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Abstract

A formalism for investigation of the propagation characteristics of various order short duration (pico second) Gaussian/
dark hollow Gaussian laser pulse (DHGP) in a tunnel ionized plasma has been developed, which takes into account the
electron-ion recombination. Utilizing the paraxial like approach, a nonlinear Schrödinger wave equation characterizing
the beam spot size in space and time has been derived and solved numerically to investigate the transverse focusing (in
space) and longitudinal compression (in time) of the laser pulse; the associated energy localization as the pulse
advances in the plasma has also been analyzed. It is seen that in the absence of recombination the DHGP and Gaussian
pulse undergo oscillatory and steady defocusing respectively. With the inclusion of recombination, the DHGP and
Gaussian pulse both undergo periodic self-focusing for specific parameters. The DHGPs promise to be suitable for
enhancement of energy transport inside the plasma.
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1. INTRODUCTION

The plasma generation through tunnel ionization of gases
has been recently utilized for wide ranging applications
viz. X-ray recombination lasers (Burnett & Enright, 1990;
Amendt et al., 1991), laser based charged particle accelera-
tors (Gupta et al., 2005), wake field accelerators (Deng
et al., 2003), and plasma accelerators (Tajima & Dawson,
1979; Joshi et al., 1984). The mechanism of tunnel ionization
takes place when the laser field intensity is comparable to but
less than the characteristic atomic field (corresponding to ion-
ization) of the gaseous atom; this field may cause the electron
to tunnel out of the atom. This process is an effective means
for production of highly ionized plasma at low temperatures.
As a Gaussian laser pulse passes through a gas, the plasma
density increases through ionization, resulting in a minimum
in the refractive index on the axis of the pulse which causes
defocusing of the laser pulse. During pulse propagation,
the electrons experience unequal ponderomotive forces in
the trailing and rising parts of the laser pulse; hence the
plasma gains net energy. Gildenberg et al. (1993) have

studied the nonlinear phenomena of harmonic generation
and frequency up-conversion associated with the interaction
of uniform electromagnetic wave with tunnel ionized gas
plasmas. On the basis of experiments and numerical simu-
lation, Leemans et al. (1992) have explained the character-
istics of gaseous ionization by tunneling. A series of
experiments pertaining to the production, and expansion of
tunnel-ionized plasmas and the subsequent formation of a
plasma channel have been carried out by Durfee and Milch-
burg (1993). Liu and Tripathi (1994) have examined the self-
defocusing of ionizing short laser pulse and laser guidance in
the inhomogeneous tunnel ionized plasma channel. The
theory of plasma expansion under the influence of the pon-
deromotive force due to inhomogeneous laser intensity pro-
file has been developed by Annou et al. (1996). Deng
et al. (2003) have studied the effect of tunnel ionization on
the wakefield generation and concluded that the influence
of tunnel ionization cannot be ignored for short laser
pulses. Gupta et al. (2005) have presented the results of one-
dimensional simulation code for the electron acceleration
by an intense laser pulse in an inhomogeneous tunnel
ionizing gas; the two-dimensional effects in tunnel ionized
plasma have been discussed by Parashar et al. (1997). In
an interesting note, Liu and Tripathi (2000) have pursued
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the cumulative effect of tunnel ionization of gases on laser
frequency upshift, defocusing and ring formation.
In all the investigations mentioned above, only the gene-

ration of electrons has been considered and the annihilation
mechanism is ignored. However, it is well known that in a rea-
listic situations, in addition to generation of electrons (e.g.,
by tunnel ionization), the annihilation of electrons should
also be considered. The recombination of electrons with ions
in plasma is an important process of electron annihilation; in
some cases, electron attachment should also be taken into ac-
count. This paper is limited to considering the recombination
as the sole mechanism of the electron annihilation; this may
change the existing picture of self-focusing. For fast pulses,
diffusion (related to the elastic collisions between plasma con-
stituents) may be neglected in the kinetics because the typical
time of diffusion is much larger than the duration of the pulse.
Although, the investigations on laser plasma interaction

