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Abstract
An (improper) graph colouring has defect d if each monochromatic subgraph has maximum degree at
most d, and has clustering c if each monochromatic component has at most c vertices. This paper studies
defective and clustered list-colourings for graphs with given maximum average degree. We prove that
every graph with maximum average degree less than (2d + 2)/(d + 2)k is k-choosable with defect d. This
improves upon a similar result by Havet and Sereni (J. Graph Theory, 2006). For clustered choosability
of graphs with maximum average degree m, no (1− ε)m bound on the number of colours was previously
known. The above result with d = 1 solves this problem. It implies that every graph withmaximum average
degreem is � 3

4m+ 1�-choosable with clustering 2. This extends a result of Kopreski and Yu (DiscreteMath.,
2017) to the setting of choosability. We then prove two results about clustered choosability that explore
the trade-off between the number of colours and the clustering. In particular, we prove that every graph
with maximum average degree m is � 7

10m+ 1�-choosable with clustering 9, and is � 2
3m+ 1�-choosable

with clustering O(m). As an example, the later result implies that every biplanar graph is 8-choosable with
bounded clustering. This is the best known result for the clustered version of the earth–moon problem.
The results extend to the setting where we only consider the maximum average degree of subgraphs with
at least some number of vertices. Several applications are presented.

2010 MSC Codes: Primary 05C15

1. Introduction
This paper studies improper colourings of sparse graphs, where sparsity is measured by the fol-
lowing standard definition. Themaximum average degree of a graphG, denoted by mad (G), is the
maximum, taken over all subgraphs H of G, of the average degree of H. We consider improper
colourings with bounded monochromatic degree or with bounded monochromatic components,
for graph classes with boundedmaximum average degree.We now formalize these ideas. A colour-
ing of a graph G is a function that assigns a colour to each vertex. In a coloured graph G, the
monochromatic subgraph ofG is the spanning subgraph consisting of those edges whose endpoints
have the same colour. A colouring has defect k if the monochromatic subgraph has maximum
degree at most k; that is, each vertex v is adjacent to at most k vertices of the same colour as v. A
connected component of the monochromatic subgraph is called a monochromatic component. A
colouring has clustering k if each monochromatic component has at most k vertices. Of course, a
colouring is proper if and only if it has defect 0 or clustering 1.

Our focus is on minimizing the number of colours, with small defect or small clustering as a
secondary goal. This viewpoint leads to the following definitions. The defective chromatic number
© Cambridge University Press 2019
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of a graph class G is the minimum integer k such that for some integer d, every graph in G is
k-colourable with defect d. The clustered chromatic number of a graph class G is the minimum
integer k such that for some integer c, every graph in G is k-colourable with clustering c.

The above definitions extend in the obvious way to list-colourings and choosability. A list-
assignment for a graph G is a function L that assigns a set L(v) of colours to each vertex v ∈V(G).
A list-assignment L is a k-list-assignment if |L(v)|� k for each vertex v ∈V(G). An L-colouring
is a colouring of G such that each vertex v ∈V(G) is assigned a colour in L(v). Define G to be
k-choosable with defect d if G has an L-colouring with defect d for every k-list-assignment L of
G. Similarly, G is k-choosable with clustering c if G has an L-colouring with clustering c for every
k-list-assignment L of G.

Defective and clustered (list-) colouring has been widely studied on a variety of graph classes,
including bounded maximum degree [2, 29], planar [14, 16, 23], bounded genus [3, 13, 14, 15,
25, 43], excluding a minor [21, 24, 30, 36, 39, 40], excluding a topological minor [21, 40], and
excluding an immersion [30]. See [42] for a survey on defective and clustered colouring. All of
these classes have bounded maximum average degree. Thus our results are more widely applica-
ble than nearly all of the previous results in the field. That said, it should be noted that some of
the existing results for more specific graph classes give better bounds on the number of colours
or on the defect or clustering. Generally speaking, our results give the best known bounds for
graph classes that have bounded maximum average degree, unbounded maximum degree, and
have no strongly sublinear separator theorem. Examples include graphs with given thickness,
stack-number or queue-number.

1.1 Defective choosability
Defective choosability with respect to maximum average degree was previously studied by Havet
and Sereni [27], who proved the following theorem.

Theorem 1.1. ([27]). For d� 0 and k� 2, every graph G with

mad (G)< k+ kd
k+ d

is k-choosable with defect d.

Our first result improves on Theorem 1.1 as follows.

Theorem 1.2. (Section 3). For d� 0 and k� 1, every graph G with

mad (G)<
2d + 2
d + 2

k

is k-choosable with defect d.

Note that the two theorems are equivalent for k= 2. But for k� 3, the assumption in
Theorem 1.2 is weaker than the corresponding assumption in Theorem 1.1, thus Theorem 1.2
is stronger than Theorem 1.1.

Theorem 1.1 can be restated as follows: every graph G with mad (G)=m is k-choosable with
defect ⌊

k(m− k)
2k−m

⌋
+ 1,
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whereas Theorem 1.2 says that G is k-choosable with defect⌊
m

2k−m

⌋
.

Both results require that 2k>m, and the minimum value of k for which either theorem is
applicable is k= �m/2� + 1. In this case, Theorem 1.2 gives a defect bound of⌊

m
2k−m

⌋
,

which is an order of magnitude less than the defect bound of

(1+ o(1))
(

k2

2k−m

)

in Theorem 1.1. Note that Havet and Sereni [27] gave a construction to show that no lower value
of k is possible. That is, for m ∈R

+, the defective chromatic number of the class of graphs with
maximum average degreem equals �m/2� + 1; see also [42].

See [4, 5, 6, 7, 8, 9, 10, 11, 33, 34] for results about defective 2-colourings of graphs with
given maximum average degree, where each of the two colour classes has a prescribed degree
bound. Also note that Dorbec, Kaiser, Montassier and Raspaud [17] proved a result analogous
to Theorems 1.1 and 1.2 (with weaker bounds) for defective colouring of graphs with given
maximum average degree, where in addition, a given number of colour classes are stable sets.

1.2 Clustered choosability
The following theorem, due to Kopreski and Yu [35], is the only known non-trivial result for
clustered colourings of graphs with given maximum average degree.1

Theorem 1.3. ([35]). Every graph G is � 3
4 mad (G)+ 1�-colourable with defect 1, and thus with

clustering 2.

There are no existing non-trivial results for clustered choosability of graphs with given maxi-
mum average degree. The closest such result, due to Dvořák andNorin [21], says that for constants
α, γ , ε > 0, if a graph G has at most (k+ 1− γ )|V(G)| edges, and every n-vertex subgraph of G
has a balanced separator of order at most αn1−ε , then G is k-choosable with clustering some func-
tion of α, γ and ε. Note that the number of colours here is roughly half the average degree of G.
This result determines the clustered chromatic number of several graph classes, but for various
other classes (that contain expanders) this result is not applicable because of the requirement that
every subgraph has a balanced separator.

Theorem 1.2 with d = 1 implies the above result of Kopreski and Yu [35] and extends it to the
setting of choosability.

Theorem 1.4. Every graph G is � 3
4 mad (G)+ 1�-choosable with defect 1, and thus with clustering 2.

As an example of Theorem 1.4, it follows from Euler’s formula that toroidal graphs have max-
imum average degree at most 6, implying every toroidal graph is 5-choosable with defect 1 and
clustering 2, which was first proved by Dujmović and Outioua [18]. Previously, Cowen, Goddard
and Jesurum [15] proved that every toroidal graph is 5-colourable with defect 1.

