, especially in the context of coastal engineering (see for example Madsen,
Murray & Sørensen 1991; Nwogu 1993; Wei et al. 1995). Thus using this idea, the
first term in the series (4.2) G0=D tanh HD is kept unchanged, while the term G1 is
simplified to G1(η)=DηD=−∂xη∂x. This approximation immediately transforms (4.4)
to the simplified equation

ηt =G0Φ − ∂x(ηΦx). (4.8)

Next, equation (2.7) is simplified. First, we aim to remove the second time derivatives
by means of applying (4.4) iteratively. Anticipating that cubic and higher-order
nonlinearities will not be carried through, we approximate the Dirichlet–Neumann
operator by G=G0 +G1 +G2. We will temporarily use the notation

G2(η1, η2)=−
1
2(|D|

2η1η2G0 +G0η1η2|D|2 − 2G0η1G0η2G0), (4.9)
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which reduces to our regular notation G2(η)=G2(η, η) in the case when η1=η2. Then
taking into account that time and spatial derivatives commute, it can be seen that

∂tG2(η)Φ = G2(ηt, η)Φ +G2(η, ηt)Φ +G2(η, η)Φt

= G2((G0 +G1 +G2)Φ, η)Φ

+G2(η, (G0 +G1 +G2)Φ)Φ +G2(η, η)Φt. (4.10)

Treating ∂tG1(η)Φ in a similar manner, applying (4.4) again and truncating nonlinearity
at the third order we eventually arrive at the relation

∂2
t η= (G0 +G1(η)+G2(η))Φt +G1(G0Φ)Φ. (4.11)

This identity together with (4.4) and (4.7) is substituted into (2.7), so that we find

FΦt =−g(1+ ~∂4
x )η−

b
ρ
(G0 +G1(η))Φ −

ρIh
ρ

(
1−

h2∂2
x

12

)
G1(G0Φ)Φ −

1
2
Φ2

x −
P
ρ
,

(4.12)
where the operator F is defined by

F=K +
ρIh
ρ

(
1−

h2∂2
x

12

)
(G1(η)+G2(η)), (4.13)

and the operator K is defined by

K = 1+
ρIh
ρ

(
1−

h2∂2
x

12

)
G0. (4.14)

In wavenumber space, K has the expression

k(ξ)= 1+
ρIh
ρ
ξ tanh Hξ +

ρI

ρ

h3

12
ξ 3 tanh Hξ, (4.15)

which shows that K can easily be inverted. Thus (4.12) can be simplified further by
taking inverse of the operator F as follows

F−1
= K−1

−
ρIh
ρ

(
1−

h2∂2
x

12

)
K−1(G1(η)+G2(η))K−1

+

(
ρIh
ρ

)2

K−1G1(η)K−1G1(η)K−1, (4.16)

where higher-order terms in η have been omitted. We introduce the notation

Γ =
1
ρ

F−1P, (4.17)

where the inverse is understood in the sense of (4.16), and the function Γ (x, t)
depends on both the surface elevation η(x, t) and the imposed pressure P(x, t). Thus
applying (4.16) to both sides of the expression (4.12), discarding highly nonlinear
and nonlinear dispersive terms and simplifying yields the equation

Φt =−g
1+ ~D4

K
η−

b
ρ

G0

K
Φ −

ρIgh
2ρ

∂2
x η

2
+

b
ρ
∂x(ηΦx)−

1
2
Φ2

x − Γ . (4.18)
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Fully dispersive models for moving loads on ice sheets 133

The equations (4.8), (4.18) give a one-dimensional fully dispersive weakly nonlinear
approximation of the problem (2.1)–(2.3), (2.7).

Looking for solutions of the homogeneous linearization in the form η(x, t) =
Aeiξx−iωt, Φ(x, t)= Beiξx−iωt gives rise to the necessary condition

ω2
+

ib
ρ

ξ tanh Hξ
k(ξ)

ω− g(1+ ~ξ 4)
ξ tanh Hξ

k(ξ)
= 0. (4.19)

In terms of the phase speed c=ω(ξ)/ξ , the dispersion relation is written as

c2
+

ib
ρ

tanh Hξ
k(ξ)

c− g(1+ ~ξ 4)
tanh Hξ
ξk(ξ)

= 0. (4.20)

