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Turbulent flows behind two side-by-side square cylinders with three different gap
ratios, namely, Ld/T0 = 4, 6 and 8 (Ld is the separation distance between two
cylinders and T0 is the cylinder thickness) are investigated by using direct numerical
simulations. Depending on the strength of the gap flow, the three cases can generally
be characterized into two regimes, one being the weak gap flow regime and the
other being the robust gap flow regime. The wake-interaction length scale can only
be applied to characterize the spatial evolution of the dual-wake flow in the robust
gap flow regime. And only in this regime can the so-called ‘extreme events’ (i.e.
non-Gaussian velocity fluctuations with large flatness) be identified. For the case
with Ld/T0 = 6, two downstream locations, i.e. X/T0 = 6 and 26, at which the
turbulent flows are highly non-Gaussian distributed and approximately Gaussian
distributed, respectively, are analysed in detail. A well-defined −5/3 energy spectrum
can be found in the near-field region (i.e. X/T0 = 6), where the turbulent flow is still
developing and highly intermittent and Kolmogorov’s universal equilibrium hypothesis
does not hold. We confirm that the approximate −5/3 power law in the high-frequency
range is closely related to the occurrences of the extreme events. As the downstream
distance increases, the velocity fluctuations gradually adopt a Gaussian distribution,
corresponding to a decrease in the strength of the extreme events. Consequently, the
range of the −5/3 power law narrows. In the upstream region (i.e. X/T0 = 6), the
second-order structure function exhibits a power-law exponent close to 1, whereas
in the far downstream region (i.e. X/T0 = 26) the expected 2/3 power-law exponent
appears. The larger exponent at X/T0 = 6 is related to the fact that fluid motions in
the intermediate range can directly ‘feel’ the large-scale vortex shedding.

Key words: turbulence simulation, turbulence theory

1. Introduction
The flow past a slender cylinder (either circular or square one) is one of the most

important free shear flows (Williamson 1996). It has long been known that Kármán’s
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vortex street can be generated if the Reynolds number is larger than a certain value.
Compared with a single wake, the flows downstream of two or more slender bluff
bodies are much more complicated (Kolář, Lyn & Rodi 1997; Zhou et al. 2001; Alam,
Zhou & Wang 2011; Alam & Zhou 2013; Alam, Bai & Zhou 2016), in which the
interactions of vortex streets are involved. Such flows can be encountered in a wide
variety of practical engineering situations (e.g. heat exchangers, offshore platforms,
bridge piers, wind farms). Therefore, the flow behind two side-by-side cylinders is
a subject of great practical importance.

The flow behind two square cylinders is largely decided by the gap ratio Ld/T0,
where Ld is the separation distance between two cylinders and T0 is the cylinder
thickness. Previous experimental studies (Alam et al. 2011; Alam & Zhou 2013)
suggested that for the dual-wake flows with different gap ratios Ld/T0, different
flow patterns can be identified. Grid-generated turbulence, in the upstream of which
wake interactions occur, has been intensively investigated over the past several
decades. By using the scaling law of a single wake (Townsend 1956), Mazellier &
Vassilicos (2010) introduced the wake-interaction length scale with X∗ = L2

d/T0 to
normalize the streamwise distance from the grid element X. It was demonstrated that
when the downstream distance X is normalized by X∗, various centreline statistics
of the turbulence behind grid elements with different mesh sizes can be collapsed
together (Mazellier & Vassilicos 2010; Gomes-Fernandes, Ganapathisubramani &
Vassilicos 2012; Nagata et al. 2013; Nagata et al. 2017). Note that immediately
behind a grid element, four wakes are generated and they interact with their
neighbouring wakes. Compared with the grid-generated turbulence, the turbulent flow
behind two side-by-side cylinders is a more fundamental problem related to wake
interactions. Therefore the simplest assessment of the wake-interaction length scale
can be achieved by investigating the dual-wake flow behind two square cylinders.