are primarily limited to Gaussian laser pulses, it is worth-
while to extend the study to other types of beams. In recent
years, the central dark intensity laser beams (dark hollow
beam, DHB) have attracted much attention due to their appli-
cation in modern optics, atomic, and plasma physics (Soding
et al., 1995; Xu et al., 2002; Yin et al., 2003; York et al.,
2008). Theoretical and experimental studies show that the
dipole potentials in the hollow beams can be used to guide
and trap atoms (Soding et al., 1995). Numerous methods
and experimental techniques (Herman & Wiggins, 1991;
Wang & Littman, 1993; Lee et al., 1994; Paterson &
Smith, 1996; Tikhonenko & Akhmediey, 1996; Yin et al.,
1997; Anand, 2009), such as geometrical optical method
mode conversion, optical holography, transverse mode selec-
tion, fiber waveguide, computer-generated-hologram (CGH)
and spatial filtering, have been utilized to generate DHBs. In
most of the experiments for realizations of the hollow beams
the intensity at the center is not absolutely zero; various
theoretical models viz. TEM01-mode doughnut beam,
higher-order Bessel beams, superposition of off-axis Gaus-
sian beams and dark hollow Gaussian beams (DHGBs) etc.
have been introduced (Arlt & Dholakiya, 2000; Zhu et al.,
2002; Ganic et al., 2003; Cai et al., 2003; Cai & Lin,
2004; Mei & Zhao, 2005); in particular the dark hollow
Gaussian beams (DHGBs) can be expressed as superposition
of a series of Laguerre Gaussian modes (Cai et al., 2003).
The spatial evolution and transverse focusing of such
beams in the plasma environment have been studied exten-
sively (Sodha et al., 2009a; 2009b; Misra & Mishra, 2009;
Gupta et al., 2011a; 2011b); these studies conclude that
the hollow beams are less divergent in comparison to Gaus-
sian beams and hence dark hollow Gaussian laser pulses
(DHGPs) can be used to enhance the energy transport in
the plasma. On this basis the dynamics of such pulses (viz.
DHGPs in particular) in the plasma generated through
tunnel ionization of neutral gas should be of significant inter-
est. The present analysis aims at spatiotemporal evolution of
various order DHGPs in tunnel ionized plasmas, taking elec-
tron ion recombination into account.

In this paper, we have developed formalism of the non-
linear interaction of a finite size, pico-second (ps) intense
hollow Gaussian (HG)/Gaussian laser pulse with a tunnel io-
nizing gas; the effect of electron/ion recombination has in
particular been investigated. We show that there is interplay
between transverse and temporal localization of laser pulse
associated with the laser interaction with ionized gas,
which leads to the spatial and temporal evolution of the
laser field and triggers three-dimensional nonlinear effects
(e.g., self-focusing and filamentation). The composite
effect of a non-uniform radial intensity profile of the pulse
with relativistic mass variation in laser-plasma interaction
drives ponderomotive and relativistic effects simultaneously,
resulting the modification in the electron density; this situ-
ation leads to the execution of longitudinal pulse com-
pression (in time) in addition to usual transverse focusing
(in space); this results in the evolution of pulse profile both
in space and time. Our methodology is based on a non-linear
Schrödinger wave equation (NLSE) formal description to
study the spatiotemporal dynamics of the electromagnetic
(em) field envelope. Following the earlier analyses (Sharma
et al., 2009; Sharma & Kourakis, 2009; Hefferon et al.,
2010; Sharma et al., 2010), we introduce a set of trial func-
tions via the intensity profile of the laser pulse and follow
their evolution in space and time in the plasma. In order to
model the transverse focusing (in space) and longitudinal
compression (in time) of the laser pulse and associated
energy localization, nonlinear Schrödinger wave equation
is derived and solved by using the paraxial like approach
(Sodha et al., 2009a; 2009b), analogous to paraxial formal-
ism (Akhmanov et al., 1968; Sodha et al., 1974). A pair of
appropriate trial functions in form of coupled nonlinear
differential equations are defined, accounting for the beam
width (in space) and the pulse duration (in time), whose evol-
ution describes the dynamics of the DHGPs. Both longitudi-
nal and transverse self-compression is examined for a finite
extent DHGPs through this model; a comparison of these re-
sults for different order of DHGPs with those corresponding
to Gaussian pulses has also been presented. It is necessary to
point-out here that the laser pulse takes few periods to
achieve significant ionization of the plasma while in the rela-
tivistic regime this can excite wake fields even at very initial
stage. However, concerning the prime emphasis of study viz.
the contribution from electron/ion recombination on pulse
dynamics and keep the analysis/mathematics manageable,
this phenomenon of wake field generation has not been con-
sidered in this analysis.
Thus in contrast to earlier studies, this investigation takes

account of (1) the propagation dynamics of DHGPs in the
laser produced plasma, (2) inclusion of the electron ion re-
combination in addition to tunnel ionization of the neutral
atoms, (3) analysis of the nonlinear self-focusing/defocus-
ing, and (4) departure of propagation characteristics of
DHGPs from those of Gaussian pulse profile. The results
of the analysis are illustrated graphically and a summary of
the outcome of this work concludes the paper.
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2. PLASMA GENERATION/ANNIHILATION

Consider the propagation of a high intensity laser pulse along
the z′ axis through a neutral gas with atomic density n0; the
circularly polarized electric field vector for the electromag-
netic (em) pulse can be written as

E(r, z′, t) = A(r, z′, t)(x̂+ iŷ)exp[i(kz′ − ωt)], (1)

where A(r,z′,t) is the complex amplitude of the electric field
while ω and k refer to the frequency and wave number associ-
ated with the em laser pulse.
This analysis takes into account the situation where the

plasma is maintained through the tunnel ionization of the
gas by a high intensity em laser pulse (DHGPs or Gaussian
intensity profile) and electron ion recombination. Following
earlier investigations (Gildenburg et al., 1993; Liu & Tri-
pathi, 2000), the evolution of the plasma density (ne) in the
presence of em field can be expressed as