So far all approximations have been made for a general inhomogeneity P(x, t).
Considering in particular a moving load (2.8) firstly one calculates

w(x, t)=K−1P/ρ =
1

2π

∫
R

f̂ (ξ)ei(x−x0−X(t))ξ

k(ξ)
dξ, (4.21)

where the operator K and its symbol k(ξ) are defined by (4.14) and (4.15). Note that
since the rotatory inertia term, i.e. the third term in (4.15) is included in the definition
of k(ξ), this integral is convergent even in the case of a point load. In fact, if f (x)=
γ δ(x) with f̂ (ξ)≡ γ , the function w is well defined and bounded. The regularity of
this function permits the omission of the quadratic parts with respect to η in (4.17)
since these parts are highly dispersive and nonlinear. Thus the presence of the load
results in the forcing term

Γ =w−
ρIh
ρ

(
1−

h2∂2
x

12

)
K−1G1(η)w. (4.22)

Bi-directional fully dispersive weakly nonlinear systems such as (4.8), (4.18) have
only appeared recently in the literature. Aceves-Sánchez, Minzoni & Panayotaros
(2013) and Vargas-Magana & Panayotaros (2016) studied a Whitham-type system for
free surface waves in the presence of non-trivial bottom topography. In Moldabayev
et al. (2015), Dinvay et al. (2017) and Carter (2018) the fidelity of Whitham-type
systems when compared with Euler flows and laboratory experiments was under
review. One interesting feature of these models is that periodic solutions exist (see
Ehrnström & Kalisch 2009, 2013), and that they feature modulational instability
in a similar fashion as deep-water wave models (see Sanford et al. 2014; Hur &
Johnson 2015a,b). As far as we know, the only result pertaining to multi-directional
fully dispersive systems is given by Lannes & Saut (2013), where it is assumed that
perturbations in the direction transverse to the main direction of wave propagation
are weak. In the next section, we derive a multi-directional fully dispersive system
without that assumption.

5. Two-dimensional weakly nonlinear approximation
Regarding now the fluid surface displacement η(x, y, t) as a function of two spatial

variables we introduce the surface velocity potential Φ(x, y, t) = φ(x, y, η(x, y, t), t).
In this case, the first two terms of the Dirichlet–Neumann operator have the form

G0 = |D| tanh(H|D|), G1(η)=−∂xη∂x − ∂yη∂y −G0ηG0, (5.1a.b)
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where D= (−i∂x,−i∂y) and |D| =
√
−∆=

√
−∂2

x − ∂
2
y . We define the operator K by

K = 1+
ρIh
ρ

(
1−

h2∆

12

)
G0, (5.2)

with the symbol

k(ξ1, ξ2)= 1+
ρIh
ρ

(
1+

h2

12
(ξ 2

1 + ξ
2
2 )

)√
ξ 2

1 + ξ
2
2 tanh

(
H
√
ξ 2

1 + ξ
2
2

)
. (5.3)

The formal derivation of the previous section can be used in the same way without
any substantial changes. The final two-dimensional system to be solved is

ηt =G0Φ − ∂x(ηΦx)− ∂y(ηΦy), (5.4)

Φt = −g
1+ ~∆2

K
η−

b
ρ

G0

K
Φ − Γ −

1
2
Φ2

x −
1
2
Φ2

y −
ρIgh
2ρ

1η2

+
b
ρ
∂x(η∂xΦ)+

b
ρ
∂y(η∂yΦ), (5.5)

with

Γ =w−
ρIh
ρ

(
1−

h2∆

12

)
K−1G1(η)w, (5.6)

and
w(x, y, t)=K−1P/ρ, (5.7)

where the operator K and the corresponding symbol k(ξ) are defined by (5.2) and
(5.3). In case of the distributed moving load

P(x, y, t)= ρf (x− x0 − X(t), y) (5.8)

one finds

w(x, y, t)=
1

(2π)2

∫
R2

ei(x−x0−X(t))ξ1+iyξ2 f̂ (ξ1, ξ2)

k(ξ1, ξ2)
dξ1 dξ2. (5.9)

It is clear that also in this case a point load f (x, y) = δ(x, y) will lead to a smooth
function w with respect to spatial variables. This justifies making use of the system
(5.4)–(5.5) even for the load concentrated at a point. It is worth notice that this feature
is achieved by keeping rotary inertia which is usually neglected by other authors in
(2.7). Thus there is no need for regularization of the point load as it is smoothed
naturally in our framework by the inverse operator K−1.

