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Biological Information as Choice
and Construction
Arnaud Pocheville*y

A causal approach to biological information is outlined. There are two aspects to this
approach: information as determining a choice between alternative objects and informa-
tion as determining the construction of a single object. The first aspect has been devel-
oped in earlier work to yield a quantitative measure of biological information that can be
used to analyze biological networks. This article explores the prospects for a measure
based on the second aspect and suggests some applications for such a measure. These
two aspects are not suggested to exhaust all the facets of biological information.
1. Introduction. Biological development is classically assumed to reflect
the expression of information accumulated in the genome during evolution
(Mayr 1961; Jacob 1970). Major textbooks and popular science presentation
of biology rely on this picture (e.g., Alberts et al. 2013). Leading biologists
are also attracted to this view (Williams 1992, 10; Maynard Smith and Szath-
mary 1995, 2000; Jablonka 2002). On closer scrutiny, however, the role of
information in biology seems purely instrumental: it serves either as a meta-
phor or as a tool for big data analyses; biology does not yet have a theory of
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life as an information-processing phenomenon (Sarkar 1996; Godfrey-Smith
2000). The aim of this article is to offer some scientific substance to such a
theory.

Several theoretical and philosophical approaches have interpreted living
systems as information-processing systems. One tradition identifies infor-
mation with meaning, interpretation, and intentionality (Barbieri 2007; Shea
2007). A second tradition, which I espouse here, identifies information with
patterns of association between objects (Dretske 1981).

I start from the sense of information introduced by Crick in his sequence
hypothesis and central dogma of molecular biology, which was to become
massively influential in biology: “Information . . . means the precise deter-
mination of sequence” (Crick 1958, 153; see Kay 2000). Information here is
causal (Šustar 2007). Crick introduced this conception in an attempt to un-
derstand how DNA and RNA carry biological specificity for the synthesis
of proteins, an idea that parallels the modern contrast philosophers draw be-
tween specific causes and other necessary, background factors to obtain an
effect (Woodward 2010). Griffiths and Stotz (2013, chap. 4) have argued that
Crick’s sense of information vindicates the idea that factors other than DNA
are also sources of information for biomolecules, a phenomenon they called
‘distributed specificity’. This idea needs substantiation.

I explore here this idea and develop an approach to biological information
as a measurable and distinctive aspect of biological systems. This approach
has two facets, inspired from, respectively, Shannon’s andKolmogorov’s ap-
proaches in information theory. On the one hand, we have a measure of the
relative, complementary influence of several causes of the same event (sec. 2).
This concerns the choice between alternative objects and is blind to the in-
formation content of each object. This approach has been extensively dis-
cussed and applied elsewhere. On the other hand, we have measures of
the complexity of a single object, independently of any particular set of al-
ternatives (sec. 3). These can measure the information inherent to a biomol-
ecule and the quantity of information in a molecule that can be attributed to a
particular source. The computability of these latter measures, however, is
problematic; in practice, tentative measures ought to be used. The role of
randomness in creating information is outlined (sec. 4). I sketch potential de-
velopments for a Kolmogorov-inspired approach (sec. 5) and argue that it is
a potentially fruitful yet challenging biological research program (sec. 6).
The two approaches are not straightforwardly reducible to one another
and are not suggested to exhaust all aspects of biological information.

2. Causal Specificity: Information as Choice. Recent work has defined
an information-theoretic measure of the ‘specificity’ of a cause for an effect,
the extent to which a cause precisely determines an effect, and applied this
measure to biological problems (Griffiths et al. 2015; Pocheville, Griffiths,
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and Stotz 2017; Weber 2017; Calcott, Pocheville, and Griffiths 2018). This
work develops earlier, qualitative discussions of ‘causal specificity’ in phi-
losophy (Woodward 2010) and converges with formal work on causation in
complex systems theory (see n. 1).