∂ne/∂t = βa(n0 − ne)− αan
2
e , (2)

where βa refers to the rate of tunnel ionization of neutral gas
(Liu & Tripathi, 2000), αa[=α0 (300/Te)

κ cm3/s] is the re-
combination coefficient of plasma electrons and ions (Gure-
vich, 1978), α0 and κ are the constants and Te is the electron
temperature.
The first term on the right-hand side refers to the gener-

ation of electrons due to ionization of neutral species while
the newly added second term corresponds to the depletion
of plasma electrons on account of electron/ ion recombina-
tion. Following βa have been given for DC field by Landau
and Lifshitz (1978) and for AC field by Keldysh (1965)
(later modified rate is ADK rate); Gildenberg et al. (1993)
have used a simplified version. In this analysis the authors
have used a simpler expression, used in many investigations
(Liu & Tripathi, 2000; Verma & Sharma, 2011), can be ex-
pressed as

βa = s( E| |/EA)
1/2exp(− EA/ E| |), (3)

where s= (π/2)1/2 (I0/h− ), EA = (4/3)
�����
2me

√
I3/20 /eh− is the

characteristic atomic field, I0 is the ionization potential of
the neutral species, me is the mass of the electron,
h− = (h/2π), h is the Planck’s constant and eis the electronic
charge.

3. PULSE PROPAGATION: DARK HOLLOW
GAUSSIAN PULSE

The initial (i.e., at z′ = 0) complex amplitude of the DHGP
can be expressed as

A(r, 0, t) = A0(r
2/2r20)

nexp(− r2/2r20)exp(− t2/2τ2p), (4)

where r0 and τp are the beam (in space) and pulse (in time)

widths, respectively, n is the order of the DHGP and a posi-
tive integer, characterizing the shape of the pulse and pos-
ition of its maximum intensity; the maximum of |A| exists
at r= rmax= r0(2n)

1/2.
The em field associated with the pulse in the plasma

is characterized by the dispersion relation, i.e., ω2=
(c2k2+ ωp

2), where ωp represents the plasma frequency, k=
(ω/c)ε0

1/2, ε0 is the dielectric function corresponding to the
maximum electric field on the wavefront of the pulse and c
refers to speed of light in vacuum.

The propagation of the em pulse in the plasma can
be described by the wave equation. Utilizing Jeffreys-
Wentzel–Kramers–Brillouin approximation (under which
∂2A/∂z2 is neglected considering A to be a slowly varying
function of z) the electric field vector (Eq. (1)) satisfies the
nonlinear Schrödinger wave equation (NLSE) as follows
(Sharma et al., 2009)

2ik
∂A
∂z

+ ∂2A
∂τ2

− ∂2A
∂r2

+ 1
r

∂A
∂r

( )
− ω2

c2
(ε− ε0)A = 0. (5)

In writing the above equation, the relation z′ = z and τ=
(ct− z) is used. The second and third terms in the above
equation represents the group velocity dispersion (GVD)
and diffraction terms respectively; the manifestation of
these terms in the plasma nonlinearity (viz. last term),
leads to the phenomena of pulse compression and transverse
focusing respectively. The nonlinearity in the plasma arises
due to non-uniformity in the irradiance distribution in the
spatial/ transient pulse profile, which is basically caused
due to modification in the electron density. The solution of
Eq. (5) can be expressed as

A(r, z, τ) = A0(r, z, t)exp[− ikS(r, z, τ)], (6)

where A0 and S represents DHGP amplitude and eikonal
respectively and are real quantities; the eikonal describes
the curvature of the em pulse wavefront while the amplitude
square i.e. A0

2 characterizes the intensity profile.
Substituting for A from Eq. (6) in Eq. (5) and separating

the real and imaginary parts, one obtains

∂A2
0

∂z
+ ∂S

∂r
∂A2

0

∂r
+ A2

0
∂2S
∂r2

+ 1
r

∂S
∂r

( )
+ ∂S

∂τ
∂A2

0

∂τ
+ A2

0
∂2S
∂τ2

( )
= 0 (7a)

and

∂S
∂r

( )2

+ ∂S
∂τ

( )2

= ω2

k2c2
(ε− ε0)+ 1

k2A2
0

×
∂2A0

∂r2
+ 1

r

∂A0

∂r

( )
+ ∂2A0

∂τ2

( )[ ]
. (7b)

To proceed further a paraxial like approach (Misra & Mishra,
2009) analogous to paraxial approximation is adopted where
the coordinate system is transformed from (r,z,τ) to (η,z,τ)

