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Abstract. We find an explicit formula for the invariant density h of an arbitrary eventually
expanding piecewise linear map τ of an interval [0, 1]. We do not assume that the slopes of
the branches are the same and we allow arbitrary number of shorter branches touching zero
or touching one or hanging in between. The construction involves the matrix S which is
defined in a way somewhat similar to the definition of the kneading matrix of a continuous
piecewise monotonic map. Under some additional assumptions, we prove that if 1 is not
an eigenvalue of S, then the dynamical system (τ, h · m) is ergodic with full support.

1. Introduction
In this paper we continue the investigations of invariant densities (with respect to Lebesgue
measure m) for piecewise linear maps of an interval. The first results about the classical
β-maps were obtained by Rényi [22], Parry [19] and Gelfond [9]. Later, Parry generalized
them further [20]. These maps have constant slope, all of the branches are increasing and
only the first or the last (or both) branches can be shorter.

The maps with both increasing and decreasing branches were investigated in [10].
Again, these maps have constant slope (in modulus) and shorter branches were allowed
only as the first or the last branch.

In this paper we consider arbitrary piecewise linear maps τ of [0, 1] onto itself. We do
not assume that the slopes of the branches are the same and allow an arbitrary number of
shorter branches touching zero or touching one or hanging in between. We assume that
τ is onto and that it is eventually piecewise expanding, i.e. for some iterate |(τ n)′|> 1,
wherever it exists.

In our main result, Theorem 2, we find an explicit formula for τ -invariant density h.
The construction of τ -invariant density h involves a matrix S defined in a way somewhat

similar to the definition of the kneading matrix of a continuous piecewise monotonic
map [1, 17]. In some simple cases, e.g. for greedy maps, we proved that if 1 is not an
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eigenvalue of S, then the dynamical system (τ, h · m) is ergodic on [0, 1]. While carrying
out the work in this paper we performed a large number of computer experiments and
we found that for piecewise increasing maps this always holds. Therefore, we state the
following conjecture.

CONJECTURE 1. Let τ be a piecewise linear, piecewise increasing and eventually
piecewise expanding map. Then, 1 is not an eigenvalue of the matrix S implies that the
dynamical system (τ, h · m) is ergodic on [0, 1].

If τ is piecewise linear and eventually piecewise expanding map then we conjecture that
1 is not an eigenvalue of matrix S implies that the dynamical system (τ, h · m) is ergodic.

There are matrix methods of detecting topological transitivity of piecewise monotone
continuous interval maps [1, 17], which is implied by ergodicity for our class of maps.
Perhaps matrix S can be used for this purpose in a more general setting.

In Example 8 we construct a map τ that is not piecewise increasing, which is ergodic
on a strict subset of [0, 1] and whose matrix S does not have eigenvalue 1.

The converse of Conjecture 1 does not hold. This is shown in Example 5.
There are few papers dealing with absolutely continuous invariant measures of

piecewise linear maps. The most general of them is Kopf’s paper [13]. The author learned
about Kopf’s work after the previous version of this paper, containing results for piecewise
linear and piecewise increasing maps, was submitted for publication. Kopf’s and our
methods are related but different. The main differences are as follows.
(a) Kopf makes a restrictive assumption τ({0, 1})⊂ {0, 1}. This is important for his

method since it is based on comparing the behavior of τ on both sides of its
discontinuity points. For zero or one there is no other side so these points have
to behave like continuity points. As he points out, the general result can be obtained
from this by rescaling and adding extra branches to the map τ .

(b) Kopf uses all inner partition points for the construction of invariant density and of
the system of equations defining its coefficients. We only use points whose images
are different from zero and one, obtaining a more compact formula for the invariant
density.

(c) To show the solvability of the system defining the coefficients of the invariant
density, Kopf uses a geometric property that straight lines which are the extensions of
branches of τ do not intersect in one point on the diagonal. To justify this he assumes
that |τ ′|> 1. If τ admits this property, then any iterate τ n also has it. Thus, the
eventual piecewise expanding implies this property as well so this is not a restrictive
assumption.
In contrast, we introduce τ -expansion of numbers and use it to reduce our system
defining the coefficients of the invariant density and to prove its solvability.

(d) Kopf obtains all invariant densities, while our method usually gives only one version
of invariant density for each ergodic component. This is not a real deficiency of our
method as an arbitrary invariant density is a convex combination of these building
blocks.

Other papers on the topic deal with more restrictive subclasses of piecewise linear maps.
We mention papers which are related to our method. Absolutely continuous invariant
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measures for greedy maps with constant slope were investigated in [6, 7] by considering
natural extensions of these maps. Two-branch expanding–contracting (α, β)-maps were
considered in [3]. These maps are eventually piecewise expanding so they are included in
our model. This follows from [12, Theorem (3.1)] for β ≤ 2 and from [8] for larger β.

In §2 we define all necessary notions and introduce τ -expansion of numbers in [0, 1]
related to our map τ . This is crucial in the considerations of this paper. Similar expansions
were considered before under more restrictive assumptions. We followed mainly the ideas
of Pedicini [21] who studied so-called ‘greedy’ expansions with deleted digits. More
general expansions were studied in [5] which we recommend for further information and
references.

In §3 we prove the main theorem giving the form of τ -invariant density.
In §4 we discuss the ergodic properties of piecewise linear maps.
In the next four sections we discuss special cases: piecewise increasing maps, greedy

maps for which shorter branches touch zero, lazy maps with shorter branches touching one
and the mixed-type maps with shorter branches touching either zero or one but not hanging
in between. We prove a number of results which hold specifically for these classes. In
particular, in §6 we discuss special cases of greedy maps with two, three or four branches.

In the last section we present an alternative method of finding invariant density for a
general eventually piecewise expanding piecewise linear map τ . Using ‘Hofbauer’s trick’
we construct a piecewise increasing map τinc such that the original map τ is its 2-factor.

In this paper we are mainly interested in absolutely continuous τ -invariant measure.
The general theory of such measures for piecewise expanding maps of an interval is well
developed and we often refer to its results. The classical papers are [15] and [16] among
many others. There are a number of books on the subject, see, e.g., [2] or [14].

While working on this project the author made extensive use of the computer program
Maple 11. The programs with examples and illustrations, as well as their PDF printouts,
are available at http://www.mathstat.concordia.ca/faculty/pgora/deleted.

2. Description of map τ and τ -expansion
In this section we introduce necessary notation and describe the maps we consider. We
also introduce τ -expansion of numbers, crucial in the further considerations.

Throughout the paper δ (condition) will denote one when the condition is satisfied and
zero otherwise. We denote the Lebesgue measure on [0, 1] by m.

Let τ be a piecewise linear map of the interval [0, 1] onto itself. Let N denote the
number of branches of τ and K ≤ N the number of shorter, not onto, branches. We
allow L ≤ K to have shorter branches so as not to touch both zero and one. We call them
‘hanging’ branches.

The map τ can be described by three sequences of N numbers: the lengths of branches
α1, α2, . . . , αN , with 0< α j ≤ 1, j = 1, . . . , N ; the heights of the lower endpoints of
branches, i.e. the heights of left-hand side endpoints for increasing and the heights of
right-hand side endpoints for decreasing branches, γ1, γ2, . . . , γN , with 0≤ γ j ≤ 1− α j ,
j = 1, . . . , N ; and the slopes of branches β1, β2, . . . , βN . We assume that β j 6= 0,
j = 1, . . . , N , and we have
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α1

|β1|
+
α2

|β2|
+ · · · +

αN

|βN |
= 1. (1)

We do not assume that 1< |βi | but we assume that τ is eventually piecewise expanding,
i.e. for some iterate τ n we have |(τ n)′|> 1, whenever it is defined. This is necessary for
the convergence of the series we consider below.

A shorter branch is called ‘greedy’ if γ j = 0, ‘lazy’ if γ j + α j = 1 and ‘hanging’ if
0< γ j and γ j + α j < 1. These names correspond to the names of piecewise increasing
maps with such types of branches [5].

The endpoints of the domains of branches are

b1 = 0, b j =
α1

|β1|
+ · · · +

α j−1

|β j−1|
, j = 2, 3, . . . , N + 1.

Note that bN+1 = 1.
We assume that the map τ is defined on the partition Pτ = {I1, I2, . . . , IN }, where

I1 = [0, b2),

I j = (b j , b j+1) for 2≤ j ≤ N − 1, (2)

IN = (bN , 1].

This means that τ is not defined for a countable subset of [0, 1], the points b j ,
j = 2, . . . , N and their preimages. Since we have to consider iterates of the points b j

we create two extensions τr (right) and τl (left) of τ . Here τr is the extension of τ by
continuity to partition

Pr = {[0, b2], (b2, b3], . . . , (bN−1, bN ], (bN , 1]},

and τl is the extension of τ by continuity to partition

Pl = {[0, b2), [b2, b3), . . . , [bN−1, bN ), [bN , 1]}.

Now, we define the points ci , i = 1, 2, . . . , K + L , which play a major role in the
further study. They are the endpoints of the domains of shorter branches at which τ does
not touch zero or one. Since a point can be the endpoint of two such domains we have to
allow for duplication of them.

Each point ci is actually a pair (c, j) where c ∈ [0, 1] and 1≤ j ≤ N and c is one of the
endpoints of interval I j . We define index function on points ci : j (ci , k)= k. We define
K + L points ci . They are:
• the right-hand side endpoints of domains of shorter increasing branches touching

zero and the left-hand side endpoints of domains of shorter decreasing branches
touching zero (‘greedy’ branches);

• the left-hand side endpoints of domains of shorter increasing branches touching one
and right-hand side endpoints of domains of shorter decreasing branches touching
one (‘lazy’ branches);

• both endpoints of domains of shorter ‘hanging’ branches.
We number them in such a way that c1 < c2 < · · ·< cK+L−1 < cK+L , where

(c, j) < (d, k) if either c < d or c = d and j < k. Note, that the indices ‘i’ of points
ci do not correspond directly to indices of intervals I j .
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We group ci into two disjoint sets: Wu containing ‘upper’ ci associated with ‘greedy’
branches, right-hand side endpoints of domains of ‘hanging’ increasing branches and left-
hand side endpoints of domains of ‘hanging’ decreasing branches; and Wl containing
‘lower’ ci associated with ‘lazy’ branches, left-hand side endpoints of domains of
‘hanging’ increasing branches and right-hand side endpoints of domains of ‘hanging’
decreasing branches.

We also group ci into ‘left’ points Ul and ‘right’ points Ur in the obvious way. For
piecewise increasing maps these two grouping coincide as then Wu =Ur and Wl =Ul .

When we consider τ(ci ) we apply it to the first element of the pair. We always use τr to
act on elements of Ur and τl to act on elements of Ul . Note that

τ(ci )= τl(ci )= γ j for ci ∈Ul ∩Wl ,

τ (ci )= τr (ci )= γ j for ci ∈Ur ∩Wl ,

τ (ci )= τl(ci )= γ j + α j for ci ∈Ul ∩Wu,

τ (ci )= τr (ci )= γ j + α j for ci ∈Ur ∩Wu,

where always j = j (ci ).
The map τ can be conveniently represented using a set of ‘digits’ A = {a1, a2, . . . , aN },

where

if β j > 0, then a j = β j b j − γ j = β j b j+1 − (γ j + α j ),

if β j < 0, then a j = β j b j − (γ j + α j )= β j b j+1 − γ j , j = 1, . . . , N .

Then, the map τ is

τ(x)= β j · x − a j for x ∈ I j , j = 1, 2, . . . , N .