Causal specificity is measured using Shannon information theory, which
conceives information as a reduction in uncertainty (Shannon 1948; Cover
and Thomas 2006). Uncertainty, measured in bits, can be understood as the
average number of binary (yes/no) questions that are required to determine
the value of an unknown variable. A variable is said to share mutual infor-
mation with another variable when it reduces our uncertainty about that var-
iable. Mutual information measures the association between two variables:
the more two variables are associated, the more each of them answers ques-
tions about the value of the other. Causal specificity can be measured by the
mutual information between values of a cause variable set by an intervention
and the value of a putative effect variable (Griffiths et al. 2015, 538). For-
mally, the causal specificity of C for E when controlling for a putative back-
ground B is given by the following formula (Pocheville et al. 2017):1

I(Ĉ; EjB̂) 5 o
b

p(b̂)o
c

p(ĉjb̂)o
e

p(ejĉ, b̂)log2

p(ejĉ, b̂)
p(ejb̂) :

The ^ (hat) on a variable is an operator indicating that its value is set by an
intervention rather than observed (Pearl 2009).2 This operator transforms the
symmetrical mutual information, representing observed association, into an
asymmetric measure of causal influence, representing howmuch experimen-
tally intervening on C while controlling for B affects E. If C is not a cause
of E, then I(Ĉ; EjB̂) 5 0. Reciprocally, if C is a cause of E, then there exists
at least one set of background variables B (which can be empty) such that
I (Ĉ; EjB̂) > 0 (Pocheville 2018a).

This measure of causal specificity seems to capture one aspect of Crick’s,
and the above cited biologists’, conception of information as ‘precise deter-
1. This measure has been previously proposed in cognitive sciences (Tononi, Sporns, and
Edelman 1999) and in computational sciences (Korb, Hope, and Nyberg 2009). Closely
related measures have been proposed by Ay and Polani (2008) and Janzing et al. (2013).
Transfer entropy is another ‘information as choice’ measure—although correlational in
character, not causal (Lizier and Prokopenko 2010)—that has been applied to the study
of the origins of life (Walker, Davies, and Ellis 2017).

2. As an anonymous reviewer noticed, the term p(ĉjb̂) implies that the intervention on C
be potentially dependent on a previous intervention on B, which seems to contradict the
very idea of an intervention. In chosen applications, however, one may decide that inter-
ventions are independent and that p(ĉjb̂) 5 p(ĉ). When the terms differ, the intervention
on C can be thought of as a partial intervention, breaking all causal links pointing to C but
some stemming from B.
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mination’. It can be used to compare the causal contributions of genetic and
epigenetic causes to the production of biomolecules (Griffiths et al. 2015).
It can be applied to objects other than biomolecules and is a practical tool
for the analysis of biological networks (Tononi et al. 1999; Calcott et al.
2018; Pocheville 2018b).

There is, however, a blind spot in Shannon information theory: it is si-
lent about the information content of the objects themselves. For example,
it makes no difference to the amount of information that DNA carries about
RNA whether the DNA strands are three or 1,416 nucleotides long. What
matters is only the number of values that the variable ‘DNA’ can take and
the probability distribution over those values. Arguably, the longer the se-
quences, the greater the number of possible alternatives, and thus the greater
the potential causal specificity of these alternatives.3 Still, in an actual case, the
number of alternatives can be zero, and a very long DNA sequence can there-
fore have null causal specificity for its own transcript. Causal specificity rep-
resents a sense of information that enables us (or causes the system) to choose
between a set of well-defined alternatives with a well-defined probability dis-
tribution. This is ‘information as choice’. If what we are interested in is the
information content of a single object, another branch of information theory,
Kolmogorov complexity, is more appropriate. It is to this second aspect of in-
formation that I now turn.

3. KolmogorovMeets Crick: Information asConstruction. Kolmogorov
complexity can measure the complexity of a single object (Grünwald and
Vitányi 2003; Li and Vitányi 2008). The intuitive idea is that the more com-
plex the object, the longer its description needs to be. The Kolmogorov com-
plexity is the length of the shortest description enabling one to reconstruct the
object using a computer (or, more precisely, a universal Turing machine).4

Kolmogorov complexity also provides a measure of the amount of informa-
tion in an object about another object. This is measured by the algorithmic
mutual information: it is the amount of program length that one saves when
describing one object given a description of the other object for free. Algo-
rithmic mutual information is symmetrical.
3. The Shannon entropy of a source emitting sequences of length l asymptotically tends
toward the expected Kolmogorov complexity (see the next section) of the sequences as
l→∞. Potential causal specificity and expected Kolmogorov complexity thus go hand
in hand. I leave to future work to make this connection more explicit (see Grünwald and
Vitányi 2003, 518; Li and Vitáni 2008, 187; Balduzzi 2011).