The turbulent flow in the immediate vicinity of a grid element has recently
received considerable attention (Hurst & Vassilicos 2007, Valente & Vassilicos
2011, Gomes-Fernandes, Ganapathisubramani & Vassilicos 2014; Zhou et al. 2015,
2016a). One interesting finding, which has been extensively reported (Mazellier &
Vassilicos 2010, Nagata et al. 2013; Zhou et al. 2014a,b, 2016b; Laizet, Nedić &
Vassilicos 2015a,b; Paul, Papadakis & Vassilicos 2017) is that turbulent flow in the
lee of the grid can be highly intermittent with non-Gaussian distributions of the
velocity fluctuations. The profile of the probability density function (PDF) of the
streamwise velocity fluctuations u′ is much wider than the corresponding Gaussian
distribution, indicating a large probability of occurrence of the extreme events (in
some papers (Mazellier & Vassilicos 2010; Laizet et al. 2015b) also called intense
events). Moreover, the skewness of u′ in the upstream region is negative, revealing
that the PDF profiles are negatively skewed (Mazellier & Vassilicos 2010; Zhou et al.
2014a; Laizet et al. 2015b; Paul et al. 2017). A less noticed observation (Laizet et al.
2015b; Zhou et al. 2016b; Paul et al. 2017) is that the extreme events appear to be
closely related to the formation of the −5/3 scaling power law.

It is well known that a class of flows called ‘free shear flows’ including turbulent
jets and wakes share some important turbulence characteristics, for example,
self-similarity of various one-point statistics and the existence of very thin/sharp
layers separating the free shear flows from their surrounding non-turbulent ambient
flows (da Silva et al. 2014). Interestingly, a recent numerical study by Zhou et al.
(2018) demonstrated that the extreme events can also be found in the merging regions
of dual-parallel jet flows. However, the extreme events found in the merging region
are quite different from those in the grid-generated turbulence. The corresponding
probability distribution in dual-plane jet flows is positively skewed, not the contrary.
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In light of the above mentioned publications, the present paper tries to find answers
to the following two questions:

(1) In both grid-generated turbulence and dual-plane jet flows, extreme events can
be found. The first question that naturally arises is whether the extreme events can
also be found in the flow behind two square cylinders with different gap ratios? If the
answer is yes, then what physical mechanisms are responsible for the extreme events?
Moreover, it is of equal importance to clarify the characteristics of the extreme events.

(2) Previous studies suggested that the extreme events appear to be closely related
to the appearance of the −5/3 scaling power law. A question then arises concerning
the intimate relationship between the occurrence of the extreme events and the
well-defined −5/3 energy spectra. More specifically, how do the extreme events
contribute to the appearance of the −5/3 scaling law? The observation that the −5/3
scaling law can be found in the region where the extreme events occur is not in
accord with Kolmogorov’s prediction. Note also that according to the Kolmogorov
phenomenology, in the so-called ‘inertial subrange’ the second-order structure function
in real space is expected to acquire a power law with an exponent close to 2/3 when
the corresponding −5/3 energy spectrum can be identified. The characteristics of the
second-order structure function in the flow region where the extreme events can be
identified is consequently another interesting topic and is of particular importance.

The organization of the rest of the paper is as follows. Section 2 presents the details
about the simulation conditions and numerical method. In § 3, the discussion on the
wake-interaction scale is given and the statistical results concerning the extreme events
are presented. In § 4, the relationship between the extreme events and the −5/3 energy
spectra is explored. The spatial evolution of the corresponding second-order structure
function is also discussed. Finally, the main conclusions and remaining issues, which
should be addressed in future, are listed in § 5.