Note that each a j is between the minimal, ‘lazy’ digit al
j = β j b j+1 − 1 for β j > 0

or al
j = β j b j − 1 for β j < 0 and the maximal, ‘greedy’ digit au

j = β j b j for β j > 0 or

au
j = β j b j+1 for β j < 0 , j = 1, 2, . . . , N . If the j th branch is onto, then a j = al

j = au
j .

For any x ∈ [0, 1] \ {b2, . . . , bN } we define its ‘index’ j (x) and its ‘digit’ a(x):

j (x)= j for x ∈ I j , j = 1, 2, . . . , N ,

and
a(x)= a j (x).

We also define (for all x ∈ [0, 1]) the indices jr (x), jl(x) and the digits ar (x), al(x) using
partitions Pr and Pl , respectively.

We define the cumulative slopes for iterates of points as follows:

β(x, 1)= β j (x),

β(x, n)= β(x, n − 1) · β j (τ n−1(x)), n ≥ 2.

The following proposition describes τ -expansion of numbers in [0, 1]. It is similar
to many known expansions, in particular to β-expansion [19] and ‘greedy’ and ‘lazy’
expansions with deleted digits [5].
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PROPOSITION 1. If τ is eventually expanding, then for any x ∈ [0, 1] \ {b2, . . . , bN } we
have

x =
∞∑

n=1

a(τ n−1(x))

β(x, n)
.

Moreover,

τ k(x)= β(x, k) ·
∞∑

n=k+1

a(τ n−1(x))

β(x, n)
,

for any k ≥ 0.

Proof. We have τ(x)= β j (x)x − a(x) or

x =
a(x)

β(x, 1)
+

τ(x)

β(x, 1)
.

Using this equality inductively n times we obtain

x =
a(x)

β(x, 1)
+

a(τ (x))

β(x, 2)
+ · · · +

a(τ n−1(x))

β(x, n)
+

τ n(x)

β(x, n)
,

which proves both statements. Since τ is eventually expanding 1/β(x, n)→ 0 as
n→+∞ and the series giving the expansion is convergent. 2

We call the representation defined in Proposition 1 the τ -expansion of x . In the same
way we define ‘greedy’ (or rather ‘right’) and ‘lazy’ (or ‘left’) expansions using maps
τr and τl . All three expansions are identical for almost all x ∈ [0, 1]. Special attention
has to be paid to represent points ci or inner endpoints of the partition in general. Every
time iteration of a ci goes through a decreasing branch its side type changes. In a typical
situation it does not matter but it is important when an image of a ci hits one of the inner
endpoints of the partition. If ci ∈Ur , then τ n(ci ) is the right-hand side endpoint of a small
image interval if β(ci , n) > 0 and τ n(ci ) is the left-hand side endpoint of a small image
interval if β(ci , n) < 0. Similarly, if ci ∈Ul , then, τ n(ci ) is the left-hand side endpoint of
a small image interval if β(ci , n) > 0 and τ n(ci ) is the right-hand side endpoint of a small
image interval if β(ci , n) < 0. To continue iteration, we should use the appropriate version
of τ .

3. Invariant density of τ

An integrable non-negative function h is a density of an m-absolutely continuous
τ -invariant measure if and only if it satisfies the Perron–Frobenius equation:

h(x)=
∑

y:τ(y)=x

h(y)/|τ ′(y)| = (Pτ (h))(x),

for almost all x ∈ [0, 1]. The operator Pτ is called the Perron–Frobenius operator [2].
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Let us define

Si, j =

∞∑
n=1

1
|β(ci , n)|

[δ(β(ci , n) > 0)δ(τ n(ci ) > c j )+ δ(β(ci , n) < 0)δ(τ n(ci ) < c j )]

for ci ∈Ur and all c j ,

Si, j =

∞∑
n=1

1
|β(ci , n)|

[δ(β(ci , n) < 0)δ(τ n(ci ) > c j )+ δ(β(ci , n) > 0)δ(τ n(ci ) < c j )]

for ci ∈Ul and all c j . (3)

Let S be the matrix (Si, j )1≤i, j≤K+L and Id denote the (K + L)× (K + L) identity
matrix. Let v= [1, 1, . . . , 1, 1] be (K + L)-dimensional vector of ones and let
D = [D1, . . . , DK+L ] denote the solution of the system

(−ST
+ Id)DT

= D0vT, (4)

where the superscript T denotes the transposition and parameter D0 is either one or zero.
We make here some comments about the parameter D0 although their meaning may
become clear only later. Since the non-normalized invariant density (6) is defined up to a
multiplicative constant we consider only D0 = 1 or D0 = 0. In most cases we use D0 = 1.
There may be a few reasons that (4) is unsolvable with D0 = 1. First, τ can be ergodic but
with support of invariant density I strictly smaller that [0, 1]. In this case we consider τ
to be restricted to I and rescaled back to [0, 1] rather than considering D0 = 0. Second, τ
may be either ergodic on [0, 1] or non-ergodic with union of supports of invariant densities
equal to [0, 1] but with matrix S having 1 as an eigenvalue. In these cases we consider
D0 = 0.

Let us define

χ s(β, x)=

{
χ[0,x] for β > 0,

χ[x,1] for β < 0.
(5)

THEOREM 2. Let τ will be the map defined in the previous section, i.e. any piecewise
linear map which is eventually piecewise expanding. System (4) always has a non-
vanishing solution. If 1 is not an eigenvalue of S, then with D0 = 1. If 1 is an eigenvalue
of S, then at least with D0 = 0. Let

h = D0 +
∑

ci∈Ur

Di

∞∑
n=1

χ s(β(ci , n), τ n(ci ))

|β(ci , n)|
+

∑
ci∈Ul

Di

∞∑
n=1

χ s(−β(ci , n), τ n(ci ))

|β(ci , n)|
, (6)

where constants Di , i = 1, . . . , K , satisfy the system (4). Then h is τ -invariant.
If all values τ(ci ), i = 1, . . . , K + L, are different, then the inverse statement also

holds: if h is τ -invariant, then the constants D0, D1, . . . , DK+L satisfy the system (4).
In particular, system (4) is uniquely solvable (i.e. 1 is not an eigenvalue of S) if

min1≤ j≤N |β j |> K + L + 1.

Proof. Let x ∈ [0, 1] and x( j), j = 1, 2, . . . , N be the j th τ -preimage of x , if it exists.
We need to show that

h(x)=
N∑

j=1

h(x( j))

|β j |
,

for almost all x ∈ [0, 1].
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We have

N∑
j=1

1(x( j))

|β j |
=

N∑
j=1

1
|β j |
−

∑
ck∈Wu

δ(x > τ(ck))

|β j (ck )|
−

∑
ck∈Wl

δ(x < τ(ck))

|β j (ck )|
. (7)

For ck ∈Ur ∪Ul we have

N∑
j=1

χ[0,τ n(ck )](x( j))

|β j |
=

j (τ n(ck ))−1∑
j=1

1
|β j |
+
δ(β j (τ n(ck )) > 0)δ(x ≤ τ n+1(ck))

|β j (τ n(ck ))|

+
δ(β j (τ n(ck )) < 0)δ(x ≥ τ n+1(ck))

|β j (τ n(ck ))|

−

∑
ci∈Wu

δ(x > τ(ci )) · δ(τ
n(ck) > ci )

|β j (ci )|

−

∑
ci∈Wl

δ(x < τ(ci )) · δ(τ
n(ck) > ci )

|β j (ci )|
, (8)

and

N∑
j=1

χ[τ n(ck ),1](x( j))

|β j |
=

N∑
j= j (τ n(ck ))+1

1
|β j |
+
δ(β j (τ n(ck )) > 0)δ(x ≥ τ n+1(ck))

|β j (τ n(ck ))|

+
δ(β j (τ n(ck )) < 0)δ(x ≤ τ n+1(ck))

|β j (τ n(ck ))|

−

∑
ci∈Wu

δ(x > τ(ci )) · δ(τ
n(ck) < ci )

|β j (ci )|

−

∑
ci∈Wl

δ(x < τ(ci )) · δ(τ
n(ck) < ci )

|β j (ci )|
. (9)

Let us define

Sk =

∞∑
n=1

1
|β(ck, n)|

[
δ(β(ck, n) > 0)

( j (τ n(ck ))−1∑
j=1

1
|β j |

)

+ δ(β(ck, n) < 0)
( N∑

j= j (τ n(ck ))+1

1
|β j |

)]
for ck ∈Ur ,

Sk =

∞∑
n=1

1
|β(ck, n)|

[
δ(β(ck, n) < 0)

( j (τ n(ck ))−1∑
j=1

1
|β j |

)

+ δ(β(ck, n) > 0)
( N∑

j= j (τ n(ck ))+1

1
|β j |

)]
for ck ∈Ul . (10)
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Using previous equalities and β j (τ n(ck )) · β(ck, n)= β(ck, n + 1), we write

N∑
j=1

h(x( j))

|β j |
= D0

[ N∑
j=1

1
|β j |
−

∑
ck∈Wu

δ(x > τ(ck))

|β j (ck )|
−

∑
ck∈Wl

δ(x < τ(ck))

|β j (ck )|

]

+

∑
ck∈Ur

Dk

[
Sk +

∞∑
n=2

χ s(β(ck, n), τ n(ck))

|β(ck, n)|

−

∑
ci∈Wu

δ(x > τ(ci ))
Sk,i

|β j (ci )|
−

∑
ci∈Wl

δ(x < τ(ci ))
Sk,i

|β j (ci )|

]

+

∑
ck∈Ul

Dk

[
Sk +

∞∑
n=2

χ s(−β(ck, n), τ n(ck))

|β(ck, n)|

−

∑
ci∈Wu

δ(x > τ(ci ))
Sk,i

|β j (ci )|
−

∑
ci∈Wl

δ(x < τ(ci ))
Sk,i

|β j (ci )|

]
. (11)

To eliminate h(x) from the right-hand side of (11) we need to add to it and to subtract from
it D0,

∑
ck∈Ur

Dk
χ s(β(ck, 1), τ (ck))

|β(ck, 1)|
and

∑
ck∈Ul

Dk
χ s(−β(ck, 1), τ (ck))

|β(ck, 1)|
.

Note that

for ck ∈Ur ∩Wu we have χ s(β(ck, 1), τ (ck))= δ(x ≤ τ(ck)),

for ck ∈Ul ∩Wu we have χ s(−β(ck, 1), τ (ck))= δ(x ≤ τ(ck)),

for ck ∈Ur ∩Wl we have χ s(β(ck, 1), τ (ck))= δ(x ≥ τ(ck)),

for ck ∈Ul ∩Wl we have χ s(−β(ck, 1), τ (ck))= δ(x ≥ τ(ck)).

Thus, we obtain

∑
ck∈Ur

Dk
χ s(β(ck, 1), τ (ck))

|β(ck, 1)|
+

∑
ck∈Ul

Dk
χ s(−β(ck, 1), τ (ck))

|β(ck, 1)|

=

∑
ck∈Wu

Dk
δ(x ≤ τ(ck))

|β(ck, 1)|
+

∑
ck∈Wl

Dk
δ(x ≥ τ(ck))

|β(ck, 1)|
.