4. ATuring machine consists of a finite program capable of manipulating a linear list of
cells (each containing a symbol, from a finite set of symbols), accessing one cell at a time.
A universal Turing machine is one that can imitate any other Turing machine (Li and
Vitányi 2008, 24).
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Obviously, the length of the shortest description will depend not only on
the object at stake but also on the language (the description method) used to
write the program generating the object. However, the lengths of the short-
est descriptions in two different languages will be the same up to a given
translation constant, independent of the object itself. The reason is that the
translation from one language to another can be described by a program, of
which the length is fixed (which gives the constant of translation). In this
sense, the Kolmogorov complexity is an objective property of the object.

A drawback of Kolmogorov complexity is that it is provably uncomput-
able: there is no computer program that, given any string as an input, returns
its Kolmogorov complexity as an output. In itself, this is an interesting neg-
ative result: if what we are interested in is complexity in this sense, then what
wewant to know is simply uncomputable. In practice, one can bound the com-
plexity of binary objects using diverse lossless compression methods (e.g.,
those used in the zip file format). Indeed, the compressed object is a (hope-
fully shorter) description enabling one, together with a decompression pro-
gram, to reconstruct the initial object. The length of the description is then
the length of the compressed file plus a constant, the length of the decompres-
sion program. This measurement is tentative, not definitive, as other, poten-
tially unknown compression methods might compress the object more. For
the sake of the argument, we assume for the moment that we are given a rea-
sonable compression method.

Kolmogorov complexity can be used to explore what Crick meant when
he described the determination of proteins by nucleic acids as the “detailed
residue-by-residue transfer of sequential information” (Crick 1970, 561),
where nucleotides would form a quaternary alphabet and amino acids a vi-
gesimal one. Two kinds of questions can be addressed: about how much in-
formation there is in a given biological object and, closer to Crick’s thinking,
about how much information in an object comes from another.5

The complexity of a strand of DNA, for instance, can be approached by
measuring the length of the compressed sequence. Telomeres provide an in-
teresting limit case. They are nucleotide sequences at the end of chromo-
somes, consisting of a repetitive pattern (e.g., TTAGGG in humans andmany
other species). Telomeres are elongated by an enzyme, called telomerase,
which embeds an RNA sequence as a template (Hiyama, Hiyama, and Shay
2009). It is not difficult to come up with a program describing a given telo-
meric sequence in a compact way. Whatever the length of a telomere, it can
be described by a template for the repeated pattern and the number of repeats
(fig. 1, algorithm 1). A naive observer would surely think that telomeres do
5. On the algorithmic approach in biology, see, e.g., Yockey (2005, 170) and especially
Chaitin (1979, 2012) and the discussion by Artmann (2008, 32–37). I lack space to re-
view the independent convergences and divergences of the account proposed here.
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not contain much information and, in particular, not much sequential infor-
mation. The intuition here coincides with the low Kolmogorov complexity
of these sequences.

The situation looks quite different for coding sequences. There does not
seem to be, at first sight, as easy a way to compress these sequences as we
did with telomeres, and their Kolmogorov complexity is probably substan-
tially higher: a program to reconstruct a coding sequence may have to spell
it out explicitly—or at least to spell out significant aspects of the sequence
(fig. 1, algorithm 2). This lower compressibility coincides with the intuition
that coding sequences carry sequential information—and even that it is their
function to carry sequential information. However, coding sequences do not
carry a maximal amount of sequential information: as an anonymous re-
viewer noticed, coding sequences are structured and are thus expected to
be compressible to some extent—as are noncoding, so-called ‘junk’ DNA
sequences containing a significant number of repetitive elements and duplica-
tions.6 Note that the intrinsic amount of information in a sequence is inde-
Figure 1. Four algorithms illustrating an algorithmic approach to biological func-
tioning.
6. Whether the compressibility of sequences is an inevitable aspect of their biological
function is precisely a question I wish to address in the long term.
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pendent of whether the sequence is inserted in a region that will actually un-
dergo transcription. Arguably, even a coding sequence carries no information
about any transcript if it is not transcribed, but it nevertheless carries sequen-
tial information tout court.