1Kopreski and Yu [35] actually proved the following stronger result: for a� 1 and b� 0, every graph G with mad (G)<
4
3 a+ b is (a+ b)-colourable, such that a colour classes have defect 1, and b colour classes are stable sets.
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The following two theorems are our main results for clustered choosability. The first still has
an absolute bound on the clustering, while the second has fewer colours but at the expense of
allowing the clustering to depend on the maximum average degree.

Theorem 1.5. (Section 6). Every graph G is � 7
10 mad (G)+ 1�-choosable with clustering 9.

Theorem 1.6. (Section 7). Every graph G is � 2
3 mad (G)+ 1�-choosable with clustering

57
⌊
2
3
mad (G)

⌋
+ 6.

Theorem 1.6 says that the clustered chromatic number of the class of graphs with maximum
average degree m is at most �(2m)/3� + 1. This is the best known upper bound. The best known
lower bound is �m/2� + 1; see [42]. Closing this gap is an intriguing open problem.

1.3 Generalization
The above results generalize via the following definition. For a graph G and integer n0 � 1, let
mad (G, n0) be the maximum average degree of a subgraph of G with at least n0 vertices, unless
|V(G)| < n0, in which case mad (G, n0) := 0. The next two results generalize Theorems 1.2 and 1.6
respectively, with mad (G) replaced by mad (G, n0), where the number of colours stays the same,
and the defect or clustering bound also depends on n0.

Theorem 1.7. (Section 3). For integers d� 0, n0 � 1 and k� 1, every graph G with

mad (G, n0)<
2d + 2
d + 2

k

is k-choosable with defect

d′ :=max
{⌈

n0 − 1
k

⌉
− 1, d

}
.

Theorem 1.8. (Section 7). For integers d� 0, n0 � 1 and k� 1, every graph G with

mad (G, n0)<
3
2
k

is k-choosable with clustering

c :=max
{⌈

n0 − 1
k

⌉
, 57k− 51

}
.

Note that Theorem 1.7 with n0 = 1 is equivalent to Theorem 1.2, and Theorem 1.8 with n0 = 1
and k= � 2

3 mad (G)� + 1 is equivalent to Theorem 1.6.
Graphs on surfaces provide motivation for this extension.2 Graphs with Euler genus g can

have average degree as high as �(√g), the complete graph being one example. But such graphs
necessarily have bounded size. In particular, Euler’s formula implies that every n-vertex m-edge
graph with Euler genus g satisfies m< 3(n+ g). Thus, for ε > 0, if n� 6g/ε then G has average
degree 2m/n< 6+ ε. In particular, mad (G, 6g)< 7.

2The Euler genus of the orientable surface with h handles is 2h. The Euler genus of the non-orientable surface with k
cross-caps is k. The Euler genus of a graph G is the minimum Euler genus of a surface in which G embeds.
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Using this observation, Theorems 1.7 and 1.8 respectively imply that graphs with bounded
Euler genus are 4-choosable with bounded defect and are 5-choosable with bounded clustering.
Both these results are actually weaker than known results. In particular, several authors [3, 13,
15, 43] have proved that graphs with bounded Euler genus are 3-colourable or 3-choosable with
bounded defect. And Dvořák and Norin [21] proved that graphs with bounded Euler genus are 4-
choosable with bounded clustering. The proof of Dvořák and Norin [21] uses the fact that graphs
of bounded Euler genus have strongly sublinear separators. The advantage of our approach is
that it works for graph classes that do not have sublinear separator theorems. Graphs with given
g-thickness are such a class [19]. We explore this direction in Theorem 8.

1.4 Clustered choosability andmaximum degree
Alon, Ding, Oporowski and Vertigan [2] and Haxell, Szabó and Tardos [29] studied clustered
colourings of graphs with givenmaximumdegree. Haxell, Szabó and Tardos [29] proved that every
graph with maximum degree � is � 1

3 (� + 1)	-colourable with bounded clustering. Moreover, for
some �0 and ε > 0, every graph with maximum degree ���0 is �( 13 − ε)��-colourable with
bounded clustering. For both these results, the clustering bound is independent of �.

Clustered choosability of graphs with givenmaximum degree has not been studied in the litera-
ture (as far as we are aware). As a by-product of our work for graphs with given maximum average
degree, we prove the following results for clustered choosability of graphs with given maximum
degree.

Theorem 1.9. (Section 5). Every graph G with maximum degree �� 3 is � 1
3 (� + 2)	-choosable

with clustering � 19
2 �	 − 17.

Theorem 1.10. (Section 6). Every graph G with maximum degree � is � 2
5 (� + 1)	-choosable with

clustering 6.

� = 5 is the first case in which the above results for clustered choosability are weaker than
the known results for clustered colouring. In particular, Haxell, Szabó and Tardos [29] proved
that every graph with maximum degree 5 is 2-colourable with bounded clustering, whereas
Theorems 1.9 and 1.10 only prove 3-choosability. It is open whether every graph with maximum
degree 5 is 2-choosable with bounded clustering.

Finally, we remark that all our choosability results hold in the stronger setting of correspon-
dence colouring, introduced by Dvořák and Postle [22].

2. Definitions
Let G be a graph with vertex set V(G) and edge set E(G). Let �(G) be the maximum degree of the
vertices in G. For a subset A⊆V(G) and vertex v ∈V(G), let NA(v) :=NG(v)∩A and degA (v) :=
|NA(v)|. We sometimes refer to |V(G)| as |G|.

In a coloured graph, the defect of a vertex is its degree in the monochromatic subgraph. Note
that a colouring with defect k also has defect k+ 1, but a vertex of defect k does not have defect
k+ 1.

3. Defective choosability andmaximum average degree
This section proves our result for defective choosability (Theorem 1.2). The following lemma is
essentially a special case of an early result of Lovász [37].
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Lemma 3.1. If L is a list-assignment for a graph G, such that

degG (v)+ 1� |L(v)|(d+ 1)

for each vertex v of G, then G is L-colourable with defect d.

Proof. Colour each vertex v in G by a colour in L(v) so that the number of monochromatic
edges is minimized. Suppose that some vertex v coloured α is adjacent to at least d + 1 vertices
also coloured α. Since deg (v)< |L(v)|(d+ 1), some colour β ∈ L(v) \ {α} is assigned to at most d
neighbours of v. Recolouring v by β reduces the number of monochromatic edges. This contra-
diction shows that no vertex v is adjacent to at least d + 1 vertices of the same colour as v. Thus
the colouring has defect d. �

Corollary 3.2. Every graph G with �(G)+ 1� k(d + 1) is k-choosable with defect d.

The next lemma is a key idea of this paper. It provides a sufficient condition for a partial list-
colouring to be extended to a list-colouring of the whole graph.

Lemma 3.3. Let L be a k-list-assignment of a graph G. Let A, B be a partition of V(G), where G[A]
is L-colourable with defect d′. If d� d′ and for every vertex v ∈ B,

(d + 1) degA (v)+ degB (v)+ 1� (d + 1)k,

then G is L-colourable with defect d′.

Proof. Let φ be an L-colouring of G[A] with defect d′. For each vertex v ∈ B, let

L′(v) := L(v) \ {φ(x) : x ∈NA(v}.
Thus

|L′(v)|� k− degA (v)� ( degB (v)+ 1)/(d + 1).