We eliminate h(x) from the right-hand side of (11) and we see that we are looking for
constants Di , i = 1, . . . , K + L , such that the following equality (12) is satisfied for all
x ∈ [0, 1] except possibly the images of points ci .
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∑
ck∈Wu

Dk

[
Sk −

δ(x ≤ τ(ck))

|β(ck, 1)|
−

∑
ci∈Wu

δ(x > τ(ci ))
Sk,i

|β j (ci )|
−

∑
ci∈Wl

δ(x < τ(ci ))
Sk,i

β j (ci )

]
+

∑
ck∈Wl

Dk

[
Sk −

δ(x ≥ τ(ck))

|β(ck, 1)|
−

∑
ci∈Wu

δ(x > τ(ci ))
Sk,i

|β j (ci )|

−

∑
ci∈Wl

δ(x < τ(ci ))
Sk,i

|β j (ci )|

]

= D0

[
1−

N∑
j=1

1
|β j |
+

∑
ck∈Wu

δ(x > τ(ck))

|β j (ck )|
+

∑
ck∈Wl

δ(x < τ(ck))

|β j (ck )|

]
. (12)

Let us assume tentatively that all values τ(ci ), i = 1, . . . , K + L , are different. Then,
they divide the interval (0, 1) into K + L + 1 disjoint open subintervals. Let us choose
one point x from each of the subintervals and number them in the increasing order
x0 < x1 < x2 < · · ·< xK+L . If equality (12) holds for these points, then it holds for
almost every x ∈ [0, 1]. Substituting points xi into (12) we obtain equations which we
denote by Ei , i = 0, . . . , K + L . Together, we obtain a system of K + L + 1 equations
which we denote by E S. Rather than write it down we create from it a simplified
equivalent system denoted by E QS. We proceed as follows: consider two consecutive
points xi < τ(ck) < xi+1. If ck ∈Wu , then the difference E Qk = Ei+1 − Ei is

−

K+L∑
j=1
j 6=k

D j
Sk, j

|β j (ck )|
− Dk

[
Sk,k

|β j (ck )|
−

1
|β j (ck )|

]
=

D0

|β j (ck )|
. (13)

If ck ∈Wl , then the difference E Qk = Ei − Ei+1 is of the above form. The equations
{E Q1, E Q2, . . . , E QK+L} form the system E QS which is obviously equivalent to the
system {|β j (c1)|E Q1, |β j (c2)|E Q2, . . . , |β j (cK+L )|E QK+L}, which is the system (4). In
E S we have one more equation which can be reduced to E QK+L+1 of the form

K+L∑
k=1

Dk

[
Sk −

1
|β j (ck )|

]
= D0

[
1−

N∑
j=1

1
|β j |

]
. (14)

If some level xi intersects all branches of τ , then equation Ei is of the form (14). If not,
then we take the level xi which intersects most branches of τ and reduce it to the form (14)
subtracting appropriate equations E Qk .

The systems E S and E QS ∪ {E QK+L+1} are equivalent since we can recover
equations of E S from equations E Q1, . . . , E QK+L , E QK+L+1. To prove the
equivalence of systems E S and E QS it is enough to show that E QK+L+1 is a linear
combination of equations E Qi , i = 1, . . . , K + L . We do this as follows: if ck ∈Wu we
set ηk = 1− γ j (ck ) − α j (ck ). If ck ∈Wl we set ηk = γ j (ck ). Note that if ck is associated
with a greedy or a lazy branch, then ηk = 1− α j (ck ). Then, we have both the left- and
right-hand sides of

E QK+L+1 +

K+L∑
k=1

ηk · E Qk

sum to zero.
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First, let us consider the right-hand side of the summed up equations. We have

1−
N∑

j=1

1
|β j |
+

K+L∑
k=1

ηk
1

|β j (ck )|
= 1−

N∑
j=1

1
|β j |
+

∑
1≤k≤N

kth branch is shorter

1− αk

|βk |

= 1−
N∑

j=1

α j

|β j |
= 0. (15)

Now, let us consider the summed up coefficients of Dk (summed up kth column of the
system). We have to show

Sk −
1

|β j (ck )|
−

K+L∑
j=1

η j
Sk, j

|β j (c j )|
+ ηk

1
|β j (ck )|

= 0. (16)

First, we consider ck ∈Ur . Then we have

Sk −

K+L∑
j=1

η j
Sk, j

|β j (c j )|

=

∞∑
n=1

1
|β(ck, n)|

(
δ(β(ck, n) > 0)

[ j (τ n(ck ))−1∑
j=1

1
|β j |
−

K+L∑
j=1

η j
δ(τ n(ck) > c j )

|β j (c j )|

]

+ δ(β(ck, n) < 0)
[ N∑

j= j (τ n(ck ))+1

1
|β j |
−

K+L∑
j=1

η j
δ(τ n(ck) < c j )

|β j (c j )|

])
. (17)

Let us fix n for a moment and consider the expressions in the square brackets above.
Let j0 = j (τ n(ck)). If β j0 > 0, then the expression in the first square bracket is equal to

j0−1∑
j=1

1
|β j |
−

∑
j< j0

j th branch is shorter

1− α j (c j )

|β j (c j )|
−

γ j0

|β j0 |
= b j0 −

γ j0

|β j0 |
=

a(τ n(ck))

β j (τ n(ck ))

,

and the expression in the second square bracket is equal to

N∑
j= j0+1

1
|β j |
−

∑
j> j0

j th branch is shorter

1− α j (c j )

|β j (c j )|
−

1− γ j0 − α j0

|β j0 |

= 1− b j0+1 −
1− γ j0 − α j0

|β j0 |
= 1−

1
β j (τ n(ck ))

−
a(τ n(ck))

β j (τ n(ck ))

.

If β j0 < 0, then these sums are correspondingly equal to

b j0 − (1− γ j0 − α j0)
1
|β j0 |

=
1

β j (τ n(ck ))

+
a j (τ n(ck ))

β j (τ n(ck ))

,

and

1− b j0+1 − γ j0
1
|β j0 |

= 1−
a j (τ n(ck ))

β j (τ n(ck ))

.
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Thus, using the notation j (n)0 = j (τ n(ck)), the sum on the right-hand side of (17) is
equal to

∞∑
n=1

1
|β(ck, n)|

(
δ(β(ck, n) > 0)

[
δ(β

j (n)0
> 0)

a
j (n)0

β
j (n)0

+ δ(β
j (n)0
< 0)

a
j (n)0

β
j (n)0

]

+ δ(β(ck, n) < 0)
[
δ(β

j (n)0
> 0)
−a

j (n)0

β
j (n)0

+ δ(β
j (n)0
< 0)
−a

j (n)0

β
j (n)0

])

+

∞∑
n=1

1
|β(ck, n)|

(
δ(β(ck, n) > 0)

[
δ(β

j (n)0
> 0) · 0+ δ(β

j (n)0
< 0)

1
β

j (n)0

]

+ δ(β(ck, n) < 0)
[
δ(β

j (n)0
> 0)

(
1−

1
β

j (n)0

)
+ δ(β

j (n)0
< 0) · 1

])
. (18)

The first infinite sum is equal to

∞∑
n=1

1
β(ck, n)

a(τ n(ck))

β j (τ n(ck ))

=

∞∑
n=1

a(τ n(ck))

β(ck, n + 1)
=
τ(ck)

β j (ck )

. (19)

The second infinite sum is a telescopic sum equal to zero if β j (ck ) > 0 and to
((−1)/(β j (ck ))) if β j (ck ) < 0. We can prove this as follows. First, let us assume that
β(ck, 1)= β j (ck ) > 0. Then, the sum starts with the summand of the first kind, i.e.
δ(β

j (n)0
> 0) · 0+ δ(β

j (n)0
< 0)(1/β

j (n)0
). Let us assume, more generally, that at some point

during the summation, the partial sum S = 0 and β(ck, n) > 0. If β j (τ n(ck )) > 0, then the
next step starts in the same situation. If β j (τ n(ck )) < 0, then we have

S =
1

β(ck, n)β j (τ n(ck ))

=
1

β(ck, n + 1)
,

and β(ck, n + 1) < 0. Thus, the next summand is of the second type. If β j (τ n+1(ck ))
< 0,

then we have

S =
1

β(ck, n + 1)
+

1
|β(ck, n + 1)|

= 0,

and β(ck, n + 2) > 0. We are back in the situation we started with.
If β j (τ n+1(ck ))

> 0, then

S =
1

β(ck, n + 1)
+

1
|β(ck, n + 1)|

+
1

β(ck, n + 2)
=

1
β(ck, n + 2)

,

and β(ck, n + 2) < 0. The situation repeats until for some i we have β j (τ n+i (ck ))

< 0 and S reduces to zero. If this never happens, then the sum is zero since
limi→∞(1/β(ck, n + i))= 0.

Now, let us assume that β(ck, 1)= β j (ck ) < 0. The second infinite sum in (18) starts
with a summand of the second type. If β j (τ (ck )) < 0, then we have

S =
1

|β j (ck )|
,
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and β(ck, 2) > 0. Reasoning exactly as in the previous case, we show that the complete
sum is

1
|β j (ck )|

=
−1
β j (ck )

.

If β j (τ (ck )) > 0, then

S =
1

|β j (ck )|
+

1
β(ck, 2)

,

and β(ck, 2) < 0. Again, this is one of the situations considered in the previous case.
Again, we obtain that the complete sum is equal to −1/β j (ck ).

To complete the proof of (16) we consider sum (−1/|β j (ck )|)+ ηk(1/|β j (ck )|). If
β j (ck ) > 0, then

−1
|β j (ck )|

+ ηk
1

|β j (ck )|
=
−(γ j (ck ) + α j (ck ))

β j (ck )

=
−τ(ck)

β j (ck )

. (20)

If β j (ck ) < 0, then

−1
|β j (ck )|

+ ηk
1

|β j (ck )|
=
−1+ γ j (ck )

|β j (ck )|
=

1− τ(ck)

β j (ck )

. (21)

Equalities (19), (20), (21) and the results about the second infinite sum in (18) complete
the proof of (16) for ck ∈Ur . The proof for ck ∈Ul is very similar.

We have proved the equivalence of the systems E S and E QS (or (4)) when all values
τ(ci ), i = 1, . . . , K + L , are different.

Now, we briefly describe the situation when some of the values τ(ci ), i = 1, . . . ,
K + L , coincide. The systems E S and (4) may not be equivalent but solutions of (4)
always satisfy E S as well.

If τ(ci1)= τ(ci2) and the points ci1 , ci2 are of different type, i.e. ci1 ∈Wu and ci2 ∈Wl

or vice versa, then substituting point x = τ(ci1)= τ(ci2) into (12) gives us an equation
which ‘separates’ ci1 and ci2 . Everything proceeds as in the case of different values τ(ci ).

If τ(ci1)= τ(ci2) and the points ci1 , ci2 are of the same type (or there are more points
with this property), then we cannot produce a sufficient number of test points xi and the
number of equations in E S is smaller than K + L + 1. Similarly as before we can obtain
equations E Qi for ci with distinct values and an equation E Qi1,i2 corresponding to points
ci1 , ci2 . If more groups of ci of the same type with equal values occurs, then there will be
more such common equations. The equation E Qi1,i2 is the sum of two equations of the
form (13) corresponding to indices k = i1 and k = i2. Any common equation is a sum of
the corresponding equations of the form (13). Thus, any solution of the system (4) satisfies
the system E S. The linear dependence of the extra equation (14) is proved exactly as
above. (Note that if τ(ci1)= τ(ci2) and they are of the same type, i.e. both in Wu or both
in Wl , then ηi1 = ηi2 .) This completes the proof of the first part of the theorem.

In the proof of the second part we use the following fragment of Perron–Frobenius
theorem for non-negative matrices [18].