I now turn to the second question, asking how much information there is
in an object about another object. For the sake of the argument, suppose that
the world is as Crick supposed in 1958: the accuracy of information transfers
is high, whichwe idealize by assuming that transcription (of DNA into RNA)
and translation (of RNA into polypeptides) are error-free, deterministic pro-
cesses. I ignore splicing and other posttranscriptional processes, which will be
treated elsewhere. As described above, one can estimate the amount of in-
formation in DNA about RNA by their algorithmic mutual information, that
is, I(DNA : RNA) 5 K(RNA) 2 K(RNAjDNA*).7 The shared information
between DNA and RNA is substantial: the transcription process is all about
replacing the nucleotides by their complementary ones, with the proviso that
A’s in the coding DNA sequence are complementary to U’s (not T’s) in the
RNA sequence. To see this sharing of information, compare the lengths of an
algorithm spelling out the RNA explicitly (similar to algorithm 2) and one
treating transcription generically (fig. 1, algorithm 3). The difference in length
would increase with sequence length. This corresponds to the fact that sequen-
tial information is transferred fromDNA toRNA through transcription. If tran-
scription is errorless, the sequential information in RNA that does not come
from DNA, measured by the remainder complexity K(RNAjDNA*), is a
constant, independent of the sequence. Algorithmic mutual information be-
tween biological sequences has been used in the past decade with various
aims, such as the building of phylogenetic trees according to the amount
of information needed to transform one DNA sequence into another (see,
e.g., Chen, Kwong, and Li [2000], Li et al. [2001], Chen et al. [2002],
and Vinga [2014] for a review).

Since the ‘true’Kolmogorov complexity is uncomputable, an algorithmic
approach relies on a bet: that the language of description and compression
methods captures interesting and relevant aspects of the object at stake. This
is not to say that the approach is necessarily entirely arbitrary: once these
methods are agreed on, researchers can agree on the measures obtained for
finite sequences. If a particular language gives particularly interesting results
(e.g., saving biological appearances, leading to new questions, predictions,
and generalizations), then this language becomes a theoretical entity worth
discussing in its own right. In the remainder of the article, I outline what I
deem desirable features for such a language and substantially develop the al-
gorithmic approach to take into account the fact that biological systems are
7. Where DNA* is the shortest program generating DNA.
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not, strictly speaking, deterministic, universal Turingmachines. What I aim at
is not an application of conventional algorithmic information theory to biol-
ogy, but a specifically biological approach to information inspired by the
Kolmogorov branch of information theory.

4. Randomness as the Source of Information. I made several idealizing
assumptions in the previous sections. Let us now relax the assumption that
cellular processes are deterministic. The argument here will remain theoret-
ical: there is no room to take sides on whether, and how, randomness is ac-
tually realized in biology.8

Random events, by definition, cannot be determined in advance by an al-
gorithm. This means that randomness in the generation of a sequence creates
information de novo. In biological terms, this means that any random point
mutation, any error of transcription, and so forth, if they are genuinely ran-
dom, can create information in the Kolmogorov sense. As seen in the previ-
ous section, this also means that randomly generated sequences contain more
information than highly structured sequences. From an algorithmic point of
view, randomness is, ultimately, the only way to create information.

This information need not always be functional, that is, of any use to the
cell. That it may sometimes be so, however, is a reasonable assumption. There
are several biological examples suggesting that randomness plays a key role
in biological functioning (Kupiec 1983; Heams 2014). Gene shuffling in the
immune system of jawed vertebrates provides one such example regarding
biological sequences. It enables a great variety of antibodies to be produced,
orders of magnitude more numerous than the genes producing them, increas-
ing the chance of matching potentially threatening antigens (Cooper and Al-
der 2006).

This tension between information and function is why it is crucial to dis-
tinguish them. Onemight be interested in how information flows in biological
systemswithout committing oneself to a particular account of biological func-
tion. More importantly, if one is interested in whether and how information
leads to function, a concept of biological information as necessarily biolog-
ically functional will beg the question.

5. A Language for the Cell. Kolmogorov complexity allowed us to flesh
out the idea of information as construction. Now we need to kick that ladder
8. Doing so properly would require developing an account of measurement in biology, as
those developed for deterministic chaos and quantum indeterminacy. In deterministic
chaos, any finite measurement of the initial condition will leave aside information (the
amount of which is infinite) that will manifest itself after a certain time in the system
(Montévil 2018, secs. 2.1, 2.3). Quantum indeterminism represents another entry to a
physicalist view of the appearance of information (Stamos [2001] and the responses).
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away and ask what information as construction actually looks like in living
systems. I suggest that it ought to be measured using a particular program-
ming language: the language of the cell itself, in which available program-
ming functions mimic actual operations by which molecules are produced.
It goes without saying that what I evoke here is not the ‘true’ language, but a
model of a language of the cell.