Lemma 3.1 implies that G[B] is L-colourable with defect d. By construction, there is no mono-
chromatic edge between A and B. Thus G is L-colourable with defect d′. �

We now prove our first main result, which is equivalent to Theorem 1.2 when n0 = 1.

Theorem 1.7. For integers d� 0, n0 � 1 and k� 1, every graph G with

mad (G, n0)<
2d + 2
d + 2

k

is k-choosable with defect

d′ :=max
{⌈

n0 − 1
k

⌉
− 1, d

}
.

Proof. We proceed by induction on |V(G)|. Let L be a k-list-assignment for G. For the base case,
suppose that |V(G)|� n0 − 1. For each vertex v of G, choose a colour in L(v) so that each colour
is used at most �|V(G)|/k	 times. We obtain an L-colouring with defect⌈

n0 − 1
k

⌉
− 1.

Now assume that |V(G)|� n0.
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Let v1, . . . , vp be a maximal sequence of distinct vertices in G, such that for all i ∈ {1, . . . , p}
we have

(d + 1) degAi (vi)+ degBi (vi)� (d + 1)k,

where Ai := {v1, . . . , vi} and Bi :=V(G) \Ai.
First suppose that p< |V(G)|. Let A := {v1, . . . , vp} and B :=V(G) \A. By induction, G[A]

is L-colourable with defect d′. By the maximality of v1, . . . , vp, for every vertex v ∈ B we have
(d + 1) degA (v)+ degB (v)+ 1� (d + 1)k. By Lemma 3.3, G is L-colourable with defect d′, and
we are done.

Now assume that p= |V(G)|. Thus

(d + 2)|E(G)| =
|V(G)|∑
i=1

d degAi (vi)+ degG (vi)

=
|V(G)|∑
i=1

(d + 1) degAi (vi)+ degBi (vi)

� (d + 1)k|V(G)|.
Since |V(G)|� n0, we have

mad (G, n0)�
2|E(G)|
|V(G)| � 2d + 2

d + 2
k,

which is a contradiction. �

4. Using independent transversals
This section introduces a useful tool called ‘independent transversals’, which have been previously
used for clustered colouring by Alon, Ding, Oporowski and Vertigan [2] and Haxell, Szabó and
Tardos [29]. Haxell [28] proved the following result.

Lemma 4.1. ([28]). Let G be a graph withmaximum degree at most�. Let V1, . . . ,Vn be a partition
of V(G), with |Vi|� 2� for each i ∈ [n]. Then G has a stable set {v1, . . . , vn} with vi ∈Vi for each
i ∈ [n].

Lemma 4.2. Let �� 3 and let G be a graph of maximum degree at most �. If H is a subgraph of
G with �(H)� 2, then G has a stable set S⊆V(H) of vertices of degree 2 in H with the following
properties.

(1) Every subpath of H with at least 3� − 6 vertices that contains a vertex with degree 1 in H
contains at least one vertex in S.

(2) Every subpath of H with at least 5� − 9 vertices that contains a vertex with degree 1 in H
contains at least two vertices in S.

(3) Every connected subgraph C of H with at least � 19
2 �	 − 16 vertices contains at least three

vertices in S.

Proof. Consider each cycle component C of H with |C|� 8� − 12. Say |C| = (2� − 3)a+ b,
where a� 4 and b ∈ [0, 2� − 4]. Partition C into subpaths A1B1A2B2 . . .AaBa where |Ai| =
2� − 4 and |Bi| ∈ [1, 1+ �b/a	] for i ∈ [a]. Note that |Bi|� 1+ �b/a	� � 1

2�	.
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Now consider each path component P of H with |P|� 2� − 4. Say |P| = (2� − 3)a+ b− 1,
where a� 1 and b ∈ [0, 2� − 4]. Partition P into subpaths B0A1B1 . . .AaBa where |Ai| = 2� − 4
for i ∈ [a], |Bi| = 1 for i ∈ [a− 1], and |Bi|� �b/2	.

LetA be the set of all such paths Ai taken over all the components of H. Let

G′ :=G
[ ⋃
A∈A

V(A)
]

− E(H).

Then A gives a partition of V(G′) into parts, each of which has exactly 2� − 4 vertices, and
�(G′)�� − 2. By Lemma 4.1, G′ has a stable set S that contains exactly one vertex in each path
inA. By construction, every vertex in S has degree 2 in H and S is a stable set in H, so S is a stable
set in G.

Let P be a path in H that contains a vertex of degree 1 in H. Then H is subpath of some com-
ponent path P′ of H. If P contains at least 3� − 6 vertices, then |P′| = (2� − 3)a+ b− 1 where
a� 1 and b ∈ [0, 2� − 4]. Now, using our previous notation,

|B0A1|�� − 2+ 2� − 4= 3� − 6� |P| and |AaBa|�� − 2+ 2� − 4= 3� − 6� |P|,
so P is not a proper subpath of B0A1 or of BaAa. Hence P contains every vertex of Ai for some
i ∈ {1, a}, so P contains a vertex in S.

If P contains at least 5� − 9 vertices, then |P′| = (2� − 3)a+ b− 1 where a� 2 and b ∈
[0, 2� − 4]. Now,

|B0A1B1A2|�� − 2+ 2(2� − 4)+ 1= 5� − 9� |P| and |Aa−1Ba−1AaBa|� 5� − 9� |P|,
so P is not a proper subpath of B0A1B1A2 or of Aa−1Ba−1AaBa. Hence P contains every vertex Ai
and of Ai+1 for some i ∈ {1, a− 1}, so P contains two vertices in S.

Suppose for contradiction there is a connected subgraph C of H on � 19
2 �	 − 16 vertices

with at most two vertices in S. By the definition of S, there are at most two paths Ai ∈A with
V(Ai)⊆V(C). If C is contained in some path component of H, then C is a proper subpath of
AjBjAj+1Bj+1Aj+2Bj+2Aj+3 for some j ∈ {0, . . . , a− 3}, where we take A0 and Aa+1 to be the
empty path for simplicity (so |A0B0| = |B0|�� − 2 and |BaAa+1| = |Ba|�� − 2). Now

|AjBjAj+1Bj+1Aj+2Bj+2Aj+3|� 4(2� − 4)+ 3�
⌈
19
2

�

⌉
− 17.

If C is contained in some cycle component ofH, we may assume without loss of generality that
C is a subpath of the path A1B1A2B2A3B3A4, and does not contain every vertex of A1 and does
not contain every vertex of A4. Thus,

|V(C)|� |A1B1A2B2A3B3A4| − 2� 4(2� − 4)+ 3
⌈
1
2
�

⌉
− 2�

⌈
19
2

�

⌉
− 17,

a contradiction. �

5. Clustered choosability andmaximum degree
This section proves our first result about clustered choosability of graphs with given maximum
degree (Theorem 1.9). The preliminary lemmas will also be used in subsequent sections.

Lemma 5.1. If L is a list-assignment for a graph G, such that degG (v)+ 2� 3|L(v)| for each vertex
v of G, and φ is an L-colouring of G that minimizes the number of monochromatic edges, then φ has
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defect 2. Moreover, for each vertex v with defect 2 under φ, there is a colour βv ∈ L(v) \ {φ(v)}, such
that at most two neighbours of v are coloured βv under φ.