THEOREM 3. If S= (Si, j )1≤i, j≤M is a matrix with non-negative entries, then all
eigenvalues λ of S satisfy

|λ| ≤ max
1≤i≤M

M∑
j=1

Si, j . (22)
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1 1.5

0.4

0 0 1c1 c2 c3
c4 c5=1

(c3)= 3+ 3τ γ α

(c2)= 2+ 2τ γ α

(c1)= 2τ γ

(c5)= 5τ γ

(c4)= 3τ γ

(a) (b)

FIGURE 1. Map τ of Example 1 and its invariant density.

Note that the assumptions of the second part imply that β =min1≤ j≤N |β j |> 1. For
each Si, j we have

Si, j ≤

∞∑
n=1

1
βn =

1
β − 1

.

Thus, if β > K + L + 1 we have (K + L)/(β − 1< 1) which by the Perron–Frobenius
estimate implies that 1 is not an eigenvalue of S and the system (4) is uniquely solvable. 2

In the following three examples we illustrate the proof of Theorem 2.

Example 1. In this example all values τ(ci ) are different. Let N = 5 and let τ be defined
by the vectors

α = [1, 0.35, 0.8, 1, 0.3], β = [3, 3,−4,−5,−2], γ = [0, 0.2, 0.1, 0, 0.7].

We have K = 3 and L = 2. The graph of τ is shown in Figure 1(a). The digits
are {0, 0.8,−2.7,−4.25,−2.7}. The first and the fourth branches of τ are onto, the
second and the third are hanging and the last one is lazy. The points ci are c1 = 1/3,
c2 = 0.45= (0.45, 2), c3 = 0.45= (0.45, 3), c4 = 0.65, c5 = 1. Here c2, c3 ∈Wu and
c1, c4, c5 ∈Wl . In addition, c1, c3 ∈Ul and c2, c4, c5 ∈Ur . We have 0< τ(c4) < τ(c1)

< τ(c2) < τ(c5) < τ(c3) < 1 and taking the points x0 < x1 < x2 < x3 < x4 < x5 between
them we obtain the system E S: we show only the coefficients, the first three columns and
the next three separately.
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Columns 1–3:

S1 −
S1,1

|β2|
−

S1,4

|β3|
−

S1,5

|β5|
S2 −

S2,1

|β2|
−

S2,4

|β3|
−

S2,5

|β5|
−

1
|β2|

S3 −
S3,1

|β2|
−

S3,4

|β3|
−

S3,5

|β5|
−

1
|β3|

S1 −
S1,1

|β2|
−

S1,5

|β5|
S2 −

S2,1

|β2|
−

S2,5

|β5|
−

1
|β2|

S3 −
S3,1

|β2|
−

S3,5

|β5|
−

1
|β3|

S1 −
S1,5

|β5|
−

1
|β2|

S2 −
S2,5

|β5|
−

1
|β2|

S3 −
S3,5

|β5|
−

1
|β3|

S1 −
S1,2

|β2|
−

S1,5

|β5|
−

1
|β2|

S2 −
S2,2

|β2|
−

S2,5

|β5|
S3 −

S3,2

|β2|
−

S3,5

|β5|
−

1
|β3|

S1 −
S1,2

|β2|
−

1
|β2|

S2 −
S2,2

|β2|
S3 −

S3,2

|β2|
−

1
|β3|

S1 −
S1,2

|β2|
−

S1,3

|β3|
−

1
|β2|

S2 −
S2,2

|β2|
−

S2,3

|β3|
S3 −

S3,2

|β2|
−

S3,3

|β3|

Columns 4–6:

S4 −
S4,1

|β2|
−

S4,4

|β3|
−

S4,5

|β5|
S5 −

S5,1

|β2|
−

S5,4

|β3|
−

S5,5

|β5|
1−

1
|β1|
−

1
|β4|

S4 −
S4,1

|β2|
−

S4,5

|β5|
−

1
|β3|

S5 −
S5,1

|β2|
−

S5,5

|β5|
1−

1
|β1|
−

1
|β3|
−

1
|β4|

S4 −
S4,5

|β5|
−

1
|β3|

S5 −
S5,5

|β5|
1−

1
|β1|
−

1
|β2|
−

1
|β3|
−

1
|β4|

S4 −
S4,2

|β2|
−

S4,5

|β5|
−

1
|β3|

S5 −
S5,2

|β2|
−

S5,5

|β5|
1−

1
|β1|
−

1
|β3|
−

1
|β4|

S4 −
S4,2

|β2|
−

1
|β3|

S5 −
S5,2

|β2|
−

1
|β5|

1−
1
|β1|
−

1
|β3|
−

1
|β4|
−

1
|β5|

S4 −
S4,2

|β2|
−

S4,3

|β3|
−

1
|β3|

S5 −
S5,2

|β2|
−

S5,3

|β3|
−

1
|β5|

1−
1
|β1|
−

1
|β4|
−

1
|β5|

System E S is simplified to the equivalent system E QS ∪ {E QK+L+1}: E Q1 = E1 − E2,
E Q2 = E3 − E2, E Q3 = E5 − E4, E Q4 = E0 − E1 and E Q5 = E3 − E4. The sixth
equation can be obtained as E Q6 = E4 − E Q2:

−
S1,1

|β2|
+

1
|β2|

−
S2,1

|β2|
−

S3,1

|β2|
−

S4,1

|β2|
−

S5,1

|β2|

1
|β2|

−
S1,2

|β2|
−

S2,2

|β2|
+

1
|β2|

−
S3,2

|β2|
−

S4,2

|β2|
−

S5,2

|β2|

1
|β2|

−
S1,3

|β3|
−

S2,3

|β3|
−

S3,3

|β3|
+

1
|β3|

−
S4,3

|β3|
−

S5,3

|β3|

1
|β3|

−
S1,4

|β3|
−

S2,4

|β3|
−

S3,4

|β3|
−

S4,4

|β3|
+

1
|β3|

−
S5,4

|β3|

1
|β3|

−
S1,5

|β5|
−

S2,5

|β5|
−

S3,5

|β5|
−

S4,5

|β5|
−

S5,5

|β5|
+

1
|β5|

1
|β5|

S1 −
1
|β2|

S2 −
1
|β2|

S3 −
1
|β3|

S4 −
1
|β3|

S5 −
1
|β5|

A

,

where

A = 1−
1
|β1|
−

1
|β2|
−

1
|β3|
−

1
|β4|
−

1
|β5|

.
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For D0 = 1 the solution of system (4) is D ' [−2.133,−2.133,−2.133,−1.885,−2.510].
The normalizing constant is '−2.069. The normalized τ -invariant density is shown in
Figure 1(b).

Example 2. In this example all values τ(ci ) are different. All branches are increasing. Let
N = 4 and let τ be defined by the vectors

α = [0.7, 0.2, 1, 0.45], β = [2, 3, 4, 1.35], γ = [0, 0.2, 0, 0.55].

We have K = 3 and L = 1. The graph of τ is shown in Figure 2(a). The digits are
{0, 0.85, 1.66 . . . , 0.35}. The first branch of τ is greedy, the second hanging, the third onto
and the last one is lazy. The points ci are c1 = 0.35= (0.35, 1), c2 = 0.35= (0.35, 2),
c3 = 0.4166 . . . , c4 = 0.66 . . . . Here c1, c3 ∈Wu and c2, c4 ∈Wl . We have 0< τ(c2) <

τ(c3) < τ(c4) < τ(c1) < 1 and taking the points x0 < x1 < x2 < x3 < x4 between them we
obtain the system E S (we show only the coefficients):

S1 −
S1,2
β2
−

S1,4
β4
−

1
β1

S2 −
S2,2
β2
−

S2,4
β4

S3 −
S3,2
β2
−

S3,4
β4
−

1
β2

S4 −
S4,2
β2
−

S4,4
β4

1−
1
β1
−

1
β3

S1 −
S1,4
β4
−

1
β1

S2 −
S2,4
β4
−

1
β2

S3 −
S3,4
β4
−

1
β2

S4 −
S4,4
β4

1−
1
β1
−

1
β2
−

1
β3

S1 −
S1,3
β2
−

S1,4
β4
−

1
β1

S2 −
S2,3
β2
−

S2,4
β4
−

1
β2

S3 −
S3,3
β2
−

S3,4
β4

S4 −
S4,3
β2
−

S4,4
β4

1−
1
β1
−

1
β3

S1 −
S1,3
β2
−

1
β1

S2 −
S2,3
β2
−

1
β2

S3 −
S3,3
β2

S4 −
S4,3
β2
−

1
β4

1−
1
β1
−

1
β3
−

1
β4

S1 −
S1,1
β1
−

S1,3
β2

S2 −
S2,1
β1
−

S2,3
β2
−

1
β2

S3 −
S3,1
β1
−

S3,3
β2

S4 −
S4,1
β1
−

S4,3
β2
−

1
β4

1−
1
β3
−

1
β4

System E S is simplified to equivalent system E QS ∪ {E QK+L+1}: E Q1 = E4 − E3,
E Q2 = E0 − E1, E Q3 = E2 − E1 and E Q4 = E3 − E2. The fifth equation can be
obtained as E Q5 = E3 − E Q3:

−
S1,1

β1
+

1
β1

−
S2,1

β1
−

S3,1

β1
−

S4,1

β1

1
β1

−
S1,2

β2
−

S2,2

β2
+

1
β2

−
S3,2

β2
−

S4,2

β2

1
β2

−
S1,3

β2
−

S2,3

β2
−

S3,3

β2
+

1
β2

−
S4,3

β2

1
β2

−
S1,4

β4
−

S2,4

β4
−

S3,4

β4
−

S4,4

β4
+

1
β4

1
β4

S1 −
1
β1

S2 −
1
β2

S3 −
1
β2

S4 −
1
β4

1−
1
β1
−

1
β2
−

1
β3
−

1
β4

For D0 = 1 the solution of system (4) is D ' [−0.876,−0.876,−0.883,−16.539]. The
normalizing constant is '−7.812. The normalized τ -invariant density is shown in
Figure 3(a).

Example 3. Here we have τ(c1)= τ(c2). Let N = 4 and let τ be defined by the vectors

α = [1, 0.5, 0.5, 0.7], β = [4, 3, 2, 2.1], γ = [0, 0, 0, 0.3].
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1

0 0c1 c1c2 c3 c2 c3
c4

(c3)= 2+ 2τ γ α
(c1)=   (c2)τ τ

(c1)= 1   τ α
(c4)= 4τ γ

(c2)= 2τ γ =
1
=  2α α

(c3)= 4τ γ

(a) (b)

1 1

1

FIGURE 2. Maps τ of (a) Example 2 and (b) Example 3.