2. Numerical details

We perform direct numerical simulations (DNSs) of the flow behind two side-
by-side square cylinders with three different gap ratios, i.e. Ld/T0 = 4, 6 and 8.
The details of the three cases are summarized in table 1. A schematic view of the
computational domain is presented in figure 1 along with the coordinate system. Two
identical parallel square cylinders are placed at the downstream streamwise location
Xbar/T0 = 8 from the inlet. The inlet length Xbar is comparable to those in previous
numerical investigations of grid-generated turbulence (Laizet et al. 2015a,b; Paul,
Papadakis & Vassilicos 2017, 2018). Note also that the blockage ratios are 7.1 %,
6.7 % and 5.9 %, which are much smaller than those in previous studies (i.e. 19 %
in Laizet et al. (2015a,b) and 20 % in Paul et al. (2017, 2018)). It might be worth
mentioning that for the studies mentioned (Laizet et al. 2015a,b; Paul et al. 2017,
2018), the numerical results are reported to be in good accord with the corresponding
experimental results. Thus, our choice of Xbar is expected to be sufficiently large. The
inlet Reynolds number ReT0 = UinT0/ν, with ν being viscosity, is 2500 for all three
cases. A uniformly distributed velocity Uin is imposed at the inlet and a convective
condition is applied at the outlet. The periodic boundary conditions are adopted in
the Y and Z directions. The nodes are uniformly distributed in all three directions.

The immersed boundary method (Parnaudeau et al. 2008) is adopted for the
modelling of the two square cylinders. The massively parallel solver ‘Incompact3d’
(Laizet & Lamballais 2009; Laizet, Lamballais & Vassilicos 2010; Laizet & Li
2011), which is based on a Cartesian mesh, is used to solve the incompressible
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Case ReT0 Ld/T0 Xbar/T0 LX/T0 LY/T0 LZ/T0 NX NY NZ

WI4 2500 4 8 35 28 5 801 700 100
WI6 2500 6 8 35 30 5 801 690 100
WI8 2500 8 8 35 34 5 801 748 100

TABLE 1. Geometric and numerical details.

LZ
(a) (b)

LX

Xbar

Y XLd

T0

LY

Y
Z

FIGURE 1. (Colour online) (a) Schematic front view and (b) schematic side view of the
computational domain.

Navier–Stokes equations. The sixth-order central compact schemes proposed by Lele
(1992) are used for the spatial discretion. Concerning the time advancement, the
third-order Adams–Bashforth scheme is adopted with a time step 1t = 0.0045T0/Uin
and data are averaged over 200 000 time steps for all three cases. In the current DNS,
the maximum Courant–Friedrichs–Levy number is 0.14. Refer to Laizet & Lamballais
(2009), Laizet et al. (2010) and Laizet & Li (2011) for a detailed description of the
DNS code and the corresponding parallel strategy.

Redford, Castro & Coleman (2012) demonstrated that to avoid significant
contamination on the wake growth imposed by the boundary conditions, the smallest
lateral domain size (LY in our current study) is LY ' 5.9δ, where δ is the wake
half-width. As shown in figure 2(a), the two wakes have not yet fully merged
together even at the most downstream location for all three cases. Thus, we could not
directly use this criterion in our current study. Instead, we propose a quasi-half-width
b which is defined as the vertical distance from the centreline to the location where
(U − Umin)/U0 = 1/2 with U0 = (Uc − Umin) being the quasi-velocity deficit (see
figure 2b). The ratios LY/b for the cases with Ld/T0 = 4, 6 and 8 are 8.6, 6.7 and
5.9, respectively, at the furthest downstream location considered (i.e. X/T0 = 26).
Even for the case with the largest separation distance, the lateral domain size satisfies
the criterion proposed by Redford et al. (2012) at the most downstream location.
Therefore, the vertical size of our simulation domain is sufficiently large.

The spatial resolutions (1X1Y1Z)1/3 with respect to the Kolmogorov microscale
η along the centreline are explored (not shown herein), where η = (ν3/ε)1/4. Here,
ε = 2ν〈sijsij〉 with the strain rate sij being (∂u′i/∂xj + ∂u′j/∂xi)/2, where the angled
brackets 〈〉 refer to an average over time t and Z. Laizet et al. (2015a) investigated the
influence of the spatial resolution on the turbulent flow generated by a single square
grid and demonstrated that a resolution of ∆ ' 7η is fine enough to reproduce the
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FIGURE 2. (Colour online) (a) Vertical distribution of Um/Uin at a far downstream location
(i.e. X/T0 = 26) for all three cases. (b) Definition sketch of the quasi-half-width b(x).
The red dashed line presents the centreline of the square cylinder. The mean streamwise
velocity Umin and velocity deficit U − Umin are marked in red. Only the top half of the
whole domain is shown.