6. Exact solution of the linearized problem
It turns out that after further simplification of (5.4)–(5.5) the new system can be

solved exactly. First we consider the linearized problem without an imposed pressure.
This simplification leads to the homogeneous linear system

ηt =G0Φ, (6.1)

Φt =−g
1+ ~∆2

K
η−

b
ρ

G0

K
Φ. (6.2)
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Introducing the operators

R=
bG0

2ρK
, (6.3)

and

U =

√
g(1+ ~D4)G0

K
− R2, (6.4)

one can easily solve the new system exactly. In terms of initial values η0, Φ0, the
solution is given by

ηHL(t)= e−Rt

(
R sin(Ut)

U
+ cos(Ut)

)
η0 + e−Rt G0 sin(Ut)

U
Φ0, (6.5)

ΦHL(t)= e−Rt

(
−g

1+ ~∆2

K

)
sin(Ut)

U
η0 + e−Rt

(
−R sin(Ut)

U
+ cos(Ut)

)
Φ0. (6.6)

Notice that operator R is associated with the viscosity of the ice, and these solutions
are damped very quickly.

The next level of accuracy is to discard again all nonlinear terms in the system
(5.4)–(5.5) and use a slightly simplified expression for the imposed pressure Γ . It
turns out that the second term in the expression for Γ given in (5.6) does not affect
the solution a great deal. Indeed one may omit the term depending on G1(η), and use
the approximate form Γ = w. The numerical scheme was run both with and without
this approximation, and there was no discernible difference in the solution. Thus the
new two-dimensional linear system to be solved is

ηt =G0Φ, (6.7)

Φt =−g
1+ ~∆2

K
η−

b
ρ

G0

K
Φ −w. (6.8)

For constant load speed X′(t)=V , a closed-form solution of this system can be found
using the Laplace transformation L. Let η̂, Φ̂ and ŵ be Laplace transforms of η, Φ
and w, respectively. Then the system is transformed to the system

η̂(s)=
1

s2 + 2Rs+ R2 +U2
((s+ 2R)η0 +G0Φ0 −G0ŵ(s)),

Φ̂(s)=
1

s2 + 2Rs+ R2 +U2
(−(R2

+U2)G−1
0 η0 + sΦ0 − sŵ(s)),

 (6.9)

where

ŵ(x, y, s)=
1

(2π)2

∫
R2

ei(x−x0)ξ1+iyξ2 f̂ (ξ1, ξ2)

(s+ iξ1V)k(ξ1, ξ2)
dξ1 dξ2. (6.10)

The solution of this system has the form η(t)= ηHL(t)+ ηw(t) and Φ(t)= ΦHL(t)+
Φw(t), where

ηw(t)=L−1

(
−G0

(s+ R)2 +U2
ŵ(s)

)
,

Φw(t)=L−1

(
−s

(s+ R)2 +U2
ŵ(s)

)
.

 (6.11)
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Thus we have

ηw(x, y, t)=F−1(Aη(ξ)e−R(ξ)t−iU(ξ)t
+ Bη(ξ)e−R(ξ)t+iU(ξ)t

+Cη(ξ)e−iξ1Vt)(x− x0, y),
Φw(x, y, t)=F−1(AΦ(ξ)e−R(ξ)t−iU(ξ)t

+ BΦ(ξ)e−R(ξ)t+iU(ξ)t
+CΦ(ξ)e−iξ1Vt)(x− x0, y),

}
(6.12)

where the Fourier variable is ξ = (ξ1, ξ2), and the functions Aη, Bη and Cη, are defined
by

Aη(ξ)=−
f̂ (ξ)k(ξ)−1G0(ξ)

2iU(ξ)(R(ξ)+ iU(ξ)− iξ1V)
,

Bη(ξ)=
f̂ (ξ)k(ξ)−1G0(ξ)

2iU(ξ)(R(ξ)− iU(ξ)− iξ1V)
,

Cη(ξ)=−
f̂ (ξ)k(ξ)−1G0(ξ)

(R(ξ)+ iU(ξ)− iξ1V)(R(ξ)− iU(ξ)− iξ1V)
,


(6.13)

and correspondingly we have

AΦ(ξ)=
f̂ (ξ)k(ξ)−1(R(ξ)+ iU(ξ))

2iU(ξ)(R(ξ)+ iU(ξ)− iξ1V)
,

BΦ(ξ)=−
f̂ (ξ)k(ξ)−1(R(ξ)− iU(ξ))

2iU(ξ)(R(ξ)− iU(ξ)− iξ1V)
,

CΦ(ξ)=
f̂ (ξ)k(ξ)−1iξ1V

(R(ξ)+ iU(ξ)− iξ1V)(R(ξ)− iU(ξ)− iξ1V)
.