We have K = 3, L = 0. The graph of τ is shown in Figure 2(b). The digits are
{0, 0.75, 0.833 . . . , 1.1}. The first branch of τ is onto, the second and third are greedy
and the last is lazy. The points ci are c1 = 0.4166 . . . , c2 = 0.66 · · · = (0.66 . . . , 3),
c3 = 0.66 · · · = (0.66 . . . , 4). Here c1, c2 ∈Wu and c3 ∈Wl . We have 0< τ(c3) <

τ(c1)= τ(c2) < 1 and taking the points x0 < x1 < x2 between them we obtain the system
E S (again, we show only the coefficients):

S1 −
S1,3

β4
−

1
β2

S2 −
S2,3

β4
−

1
β3

S3 −
S3,3

β4
1−

1
β1
−

1
β2
−

1
β3

S1 −
1
β2

S2 −
1
β3

S3 −
1
β4

1−
1
β1
−

1
β2
−

1
β3
−

1
β4

S1 −
S1,1

β2
−

S1,2

β3
S2 −

S2,1

β2
−

S2,2

β3
S3 −

S3,1

β2
−

S3,2

β3
−

1
β4

1−
1
β1
−

1
β4

Again, system E S is simplified to the equivalent system E QS ∪ {E QK+L+1}: E Q1 =

E Q2 = E2 − E1, E Q3 = E0 − E1. The third (or formally the fourth) equation can be
obtained as E Q4 = E1:

−
S1,1

β2
−

S1,2

β3
+

1
β2

−
S2,1

β2
−

S2,2

β3
+

1
β3

−
S3,1

β2
−

S3,2

β3

1
β2
+

1
β3

−
S1,3

β4
S2 −

S2,3

β4
−

S3,3

β4
+

1
β4

1
β4

S1 −
1
β2

S2 −
1
β3

S3 −
1
β4

1−
1
β1
−

1
β2
−

1
β3
−

1
β4

(23)

The solution of system (4), for D0 = 1, is D ' [8.794, 3.382, 3.382]. System (23) is
not equivalent to (4), but the solution of (4) also satisfies (23). System (23) has infinitely
many solutions D(t)

' [t, 9.2447− 0.6667t, 3.382]. We have D = D(t) for t = D1. The
functions

h1 =

∞∑
n=1

χ[0,τ n(c1)]

1
β(c1, n)

and h2 =

∞∑
n=1

χ[0,τ n(c2)]

1
β(c2, n)

are proportional, β2h1 = β3h2, and the invariant density h stays the same whether we
use constants D1, D2, D3 or D(t)

1 , D(t)
2 , D(t)

3 for arbitrary t . The normalizing constant
is ' 5.989. The normalized τ -invariant density is shown in Figure 3(b).
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2.0

1.5

1.0

0.5

0
0.2 0.4 0.6 0.80 1.0

(a)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0.2 0.4 0.6 0.80 1.0

(b)

FIGURE 3. Invariant densities for maps of (a) Example 2 and (b) Example 3.

In the next example we show a map τ which is not ergodic. Matrix S has an eigenvalue
1. The system (4) with D0 = 1 is solvable (non-uniquely). Both methods, i.e. using D0 = 1
or D0 = 0, of finding τ -invariant density agree.

Example 4. Let N = 8 and τ be defined by the constant slope β = 3 and the vectors

α = [0.5, 0.25, 0.25, 0.5, 0.5, 0.25, 0.25, 0.5], γ = [0, 0, 0.1, 0, 0.5, 0.65, 0.75, 0.5].

The graph of τ is shown in Figure 4(a). The matrix

S'



0.5 0.5 0.346 54 0.35 0.5 0 0 0.5 0 0
0.5 0 0.346 54 0.35 0.5 0 0 0.5 0 0
0.5 0 0.346 54 0.35 0.5 0 0 0.5 0 0
0.5 0 0.5 0.35 0.5 0 0 0.5 0 0
0 0 0.5 0 0 0 0 0.5 0 0
0 0 0.5 0 0 0 0 0.5 0 0
0 0 0.5 0 0 0.5 0.45 0.487 037 0 0.5
0 0 0.5 0 0 0.5 0.45 0.45 0 0.5
0 0 0.5 0 0 0.5 0.45 0.45 0 0.5
0 0 0.5 0 0 0.5 0.45 0.116 667 0.5 0.5


.

For D0 = 1 system (4) has solutions

D(t) '

[
t,

2t

3
,

2t

3
, 0.769 231t, 0, 0,−0.691 358t − 2.074 074,

−
2t

3
− 2,−

2t

3
− 2,−0.777 78t −

7
3

]
.

The eigenvector of S corresponding to the eigenvalue 1 is

Dv ' [−0.943 423,−0.628 949,−0.628 949,

−0.725 710, 0, 0, 0.652 243, 0.628 949, 0.628 949, 0.733 774].
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1

1

–1.2

2.34

0 0

0

1c1c2 c3 c4 c5 c6 c7 c8 c9 c10

(c5)=τ
(c6)=τ
(c10)=1/2τ

(c1)=τ

(c4)= 3+ 3τ γ α

(c8)= 6+ 6τ γ α

(c2)= 2τ α

(c7)= 6τ γ

(c9)= 7τ γ

(c3)= 3τ γ

(a) (b)

FIGURE 4. Map τ of Example 4 and three versions of its invariant density.

The τ -invariant densities are shown in Figure 4(b). The density for D0 = 1 and constants
D(−0.5) is shown in black, the density for D0 = 1 and constants D(−1.9) is shown in
gray and the density for D0 = 0 and constants Dv is shown as a gray dashed line. The last
happens to be a combination of negative density for one ergodic component and a positive
density for the other.

4. Ergodic properties of piecewise linear maps
In this section we discuss the ergodic implication of having invariant density with full
support. In particular, this applies to any τ satisfying the assumptions of Proposition 5, or
any greedy map for which 1 is not an eigenvalue of S.

THEOREM 4. Let τ be a piecewise linear and eventually piecewise expanding map which
admits an invariant density supported on [0, 1]. Then, if at least one branch of τ is onto,
then τ has at most two ergodic components. If at least two branches are onto, then τ
is exact.

Remark. It follows from the general theory (e.g., [2, Theorem 8.4.1]) that an exact
piecewise expanding map τ is weakly Bernoulli.

Proof. It follows from the general theory (for example, [2, Chapter 8]) that τ has an finite
number of ergodic components and the support of each ergodic component consists of
a finite number of intervals. To prove exactness of an ergodic component it is enough to
show that the images of arbitrarily small interval in the component grow to cover the whole
domain of the component.

If τ has an onto branch, then let x0 be a fixed point in the domain of this branch. There
are two possibilities.
(a) Some neighborhood J of x0 is contained in one ergodic component of τ . Then, the

images τ n(J ) grow to cover the whole [0, 1] and τ has one exact component.
(b) The map τ has at least two ergodic components and some intervals J1 of one

component and J2 of the second component touch x0. Let J1 ⊂ [0, x0). Then, the
images τ n(J1) grow to cover [0, x0) and the images τ n(J2) grow to cover (x0, 1].
The map τ has two ergodic components.
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If τ has at least two onto branches, then the fixed points in these branches, x0 and x1 are
different. Each of the intervals [0, x0], [0, x1], [x0, 1], [x1, 1], is completely contained in
a support of an ergodic component. Thus, we have at most one ergodic component. Since
an arbitrary neighborhood of any of these fixed points grows under iteration to cover the
whole [0, 1] the system is exact. 2

PROPOSITION 5. If the spectral radius ρ of matrix S satisfies ρ < 1, then the system (4) is
solvable for D0 = 1 and the solution vector D > 0. This implies that the invariant density
h is strictly positive.

Proof. Again let v= [1, 1, . . . , 1, 1] be a (K + L)-dimensional vector of ones.
System (4) can be rewritten as

D = ST DT
+ v. (24)

Let us define map F : RK+L
→ RK+L as

F(x)= STxT
+ v,

and consider the sequence of vectors v, F(v)= STvT
+ v, . . . , Fn(v)= (ST)nvT

+ · · · +

STvT
+ v, . . . . Map F preserves the cone C+ of non-negative vectors in RK+L and all

Fn(v) ∈ C+, n = 0, 1, 2, . . . . Let ‖ · ‖ be the Euclidean norm in RK+L . Since ρ < 1 we
have

‖Fn+m(v)− Fn(v)‖ = ‖(ST)n+1vT
+ (ST)n+2vT

+ · · · + (ST)n+mvT
‖

≤ const
m∑

k=n+1

ρk
‖v‖→ 0, (25)

as n, m→+∞. Thus, the sequence {Fn(v)}n≥0 converges to a vector D̄ ∈ C+, which
is a solution of (24). Since the solution is unique we have D̄ = D and D ∈ C+. Then,
ST DT

∈ C+ and D = ST DT
+ v > 0. 2

Remark. If the system (4) is solvable for D0 = 1 and the solution vector D ≥ 0, then the
following statements hold:

(a) D > 0;
(b) the spectral radius of S satisfies ρ < 1;
(c) S j, j < 1 for j = 1, . . . , K + L .

Statement (a) is proved as in the proof of Proposition 5. Statement (b) follows from the
theory of M-matrices and (c) follows by the Collatz–Wielandt formula (e.g., [18]).

In Example 5 we show that the converse of Conjecture 1 is not always true.

Example 5. Let τ be as in Figure 5(a). The slope β is constant, the first and the
third branches are onto, the second is hanging. Let α = α2 < 1 and γ = γ2 = 1− α/2.
Then, β = 2+ α. The digits are {0, (1+ α)/2, 1+ α} = {0 · d, 1 · d, 2 · d}, where d =
(1+ α)/2. Using the symmetry of map τ and definition (10) in this special case we obtain
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1 1.3

0.9

0 01 1c1 c2

(c2)= 2+ 2τ γ α

(c1)= 2τ γ

(a) (b)

FIGURE 5. Map of Example 5 and its invariant density.

S1 =

∞∑
n=1

N − j (τ n(c1))

βn+1 =

∞∑
n=1

j (τ n(c2))− 1

βn+1

=
1

dβ

∞∑
n=1

( j (τ n(c2))− 1) · d
βn =

τ(c2)

dβ
=

1
β
. (26)

By the symmetry of τ we have S1,1 = S2,2 and S1,2 = S2,1. We show that S1,1 + S2,1 = 1
(and also S1,2 + S2,2 = 1). In the proof of Theorem 2 we showed that

−S1,1 + 1
β

γ2 +
−S1,2

β
(1− γ2 − α2)= S1 −

1
β
.

In our case we have γ2 = 1− γ2 − α2 = (1− α)/2 so equality (26) implies

−S1,1 + 1− S1,2 = 0,

which, in turn, gives S1,1 + S2,1 = 1 and S1,2 + S2,2 = 1. This shows that the matrix S has
eigenvalue 1. At the same time τ is exact and has unique absolutely continuous invariant
measure supported on [0, 1]. For D0 = 1 the system (4) is contradictory and does not have
any solutions. For D0 = 0 it is solvable and D1 = D2 = 1 is one of the solutions. Thus,
τ -invariant density is

h =
∞∑

n=1

χ[0,τ n(c2)]

1
βn +

∞∑
n=1

χ[τ n(c1),1]
1
βn .

For α = 0.4, it is shown in Figure 5(b).
Let us note that the smallest change from the symmetry of this example results in a

solvable system (4) with D0 = 1 and the invariant density for τ can be obtained as a limit
of densities for perturbed maps with perturbations converging to zero.

Another example with the same properties is given by τ 2. It preserves the same
density h. Also, if we make the middle branch decreasing with the same slope in modulus,
the resulting map τ is ergodic and S has 1 as an eigenvalue. This τ preserves a different
density h. 2

In the following example we show that τ with one ergodic component is not
necessarily exact.
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Example 6. Let N = 4 and let τ be defined by the vectors

α = [0.5, 0.5, 0.5, 0.5], β = [2, 2, 2, 2], γ = [0.5, 0.5, 0, 0].

We have K = 4 and L = 0. The map τ is obviously ergodic and τ 2 has two exact
components. System (4) with D0 = 1 is solvable, D1 = D4 =−0.5, D2 = D3 =−1 and
the normalizing factor is −1. Here h ≡ 1.

Example 7 shows a non-ergodic map τ . Matrix S has 1 as an eigenvalue, although h ≡ 1
is a τ -invariant density.

Example 7. Let N = 3, and let τ be defined by the vectors

α = [0.5, 1, 0.5], β = [2, 2, 2], γ = [0, 0, 0.5].