Proof. Suppose that some vertex v coloured α is adjacent to at least three vertices also coloured
α. Since deg (v)< 3|L(v)|, some colour β ∈ L(v) \ {α} is assigned to at most two neighbours of v.
Recolouring v by β reduces the number of monochromatic edges. This contradiction shows that
every vertex has defect at most 2.

Consider a vertex v coloured α with defect 2. Suppose that v has at least three neigh-
bours coloured β for each β ∈ L(v) \ {α}. Thus deg (v)� 2+ 3(|L(v)| − 1), implying deg (v)+ 1�
3|L(v)|, which is a contradiction. Thus some colour β ∈ L(v) \ {α} is assigned to at most two
neighbours of v.

Given a colouring φ of a graph G, let G[φ] denote the monochromatic subgraph of G given φ.
The idea for the following lemma is by Haxell, Szabó and Tardos [29, Lemma 2.6], adapted here
for the setting of list-colourings.

Lemma 5.2. If H is a bipartite graph with bipartition (X, Y) and L is a list-assignment for H such
that |L(v)| = 2 for all v ∈ X and |L(v)| = 1 for all v ∈ Y and every L-colouring φ has defect 2, then H
has an L-colouring φ such that every connected subgraph of H[φ] at most two vertices in X.

Proof. We begin by orienting the edges of H so that for every vertex v ∈V(H) and every colour
c ∈ L(v), v has at most one out-neighbour w with c ∈ L(w) and v has at most one in-neighbour w
with c ∈ L(w). Let L(H) be the union of the lists of all vertices of H. For each colour c ∈ L(H), let
Hc be the subgraph of H induced by the vertices w ∈V(H) with c ∈ L(w). There is an L-colouring
which assigns each vertex of Hc the colour c, so �(Hc)� 2. Also, since every edge of H has an
endpoint y ∈ Y and |L(y)| = 1, every edge of H is in E(Hc) for at most one c ∈ L(H). For each c ∈
L(H), orient the edges of Hc so that no vertex has more than one in-neighbour or out-neighbour
(possible since �(Hc)� 2). Orient all remaining edges of H arbitrarily.

We now construct an L-colouring φ. First, colour each vertex in Y with the unique colour in
its list. Now run the following procedure, initializing i := 1.

1: If i> |X|, then exit.
2: Select vi ∈ X \ {vi : i ∈ [i− 1]} and select φ(vi) ∈ L(vi) arbitrarily. Increment i by 1 and go

to 3.
3: If there is a directed path vi−1yx such that x ∈ X \ {vi : i ∈ [i− 1]} and φ(vi−1)= φ(y) and

φ(vi−1) ∈ L(x), let vi := x, select φ(vi) ∈ L(vi) \ {φ(vi−1)}, increment i by 1 and go to 3.
Otherwise go to 4.

4: If there is a directed path xyvi−1 such that x ∈ X \ {vi : i ∈ [i− 1]} and φ(vi−1)= φ(y) and
φ(vi−1) ∈ L(x), let vi := x, select φ(vi) ∈ L(vi) \ {φ(vi−1)}, increment i by 1 and go to 3.
Otherwise go to 1.

Suppose for contradiction that some component C of H[φ] has at least three vertices in X. Since
φ is an L-colouring, C has a directed subpath x1y1x2y2x3 such that {x1, x2, x3} ⊆ X. If x1 was
the first vertex in {x1, x2} to be coloured, then x2 was coloured next and φ(x2) �= φ(x1), a con-
tradiction. If x2 was the first vertex in {x2, x3} to be coloured, then x3 was coloured next and
φ(x3) �= φ(x2), a contradiction. Hence, x2 was coloured before x1 and after x3. But then x1 was
coloured immediately after x2 and φ(x1) �= φ(x2), a contradiction.

We now prove our first result for clustered choosability of graphs with given maximum degree.
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Theorem 1.9. Every graph G with maximum degree �� 3 is � 1
3 (� + 2)	-choosable with clustering

� 19
2 �	 − 17.

Proof. Let k := �(� + 2)/3	. Let L be a k-list-assignment for G. Let φ be an L-colouring of G that
minimizes the number of monochromatic edges. By Lemma 5.1, φ is an L-colouring with defect 2.
Moreover, for each vertex v with defect 2 under φ, there is a colour βv ∈ L(v) \ {φ(v)} such that at
most two neighbours of v are coloured βv under φ. Let L′(v) := {φ(v), βv} for each vertex v with
defect 2.

Let M be the monochromatic subgraph of G. Thus �(M)� 2. By Lemma 4.2, there is a set
S⊆V(M), such that S is stable inG, every vertex in S has defect 2 under φ, and the following hold.

(1) Every subpath ofM with at least 3� − 6 vertices that contains a vertex with degree 1 inM
contains at least one vertex in S.

(2) Every subpath ofM with at least 5� − 9 vertices that contains a vertex with degree 1 inM
contains at least two vertices in S.

(3) Every connected subgraph C of M on at least � 19
2 �	 − 16 vertices contains at least three

vertices in S.

Define a subpath ofM to have type 1 if it contains no vertex in S and at least one vertex of degree
at most 1 in M. Define a subpath of M to have type 2 if it contains at most one vertex in S and at
least one vertex of degree at most 1 inM. Note that every path of type 1 is also of type 2, and every
path of type 2 or 1 that does not contain a vertex of degree 1 inM contains a vertex of degree 0 in
M, and hence has only one vertex. By the definition of S, every path of type 1 has at most 3� − 7
vertices and every path of type 2 has at most 5� − 10 vertices.

Let T be the set of connected components of M − S. Let H be the bipartite graph with bipar-
tition {S, T }, where s ∈ S is adjacent to T ∈ T if and only if s is adjacent to T in G, and the colour
of the vertices of T is in L′(s). Define L′

H so that L′
H(s) := L′(s) for every s ∈ S, and L′

H(T) is the
singleton containing the colour assigned to the vertices of T for every T ∈ T .

Let φ′
H be an arbitrary L′

H-colouring of H, and let φ′ be the corresponding L-colouring of G.
Note that every vertex of v ∈ S is assigned a colour in L′(v) and every other vertex is assigned its
original colour in φ. Since S is a stable set and by the definition of L′, the number of monochro-
matic edges given φ′ is at most the number of monochromatic edges given φ. Hence, by our choice
of φ, no L-colouring of G yields fewer monochromatic edges than φ′. Hence the monochromatic
subgraph M′ of G given φ′ satisfies �(M′)� 2. Let M′

H be the graph obtained from M′ by con-
tracting each T ∈ T to a single vertex. Then M′

H is isomorphic to the monochromatic subgraph
of H given φ′

H . Since M′
H is a minor of M′ and �(M′)� 2, we have �(M′

H)� 2. Hence, every
L′
H-colouring of H has defect 2.
By Lemma 5.2, H has an L′

H-colouring φ′
H such that no component of the monochromatic

subgraph has more than two vertices in S. Let φ′ be the corresponding L-colouring of G, and note
that no component of the monochromatic subgraphM′ of G given φ′ has more than two vertices
in S. In φ′, vertices of G− S keep their colour from φ, and vertices v ∈ S get a colour from L′(v),
so φ′ is an L-colouring that minimizes the number of monochromatic edges.

Suppose for contradiction that some vertex in V(G− S) has degree 2 in M and is adjacent in
M′ to some vertex s ∈ S which is not its neighbour in M (so φ′(s) �= φ(s)). Then the L′-colouring
obtained from φ by recolouring s with φ′(s) is not 2-defective, a contradiction.