(6.14)

These formulae represent the exact solution of the linear system (6.7)–(6.8) in the case
of constant load speed. These formulae may be used to check the numerical algorithm
put forward in the next section, and they are also of independent interest as they can
be implemented with relative ease.

7. Numerical treatment of the nonlinear system

An effective way of approximating the full system (5.4)–(5.5) numerically is to treat
the linear and nonlinear parts separately using a split-step scheme. To be more specific,
the system (5.4)–(5.5) is represented in the form

Zt =A(Z)+B(Z, t), (7.1)

and each time step is split into two parts where the systems Zt = A(Z) and Zt =

B(Z, t) are solved separately. Here the first differential equation corresponds to the
homogeneous linear system (6.1)–(6.2). More precisely, the solution vector is Z =
(η, Φ) and the system has the form[

ηt
Φt

]
=

[
A1(Z)
A2(Z)

]
, (7.2)

where A1(Z) = G0Φ and A2(Z) = −g(1 + ~∆2)K−1η − bG0(ρK)−1Φ. Its exact
solution (6.5)–(6.6) represents the integrator exp(tA) of the first system. As for the
second differential equation with B(Z, t) one needs to be careful since in general
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numerical splitting schemes are developed only for autonomous equations. This is not
the case with the second system Zt =B(Z, t) having the form[

ηt
Φt

]
=

[
B1(Z)
B2(Z, t)

]
, (7.3)

where

B1(Z)=−∂x(ηΦx)− ∂y(ηΦy),

B2(Z, t)=−Γ (η, t)−
1
2
Φ2

x −
1
2
Φ2

y −
ρIgh
2ρ

1η2
+

b
ρ
∂x(η∂xΦ)+

b
ρ
∂y(η∂yΦ).

 (7.4)

This system contains the pressure forcing and all nonlinear terms. Note that the right-
hand side depends on time t.

Now let δt denote a time step. Suppose we know the solution Z(t) of the equation
Zt=B(Z, t) associated with the system Zt=B(Z, t) at time t. To find its solutions at
time t+ δt, we solve it making use of a standard numerical scheme, as for example
the four-stage Runge–Kutta method. However, for use in the split-step scheme it needs
to be modified slightly in a semi-autonomous way as follows. If Zi is a value at the
beginning of a substep with the length δti then the value Zi+1 is defined by Zi+1 =

Zi + (F1 + 2F2 + 2F3 + F4)/6, where

F1 = δtiB(Zi, t),
F2 = δtiB(Zi + F1/2, t)
F3 = δtiB(Zi + F2/2, t),

F4 = δtiB(Zi + F3, t).

 (7.5)

Note that the time t is fixed here. The procedure defines the numerical integrator
exp(δtiB) on a substep of the time interval (t, t+ δt). The integrator exp(δt(A+ B))
of the whole system (7.1) is defined via exp(δtA) and exp(δtB) as an integrator of
sixth order which is thoroughly described in Dinvay, Dutykh & Kalisch (2019), so
that we do not go into any more detail here.

In order to solve each substep, we use a Fourier spectral discretization for the
spatial part, where the nonlinear terms are evaluated with the fast Fourier transform.

8. Numerical experiments
In this section, we test our model on a number of datasets provided by the

experimental campaigns carried out on Mille Lacs, Minnesota, USA, by Wilson
(1955), on Cold Lake in Canada by Beltaos (1981), and on Lake Saroma in Japan
by Takizawa (1987, 1988). A number of additional important field campaigns have
been conducted over the years, most notably the work conducted at McMurdo sound
in Antarctica and reported in Squire et al. (1988a,b). However, in this campaign, a
strain gauge was used instead of a deflectometer. Using a strain gauge has certain
practical advantages, but makes a comparison to numerical simulations more difficult.

We first focus on experiments of a Japanese research group headed up by Takatoshi
Takizawa. These experiments were conducted on Lake Saroma on the island of
Hokkaido in Japan. The lake was covered with an ice sheet of approximately 0.16 m
thickness which had a light snow cover of about 2 to 8 cm. A skidoo weighing
235 kg was driven on a test track about 200 m long. Deflectometers and vehicle
detectors were installed in several locations along the track. The flexural properties
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FIGURE 5. Comparison of numerical approximation of (4.8), (4.18) and experimental
ice deflection records from the experiments of Takizawa (1987). The load speeds are
2.2 m s−1, 4.2 m s−1, 5.5 m s−1, 6.2 m s−1 and 8.9 m s−1 (from a to e). The dashed
black curves are the experimental data of Takizawa (1987), and the red dots indicate
the z-position of the skidoo used in these experiments at the time it passes the
deflectometer. The blue curves represent the time series of the numerical approximation of
equations (4.8), (4.18), taken at a measuring station corresponding to the position of the
deflectometer in the field experiment. The blue dots represent the z-position of the load
as it passes the x-position where the time series is obtained.

of the ice were determined with static loading tests, and the most important physical
parameters in these experiments are summarized in table 1.