We have K = 2 and L = 0. The map τ obviously has two exact components and h ≡ 1
is a τ -invariant density. Matrix S has an eigenvalue 1 and system (4) is not solvable for
D0 = 1. For D0 = 0, any pair D1, D2 satisfies system (4) which agrees with the fact that

h1 = D1

∞∑
n=1

χ[0,τ n(c1)]

1
2n and h2 = D2

∞∑
n=1

χ[τ n(c2),1]
1
2n ,

are invariant densities for the ergodic components of τ .
The next example shows that Conjecture 1 fails for not piecewise increasing maps τ .

Example 8. Let N = 2 and let τ be defined by the vectors

α = [1, 0.8], β = [1.8,−1.8], γ = [0, 0.2].

We have K = 1 and L = 0. Here τ is ergodic but on a smaller interval [0.2, 1]. Matrix
S= [S1,1] = [1.125] has an eigenvalue 1.125 and system (4) is solvable for D0 = 1. We
have D1 =−0.8.

For the corresponding piecewise increasing map, i.e. if we keep the same α and γ and
change β to β = [1.8, 1.8], the matrix S= [S1,1] = [1] has an eigenvalue 1.

5. Special case: piecewise increasing maps
In this section we briefly show simplifications occurring when we consider only piecewise
linear, piecewise increasing maps.

We assume here that all slopes β j > 0, j = 1, . . . , N . Then, we have Wu =Ur and
Wl =Ul . The formulas (3) simplify to

Si, j =

∞∑
n=1

1
β(ci , n)

δ(τ n
u (ci ) > c j ) for ci ∈Wu and all c j ,

Si, j =

∞∑
n=1

1
β(ci , n)

δ(τ n
l (ci ) < c j ) for ci ∈Wl and all c j . (27)

The formula for the τ -invariant density h simplifies to

h(x)= D0 +
∑

i∈Wu

Di

∞∑
n=1

χ[0,τ n(ci )]

1
β(ci , n)

+

∑
i∈Wl

Di

∞∑
n=1

χ[τ n(ci ),1]
1

β(ci , n)
, (28)

where constants Di , i = 1, . . . , K , satisfy the system (4).
We have the following condition for the solvability of the system (4) with D0 = 1.
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PROPOSITION 6. Let τ be a piecewise linear, piecewise increasing and eventually
expanding map. If {0, 1} ⊂Wu ∪Wl , then the condition min1≤ j≤N |β j |> K + L is
sufficient for the solvability of the system (4) with D0 = 1.

Proof. If c1 = 0 and cK+L = 1, then for any ci ∈Wl we have Si,1 = 0 and for any ci ∈Wu

we have Si,K+L = 0. Thus, there is at least one zero in each row of S and Perron–Frobenius
estimate implies that 1 is not an eigenvalue of S for β > K + L . 2

6. Special case: Greedy maps
In this section we discuss maps related to the greedy expansion with deleted digits [5, 21],
i.e. piecewise linear, piecewise increasing maps for which all shorter branches touch zero.
They are called greedy since the digits are the largest possible for given α and β.

Absolutely continuous invariant measures for such maps with constant slope were
investigated in [6, 7] by other methods.

Our definition of a greedy map is a little more general than the definition usually used.
We give the standard definition for reference. It is assumed that the last branch is onto and
the slope is constant β > 1. Under these conditions the digits define the map τ . Let the
digits be {a1, a2, . . . , aN }. We want to define τ on [0, 1] so we make some unrestrictive
assumptions: a1 = 0 and

Ma = max
1≤ j≤N−1

(a j+1 − a j )= 1. (29)

Any set of digits can be shifted and scaled to satisfy these assumptions. The maps for both
sets are linearly conjugated. Now, we set β = aN + 1 and define bi = ai/β, i = 1, . . . , N ,
bN+1 = 1. We have αi = (bi+1 − bi )/β, for i = 1, . . . , N . All γ are zero by assumption.

We return to our, slightly more general, setting. For greedy maps we have γi = 0 for
all i = 1, . . . , N . We assume that at least one branch is onto as otherwise τ should be
considered on a different interval. Since the set Wl is in this case empty, we have

h = D0 +

K∑
i=1

Di ·

∞∑
n=1

χ[0,τ n(ci )]

1
β(ci , n)

. (30)

We prove a number of results specific to the greedy maps.

THEOREM 7. Let us assume that τ is a greedy map. If the system (4) is solvable, then h
is a non-normalized τ -invariant density. If the system (4) is solvable for D0 = 1, then the
system (τ, h · m) is exact on [0, 1].

In particular, system (4) is uniquely solvable (1 is not an eigenvalue of S) if
min1≤ j≤N β j > K + 1. If the last branch is shorter, then the condition min1≤ j≤N β j > K
is sufficient and the coefficient DK = 1.

Proof. Most of the claims of Theorem 7 follow by Theorem 2. We prove exactness.
From general theory (for example, [2, Ch. 8]), we know that the support of each ergodic
component contains a neighborhood J of some inner partition point. Then, the image τ(J )
touches zero. This proves that there is only one ergodic component C . We show that if the
system (4) is solvable for D0 = 1, then C = [0, 1]. Assume that C ( [0, 1]. We show that
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then C = [0, a]with some a < 1. Let Kb ≤ K be the number of shorter branches to the left
of the first onto branch. We consider Kb > 0 as otherwise C = [0, 1]. Let x j denote the
fixed point on the j th branch, if it exists. In particular, x1 = 0 and xKb+1 is the fixed point
on the first onto branch. We say that branches with indices 1= j1 < j2 < · · ·< js−1 <

js ≤ Kb + 1 form an increasing sequence if for each jk , k = 1, . . . , s − 1, the branch with
index jk+1 is the first branch to the right of the branch jk such that

τ(c jk+1) > τ(c jk ) > x jk+1 .

It is easy to see that if an increasing sequence of branches with js = Kb + 1 exists, then
C = [0, 1]. Since we assumed C ( [0, 1] such sequence ends before reaching the first onto
branch. Let 1≤ jl < Kb + 1 be the index of the last branch in the increasing sequence.
Then, C = [0, τ (c jl )] is the support of the unique τ -invariant density.

Now, we show that if there are any c j with j > Kb, i.e. to the right of the first onto
branch, then the corresponding Di , i > Kb, in the formula (30) are equal to zero. The
invariant density h is zero (almost everywhere) in the interval [τ(c jl ), 1]. In particular, it
is zero around all points c j with j > Kb.

Note that, if
c j 6∈

⋃
1≤i≤K ,n≥1

{τ nci },

then for any i = 1, . . . , K , comparing with (27) we obtain

∞∑
n=1

χ[0,τ n(ci )](c j )
1

β(ci , n)
= Si, j ,

and, thus, using (30) we have

h(c j )= 1+
K∑

i=1

Di Si, j ,

assuming that the value of h at c j is given exactly by the formula (30).
In general we proceed as follows. Let fix a c j , j > Kb. Since h is almost everywhere

zero around c j and for any m ≥ 1 the set⋃
1≤i≤K ,1≤n≤m

{τ nci },

is finite we can find a point xm (close to c j ) such that h(xm)= 0 and

m∑
n=1

χ[0,τ n(ci )](xm)
1

β(ci , n)
=

m∑
n=1

δ(τ n(ci ) > c j )
1

β(ci , n)
.

The left-hand side is close to hi (xm)=
∑
∞

n=1 χ[0,τ n(ci )](xm)1/(β(ci , n)) and the right-
hand side is close to Si, j . Summing over i = 1 . . . , K , we obtain∣∣∣∣1+ K∑

i=1

Di Si, j

∣∣∣∣≤ 2 ·
∑

1≤i≤K

|Di |

∞∑
n=m+1

1
β(ci , n)

,

for every m ≥ 1, which implies 1+
∑K

i=1 Di Si, j = 0. By (4), D j = 1+
∑K

i=1 Di Si, j = 0.
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We have proved that

h = 1+
Kb∑

i=1

Di ·

∞∑
n=1

χ[0,τ n(ci )]

1
β(ci , n)

.

Since all points {τ n(ci ) : 1≤ i ≤ Kb, n ≥ 1} are contained in the interval [0, τ (c jl )] we
have h(x)= 1 for almost all points x in [τ(c jl ), 1]. This contradicts what we have proved
before. We proved that solvability of (4) with D0 = 1 implies that h is supported on [0, 1].

To show exactness, note that for arbitrarily small neighborhood J1 of the fixed point on
the onto branch its images τ n(J1) grow to cover the whole [0, 1].

If the last branch is shorter, then cK = 1. We have Si,K = 0 for all i = 1, . . . , K and
Perron–Frobenius estimate on the modulus of eigenvalues of S is (K − 1)/(β − 1). Thus,
β > K is sufficient in this case. The last equation in system (4) is then DK · 1= 1 and
DK = 1. 2

In a very special case of greedy map with only one shorter branch, K = 1, and constant
slope β we have the following.

PROPOSITION 8. Let τ be a greedy map with K = 1 and constant slope β = βi ,
i = 1, . . . , N. If β > 2 or the first branch is onto, then the non-normalized τ -invariant
density h is given by the formula

h = 1+ D1 ·

∞∑
n=1

χ[0,τ n(c1)]

1
βn , (31)

where D1 = 1/(1− S1,1), and the system (τ, h · m) is exact.
If β < 2 and the first branch is not onto, then the support of τ -invariant absolutely

continuous measure is the interval [0, α1]. Moreover, S1,1 = 1. The restricted map τ|[0,α1]

is again a greedy map with one shorter branch.

Proof. If β > 2, then S1,1 ≤ 1/(β − 1) < 1, the density h of (31) is well defined and
supported on [0, 1]. The system is exact.

If β < 2, then τ has two branches (as K = 1) and we consider two cases.
(a) The second branch is shorter: then c1 = 1 and δ(τ n(c1) > c1)= 0 for all n ≥ 1.

Thus, S1,1 = 0 and D1 = 1. We have obtained Parry’s classical formula [19].
(b) The first branch is shorter and the second branch is onto. The τ -invariant absolutely

continuous measure is supported on [0, α1]. The map τ restricted to this interval is
a map from case (a). We prove that S1,1 = 1. If S1,1 6= 1, then the invariant density
h of (31) is well defined. In particular, for any x > τ(c1) we have h(x)= 1 which is
impossible. 2

We have proved the following.

PROPOSITION 9. If τ is a greedy map with K = 1 and constant slope β, then τ is ergodic
on [0, 1] if and only if S1,1 6= 1.

Example 9. Let τ be a greedy map with K = 1 and the first branch shorter. If β2 =

min2≤ j≤N β j and α1 = τ(c1) > x0, where x0 is the fixed point on the second branch, then
S1,1 6= 1 and the claims of Proposition 8 hold.
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The second branch of τ is τ(x)= β2x − β2(α1/β1). Thus, x0 = α1β2/β1(β2 − 1) and
τ(c1) > x0 gives β2/(β1(β2 − 1)) < 1. At the same time, we have

S1,1 ≤

∞∑
n=1

1

β1β
n−1
2

=
β2

β1(β2 − 1)
< 1. 2

Now, we consider greedy maps τ with constant slope β > 1 with K = 2 shorter
branches satisfying β ≤ 3, or β ≤ 2 if the last branch is shorter.

We first consider cases when τ has two shorter branches, β ≤ 2 and the last branch is
shorter. This means that τ has three branches.