Self-focusing/defocusing of a laser pulse in tunnel ionized plasmas 23

https://doi.org/10.1017/S0263034613000840 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034613000840


space such that

η = (r/r0f )−
���
2n

√[ ]
(8)

r0 f (z) is the width of the beam and r = r0f
���
2n

√
represents

the position of the maximum irradiance on the DHGP wave-
front as it advances in the plasma. Since the irradiance of the
HGP is maximum at r = r0f

���
2n

√
and τ= 0; the expansion of

the expressions for the relevant parameters around r0f
���
2n

√
and τ= 0 are certainly justified in the paraxial like approxi-
mation; for n= 0 (Gaussian beam), the expansion is made
(like wise) around r= τ= 0 (as usual). Like the paraxial
theory, the present analysis is strictly applicable when
η<<

���
2n

√
. Utilizing the transformation (i.e., Eq. 8), Eqs.

(7a) and (7b) reduce to

∂A2
0

∂z
− (

���
2n

√ + η)
f

∂f
∂z

∂A2
0

∂η

( )
+ 1

r20 f
2

∂S
∂η

∂A2
0

∂η

+ A2
0

r20 f
2

∂2S
∂η2

+ 1

(
���
2n

√ + η)

∂S
∂η

( )
+ ∂S

∂τ
∂A2

0

∂τ

+ A2
0

∂2S
∂τ2

( )
= 0 (9a)

2
∂S
∂z

− (
���
2n

√ + η)
f

∂f
∂z

∂S
∂η

( )
+ 1

r20 f
2

∂S
∂η

( )2

+ ∂S
∂τ

( )2

= ω2

k2c2
(ε− ε0)+ 1

k2A2
0r

2
0 f

2

∂2A0

∂η2
+ 1

(
���
2n

√ + η)

∂A0

∂η

( )[ ]

+ 1
k2A0

∂2A0

∂τ2

( )
(9b)

In the paraxial like approximation, the solution of Eq. (9a)
can be chosen as,

EE∗ = A2
0(r, z, τ) =

E2
0

22nf 2g

���
2n

√
+ η

[ ]4n
× exp −(

���
2n

√
+ η)2

[ ]
exp(− τ2d/g

2) (10a)

and

S(r, z, τ) = (
���
2n

√
+ η)2(r20 f /2)(df /dz)+ (τ2/2g)(dg/dz)+ φ(z) ,

(10b)

where the beam ( f ) and pulse width (g) parameters charac-
terize the modification of the pulse profile in space and
time as the pulse advances through the plasma, τL(=cτp)
refers to the pulse length and τd= τ/τL.
The first two terms in Eq. (10b) refer to the spherical cur-

vature of the DHGP while φ is the phase describing the de-
parture from the spherical nature. It is necessary to mention

that the choice of solutions for A0
2 and S are consistent with

set of Eqs. (9). In the paraxial like approach the effective di-
electric function ε(η,z,τ) around the maximum (i.e., η= 0
and τ= 0) can be expressed as

ε(η, z, τ) = ε0(z)− η2εη(z)− τ2dετ(z), (11)

where ε0 (z) is the abbreviated form of ε (z,η= 0,τ= 0).
On substituting for A0

2, S and ε in Eq. (9) and equating the
coefficients of η2 and τd

2 on both sides of the resulting
equation one obtains

ε0
d2f

dξ2
= 1

ρ20f

4

ρ20f
2
− εη

( )
(12a)

and

ε0
d2g

dξ2
= 1

τ2o

1
τ2og

3
− gετ

( )
, (12b)

where τo= (τLω/c)= τp ω, ρ0= (r0 ω/c) and ξ (= zω/c).
The above coupled equations (i.e., Eqs. 12) describe the

evolution of spatial and temporal envelopes as the pulse pro-
pagates in the plasma where the processes of self focusing
and compression are simultaneously operative. It is necessary
to point out that the equations for f and g are based on the as-
sumption that the pulse profile remains unaltered as it propa-
gates in the plasma; this is consistent with the irradiance
profile (as evinced from Eq. 9a). It may be noted that left
hand side of Eq. (9b) has a term proportional to η with coef-
ficient [∝ f(∂2 f/∂z2)] but none in the right hand side. This
leads to (∂2 f/∂z2)= 0 and an erroneous result that the beam
width parameter ( f ) is independent of plasma nonlinearity
and remains unaltered as it traverses through the plasma.
Since this is an absurd solution for f hence not considered
in the further analysis and treated as redundant.
In case of Gaussian pulse the intensity maximum is exhib-

ited at r= 0; following the earlier analyses based on paraxial
approach, the coupled differential equations describing the
pulse width parameters in space ( fo) and time (go) corre-
sponding to Gaussian wavefront can be expressed as
(Sharma et al., 2009)

ε0
d2fo
dξ2

= 1

ρ20

1

ρ20f
3
o

− foεr

( )
(13a)

and

ε0
d2go
dξ2

= 1
τ2o

1
τ2og

3
o

− goετ

( )
. (13b)

The above equations (Eqs. 13) characterizing fo and go are
consistent with the irradiance profile

A2
0 = (E2

0/f
2
o go)exp(− r2d/f

2
o )exp(− τ2d/g

2
o) (14a)
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with

ε(r, z, τ) = ε0(z) − r2dεr(z) − τ2dετ(z),
rd = (r/r0) and ε0(z) = ε(z, r = 0, τ = 0).