In the following, our aim will be to compare numerical approximations of the
system (4.8), (4.18) with results from Takizawa’s experimental data. For this purpose,
figure 6 of Takizawa (1987) has been digitized. This figure shows typical deflectometer
records from skidoo passages on February 5th, 1981. It can be seen in figure 5 that
the main features of the experimental data can be found in the numerical solutions.
The quasi-static cases of load velocity 2.2 m s−1 and 4.2 m s−1 which are well
below the minimum phase speed shown in the dispersion curve (figure 3a) are
matched almost perfectly. The two-wave stage with a speed of 6.2 m s−1 also shows
good agreement between experiment and numerical simulation, and in particular,
both the flexural and the gravity wave are captured in the computed solution. The
single-wave stage at load velocity 8.9 m s−1 which is above the limiting long-wave
speed gives a fairly good fit, but the leading waves are slightly exaggerated. The
case of load speed 5.5 m s−1 which is close to the critical speed dividing the range
of quasi-static and two-wave regimes features a few spurious leading waves in the
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FIGURE 6. Numerical approximation of (5.4), (5.5) for constant load velocity V =
8.9 m s−1, such as in figure 5. (a) The wave crest pattern, and (b) shows the deflection
of the ice sheet along the centre line y= 0. For comparison, the solution of (4.8), (4.18)
is also plotted in (b). This graph is shifted left for easier comparison.

computed solution. Nevertheless, even in this case, the difference between maximum
and minimum deflection is captured fairly well. As these computations were done
using the one-dimensional model (4.8), (4.18), adjustment of the load was necessary
(as done for example also in Părău & Dias (2002)). The load was adjusted by aiming
for an optimal fit in a static loading case, i.e. with zero load velocity.

It should also be emphasized that the same damping coefficient b was used in all
five computations shown in figure 5. The damping is due to a number of factors such
as inherent viscous damping, snow cover and damping in the turbulent boundary layer
in the underlying fluid base, but as mentioned in § 2, it is most expedient to use the
generic damping term introduced in (2.6). The coefficient b is non-dimensionalized by
setting b= Bbc, where bc is defined as bc = 2

√
ρgρIh. The coefficient B then needed

to be determined by trial and error, but the process can be optimized by choosing B
in such a way that the time lag is optimized (see figure 11 in Takizawa (1987)). In
the case of fitting the records of Takizawa, we determined B= 0.41 for a best fit.

Previous attempts to match the experimental data from Takizawa (1987) were made
by Takizawa himself in Takizawa (1987) who obtained good qualitative agreement, but
did not aim for quantitative agreement. Fair quantitative agreement was obtained in
Milinazzo et al. (1995), but the numerical data needed to be symmetric for subcritical
load speeds and did not feature temporal localization for super-critical load speeds
due to the steady nature of their model. The present work removes both of these
impairments.

We also made some comparisons with the two-dimensional model (5.4), (5.5),
which gave similar results. An example of a two-dimensional wave pattern is shown
in figure 6 for the case when the load speed is u= 8.9 m s−1. In particular, it should
be noted that the contours shown in the two-dimensional wave pattern in figure 6(a)
are of very small amplitude. Examining the centre line of the wave deflection in (b),
it becomes clear that the shadow zone discovered by Davys et al. (1985) using the
linear steady model is recovered in our nonlinear time-dependent model.

In the field campaign of Wilson (1955), an ammunition truck was driven over the
ice-covered Mille Lacs near Brainerd, Minnesota in the United States of America.
The deflection of the ice cover was measured with a deflectometer, the depth at the
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FIGURE 7. Comparison of numerical approximation of (5.4), (5.5) and experimental
ice deflection records from the single-truck experiments of Wilson (1955). The dashed
black curves are the experimental data of Wilson (1955), and the red dots indicate the
z-position of the truck at the time it passes the deflectometer. The blue curves represent
the numerical approximation of (5.4), (5.5), and the blue dots represent the z-position of
the load at the time is passes the deflectometer.

measuring point was about 3.26 m, and the ice thickness was 0.61 m. The elastic
modulus was estimated to be 9 × 109 N m−2 (see table 1). The non-dimensional
damping coefficient was taken to be B= 0.95. Figure 7 shows comparisons with these
experimental data. The load speeds (from a to e) are 2.6 m s−1, 4.6 m s−1, 7.3 m s−1,
8.4 m s−1 and 17.9 m s−1. The data are compared to numerical approximations of
solutions to the two-dimensional model (5.4), (5.5). The match between experimental
data and numerical approximation is superb for the two subcritical cases. For the
third and fourth case, the match is not as good, but given a probably rather large
uncertainty in the measurements, the comparison is overall fair.