(A) The first branch is onto: then, τ is exact, which can be proved as in Theorem 7.
Since c2 = 1 we have S1,2 = S2,2 = 0 and D2 = 1. Here D1 has to satisfy D1(−S1,1 + 1)=
1+ S2,1. We show that

S1,1 < 1. (32)

Let us assume that τ(c1)= α2 ≥ α3 = τ(c2). We have β = 1+ α1 + α2 ≤ 2 so
α2 < β − 1. The fixed point on the second branch would be x0 such that βx0 − 1= x0

which gives x0 = 1/(β − 1)≥ 1. Thus, the second branch is always below the diagonal.
In particular, α2 < c1. Also, whenever τ n(c1) > c1, then τ n+1(c1)≤ α3 < c1. Thus,
S1,1 < 1/(β2

− 1) and (32) is shown at least for β > β(1) =
√

2 such that (β(1))2 − 1= 1.
Assume that β ≤ β(1). Then, (β + 1)(β − 1)≤ 1 or β − 1< 1/(β + 1). Since

α2 < β − 1 this means that α2 < 1/(β) and

τ 2(c1)= βα2 ≤
β

β + 1
β

β
≤

2
β + 1

1
β

1
β
< c1.

Thus, τ(c1) < c1 and τ 2(c1) < c1. Moreover, whenever τ n(c1) > c1 then the next two
iterates are smaller then 1/β.

Thus, S1,1 < 1/(β3
− 1) and (32) is shown at least for β > β(2) = 3

√
2 such that

(β(2))3 − 1= 1.
Assume again that β ≤ β(2). Then, (β2

+ β + 1)(β − 1)≤ 1 or α2 < 1/(β2
+ β + 1)

which means that τ k(c1) < c1 for k = 1, 2, 3, 4. Moreover, whenever τ n(c1) > c1 then the
next four iterates are smaller then 1/β. Thus, S1,1 < 1/(β5

− 1) and (32) is shown at least
for β > β(3) = 5

√
2 such that (β(3))5 − 1= 1.

Since the roots n
√

2 converge to one as n converges to infinity, repeating the above
reasoning inductively, we can prove (32) for all β > 1.

Now, let us assume that τ(c1)= α2 < α3 = τ(c2). The proof is similar. Again,
τ(c1)≤ c1 which gives S1,1 ≤ 1/(β(β − 1)). Thus, (32) is shown at least for β > β(0)

= (1+
√

5)/2' 1.618 such that β(0)(β(0) − 1)= 1.
Assume that β ≤ β(0). Then, β(β − 1)≤ 1 or β − 1< 1/β. Since α2 < α3 < β − 1,

we have τ(c1)≤ c1 and whenever τ n(c1) > c1, then τ n+1(c1)≤ α3 < 1/β. This gives
S1,1 ≤ 1/((β2

− 1)). Thus, (32) is shown at least for β > β(1) =
√

2 such that (β(1))2

− 1= 1. Then, the proof proceeds as in the previous case.

Example 10. The map τ considered in case (A) gives an example of maps for which
invariant density h exists although β can be arbitrarily close to one.
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(B) The first branch is shorter. Then, the fixed point in the middle onto branch is
x0 = α1/(β − 1) and x0 ≥ α1. The support of absolutely continuous invariant measure
is the interval [0, α1] and τ restricted to this interval is the classical β-map.

Now, we consider the situation where the last branch is onto and β ≤ 3. This means that
τ has three or four branches.

In the three branches case, since the last branch of τ is onto, the first and the second
branch are shorter.

(C) α1 ≤ α2: There are two possibilities.
(Ca) α1 is below the fixed point on the second branch (or this fixed point does not exist).

Then, the map τ has unique absolutely continuous invariant measure supported on [0, α1].
The map τ restricted to this interval is a classical β-map and the invariant density can be
found using Parry’s formula (or our formula after rescaling).

(Cb) The image of the first branch covers the fixed point on the second branch. Then,
the map τ has unique absolutely continuous invariant measure supported on [0, α2]. The
map τ restricted to this interval has the first and the last branches shorter. This situation is
considered in (B).

(D) α1 > α2: The map τ has unique absolutely continuous invariant measure supported
on [0, α1]. The map τ restricted to this interval has the first branch onto. This situation is
considered in (A).

In the four branches case, the last branch of τ is onto.
(E) The first branch is onto, 2< β ≤ 3 and τ is exact. We prove that 1 is not an

eigenvalue of S.
First, we show that it is not possible for both α2 and α3 to be above the point

c1 = (1+ α2)/β.
Assume that α2 ≤ α3. Since β = 2+ α2 + α3 ≤ 3 we have α2 ≤ 1/2. Then, if

α2 > (1+ α2)/β, we would have β > (1+ α2)/α2 ≥ 3, a contradiction.
Assume that α2 > α3. Now, we have α3 ≤

1
2 . If α3 > (1+ α2/β) > (1+ α3)/β, we

would have β > (1+ α3/α3)≥ 3, again a contradiction.
Thus, at least one of the images τ(ci ), i = 1, 2, is below both points c1, c2. This

makes the Perron–Frobenius estimate on eigenvalues of S (or ST) equal to 1/(β − 1)
+ 1/β(β − 1). Let β(1) be the positive solution of

1
β − 1

+
1

β(β − 1)
= 1.

We have proved that 1 is not an eigenvalue of S for β > β(1) =
√

2+ 1.
Now, we assume that β ≤ β(1). We have α2 + α3 ≤ β

(1)
− 2. We show that both α2 and

α3 are below the point c1 > 1/β. The worst-case scenario is when the smaller α is almost
zero and the other is almost β(1) − 2. Since 1/β(1) = β(1) − 2, inequality β(1) − 2≤ 1/β
is satisfied for all 2< β ≤ β(1). We proved that both images τ(ci ), i = 1, 2, are below both
points c1, c2. Now, Perron–Frobenius estimate becomes 2/β(β − 1). Since

2
β(β − 1)

< 1,

for all β > 2, we have completed the proof.
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(F) The two first branches are shorter, 2< β ≤ 3.
Assume first that α1 ≤ α2: since the fixed point in the second branch is

x0 = (α1/(β − 1)) < α1 the image of the first branch covers it. There are two cases.
(Fa) If α2 is above the fixed point in the third, onto branch, then τ is exact. The

third branch is τ(x)= βx − (α1 + α2) so this fixed point is x0 = (α1 + α2)/(β − 1).
Conditions α2 > x0 and α1 + α2 < 1 lead to inequality

α1 <min
{

1− α2,
α2

2

1− α2

}
.

(Fb) If α2 is below the fixed point in the third, onto branch, then map τ has unique
absolutely continuous invariant measure supported on [0, α2]. Here τ restricted to this
interval has the first and the last branches shorter. This situation is considered in (B).

Now, assume that α1 > α2: again there are two cases.
(Fc) If α1 is above the fixed point in the third, onto branch, then τ is exact. This

fixed point is again x0 = (α1 + α2)/(β − 1). Conditions α1 > x0 and α1 + α2 < 1 lead to
inequality

α2 <min
{

1− α1,
α2

1

1− α1

}
.

(Fd) If α1 is below the fixed point in the third, onto branch, then map τ has unique
absolutely continuous invariant measure supported on [0, α1]. The map τ restricted to this
interval has the second and the third (the last) branches shorter. This situation is considered
in (A).

(G) The first and the third branches are shorter, 2< β ≤ 3. Since again the image of the
first branch covers the fixed point in the second onto branch, the map τ is exact.

We have c2 = 1− 1/β. We find that when both α1 and α3 are below the point c2. Let
α =max{α1, α3}. We need α ≤ c2. Since α < β − 2 it is enough to have β − 2≤ 1− 1/β.
Let β(2) = (3+

√
5)/2' 2.618 be the larger solution of equation β − 2= 1− 1/β. For

β ≤ β(2) the Perron–Frobenius estimate on eigenvalues of S is 1/(β − 1)+ 1/β(β − 1).
For β > β(1) ' 2.414 of case (E), this implies that 1 is not an eigenvalue of S. Thus, this
holds in our case for β(1) < β ≤ β(2) or 2.414< β ≤ 2.618.

We have proved the following.

PROPOSITION 10. If τ is a greedy map with K = 2 and constant slope β and τ satisfies
the assumptions of case (A), (E) or (G) with 2.414< β ≤ 2.618, then τ is ergodic on [0, 1]
if and only if 1 is not an eigenvalue of S. For cases (B), (C), (D), (Fb) and (Fd) analogous
statement is true for τ restricted to a smaller interval. Cases (Fa), (Fc) and (G) outside
the mentioned interval of β are open to further investigation.

In all computer experiments we performed during the work on this paper, matrices S for
greedy maps had spectral radius ρ ≤ 1, and if the maps were exact on [0, 1], then S never
had an eigenvalue 1.

Therefore we state the following conjecture.

CONJECTURE 2. Let τ be a greedy map, i.e. a piecewise linear, piecewise increasing map
with shorter branches touching zero. Then:
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(a) 1 is not an eigenvalue of matrix S⇐⇒ dynamical system (τ, h · m) is exact on [0, 1];
(b) the spectral radius ρ of S satisfies ρ ≤ 1.

7. Special case: lazy maps
In this section we consider piecewise linear maps of an interval [0, 1] with all branches
increasing and such that the images of shorter branches touch one. This means that
αi + γi = 1 for all i = 1, . . . , N . Such maps are related to so-called ‘lazy expansions
with deleted digits’ [5]. They are called lazy since the digits are the smallest possible for
the given α and β.

We show that any lazy map is conjugated by a linear map to a corresponding greedy
map so that all results proven in the previous section hold, after necessary changes, for
lazy maps as well.

Let τ̃ be a lazy map. Let α̃, β̃ and γ̃ = 1− α̃ denote vectors of α, β and γ defining τ̃ .
The partition points are defined, as in the general case, by

b̃1 = 0, b̃ j =

j−1∑
i=1

α̃i

β̃i
, j = 2 . . . , N + 1.

Note that b̃N+1 = 1. Let Ĩ j = (b̃ j , b̃ j+1), j = 1, . . . , N . The digits Ã = {ã1, ã2,

. . . , ãN }, are defined as before by

ã j = β̃ j b̃ j − γ̃ j = β̃ j b̃ j+1 − 1, j = 1, . . . , N .

We now show that lazy map τ̃ is conjugated to some greedy map τ by diffeomorphism
f (x)= 1− x on [0, 1]. First we define ‘conjugated’ vectors α, β and γ by

α j = α̃N− j+1,

β j = β̃N− j+1, j = 1, 2, . . . , N ,

γ j = 0.

This defines the ‘conjugated’ partition points

b1 = 0, b j =

j−1∑
i=1

αi

βi
=

j−1∑
i=1

α̃N−i+1

β̃N−i+1
= 1− b̃N− j+2, j = 2 . . . , N + 1.

This defines also the conjugated set of digits A = {a1, a2, . . . , aN } with

a j = β j b j = β̃N− j+1(1− b̃N− j+2)= β̃N− j+1 − 1− ãN− j+1, j = 1, 2, . . . , N .

In particular, a1 = 0. For standard greedy and lazy maps this reduces to a j = ãN

− ãN− j+1, j = 1, 2, . . . , N . The lengths of intervals Ĩ j and IN− j+1 are equal since
bN− j+2 − bN− j+1 = (1− b̃ j )− (1− b̃ j+1)= b̃ j+1 − b̃ j , j = 1, 2, . . . , N .