first-, second-, third- and fourth-order momentums of one point velocities within an
error of less than 10 %, whereas a higher resolution ∆'5η is enough to guarantee the
numerical results of the first- and second-order momentums to within an error of 5 %.
We confirmed the lowest spatial resolution is found in the case with Ld/T0= 4. Even
for this case, the worst resolution is still below 5η. For the other two cases, the spatial
resolution is always smaller than 3.4η. Therefore, the current mesh setting is fine
enough to capture the turbulence behaviour. Further evaluations of numerical strategies
and parameters are presented in supplementary appendices A, B and C; supplementary
materials are available online at https://doi.org/10.1017/jfm.2019.456.

3. Wake interaction and extreme events
This work is devoted to the study of the extreme events and the energy spectra (also

the second-order structure function) in turbulent flows behind two side-by-side square
cylinders. Before delving deep into the relationship between the extreme events and
the −5/3 spectra, in this section we explored some related fundamental aspects of
dual-wake flows (e.g. wake-interaction pattern, wake-interaction length scale, spatial
evolution of various turbulence characteristics and formation mechanisms of the
extreme events), which represent actually the first important objective of this work.

3.1. Flow visualizations
In figure 3, the magnitudes of the normalized instantaneous vorticity Ω/(Uin/T0),
where Ω = (ΩiΩi)

1/2 with Ωi = εijk∂uk/∂xj and εijk being the Levi-Civita symbol, are
plotted for all three cases in the X–Y plane, which certainly provides insights into
the wake-interaction patterns, at least to some extent. Figure 3 shows that perceptible
oscillations can be found upstream of the cylinders. A similar spike-like behaviour
was also reported in the DNSs of turbulent flow in Trias, Gorobets & Oliva (2015),
although in their paper a contour plot of the Kolmogorov length scale η is presented.
Obviously, the Kolmogorov length scale is closely related to the velocity gradients.
Thus, the existence of the oscillations is related to the fact that streamlines can be
distorted upstream of the cylinders.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

45
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.456
https://doi.org/10.1017/jfm.2019.456


682 Y. Zhou, K. Nagata, Y. Sakai and T. Watanabe

-6
-8

-4
-2

0
2
4
6
8

-6
-8

-4
-2

0
2
4
6
8

-6
-4
-2

0
2
4
6

-6
-8

-4
-2

0
2
4
6
8

-6
-8

-4
-2

0
2
4
6
8

-6
-4
-2

0
2
4
6

-4 0 4 8 12
X/T0

Y/
T 0

(a) (b)

(c) (d)

(e) (f)

Y/
T 0

Y/
T 0

X/T0

Magnitude of vorticity

16 20 24 -4 0 4 8 12 16 20 24

0 5 10 15 20 25

FIGURE 3. (Colour online) Visualizations of the magnitude of instantaneous vorticity
Ω/(Uin/T0) in the X–Y plane. (a,b) Ld/T0 = 4; (c,d) Ld/T0 = 6; (e, f ) Ld/T0 = 8. All
maps cover only part of the simulation domain and are shown on a linear scale. Note that
to visualize the wake-interaction pattern, for each of the cases considered two randomly
selected instantaneous flow fields are plotted.

By and large, two different flow patterns can be observed depending on the
separation distance between the cylinders. For the case with Ld/T0 = 4, the gap flow
is weak and beyond X/T0 = 8 only one large wake can be observed. For the cases
with large gap ratios (Ld/T0 = 6 and 8), the gap flow is straight and the two vortex
streets persist longer downstream. Thus, depending on the strength of the gap flow,
the three simulation cases can be simply divided into two regimes: weak gap flow
regime and robust gap flow regime. In the weak gap flow regime, two vortex streets
merge into one, whilst in the robust gap flow regime with a large separation between
the square cylinders, the two vortex streets do not merge. One could reasonably expect
that the two vortex streets in the robust gap flow regime will finally merge in the
further downstream region. However, in this study, owing to the limited streamwise
length, the combination of the two wakes is not significant, as suggested by figure 2.