Figure 8 shows comparisons with the experimental data of Wilson (1955) pertaining
to the two-truck experiments. In these runs, two trucks were driven over the ice at a
fixed distance. The comparison with the numerical approximation of (5.4), (5.5) is
quite good, and in particular better than the single-truck case.

Lastly, we consider the experimental work of Beltaos (1981) carried out on Cold
Lake which is located on the Alberta–Saskatchewan provincial boundary in Canada.
A truck was driven along a test track located about 800 m from shore. The water
depth was approximately 4.3 m and the ice thickness was 0.59 m. The elastic
modulus was estimated to be 4.9 × 109 N m−2 (see table 1). Note that while the
dispersion curve also has two critical values in this case, they are so close together
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FIGURE 8. Comparison of numerical approximation of (5.4), (5.5) and experimental ice
deflection records with two trucks driving at constant speed. The dashed black curves
are the experimental data of Wilson (1955), and the red dots indicate the z-position of
the two trucks used in these experiments at the time they pass the deflectometer. The
blue curves represent the time series of the numerical approximation of (5.4), (5.5), taken
at a measuring station corresponding to the position of the deflectometer in the field
experiment. The blue dots represent the z-position of the two loads as they pass the
position where the time series is obtained.

that in practice there is only one critical load speed, which Beltaos determined
experimentally to be approximately Vc = 7.3 m s−1.

Figure 9 shows comparisons of the numerical approximations of (5.4), (5.5)
with the experimental data of Beltaos (1981). The load speeds (from a to c) are
4.4 m s−1, 8.0 m s−1 and 13.9 m s−1. The first load speed is subcritical, while
the second and third are supercritical. The comparison of the wave profile is
qualitatively good, but the numerical simulation slightly underpredicts the maximum
deflection of the ice sheet. Of course, as also pointed out by Beltaos (1981), there is
considerable uncertainty in the measurements, and as in the cases above, the damping
parameter has to be estimated based on the fit with the experiments. In this case, the
non-dimensional damping coefficient was taken to be B = 1.05. For the near-critical
case with load speed V = 1.1Vc = 8.0 m s−1 the two-dimensional wave crest pattern
is shown in figure 10. Since the load speed is above the critical speed, one also
expects a shadow zone in this case, and this can be seen in the wave crest pattern in
figure 10(a), and in the centre line deflection in (b). The small trailing disturbances
are transients which decay over time.
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FIGURE 9. Comparison of numerical approximation of (5.4), (5.5) and experimental ice
deflection records. The dashed black curves are the experimental ice deflection records
of Beltaos (1981), and the red dots indicate the z-position of the truck as it passes the
deflectometer. The blue curves represent time series of the numerical approximation of
(5.4), (5.5), taken at a measuring point corresponding to the position of the deflectometer
in the field experiments. The blue dots represent the z-position of the numerically imposed
load as it passes the measuring point.
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FIGURE 10. Numerical approximation of (5.4), (5.5) for constant load velocity V =
8.0 m s−1, such as in figure 9. (a) Shows the wave crest pattern, and (b) shows the
deflection of the ice sheet along the centre line y= 0.

Beltaos (1981) also raised the interesting question of whether a changing load speed
may have an impact on the response of the ice sheet. In particular, he noted that
drivers have reported ice failures occurring in the case of sudden deceleration because
of a perceived danger ahead. As will be shown presently, deceleration may indeed
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FIGURE 11. Comparison of numerical approximation of (4.8), (4.18) for constant load
velocity 10 m s−1 (a,c,e) and deceleration from 10 m s−1 to 0 m s−1 (b,d, f ). (a,b) Show
the evolution of the surface deflection at a measuring station at a fixed location. (c,d)
Show the z position of the load as a function of time. (e, f ) Show the maximum relative
strain as a function of time.

have an adverse effect on the stability of the ice sheet, as interference patterns may
contribute to exceeding the critical strain beyond which failures are likely to occur.