THEOREM 11. The maps τ̃ and τ are conjugated by the diffeomorphism f (x)= 1− x. If
h is a τ -invariant density, then the density h̃(x)= h(1− x) is τ̃ -invariant. We have

h̃(x)= D0 +

K∑
i=1

D̃i

∞∑
n=1

χ[τ̃ n(c̃i ),1]
1

β̃(c̃i , n)
,

where constants D̃i = DK−i+1, i = 1, . . . , K , satisfy the system (4) (for τ̃ ), and points
c̃i = 1− ci , i = 1, . . . , K are the special points for τ̃ .
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FIGURE 6. Graphs of (a) lazy map and (b) greedy map of Example 11.

Proof. Both τ and f ◦ τ̃ ◦ f −1 are piecewise linear, piecewise increasing maps and the
images of shorter intervals touch zero. The equality of the lengths of the intervals
I j and ĨN− j+1 and of the slopes β j = β̃N− j+1, j = 1, 2, . . . , N , proves that they are
identical. Then, h̃(x)= h(1− x) since | f ′| = 1. The formula for h̃ follows by the general
Theorem 2. 2

Example 11. Let the lazy map τ̃ be defined by N = 4, K = 3 and

α̃ = [0.5, 1, 0.8, 0.3], β̃ = [2, 3, 4, 1.3846], γ̃ = [0.5, 1, 0.2, 0.7].

The digits are Ã = {−0.5, 0.75, 2.13 . . . , 0.3846}. The graph of τ̃ is shown in Figure 6(a).
The conjugated greedy map τ is defined by

α = [0.3, 0.8, 1, 0.5], β = [1.3846, 4, 3, 2], γ = [0, 0, 0, 0].

The digits are A = {0, 0.866 . . . , 1.25, 1.5}. The graph of the map τ is shown in
Figure 6(b). Using Maple 11 we calculated, for D0 = 1, D̃1 = 1, D̃2 ' 7.9992,
D̃3 ' 99.671. We have Di = D̃K−i+1, i = 1, . . . , K . The normalizing constant of the
density is ' 33.7996. The graph of τ̃ -invariant density is shown in Figure 7(a) and the
graph of τ -invariant density is shown in Figure 7(b) .

8. Special case: mixed greedy-lazy maps
In this section we consider maps with some shorter branches touching zero and others
touching one. We do not assume that there is at least one onto branch.

We prove some results which are specific for mixed type maps.

THEOREM 12. Let τ be an eventually piecewise expanding map of mixed type. Let h
be the τ -invariant density. Then the dynamical system {τ, h · m} can have at most two
ergodic components. If the invariant density h has full support and τ has at least two onto
branches, then {τ, h · m} is exact.
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FIGURE 7. Invariant densities of (a) lazy map and (b) greedy map of Example 11.

Proof. It follows from the general theory that the support of each ergodic component
contains a neighborhood of some inner endpoint of the partition. Since the image of each
branch touches either zero or one, there can be at most two ergodic components. The
second statement was proved in general in Theorem 4. 2

Example 7 shows that mixed type map can actually have two ergodic components. In
this specific case system (4) is not solvable for D0 = 1.

We describe the situation in the case of two ergodic components in more detail.
Let τ be a mixed type map with an invariant density h with support equal to [0, 1]. Let

us assume there are two ergodic components. Since 0 belongs to one component and 1
belongs to the other component we denote the supports of the components by C0 and C1,
respectively. There are two possibilities.

(C1) There exists x0 ∈ [0, 1] such that C0 = [0, x0] and C1 = [x0, 1]. Let τ0 = τ |C0
and

τ1 = τ |C1
. For example, this happens if τ has at least one onto branch.

We have τ n(ck)≤ c j for all n ≥ 1 and all ck ∈ C0, c j ∈ C1 and τ n(ck)≥ c j for all n ≥ 1
and all ck ∈ J1, c j ∈ J0. Thus, matrix S is a block matrix

S=
(

S0 = (Si, j )1≤i, j≤M 0
0 S1 = (Si, j )M+1≤i, j≤K+L

)
,

where c1, . . . , cM ∈ C0 and cM+1, . . . , cK+L ∈ C1.
The image of at least one ci0 ∈ C0 and at least one ci1 ∈ C1 is equal to x0 as otherwise

there would be a hole in the support of h. Even if x0 is a fixed point in a common onto
branch of τ , there must exist such points.

Since h has full support, each of the systems (τ0, h · m|C0
), (τ1, h · m|C1

) is exact by
Theorem 7. Each can be considered separately and the invariant densities can be combined.

In this case we can prove that matrix S has an eigenvalue 1.

PROPOSITION 13. Let τ be mixed type map described in (C1). Then 1 is an eigenvalue
of S.
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Proof. All branches of τ with domains in C0 are greedy and all branches of τ with domains
in C1 are lazy. Matrix S0 is identical with the matrix S of the greedy map τg constructed
as follows: on [0, 1/2] define τg as τ|C0 scaled to transform [0, 1/2] onto [0, 1/2] and on
(1/2, 1] put τg = 2(x − 1/2). We proved in Theorem 7 that such a matrix S has 1 as an
eigenvalue. 2

Proposition 13 can be generalized to the case when C0 = [0, x0] and C1 = [x1, 1] with
x0 < x1.

(C2) Each component C0 and C1 consists of some number of disjoint subintervals
separated by the subintervals of the other component. A map τ with each Ci consisting of
two subintervals is given in Example 12 and a map where each Ci has three subintervals is
given in Example 13. Examples with more subintervals in each Ci can be constructed in
an analogous way.

Example 12. Let N = 4 and τ be defined by vectors

α =

[
2
4
,

1
4
,

2
4
,

1
4

]
, β = [1, 2, 2, 2], γ =

[
2
4
, 0, 0,

3
4

]
.

The map τ is eventually expanding and

C0 =

[
0,

1
4

]
∪

[
1
2
,

3
4

]
, C1 =

[
1
4
,

1
2

]
∪

[
3
4
, 1
]
.

Example 13. Let N = 4 and τ be defined by vectors

α =

[
4
6
,

1
6
,

2
6
,

1
6

]
, β = [1, 2, 2, 2], γ =

[
2
6
, 0, 0,

5
6

]
.

The map τ is eventually expanding and

C0 =

[
0,

1
6

]
∪

[
2
6
,

3
6

]
∪

[
4
6
,

5
6

]
, C1 =

[
1
6
,

2
6

]
∪

[
3
6
,

4
6

]
∪

[
5
6
, 1
]
.

Example 14. In [10] we considered ‘generalized’ β-maps τβ . In the current notation they
can be described as maps with the slopes of constant modulus β > 1, with N = Int(β)+ 1,
α j = 1 for j = 1, 2, . . . , N − 1 and αN = β − Int(β), γ j = 0 for j = 1, 2, . . . , N − 1
and γN = 0 if βN > 0 and γN = 1− αN otherwise. We found a formula for the invariant
density of τβ :

h = 1+
∞∑

n=1

χ [0, τ n
β (1)]

1
β(1, n)

.

This representation of h is different from that obtained in this paper

h = 1+ D1 ·

∞∑
n=1

χ s
[β(1, n), τ n

β (1)]
1

|β(1, n)|
,

but both define the same function. Usually D1 6= 1.
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(a) (b)

FIGURE 8. ‘Hofbauer’s trick’: (a) the map τ and (b) the map τinc.

9. Reduction of the general case to the case of piecewise increasing map
In this section we describe an alternative method to obtain the invariant density for a
general piecewise linear map by reduction to a case of a piecewise increasing map. It
is based on the so-called ‘Hofbauer’s trick’ [11].

Let τ be an eventually expanding piecewise linear map of an interval [0, 1] into itself.
We construct a piecewise increasing map τinc of [0, 2] into itself such that τ is a 2-
factor of τinc. This allows us to obtain τ -invariant density from the τinc-invariant density
(see Figure 9).

We construct τinc as follows (see Figure 8). Recall that I1, I2, . . . , IN are the domains
of the branches of τ . First we define a map τt : [0, 1] → [0, 2]:

τt (x)=

{
τ(x) for x ∈ [0, 1], x ∈ I j , τ is increasing on I j ;

2− τ(x) for x ∈ [0, 1], x ∈ I j , τ is decreasing on I j ;

and then the map τinc : [0, 2] → [0, 2]:

τinc(x)=

{
τt (x) for x ∈ [0, 1],

2− τt (2− x) for x ∈ (1, 2].

Then, τinc is piecewise increasing and (τ, [0, 1]) is the 2-factor of (τinc, [0, 2]) via
piecewise diffeomorphism

φ(x)=

{
x for x ∈ [0, 1],

2− x for x ∈ (1, 2],

i.e. τ ◦ φ = φ ◦ τinc. Let hinc be the τinc-invariant density (we can easily rescale τinc to
[0, 1], use formula (28) and then rescale back). Since the slopes of φ are 1 in modulus the
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(a) (b)

FIGURE 9. Invariant densities of (a) the map τ and (b) the map τinc.

τ -invariant density is

h(x)= hinc(x)+ hinc(2− x)= 2hinc(x), x ∈ [0, 1].

Figures 8 and 9 are prepared for the map τ defined using α = [1, 0.6, 0.8], β =
[2.5,−3, 2] and γ = [0, 0.2, 0], i.e.

τ(x)=


2.5x for x ∈ [0, 0.4],

−3x + 2 for x ∈ (0.4, 0.6],

2x − 1.2 for x ∈ (0.6, 1].
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Congres (19) (2008) to appear.

[7] K. Dajani and C. Kalle. A natural extension for the greedy β-transformation with three deleted digits.
Preprint arXiv:0802.3571.

[8] P. Eslami. Eventually expanding maps. Preprint,
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf.

[9] A. O. Gelfond. A common property of number systems (Russian). Izv. Akad. Nauk SSSR. Ser. Mat. 23
(1959), 809–814.

[10] P. Góra. Invariant densities for generalized β-transformations. Ergod. Th. & Dynam. Sys. 27(5) (2007),
1583–1598.

[11] F. Hofbauer. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II.
Israel J. Math. 38(1–2) (1981), 107–115.

[12] S. Islam. Absolutely continuous invariant measures of linear interval maps. Int. J. Pure Appl. Math. 27(4)
(2006), 449–464.

[13] C. Kopf. Invariant measures for piecewise linear transformations of the interval. Appl. Math. Comput.
39(2) (1990), 123–144.

[14] A. Lasota and M. C. Mackey. Chaos, fractals, and noise. Stochastic Aspects of Dynamics, 2nd edn
(Applied Mathematical Sciences, 97). Springer, New York, 1994.

[15] A. Lasota and J. A. Yorke. On the existence of invariant measures for piecewise monotonic
transformations. Trans. Amer. Math. Soc. 186 (1973), 481–488.

[16] T. Y. Li and J. A. Yorke. Ergodic transformations from an interval into itself. Trans. Amer. Math. Soc. 235
(1978), 183–192.

[17] J. Milnor and W. Thurston. On iterated maps of the interval. Dynamical Systems (College Park, MD,
1986–87) (Lecture Notes in Mathematics, 1342). Springer, Berlin, 1988, pp. 465–563.

[18] M. Henryk. Nonnegative Matrices. Wiley, New York, 1988.
[19] W. Parry. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416.
[20] W. Parry. Representations for real numbers. Acta Math. Acad. Sci. Hungar. 15 (1964), 95–105.
[21] M. Pedicini. Greedy expansions and sets with deleted digits. Theoret. Comput. Sci. 332(1–3) (2005),

313–336.
[22] A. Rényi. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar.

8 (1957), 477–493.

https://doi.org/10.1017/S0143385708000801 Published online by Cambridge University Press

http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4715v1.pdf
https://doi.org/10.1017/S0143385708000801