It follows that the largest possible monochromatic component C ofM′ is either obtained from
three disjoint paths inM of type 1 linked by two vertices in S, or is obtained from a path of type 1
and a path of type 2 linked by a vertex of S, or is a subgraph ofM that contains at most two vertices
in S. In each case, we have |V(C)|� � 19

2 �	 − 17. �
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6. Clustered choosability with absolute bounded clustering
This section proves our results for clustered choosability of graphs with given maximum average
degree (Theorem 1.5) or given maximum degree (Theorem 1.10), where the clustering is bounded
by an absolute constant. The following lemma is the heart of the proof. With I = ∅, it immediately
implies Theorem 1.10.

Lemma 6.1. If I is a stable set of vertices in a graph G and L is a list-assignment for G such that
5|L(v)|� 2 deg (v)+ 2 for all v ∈V(G− I) and 5|L(v)|� 2 deg (v)+ 1 for all v ∈ I, then G has an
L-colouring with clustering 9. Furthermore, if I = ∅, then G has an L-colouring with clustering 6.

Proof. Let C be the class of L-colourings φ that minimize the number of monochromatic edges.
Given φ ∈ C and v ∈V(G), let L(φ, v) be the set of colours c ∈ L(v) such the colouring φ′ obtained
from φ by recolouring v with c is in C. Note that in particular φ(v) ∈ L(φ, v), and that a colour
c ∈ L(v) is in L(φ, v) if and only if

|{w ∈N(v) : φ(w)= c}| = degG[φ] (v).

Claim 1. If φ ∈ C, then �(G[φ])� 2.

Proof. Let v be a vertex of maximum degree in G[φ]. If for some colour c ∈ L(v) we have
|{w ∈NG(v) : φ(w)= c}| < degG[φ] (v),

then the colouring φ′ obtained from φ by changing the colour of v to c satisfies |E(G[φ′])| <
|E(G[φ])|, contradicting the assumption that φ ∈ C. Hence, degG (v)� degG[φ] (v)|L(v)|. By
assumption |L(v)|� 1

5 (2 degG (v)+ 1), and the result follows. �

Claim 2. If {φ, φ′} ⊆ C, v ∈V(G− I) and degG[φ] (v)= degG[φ′] (v)= 2, then

|L(φ, v)∩ L(φ′, v)|� 2.

Proof. Suppose for contradiction that |L(φ, v)∩ L(φ′, v)|� 1. Note that L(φ, v)∪ L(φ′, v)⊆ L(v).
Given that

|L(φ, v)| + |L(φ′, v)| = |L(φ, v)∪ L(φ′, v)| + |L(φ, v)∩ L(φ′, v)|� |L(v)| + 1,
we have |L(φ, v)|� (|L(v)| + 1)/2 without loss of generality. Since φ ∈ C, for every colour c ∈ L(v),
the vertex v has at least two neighbours in G coloured c by φ (or else recolouring v with c would
yield a colouring φ′ with |E(G[φ′])| < |E(G[φ])|). For every colour c ∈ L(v) \ L(φ, v), the vertex v
has at least three neighbours coloured c by φ. Hence, deg (v)� 3|L(v)| − (|L(v)| + 1)/2, meaning
|L(v)|� 1

5 (2 deg (v)+ 1), a contradiction. �

Choose φ0 ∈ C and S⊆V(G− I) such that S is a stable set in G[φ0], every vertex in S has
degree 2 in G[φ], and subject to this |S| is maximized. Let S := {s1, s2, . . . , st}. For i ∈ [t], define
φi recursively so that φi(v)= φi−1(v) for v ∈V(G) \ {si} and φi(si) ∈ (L(φ0, si)∩ L(φi−1, si)) \
{φ0(si)}. Such L-colourings exist by Claim 2.

Define L′(v) := {φ0(v), φt(v)} for all v ∈V(G).

Claim 3. If φ is an L′-colouring of G and s ∈ S, then |NG[φ](s) \ S| = 2.

Proof. Note that L′(v)= {φ0(v)} for v ∈V(G) \ S. Hence |NG[φ](s) \ S| = |NG[φ0](s) \ S| = 2 if
φ(s)= φ0(s). Now suppose that φ(s)= φt(s). By construction, φt(s) ∈ L(φ0, s), so the colouring
φ′ obtained from φ0 by changing the colour of s to φt(s) is in C. Now �(G[φ′])� 2 by Claim 1,
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so no vertex s′ ∈ S is adjacent to s in G[φ′], since s′ already has two neighbours in G[φ0]− S and
hence in G[φ′]− S. Since |E(G[φ′])| = |E(G[φ0])|, we have degG[φ′] (s)= degG[φ0] (s)= 2. Hence

|NG[φ](s) \ S| = |NG[φ′](s) \ S| = degG[φ′] (s)= 2.

Claim 4. If φ is an L′-colouring of G, then φ ∈ C.

Proof. Suppose for contradiction that for some {v,w} ⊆ S, vw ∈ E(G[φ]). Since S is a stable set in
G[φ0], either φ(v)= φt(v) or φ(w)= φt(w).

If φ(v)= φt(v) and φ(w)= φt(w), then v has three neighbours in G[φt] by Claim 3. But since
φi(si) ∈ L(φi−1, si) for i ∈ [t], we have φt ∈ C, a contradiction.

Hence, without loss of generality, φ(v)= φ0(v) and φ(w)= φt(w). Now φt(w) ∈ L(φ0,w), so
the colouring φ′ obtained from φ0 by recolouring w with φt(w) is in C. Note vw ∈ E(G[φ′])
by assumption. By Claim 3, |NG[φ′](v) \ S| = |NG[φ0](v) \ S| = 2, so degG[φ′] (v)= 3, contradicting
Claim 1.

Now |E(G[φ])| = |E(G[φ]− S)]| + 2|S| by Claim 3. But G[φ]− S=G[φ0]− S, so |E(G[φ])| =
|E(G[φ0])|, and φ ∈ C. �

Let T be the set of components ofG[φ0]− S. LetH be the bipartite graph with bipartition (S, T )
such that s ∈ S is adjacent to T ∈ T if s is adjacent to T in G and the colour assigned to the vertices
of T by φ0 is in L′(s). Let L′

H be the natural restriction of L′ toH. Note that an L′
H-colouring φH of

H corresponds to an L′-colouring ofG, andH[φH] is aminor ofG[φ], whichmeans�(H[φH])� 2
by Claims 1 and 4. Hence, by Lemma 5.2, H has an L′

H-colouring φH such that no component of
H[φH] has more than two vertices in S. Let φ be the corresponding L′-colouring of G. Note that
each component of G[φ] has at most two vertices in S.

Suppose for contradiction that some component C of G[φ] has at least ten vertices. Now
�(G[φ])� 2 by Claims 1 and 4, so C is a cycle or a path. Hence C has an induced subpath
P := p1p2 . . . p8 such that every vertex of P has degree 2 in G[φ]. Since I is a stable set in G, at
most one vertex in each of {p1, p2}, {p4, p5} and {p7, p8} is in I, so C − I contains a stable set SC
of size 3 such that every vertex of SC has degree 2 in G[φ]. Define S′ := (S \V(C))∪ SC. Since
|S∩V(C)|� 2, we have |S′| > |S|. However S′ ⊆V(G− I), S′ is a stable set in G[φ], and every
vertex of S′ has degree 2 in G[φ], contradicting our choice of φ0 and S.