Figure 11 shows the development of the free surface for a load passing a measuring
station. (a,c,e) show a load moving at constant speed. The curve in (a) depicts the
deflection of the ice sheet at the measuring station, and the black dot indicates the
time when the load passes the measuring station. Panel (c) shows the vertical position
of the free surface at the point of the load, and (e) shows the maximum strain of the
ice. The strain computed here is the linear or axial strain which is used in defining
the bending moment of an elastic solid, and which can be measured experimentally
using a strainmeter, such as explained in Davys et al. (1985). According to Page
& Părău (2014) and references therein, the strain is approximated by the expression
ε = (h/2)ηxx. The strain takes on large values at the beginning which is probably
due to the impulsively started load (even though we made sure to use initial data
corresponding to a static load so as to avoid a non-smooth start-up phase). Otherwise
the maximum strain is of the order of 10−5.

Figure 11(b,d, f ) shows the case of a decelerating load. Panel (b) shows the
development of the surface deflection at the measuring station, and the black dot
indicates the time when the load passes the measuring station. We note that the
surface deflection is larger by a factor of more than 10 compared to the case of a
load moving at constant speed. (d) Shows the corresponding vertical position of the
load on the ice sheet, and the amplitude here is also larger by a factor of 10 when
compared to the case of constant propagation speed of the load. Finally, ( f ) shows
the maximum strain in the ice sheet as a function of time. Here it must be noted that
the maximum strain occurring at time t= 28 is about 2× 10−4 which is approaching
the value 2.14× 10−4 which was indicated in Goodman, Wadhams & Squire (1980)
as the critical strain where cracks may appear in the ice.

Maximum ice deflection and strain are summarized in table 2. Note that the values
of maximum strain are slightly decreasing as the deceleration gets higher. From this
trend, one may conclude that it is actually safer to brake swiftly rather than to brake
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FIGURE 12. Comparison of numerical approximation of (4.8), (4.18) for constant load
velocity 6.2 m s−1 (a) and deceleration from 10 m s−1 to 0 m s−1 (b). The position of
the load is indicated in magenta. Panel (a) shows gravity waves trailing the load, while
(b) shows gravity waves continuously catching up with the load.

Deceleration rate 0.2 0.4 0.6 0.8 m s−2

Max. deflection 0.022 0.018 0.016 0.015 m
Max. strain 1.97× 10−4 1.76× 10−4 1.61× 10−4 1.51× 10−4

TABLE 2. Maximum ice deflection and maximum strain rate during the deceleration of a
light vehicle. The parameter values for this study have been taken from the experiments
by Takizawa (1987), summarized in table 1.

slowly. The dependence of the maximum deflection and maximum strain on the load
appears to be approximately linear.

The stark difference between the cases of constant load speed and decelerating
load may be explained by constructive interference of waves of different phase speed
created by the changing speed of the load. Indeed, as the load decelerates through
the critical long-wave speed

√
gH, it continuously excites gravity wave of smaller

and smaller velocity. The analysis in Takizawa (1987) shows that gravity waves will
generally trail the moving load. However, as the load velocity is getting smaller
than the phase velocity of previously excited waves, the waves immediately catch up
with the load, and through constructive interference an increasing bulge and trough
traveling with the load are formed. Eventually, this process leads to the development
of much larger surface deflections than could be expected with constant load speed.
The time developments of the wave responses in the constant-speed case and in the
decelerating are contrasted in figure 12.

9. Conclusions
Following Whitham’s idea, we have developed a fully dispersive weakly nonlinear

system describing flexural–gravity waves in an elastic plate on a fluid foundation,
excited by a moving load. The system is written in terms of the deflection of
the elastic plate and the surface trace of the fluid velocity potential. The system
derived here gives an accurate description of the linearized dynamics as the full
linear dispersion relation is incorporated in the system. The system also allows for
multi-directional wave propagation and various configurations of the imposed load.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

53
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.530


Fully dispersive models for moving loads on ice sheets 145

The equations are also nonlinear which makes the model more flexible in the
case when shallow fluids or very thin elastic plates are to be described. Indeed,
nonlinearity may be a desirable feature of a model for hydro-elastic responses as
there are observations of large-amplitude hydro-elastic waves in coastal regions.
For example, such waves were described in Marko (2003). Note also that Liu &
Mollo-Christensen (1988) describe focussing of wave energy in an ice pack which
can lead to modulational instability and large-amplitude waves.