Using the appropriate expression for ε corresponding to
plasma generated through tunnel ionization of the gas and
suitable choice of gas/pulse parameters in addition to initial
boundary conditions (corresponding to plane wavefront of
the pulse at z= 0) viz. f(0)= g(0)= 1 and f ′(0)= g′(0)=
0, the set of Eqs. (12 & 13) can be numerically solved to
evaluate the beam ( f ) and pulse (g) width parameters as a
function of the propagation distance ξ; the knowledge of f
and g leads to the information about spatio-temporal evol-
ution of pulse profile as it propagates in the plasma.

4. EVALUATION OF NONLINEAR PERMITTIVITY
(DIELECTRIC FUNCTION)

Following earlier analyses (Borisov et al., 1992; Brandi
et al., 1993), the effective dielectric function of the plasma
characterized by simultaneously operative relativistic and
ponderomotive effects, can be expressed as

ε(η, z, τ) = 1− (4πe2/γmeω
2)ne(η, z, τ)− (c2/ω2)∇(∇γ/γ)

[ ]
,

(15)

where γ [= (1+ ao
2)1/2] is the relativistic factor, ao= (e/me

cω)E= α (E/EA) and α= (eEA/me cω).
Specifically, the expressions for dielectric function corre-

sponding to DHGPs and Gaussian pulses respectively can
be written as

ε(η, z, τ) = 1− (4πe2/γmeω
2)ne(η, z, τ)− (1/ρ20f

2)∂η(∂ηγ/γ)
[ ]

(15a)

and

ε(η, z, τ) = 1− (4πe2/γmeω
2)ne(η, z, τ)− (r20/ρ

2
0)∂r(∂rγ/γ)

[ ]
(15b)

Case-1: For Dark Hollow Gaussian Pulses

Utilizing the paraxial like approach ne, βa and γ can be
expanded around the intensity maximum (i.e., η= 0 and
τ= 0) and can be expressed as

ne(η, z, τ) = ne0(z)− η2neη(z)− τ2dneτ(z), (16a)

βa(η, z, τ) = β0(z)− η2βη(z)− τ2dβτ(z) (16b)

and

γ(η, z, τ) = γ0(z)− η2γη(z)− τ2dγτ(z). (16c)

Substituting forne and βa in Eq. (2) and equating the coefficients
of η0, η2 and τd

2 on both sides of the resulting equation yields

ne0 = [− β0 + (β20 + 4β0αan0)
1/2]/2αa, (17a)

neη = [βη(n0 − ne0)/(β0 + 2αane0)] (17b)

and

neτ = [βτ(n0 − ne0)/(β0 + 2αane0)]. (17c)

The coefficients (β0, βη and βτ) occurring in the definition of βa
can be obtained by substituting theDHGP field profile in Eq. (3)
and equating the coefficients of η0, η2 and τd

2 by using definition
of βa from Eq. (16b). Using Eq. (10a) the DHGPamplitude pro-
file under paraxial like approximation can be expressed as

E| |
EA

( )
= e0

2nfg1/2
���
2n

√
+ η

[ ]2n
exp −(

���
2n

√
+ η)2/2

[ ]
× exp[− τ2d/2g

2] ≈ d0(z)− η2dη(z)− τ2ddτ(z), (18a)

where

e0 = E0/EA, d0 = dη = e0
fg1/2

nnexp(− n) and

dτ = e0
2fg5/2

nnexp(− n) = dη/2g
2. (18b)

This leads to β0= sd0
1/2 exp[−(1/d0)], βη= (β0/2)[1+ (2/

d0)] and βτ= (β0 /4g
2 )[1+ (2/d0)].

Further using the definition of γ [=(1+ ao
2)1/2], the coef-

ficients (γ0, γη and γτ) can be expressed as

γ0 = (1+ α2d20)
1/2, γη = α2d0dη(1+ α2d20)

−1/2

and γτ = α2d0dτ(1+ α2d20)
−1/2.

Finally, substituting for ne, ε and γ from Eqs. (16 & 11) in
Eq. (15a) and equating the coefficient of η0, η2 and τd

2 from
both sides in resulting equation one easily gets

ε0(z) = 1− (4πe2/γ0meω
2)ne0

[ ]+ (2/ρ20f
2)(γη/γ0), (19a)

εη(z) = (4πe2/γ0meω
2) (ne0γη/γ0)− neη
[ ]

− (6/ρ20f
2)(γη/γ0)

2

(19b)

and

ετ(z) = (4πe2/γ0meω
2) (ne0γτ/γ0)− neτ
[ ]− (2/ρ20f

2)(γηγτ/γ
2
0).