Finally, suppose for contradiction that I = ∅ and some component C of G[φ] has at least seven
vertices. As before, C is either a cycle or a path, so there is a stable set SC in C of size 3 such that
every vertex in SC has degree 2 in G[φ]. Define S′ := (S \V(C))∪ SC. Since |S∩V(C)|� 2, we
have |S′| > |S|. However S′ ⊆V(G− I), S′ is a stable set in G[φ] and every vertex of S′ has degree 2
in G[φ], contradicting our choice of φ0 and S. �

The following lemma is analogous to Lemma 3.3.

Lemma 6.2. Let (A, B) be a partition of the vertex set of a graph G, let I ⊆ B be a stable set, and let
L be a list-assignment for G. If 5|L(v)| − 5 degA (v)� 2 degB (v)+ 2 for all v ∈ B \ I and 5|L(v)| −
5 degA (v)� 2 degB (v)+ 1 for all v ∈ I, then every L-colouring of G[A] with clustering 9 can be
extended to an L-colouring of G with clustering 9.

Proof. Let φ be an L-colouring of G[A] with clustering 9. For each vertex v ∈ B, let L′(v) := L(v) \
{φ(x) : x ∈NA(v}. Thus

|L′(v)|� |L(v)| − degA (v)� 2
5
( degB (v)+ 1)
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for v ∈ B \ I, and

|L′(v)|� |L(v)| − degA (v)� 1
5
(2 degB (v)+ 1)

for v ∈ I. Lemma 6.1 implies that G[B] is L-colourable with clustering 9. By construction, there is
no monochromatic edge between A and B. Thus G is L-colourable with clustering 9. �

We now prove the main result of this section.

Theorem 1.5. Every graph G is � 7
10 mad (G)+ 1�-choosable with clustering 9.

Proof. Let k := � 7
10 mad (G)� + 1. We proceed by induction on |V(G)|. The claim is trivial if

|V(G)|� 9. Assume that |V(G)|� 10. Let L be a k-list-assignment for G.
Let p be the maximum integer for which there are pairwise disjoint sets X1, . . . , Xp ⊆V(G),

such that for each i ∈ [p] we have |Xi| ∈ {1, 2}, and if Ai := X1 ∪ · · · ∪ Xi−1 and Bi :=V(G) \Ai,
then at least one of the following conditions holds:

• Xi = {vi} and 5|L(vi)|� 5 degAi (vi)+ 2 degBi (vi), or
• Xi = {vi,wi} and viwi ∈ E(G), and

5|L(vi)|� 5 degAi (vi)+ 2 degBi (vi)+ 1 and 5|L(wi)|� 5 degAi (wi)+ 2 degBi (wi)+ 1.

First suppose that X1 ∪ · · · ∪ Xp �=V(G). Let A := X1 ∪ · · · ∪ Xp and B :=V(G) \A. We now
show that Lemma 6.2 is applicable. By the maximality of p, each vertex v ∈ B satisfies 5|L(v)|�
5 degA (v)+ 2 degB (v)+ 1. Let I be the set of vertices v ∈ B for which 5|L(v)| = 5 degA (v)+
2 degB (v)+ 1. By the maximality of p, I is a stable set. Since mad (G[A])�mad (G), by induction,
G[A] is L-colourable with clustering 9. By Lemma 6.2, G is L-colourable with clustering 9.

Now assume that X1 ∪ · · · ∪ Xp =V(G). Let R := {i ∈ [p]:|Xi| = 1} and S := {i ∈ [p]:|Xi| = 2}.
Thus

5k|V(G)|�
∑
i∈R

(3 degAi (vi)+ 2 degG (vi))

+
∑
i∈S

(3 degAi (vi)+ 2 degG (vi)+ 1+ 3 degAi (wi)+ 2 degG (wi)+ 1)

� 3
∑
i∈R

degAi (vi)+ 3
∑
i∈S

(degAi (vi)+ degAi (wi)+ 1)+ 2
∑

v∈V(G)
degG (v)

= 7|E(G)|.
Hence

10
7
k� 2|E(G)|

|V(G)| �mad (G),

implying k� 7
10 mad (G), which is a contradiction. �

7. Clustered choosability andmaximum average degree
This section proves our final results for clustered choosability of graphs with given maximum
average degree (Theorems 1.6 and 1.8).

https://doi.org/10.1017/S0963548319000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000063


804 K. Hendrey and D. R. Wood

Lemma 7.1. If I is a stable set in a graph G of maximum degree �� 3, and L is a list-assignment
of G, and 3|L(v)|� degG (v)+ 1 for each vertex v ∈ I, and 3|L(v)|� degG (v)+ 2 for each vertex
v ∈V(G) \ I, then G is L-colourable with clustering 19� − 32.

Proof. Let φ be an L-colouring of G that minimizes the number of monochromatic edges. By
Lemma 5.1, φ is an L-colouring with defect 2. Moreover, for each vertex v ∈V(G) \ I with defect 2
under φ, there is a colour βv ∈ L(v) \ {φ(v)}, such that at most two neighbours of v are coloured
βv under φ. Let L′(v) := {φ(v), βv} for each vertex v ∈V(G) \ I with defect 2.

LetM be the monochromatic subgraph of G. Thus �(M)� 2. Each component ofM is a cycle
or path. Orient each cycle component of M to become a directed cycle, and orient each path
component ofM to become a directed path.

Let G′ be obtained from G as follows: first delete all non-monochromatic edges incident to all
vertices in I. Note that vertices in I now have degree at most 2. Now if vx is a directed monochro-
matic edge in G with x ∈ I and x having defect 2, then contract vx into a new vertex v′. Note that
v ∈V(G) \ I since I is a stable set. Note also that�(G′)��(G)��. Consider v′ to be coloured by
the same colour as v. LetMG′ be the monochromatic subgraph of G′. ThenMG′ is obtained from
M by the same set of contractions that formed G′ from G, and MG′ is an induced subgraph of G′
with maximum degree at most 2.

By Lemma 4.2, there is a set S′ ⊆V(MG′), such that S′ is stable in G, every vertex in S′ has
defect 2 under φ, and the following hold.

(1) Every subpath of MG′ with at least 3� − 6 vertices that contains a vertex with degree 1 in
M contains at least one vertex in S′.

(2) Every subpath of MG′ with at least 5� − 9 vertices that contains a vertex with degree 1 in
M contains at least two vertices in S′.

(3) Every connected subgraph C ofMG′ with at least � 19
2 �	 − 16 vertices contains at least three

vertices in S′.

Let S be obtained from S′ by replacing each vertex v′ (arising from a contraction) by the corre-
sponding vertex v in G. Thus S∩ I = ∅. By construction, S is a stable set in G, every vertex in S has
defect 2 under φ, and each of the following hold.

(1) Every subpath of M with at least 6� − 12 vertices contains a vertex with degree 1 in M
contains at least one vertex in S.

(2) Every subpath of M with at least 10� − 18 vertices contains a vertex with degree 1 in M
contains at least two vertices in S.

(3) Every connected subgraph C of M with at least 19� − 31 vertices contains at least three
vertices in S.