The system has been approximated numerically, and the results have been compared
with a few experimental measurements. Overall, fairly good agreement with the
available experimental measurements has been obtained. Both the one-dimensional
model (4.8), (4.18) and the two-dimensional model (5.4), (5.5) have been used in the
simulations. In general, it appears that as long as the load configuration is such that a
point mass may be used to model the load, there is no particular advantage in using
the two-dimensional equations (5.4), (5.5) for making predictions from a practical
point of view. Of course, if the precise nature of the wave pattern is under study
then the two-dimensional model needs to be used. The two-dimensional model will
also have to be used if the load configuration is such that strongly two-dimensional
wave patterns are to be expected, such as the motion of a train on tracks laid on an
ice sheet for example.

We have also investigated the question of variable load speed, and we have found
that under certain conditions, the wave amplitude during decelerating motion can
exceed the corresponding values due to constant speed by a large factor. Indeed, for
otherwise reasonable parameter values, the maximum strain may approach values
where ice break-up may occur. Future work may focus on studying a larger number
of cases with a particular focus on non-constant load velocities in order to identify
potentially hazardous configurations.
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Appendix A. Comparison with a potential model

In § 8, the fully dispersive damped model was compared with field experiments.
Due to safety concerns, ice break-up must be avoided in these experiments. As a
consequence, these data do not feature large ice sheet deflections, and the role of
nonlinearity in the equations is of minor importance. We nevertheless incorporated
weakly nonlinear terms into the equations since large surface deflections are known
to occur. In order to verify that the equations also give representative results in the
case of larger amplitudes, we now analyse the weakly nonlinear approximation by
comparing with solutions of the full Euler system.

In order to focus on a concrete situation, we consider travelling-wave solutions in
the case without an external load. In addition, we will assume that the ice is thin,
so that h= 0, and damping is negligible, i.e. b= 0. These are standard assumptions
which are known to lead to the existence of travelling waves for the full Euler
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FIGURE 13. Bifurcation diagrams for λ = 4π and τ = 0.1. The blue curve represents
solutions of the hydro-elastic full Euler system. The green curve represents solutions of
the fully dispersive weakly nonlinear equation (1.1).

system (Plotnikov & Toland 2011). The fully nonlinear Euler equations can be solved
numerically by applying a conformal mapping technique.

Taking the depth H as a unit of length and the long-wave speed
√

gH as a unit
of velocity, one may rewrite the complete system in non-dimensional form. Omitting
details and referring the reader to Guyenne & Părău (2014a) we only note that the
Bernoulli equation takes the form

φt +
1
2(φ

2
x + φ

2
z )+ η+ τ(κss +

1
2κ

3)= 0 for x ∈R, z= η(x, t), (A 1)

where κ = ηxx(1 + η2
x)
−3/2 is the curvature of the shell and s is the arclength along

this cover and so

κss +
1
2
κ3
=

1√
1+ η2

x

∂x

(
1√

1+ η2
x

∂x

(
ηxx

(1+ η2
x)

3/2

))
+

1
2

(
ηxx

(1+ η2
x)

3/2

)3

. (A 2)

In our framework of Kirchhoff–Love assumptions the latter simplifies to the form

κss +
1
2κ

3
= ∂4

x η, (A 3)

however, for technical reasons we use the exact expression in our calculations in the
case of the full Euler system. The hydro-elastic parameter τ = D/(ρgH4) = ~/H4

is now non-dimensional. We approximate travelling-wave solutions numerically,
following the method laid out in Blyth & Părău (2016) and compare them with
ones for the Whitham equation (1.1).

We set the hydro-elastic parameter τ = 0.1, the wavelength λ = 4π and construct
periodic solutions on the interval [−λ/2, λ/2]. The choice of τ and λ seems
reasonable as these values correspond, for example, to a depth H ≈ 4 metres and a
wavelength L= λH ≈ 50 metres which appear physically reasonable.

We observe solutions of two types in these settings. There are solutions bifurcating
from trivial linear solutions. They can be approximated asymptotically by linear theory,
at least if the amplitudes are not too high. There are, however, solutions that cannot
be predicted or approximated by linear theory at all (the leftmost branch in figure 13).
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FIGURE 14. Solutions profiles for λ= 4π and τ = 0.1. The blue curve is an approximate
solutions of the hydro-elastic full Euler system with wave speed c = 0.9353. The green
curve is an approximate solution of the Whitham equation with c= 0.9257.

They start to appear when the non-dimensional wave height reaches approximately
0.14 according to figure 13. Thus it can be inferred that waves of wave height 56 cm
in the case of a depth of H = 4 m could be purely nonlinear in nature. Notably, as
seen in figure 14 weakly nonlinear modelling, i.e. use of the Whitham equation, can
give high accuracy up to moderate wave heights.
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