(19c)
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Case-2: For Gaussian Pulses

The expressions derived for the coefficients of ne in Eq. (17)
are equally applicable for the Gaussian pulses provided ne/βa
are expanded around r= 0 and τ= 0 under paraxial approxi-
mation and the subsequent coefficients of ne/βa correspond-
ing to Gaussian profile are used in place of DHGP profile
coefficients.
For Gaussian pulses, the field amplitude profile (Eq. 14)

can be expressed as

E| |
EA

( )
= e0

fg1/2
exp[−r2d/2g

2]exp[−τ2d/2g
2]

≈ c0(z)− r2dcr(z)− τ2dcτ(z),

(20a)

where

c0 = (e0/fg
1/2), cr = (c0/2f

2) and cτ = (c0/2g
2). (20b)

Consequently, following the approach similar to that in
case of DHGP, the components of the ionization coefficient
(β0, βr and βτ) and relativistic factor (γ0, γr and γτ) for the
Gaussian pulse can be expressed as

β0= sc0
1/2 exp[−(1/c0)], βr= (β0/4f

2)[1+ (2/c0)], βτ=
(β0/4g

2)[1+ (2/c0)], γ0= (1+ α2c0
2)1/2, γr= α2c0cr(1+

α2c0
2)−1/2 and γτ= α2c0cτ(1+ α2c0

2)−1/2.

Further utilizing the definition of ne/ε/γ in paraxial regime
(i.e., expansion around r,τ= 0), the components of the di-
electric function (i.e., Eq. 15b) for Gaussian pulse can be ex-
pressed as

ε0(z) = 1− (4πe2/γ0meω
2)ne0

[ ]+ (2/ρ20)(γr/γ0), (21a)

εr(z) = (4πe2/γ0meω
2) (ne0γr/γ0)− ner
[ ]− (6/ρ20)(γr/γ0)

2 (21b)

and

ετ(z) = (4πe2/γ0meω
2) (ne0γτ/γ0)− neτ
[ ]− (2/ρ20)(γrγτ/γ

2
0).

(21c)

5. NUMERICAL RESULTS AND DISCUSSION

This analysis brings out the spatiotemporal dynamics of a
finite duration pico-second ( ps) intense hollow Gaussian/
Gaussian laser pulse as it advances through a tunnel ionized
gas; in this process the phenomena of transverse self focusing
and pulse compression are explored. In contrast to earlier
investigations this analysis takes account of electron ion re-
combination in addition to the neutral atom ionization in
plasmas. This process (i.e., electron-ion recombination)
was ignored in earlier analyses; hence the plasma density
kept on increasing due to ionization which leads to decrease
in the dielectric function.

In general in the absence of recombination, the nonuni-
form transverse intensity distribution of the laser pulse
causes nonuniform tunnel ionization of the gas resulting in
nonuniformity in the refractive index over its wavefront
with a minimum at the axis (irradiance maximum); this in
addition to diffraction leads to the divergence of the laser
and the laser intensity falls off as it propagates in the
plasma, i.e., the pulse suffers steady divergence. Intuitively,
the inclusion of recombination term may lead to a balance be-
tween gas ionization and recombination processes and thus to
the steady state situation, characterized by a saturating non-
linear dielectric function which takes finite value, usually
larger than the case when it was ignored. In case of nonuni-
form laser intensity distribution in the transverse plane the re-
combination effect should be larger on the axis of intensity
maximum and decrease radially; this modifies the refractive
index in the same way. Hence the manifestation of nonuni-
form radial intensity profile of the pulse with gas ionization/
recombination processes in addition to relativistic mass cor-
rection and ponderomotive effects, results in modification in
the background electron density in the transverse plane; this
modifies the intensity profile of the wavefront of the pulse in
a way that enhances the nonlinear dielectric function and
hence the nonlinear propagation characteristics. The non-
linear pulse dynamics and its space-time evolution are de-
scribed by a set of coupled equations (i.e., Eqs. 12 & 13)
where the nonlinearity is triggered by modification in the
electron density via the dielectric function (Eqs. 19 & 21).
It is also interesting to notice that due to weaker diffraction,
the central shadow off axis (higher order hollow Gaussian)
pulses shows smaller divergence as compared to the same
for Gaussian pulses; thus the DHGPs can be utilized to
achieve enhanced energy transport in the plasma. To describe
the dynamics of DHG (or Gaussian) pulse, Paraxial like
(or paraxial) approach has been adopted which is applica-
ble within the finite region characterized by η ≪

���
2n

√
(or

rd≪ 1) and τd≪ 1, around the axis of maximum pulse in-
tensity and valid throughout the pulse dynamics as it propa-
gate in the plasma. In this limit all the relevant parameters
have been expanded upto quadratic terms (first order in η2