The idea of a language of the cell takes us away from treating cells as uni-
versal Turing machines and from the genuine Kolmogorov complexity K, to
consider a more biological algorithmic complexity, the Kolmogorov com-
plexity in the chosen biological language (hereafter denotedKB). For instance,
algorithmic mutual information is symmetric: there is as much information in
DNA about RNA as there is in RNA about DNA, that is, I (RNA : DNA) 5
I (DNA : RNA). But not all operations are possible in a cell. A central feature
of molecular biology is that flows of information are asymmetrical. Crick’s
‘central dogma’ (still widely held today) states which flows of information be-
tween biomolecules are possible and which are not. If no reverse-transcriptase
is present, for instance, no information can flow from RNA to DNA. In ‘bio-
logically’ algorithmic terms, this means that a biological program aiming at
reconstructing a DNA sequence being given an RNA sequence as an input
would fare no better than a program being given no input, and we would ob-
tain KB(DNAjRNA*) 5 KB(DNA). This means that we would get, as for a
biological analogue of algorithmic mutual information,

IB RNA→DNAð Þ 5 KB DNAð Þ 2 KB(DNAjRNA*) 5 0:

(The subscript B again denotes that the measure is defined using the chosen
biological language, and the arrow now reflects that it can be asymmetric.)9

The reciprocal, as we have seen above, is very different: when DNA is tran-
scribed into RNA, KB(RNAjDNA*) 5 C, whereC is a constant not depend-
ing on the sequences. Assuming, for the sake of presentation, thatKB(RNA) 5
KB(DNA), we would obtain

IB DNA→ RNAð Þ 5 KB RNAð Þ 2 KB(RNAjDNA*) 5 KB DNAð Þ 2 C:

Thus, contrary to its genuine counterpart, biological algorithmic mutual in-
formation would not be expected to be always symmetrical, reflecting the di-
rectionality of possible information flows.

In the same vein, not all sequences can be produced by a given cell. In al-
gorithmic information theory, a universal Turing machine can emulate any
other Turing machine, which means that there is no sequence that a particular
machine can produce that a universal machine cannot produce. By contrast, if
9. I follow the notation used for one asymmetrical, causal version of Shannon mutual
information (Ay and Polani 2008).
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the cell lacks a programming function, for instance, if it lacks a nucleic acid
template, or if some nucleotides do not belong to its alphabet, then some se-
quences may be impossible to produce. In this case, the information needed
to produce an impossible sequence is ill-defined; in other words, the amount
of information needed to produce the sequence is indefinite. Even on an evo-
lutionary time scale, the amount of information needed to acquire the pro-
gramming function (if it is acquired) and produce the previously impossi-
ble sequence could be orders of magnitude greater than the length of the
sequence.

Granted that some operations are impossible, how are we to describe the
set of primitive programming functions that, by contrast, are possible?

As we have seen above, the complexity of an object depends on the lan-
guage used to describe it. An example will flesh out this idea. Assume, say,
that ‘Transcribe’ is given for free by the language and that the description of
the function is short: say, just a few letters. Contrast this with a DNA se-
quence of several kilobases. This DNA sequence appears much more infor-
mational than the function ‘Transcribe’.10 Now, imagine that ‘Transcribe’ is
not given for free by the language, but that one has to write a program for this
function, using other, more primitive, available functions. I exemplify such a
program in algorithm 4 (fig. 1); it could be made much longer by describing
explicitly the dynamics of chemical bonds in a binary manner (assuming for
the sake of the argument that this would be feasible). Conversely, the de-
scription of a long DNA sequence can be very short. For instance, nominal
genes are usually described not by their full sequence, but by a nickname like
‘p53’. This nickname is enough, on most occasions, for biologists to com-
municate about the processes at stake. A language can lack the function
‘Transcribe’ but have a built-in function ‘P53’ dedicated to returning the full
sequence of the gene. In such a language, descriptions of transcription would
be complex (informational) and that of DNA simple. Thus, one needs to be
cautious about the language of description before assigning any particular
object a privileged informational role, much in the same way that one needs
to be cautious about specifying the probability distributions when using
Shannon information theory.