Define a subpath ofM to have type 1 if it contains no vertex in S and at least one vertex of degree
at most 1 in M. Define a subpath of M to have type 2 if it contains at most one vertex in S and at
least one vertex of degree at most 1 inM. Note that every path of type 1 is also of type 2, and that
any path of type 2 or 1 that contains no vertex of degree 1 in M contains a vertex of degree 0 in
M, and hence has only one vertex. By the definition of S, every path of type 1 has at most 6� − 13
vertices and every path of type 2 has at most 10� − 19 vertices.

Let T be the set of connected components ofM − S, and define a bipartite graphH with bipar-
tition {S, T }, where s ∈ S is adjacent to T ∈ T if and only if s is adjacent to T in G, and the colour
of the vertices of T is in L′(s). Define L′

H so that L′
H(s) := L′(s) for every s ∈ S, and L′

H(T) is the
singleton containing the colour assigned to the vertices of T for every T ∈ T .

Let φ′
H be an arbitrary L′

H-colouring of H, and let φ′ be the corresponding L-colouring of G.
Note that every vertex of v ∈ S is assigned a colour in L′(v) and every other vertex is assigned its
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original colour in φ. Since S is a stable set and by the definition of L′, the number of monochro-
matic edges given φ′ is at most the number of monochromatic edges given φ. Hence by our choice
of φ, no L-colouring of G yields fewer monochromatic edges than φ′. Hence the monochromatic
subgraph M′ of G given φ′ satisfies �(M′)� 2. Let M′

H be the graph obtained from M′ by con-
tracting each T ∈ T to a single vertex. ThenM′

H is isomorphic to the monochromatic subgraph of
H given φ′

H . SinceM′
H is a minor ofM′, we have �(M′

H)� 2. Hence, every L′
H-colouring ofH has

defect 2.
By Lemma 5.2, H has an L′

H-colouring φ′
H such that no component of the monochromatic

subgraph has more than two vertices in S. Let φ′ be the corresponding L-colouring of G, and note
that no component of the monochromatic subgraphM′ of G given φ′ has more than two vertices
in S. In φ′, vertices of G− S keep their colour from φ, and vertices v ∈ S get a colour from L′(v),
so φ′ is an L-colouring which minimizes the number of monochromatic edges.

Suppose for contradiction that some vertex in V(G− S) has degree 2 in M and is adjacent in
M′ to some vertex s ∈ S which is not its neighbour in M (so φ′(s) �= φ(s)). Then the L′-colouring
obtained from φ by recolouring s with φ′(s) is not 2 defective, a contradiction.

It follows that the largest possible monochromatic component C ofM′ is obtained either from
three disjoint paths inM of type 1 linked by two vertices in S, or is obtained from a path of type 1
and a path of type 2 linked by a vertex of S, or is a subgraph ofM that contains at most two vertices
in S. In each case, we have |V(C)|� 19� − 32. �

We have the following analogue of Lemmas 3.3 and 6.2.

Lemma 7.2. For a graph G, let A, B be a partition of V(G) with � := �(G[B])� 3, and let I be a
stable set of G contained in B. Let L be a list-assignment for G and let c be an integer such that c�
19� − 32, G[A] is L-colourable with clustering c, 3|L(v)|� 3 degA (v)+ degB (v)+ 1 for each vertex
v ∈ I, and 3|L(v)|� 3 degA (v)+ degB (v)+ 2 for each vertex v ∈ B \ I. Then G is L-colourable with
clustering c.

Proof. Let φ be an L-colouring of G[A] with clustering c. For each vertex v ∈ B, let L′(v) :=
L(v) \ {φ(x) : x ∈NA(v}. Thus |L′(v)|� |L(v)| − degA (v), implying 3|L′(v)|� degB (v)+ 1 for each
vertex v ∈ I, and 3|L′(v)|� degB (v)+ 2 for each vertex v ∈ B \ I. Lemma 7.1 implies that G[B] is
L-colourable with clustering 19� − 32. By construction, there is nomonochromatic edge between
A and B. Thus G is L-colourable with clustering c. �

We now prove Theorem 1.8, which implies Theorem 1.6 when n0 = 1.

Theorem 1.8. For integers d� 0, n0 � 1 and k� 1, every graph G with

mad (G, n0)<
3
2
k

is k-choosable with clustering

c :=max
{⌈

n0 − 1
k

⌉
, 57k− 51

}
.

Proof. We first prove the k= 1 case. Let G be a graph with mad (G, n0)< 3/2. Every component
of a graph with maximum average degree less than 3/2 has at most three vertices. Thus every
component ofG has at most max{n0 − 1, 3} vertices. Hence, every 1-list-assignment has clustering
max{n0 − 1, 3}� c. Now assume that k� 2.

We proceed by induction on |V(G)|. Let L be a k-list-assignment forG. If |V(G)|� n0 − 1, then
colour each vertex v by a colour in L(v), so that each colour is used at most �(n0 − 1)/k	 times.
We obtain an L-colouring with clustering �(n0 − 1)/k	. Now assume that |V(G)|� n0.
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Let p be the maximum integer for which there are pairwise disjoint sets X1, . . . , Xp ⊆V(G),
such that for each i ∈ [p] we have |Xi| ∈ {1, 2}, and if Ai := X1 ∪ · · · ∪ Xi−1 and Bi :=V(G) \Ai,
then at least one of the following conditions holds:

• Xi = {vi} and 3|L(vi)|� 3 degAi (vi)+ degBi (vi), or
• Xi = {vi,wi} and viwi ∈ E(G), and

3|L(v)|� 3 degAi (v)+ degBi (v)+ 1 and 3|L(w)|� 3 degAi (w)+ degBi (w)+ 1.

First suppose X1 ∪ · · · ∪ Xp �=V(G). Let A := X1 ∪ · · · ∪ Xp, B :=V(G) \A. Since
mad (G[A], n0)�mad (G, n0), by induction, G[A] is L-colourable with clustering c. We
now show that Lemma 7.2 is applicable. By the maximality of p, for each v ∈ B,

3k= 3|L(v)|� 3 degA (v)+ degB (v)+ 1� degB (v)+ 1.

Let � := 3k− 1. Then �(G[B])� 3k− 1= �. Since k� 2, we have �� 5 and 19� − 32=
19(3k− 1)− 32= 57k− 51� c. Let I be the set of vertices v ∈ B for which 3|L(v)| = 3 degA (v)+
degB (v)+ 1. By themaximality of p, I is a stable set. Lemma 7.2 thus implies thatG is L-colourable
with clustering c.

Now assume that X1 ∪ · · · ∪ Xp =V(G). Let R := {i ∈ [p]:|Xi| = 1} and S := {i ∈ [p]:|Xi| = 2}.
For i ∈ R, condition (A) holds, implying 3k� 2 degAi (vi)+ degG (vi). For i ∈ S, condition (B)
holds, implying 3k� 2 degAi (vi)+ degG (vi)+ 1 and 3k� 2 degAi (wi)+ degG (wi)+ 1. Thus

3k|V(G)|�
∑
i∈R

(2 degAi (vi)+ degG (vi))

+
∑
i∈S

(2 degAi (vi)+ degG (vi)+ 1+ 2 degAi (wi)+ degG (wi)+ 1)

= 2
∑
i∈R

degAi (vi)+ 2
∑
i∈S

(degAi (vi)+ degAi (wi)+ 1)+
∑

v∈V(G)
degG (v)

= 4|E(G)|.
Hence

3
2
k� 2|E(G)|

|V(G)| �mad (G),

and |V(G)|� n0, implying k� 2
3 mad (G, n0), which is a contradiction. �

8. Earth–moon colouring and thickness
The union of two planar graphs is called an earth–moon (or biplanar) graph. The famous earth–
moon problem asks for the maximum chromatic number of earth–moon graphs [1, 12, 26, 31, 32,
41]. It follows from Euler’s formula that every earth–moon graph has maximum average degree
less than 12, and is thus 12-colourable. On the other hand, there are 9-chromatic earth–moon
graphs [12, 26]. So the maximum chromatic number of earth–moon graphs is 9, 10, 11 or 12.