(rd
2) and τd

2) only in the vicinity of η= rd= 0= τd and
higher order terms are ignored. It is evident from Eq. (9a)
that the nature of the pulse profile (i.e., hollow Gaussian/
Gaussian) remains unchanged as it traverse in the plasma
and this is a natural consequence of paraxial approximation;
the numerical results obtained are based on this paraxial
formalism.
For a numerical appreciation of the analysis the following

standard set of parameters corresponding to Neon gas (Liu &
Tripathi, 2000; Biondi & Brown, 1949) have been used for
the computations; the effect of various parameters has been
studied by varying one parameter and keeping others the
same.
n0= 1020cm−3, e0= (E0/EA)= 1/2 and 1/3 correspond-

ing to peak pulse intensity Ip≈ 1.52 × 1016 (a0≈ 1.05)
and≈ 6.75 × 1015W/cm2 (a0≈ 0.7) respectively, τp= 10ps,
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α0= 2.2 × 10−6 cm3 sec−1 (corresponding to Neon gas [48]),
I0= 21.5 eV, κ= 1.0, Te0= 1 eV, λ= 10 μm, ω= 27πc/λ,
r0= 10λ, c= 3 × 108m/sec and e= 1.6 × 10−19.
Using the above set of parameters and initial boundary

conditions (corresponding to plane wavefront of the pulse
at z= 0) viz. f(0)= g(0)= 1 and f ′(0)= g′(0)= 0, the set
of Eqs. (12 & 13) can numerically be solved to evaluate
the pulse compression parameters, describing the pulse
width in space ( f ) and time (g) as a function of propagation
distance (ξ); the knowledge of f and g leads to the infor-
mation about space-time evolution of pulse profile as it ad-
vances through the plasma. Further for the illustration
purpose normalized irradiance of the pulse is defined as
ςa= A0

2(z)/A0
2(0) while the normalized axial irradiance corre-

sponding to η= 0,τ= 0 is given by ςao[=(1/f 2g)].

The set of Figure 1 illustrates the dependence of the nor-
malized axial irradiance ςao[=(1/f 2g)] on the dimensionless
distance of propagation (ξ) for various plasma/pulse par-
ameters as DHGPs advances through the plasma. One of
the common features is that the pulse exhibits three regime
propagation characteristics (Sodha et al., 2009a) viz. self fo-
cusing, oscillatory divergence and steady divergence, in the
vicinity of the irradiance maximum. The effect of inclusion
of electron ion recombination (characterized by the par-
ameter α0) on the propagation of zero (Gaussian, broken
lines) and first order DHGPs (i.e., n= 1, solid lines) has
been displayed in Figures 1 and 2 respectively. It may how-
ever be emphasized that electrons and ions of a gas at a given
electron temperature will have a unique recombination coef-
ficient; the parameter α0 has been varied only to evaluate the

Fig. 1. (Color online) Dependence of normalized axial irradiance ςao[=(1/
f 2g)] of the Gaussian pulse on the normalized propagation distance of (ξ) for
e0= (1/3) and standard set of parameters as stated in the text; black, brown,
green, red, and blue color lines correspond to recombination coefficients
α0= 0, 10−7, 10−6, 10−5 and 10−4 cm3s−1, respectively.

Fig. 2. (Color online) Dependence of normalized axial irradiance ςao of the
first order DHGP on the normalized propagation distance (ξ) for e0= (1/2)
and standard set of parameters as stated in the text; black, green, red, and blue
color lines correspond to recombination coefficients α0= 0, 10−7, 10−6 and
10−5cm3s−1, respectively.

Fig. 3. (Color online) Dependence of normalized axial irradiance ςao of the
DHGP and Gaussian pulse on normalized propagation distance of (ξ) for
e0= (1/2) and standard set of parameters as stated in the text; blue, red,
and green color lines correspond to DHGP of the order n= 1, 2 and 3,
respectively, while black line refers to Gaussian pulse (n= 0).

Fig. 4. (Color online) Dependence of normalized axial irradiance ςao of the
first order DHGP (solid lines) and Gaussian pulse (broken lines) on normal-
ized propagation distance of (ξ) for e0= (1/2) and standard set of parameters
as stated in the text; blue, red, green, and black color lines correspond to
pulse length τp= 0.05, 0.1, 1.0 and 10 ps, respectively.
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Fig. 5. (Color online) (A) Demonstration of spatiotemporal evolution of normalized irradiance ςa[=A0
2 (z)/A0