I propose that the primitive functions should be those that enable us to un-
derstand the processes of interest. Assume, for instance, that our interest lies
in understanding theflowsof sequential information between biological poly-
mers. Then assuming that ‘Transcribe’ and ‘Translate’ are given as primitive
functions is fine: if they are errorless, they are not difference makers with re-
gard to the final sequences of the products (an assumption that I made in al-
10. Many biologists and some philosophers routinely ascribe to DNA a privileged infor-
mational role. One way to reconstruct this idea is to consider that they implicitly assume
such a language.
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gorithm 3). Generally speaking, it makes sense to consider as primitives those
operations that are not difference makers with regard to the outputs of interest,
and as inputs those very difference makers: the genericity for functions and
the specificity for inputs. Incidentally, it is good algorithmic practice to write
functions for generic operations and give them specific variables as inputs.
This is not unlike causal specificity: once the generic functional relationships
in the causal model are set, information flows from difference makers.

6. Payoff of the Approach. The algorithmic approach sketched abovemay
promote research on biological systems, although not without significant
challenges.

Even the best current specifically designed compression algorithm may
overestimate biological complexity because the algorithmmay not have com-
pressed the object sufficiently. On the positive side, compression algorithms
may actually tend to parallel the biological processes that have produced the
sequences at stake. For instance, if DNA translocation is frequent, then an
algorithm that pays due attention to translocation should be more likely to
compress a DNA sequence. Conversely, considering that most strings are
random in the algorithmic sense, it is highly unlikely that a series of refined
algorithms will converge, if they do convergence, toward something other
than the processes involved in producing the sequences. It is highly unlikely
that the cell will, by chance, produce a string that is compressible by other
means than some of its ownmeans of production (or the corresponding mod-
els of these means). In other words, improving these algorithms may yield a
better grasp of functions that are in fact available in the language of the cell.

Just as an algorithm may overestimate complexity, however, it can also
underestimate biological complexity. Because cells are not universal Turing
machines, a biological sequence may be more complex than its algorithmic
counterpart. For instance, a cell may need a complex process to resist ran-
dom perturbations when duplicating a sequence, while a universal Turing
machine, being deterministic, would not. Similarly, a short sequencemay re-
quire a complex machinery or a complex evolutionary history to produce it.
Just as biological complexity can shortcut algorithmic complexity (when a
cell generates randomness), it can also exceed it.

7. Conclusion. This article aimed to give substance to the idea of biolog-
ical information—an idea that has grounded significant aspects of informal
biological thought for the past 50 years. Crick’s seminal use, in molecular
biology, of the term ‘information’, meaning the precise determination of se-
quence, is grounded on causation, not meaning or representation. I inflected
this idea in two ways, corresponding to two aspects of information theory:
the precise determination of a single output from a set of alternatives (‘infor-
mation as choice’) and the precise determination of the sequence of a single
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output (‘information as construction’). These two aspects can be traced back
to Crick, whose idea of information as construction—to rephrase in our
terms—was an attempt to provide an explanation of information as choice,
in the sense of biological specificity (Crick 1958, 1970). This suggests that
Griffiths and Stotz’s (2013) idea of distributed specificity is theoretically
richer than initially envisioned.

Information as choice is captured by causal specificity, proposed elsewhere
to bemeasured by the Shannon mutual information between values of a cause
set by an intervention and observations of the effect. This measure can be ap-
plied to causal graphs, such as those representing gene regulatory or animal
signaling networks, and has numerous potential applications in biology.

Information as construction is captured by the Kolmogorov complexity of
a sequence and the algorithmic mutual information between two sequences.
These measures capture the intuition that there is something in common be-
tween a program generating a sequence and the biological processes of tran-
scription and translation. I insisted, however, that there is more to biology
than discrete, deterministic computing: randomness plays a central role in bi-
ological functioning. A similar point could be made regarding the nondis-
crete nature of biological phenomena. From the point of view of Kolmogorov
complexity, randomness creates information. Such information is not neces-
sarily functional, anddistinguishingbetween information and function is a nec-
essary step toward better understanding how information can lead to function.

I proposed that biological algorithmic complexity ought to be measured
using a biologically relevant programming language—the language in which
the cell performs its own operations. In such a language, some operations,
such as reverse translation, will be impossible. This means that the biological
complexity of a sequence can far exceed its own length, making it very dif-
ferent from nonbiological algorithmic complexity. In planned future work, I
will take up the challenge of fleshing out the ‘language of the cell’ and artic-
ulating the choice and construction aspects of biological information.
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