Defective and clustered colourings provide a way to attack the earth–moon problem. First con-
sider defective colourings of earth–moon graphs. Since the maximum average degree of every
earth–moon graph is less than 12, Theorem 1.1 by Havet and Sereni [27] implies that every
earth–moon graph is k-choosable with defect d, for

(k, d) ∈ {(7, 18), (8, 9), (9, 5), (10, 3), (11, 2)}.
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This result gives no bound with at most 6 colours. Ossona de Mendez, Oum andWood [40] went
further and showed that every earth–moon graph is k-choosable with defect d, for

(k, d) ∈ {(5, 36), (6, 19), (7, 12), (8, 9), (9, 6), (10, 4), (11, 2)}.
Examples show that 5 colours is best possible [40]. Thus the defective chromatic number of earth–
moon graphs equals 5. Theorem 1.2 implies that every earth–moon graph is k-choosable with
defect d for

(k, d) ∈ {(7, 6), (8, 3), (9, 2), (11, 1)}.
These results improve the best known bounds when k ∈ {7, 8, 9, 11}.

Now consider clustered colouring of earth–moon graphs. Wood [42] describes examples of
earth–moon graphs that are not 5-colourable with bounded clustering. Thus the clustered chro-
matic number of earth–moon graphs is at least 6. Theorem 1.3 by Kopreski and Yu [35] proves
that earth–moon graphs are 9-colourable with clustering 2. Other results for clustered colouring
do not work for earth–moon graphs since they can contain expanders [19], and thus do not have
sublinear separators. Since every earth–moon graph has maximum average degree strictly less
than 12, Theorems 1.4 and Theorem 1.6 imply the following.

Theorem 8.1. Every earth–moon graph is:

• 9-choosable with clustering 2,
• 8-choosable with clustering 405.

It is open whether every earth–moon graph is 6- or 7-colourable with bounded clustering.
Earth–moon graphs are generalized as follows. The thickness of a graph G is the minimum

integer t such that G is the union of t planar subgraphs; see [38] for a survey. It follows from
Euler’s formula that graphs with thickness t are (6t − 1)-degenerate and thus 6t-colourable. For
t� 3, complete graphs provide a lower bound of 6t − 2. It is an open problem to improve these
bounds: see [31]. Ossona de Mendez, Oum andWood [40] studied defective colourings of graphs
with given thickness, and proved the following result.

Theorem 8.2. ([40]). The defective chromatic number of the class of graphs with thickness t equals
2t + 1. In particular, every such graph is (2t + 1)-choosable with defect 2t(4t + 1).

Now consider clustered colourings of graphs with given thickness. Obviously, the clustered
chromatic number of graphs with thickness t is at most 6t, and Wood [42] proved a lower bound
of 2t + 2. Since every graph with thickness t has maximum average degree strictly less than 6t,
Theorems 1.4, 1.5 and 1.6 imply the following improved upper bounds.

Theorem 8.3. Every graph with thickness t is:

• �9t/2	-choosable with defect 1 and clustering 2,
• �21t/5	-choosable with clustering 9,
• 4t-choosable with clustering 228t − 51.

Thickness is generalized as follows; see [32, 40, 42]. For an integer g � 0, the g-thickness of a
graph G is the minimum integer t such that G is the union of t subgraphs each with Euler genus
at most g. Ossona de Mendez, Oum and Wood [40] determined the defective chromatic number
of this class as follows (thus generalizing Theorem 8.2).
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Theorem 8.4. ([40]). For integers g � 0 and t� 1, the defective chromatic number of the class of
graphs with g-thickness t equals 2t + 1. In particular, every such graph is (2t + 1)-choosable with
defect 2tg + 8t2 + 2t.

Now consider clustered colourings of graphs with g-thickness t. Wood [42] proved that
every such graph is (6t + 1)-choosable with clustering max{g, 1}. Euler’s formula implies that
every n-vertex graph with g-thickness t has less than 3t(n+ g − 2) edges (for n� 3), implying
mad (G, 4tg − 8t + 1)< 6t + 3/2. Hence, Theorem 1.8 implies the following improvement to this
upper bound.

Theorem 8.5. For g � 0 and t� 1, every graph with g-thickness t is (4t + 1)-choosable with
clustering

max
{⌈

4tg − 8t
4t + 1

⌉
, 228t + 6

}
.

This result highlights the utility of considering mad (G, n0).

9. Stack and queue layouts
This section applies our results to graphs with given stack- or queue-number. Again, previous
results for clustered colouring do not work for graphs with given stack- or queue-number since
they can contain expanders [19], and thus do not have sublinear separators.

A k-stack layout of a graph G consists of a linear ordering v1, . . . , vn of V(G) and a partition
E1, . . . , Ek of E(G) such that no two edges in Ei cross with respect to v1, . . . , vn for each i ∈ [1, k].
Here edges vavb and vcvd cross if a< c< b< d. A graph is a k-stack graph if it has a k-stack lay-
out. The stack-number of a graph G is the minimum integer k for which G is a k-stack graph.
Stack layouts are also called book embeddings, and stack-number is also called book-thickness, fixed
outer-thickness and page-number. Dujmović andWood [20] showed that the maximum chromatic
number of k-stack graphs is in {2k, 2k+ 1, 2k+ 2}.

A k-queue layout of a graph G consists of a linear ordering v1, . . . , vn of V(G) and a partition
E1, . . . , Ek of E(G) such that no two edges in Ei are nested with respect to v1, . . . , vn for each
i ∈ [1, k]. Here edges vavb and vcvd are nested if a< c< d < b. The queue-number of a graph G is
the minimum integer k for which G has a k-queue layout. A graph is a k-queue graph if it has a
k-queue layout. Dujmović and Wood [20] showed that the maximum chromatic number of
k-queue graphs is in the range [2k+ 1, 4k].

Consider clustered colourings of k-stack and k-queue graphs. Wood [42] noted the clustered
chromatic number of the class of k-stack graphs is in [k+ 2, 2k+ 2], and that the clustered chro-
matic number of the class of k-queue graphs is in [k+ 1, 4k]. The lower bounds come from
standard examples, and the upper bounds hold since every k-stack graph has maximum aver-
age degree less than 2k+ 2, and every k-queue graph has maximum average degree less than 4k.
Theorems 1.4, 1.5 and 1.6 thus imply the following improved upper bounds.

Theorem 9.1. Every k-stack graph is:

• �(3k+ 4)/2�-choosable with defect 1, and thus with clustering 2,
• �(7k+ 11)/5�-choosable with clustering 9,
• �(4k+ 6)/3�-choosable with clustering at most 76k+ 53.
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Theorem 9.2. Every k-queue graph is:

• 3k-choosable with defect 1, and thus with clustering 2,
• �(14k+ 4)/5�-choosable with clustering 9,
• �(8k+ 2)/3�-choosable with clustering at most 152k− 13.
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