2 (0)] of the Gaussian pulse
(n= 0) and various order DHGPs (n= 1 and 2), as a function of normalized propagation distance (ξ) for the standard set of parameters as
stated in the text with e0= (1/3) and τp= 10ps; here R(=r/r0) and T(=τ/τL) while side bar represents the irradiance magnitude of the
color index. (B) Demonstration of spatiotemporal evolution of normalized irradiance ςa of the first order DHGP (n= 1), as a function
of normalized propagation distance (ξ) for the standard set of parameters as stated in the text with e0= (1/3) and τp= 1 ps; here
R(=r/r0) and T(=τ/τL)$ while side bar represents the irradiance magnitude of the color index.
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importance of the recombination coefficient in focusing as a
part of the parametric analysis. The figures indicate that in the
absence of recombination (corresponding to black color
lines) the Gaussian pulse exhibits steady divergence while
DHGPs undergo oscillatory defocusing; nevertheless it can
be seen from the figures that the inclusion of electron-ion re-
combination drives the system to the focusing regime and the
effect is more pronounced with increasing recombination
coefficient. The figure suggests that both the Gaussian and
DHG pulses undergo periodic self focusing with increasing
magnitude of the recombination coefficient; this leads to
the enhancement in axial irradiance and hence enhanced

energy localization as these pulses propagate through the
tunnel ionized gas plasmas. The evolution of axial irradiance
of the pulse for the propagation of different order DHGPs has
been illustrated in Figure 3; it is noticed that the pulse shifts
from oscillatory focusing to oscillatory divergence regime
with increasing order of DHGP while the Gaussian pulse
in the oscillatory divergence regime. It is necessary to
point out that the space-time evolution of the em pulse
field is sensitive to the choice of magnitude and profile of
the intensity pattern and that they evolve differently depend-
ing on pulse/plasma parameters. The effect of pulse length
(τp) on the axial irradiance of the first order DHGP as it

Fig. 5. (continued)
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advances through the plasma has been illustrated in Figure 4;
it is seen that the oscillations in ςao become symmetrical
while the focusing slightly decreases with increasing pulse
width. This nature can be attributed to the fact that longer
pulses drive the plasma to the steady state where the pulse dy-
namics is primarily governed by space profile only and tem-
poral evolution becomes insignificant. Further it is also
noticed that the focusing length increases with increasing
the pulse duration.
The set of Figure 5 display the spatiotemporal evolution of

the normalized irradiance (ςa) of different order DHGPs at
different distances of propagation in a tunnel ionized gas
plasma; the dynamics of the pulse can be understood in
terms of the mutual collective effect of transverse and longi-
tudinal evolution of laser field leading to compression in
space (transverse self-focusing, f ) and time (longitudinal
pulse compression, g). Figure 5a clearly indicates the broad-
ening of the pulse width in space i.e. the divergence of Gaus-
sian profile pulse (i.e., n= 0) as it advances through the
plasma while DHGPs displays the pulse compression in
time and space resulting in larger axial intensity. Further it
is also seen that the two lobes (characterizing the dipole
potential associated with DHGPs) oscillate about the central
axis as the pulse propagate through the plasma and lead to
convergence of intensity maxima (merging) of DHG pulse
about central axis r= 0; this nature has been displayed in
Figure 5b for the first order DHGP (i.e., n= 1). It is necess-
ary to point out that the em pulse compression/rarefaction ef-
fects displayed in the simulation results in its space/time
evolution, are the consequence of modification in pulse
width in space (r= r0 f ) and time (τ= τ0g) as it advances
through the plasma; however this does not distort the
nature of the pulse profile and the pulse retains its character-
istic profile (i.e., hollow Gaussian or Gaussian) throughout
the propagation in the vicinity of paraxial approximation.
Further, it should be emphasized that the numerical results
displayed are consistent with a particular set of parameters;
however various features and effects can be explored by suit-
able choice of physical pulse/plasma parameters.

6. CONCLUSIONS

A theoretical study to analyze the spatiotemporal dynamics
of various order finite duration hollow Gaussian and Gaus-
sian laser pulses in a tunnel ionized gas plasma has been
made; the plasma generation and maintenance is considered
to be a consequence of the mutually competing processes of
electron-ion recombination and tunnel ionization. The re-
combination manifests itself in change in the nonuniform in-
tensity profile of the laser pulse, resulting in the decrease in
plasma electron density which drives the pulse in the focus-
ing regime; this is in contrast to earlier studies where the
pulse diverges. The paraxial like approach is utilized to
solve the nonlinear Schrödinger wave equation (NLSE), gov-
erning the spatial and temporal evolution of a DHGP as it

advances in the plasma. The important outcome of the
study is as follows:

(i) By introducing the recombination phenomenon, the
characteristic propagation of the pulse (both Gaussian
and hollow Gaussian (HG) shifts from steady diver-
gence to the focusing regime, as it advances through
the tunnel ionized gas plasma; this feature can be uti-
lized to accelerate the charged particles.

(ii) Short duration pulses lead to smaller focusing length
as these propagate through the plasma.

(iii) DHGP displays smaller divergence than the Gaussian
pulse as it traverses through the plasma; this may be
applicable for large energy transport in the plasma.

(iv) The dipole potential associated with DHGPs oscil-
lates about the central axis (r= 0) and displays the
convergence of pulse intensity around the central
axis.
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