3.2. Wake-interaction length scale
In the preceding subsection, two different flow patterns can be identified. In this
subsection, we shall demonstrate that the turbulence characteristics in different
regimes are quite different based on the wake-interaction length scale. As suggested
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FIGURE 4. (Colour online) Streamwise evolution of the mean velocity Uc along the
centreline. (a) As a function of X/T0; (b) as a function of X/X∗.

by Townsend (1956), the growth of the width of a plane turbulent wake follows
δ ∝
√

T0X. It is tempting to study the wake interactions behind two side-by-side
square cylinders by using this scaling law, as has been done by Mazellier & Vassilicos
(2010). For a given separation distance Ld, the two wakes are expected to meet at
a downstream streamwise location X∗ where δ(X∗) ∝

√
T0X. Consequently, we can

now derive the wake-interaction length scale as X∗ = L2
d/T0. The original formula for

the wake-interaction scale by Mazellier & Vassilicos (2010) has been improved by
Gomes-Fernandes et al. (2012) to assess the drag coefficient of the wake generators.

The wake-interaction length scale X∗ indeed has been successfully applied
to fractal-generated turbulence (see, for example, Mazellier & Vassilicos 2010;
Gomes-Fernandes et al. 2012; Nagata et al. 2013). In fractal-generated turbulence, the
interactions of four wakes are involved, which significantly increase the complexities.
Recall that the wake-interaction length scale is based on the interactions of two
wakes. To fully investigate the wake interactions with different gap ratios Ld/T0 and
assess whether the evolution of turbulent flow scales with the wake-interaction length
scale, various centreline statistics are considered.

In figure 4, we plot the streamwise evolution of the mean centreline velocity
Uc/Uin versus X/T0 (a) and X/X∗ (b). Note that in previous studies concerning wake
interactions (Zhou et al. 2001; Alam et al. 2011; Alam & Zhou 2013; Alam et al.
2016; Zheng & Alam 2017), the size of the square cylinder, i.e. T0, was extensively
used as a scaling parameter for no particular reason. Thus, in this work, in addition
to the wake-interaction length scale X∗, the streamwise distance is also normalized by
T0. As one might expect, the value of Uc at X/T0 = 0 decreases with the increase of
the separation distance Ld/T0. However, at X/T0= 26, which is the most downstream
location considered, Uc/Uin in the case with Ld/T0 = 8 becomes largest. When the
streamwise distance X is normalized by X∗, the two profiles corresponding to the
cases with Ld/T0 = 6 and 8 collapse onto a single curve at X/X∗ > 0.2. Thus, the
largest Uc found in the case with Ld/T0 = 8 at X/T0 = 26 is attributed to its slower
spatial evolution with respect to the coordinate distance X. It is not surprising that
the wake-interaction length scale cannot be applied to the case with Ld/T0 = 4, since
only one large vortex street can be identified in the downstream region, as shown
in figure 3. The evolution of the streamwise root mean square (r.m.s.) velocity Urms

along the centreline is given in figure 5. It is clear that the profile of the case with
Ld/T0= 4 is fundamentally different from the other two profiles. However, due to the
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FIGURE 5. (Colour online) Streamwise evolution of the r.m.s. velocity Urms along the
centreline. (a) As a function of X/T0; (b) as a function of X/X∗.
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FIGURE 6. (Colour online) Streamwise evolution of the skewness of fluctuating
streamwise velocity Su along the centreline. (a) As a function of X/T0; (b) as a function
of X/X∗. The horizontal dashed line indicates Su = 0.

limited streamwise length, the decay region is missing for the case with Ld/T0 = 8.
Thus, we could not draw a solid conclusion concerning the wake-interaction scale.

Figures 6 and 7 show the evolution of the centreline skewness Su and flatness Fu,
where Su = 〈u′3〉/〈u′2〉3/2 and Fu = 〈u′4〉/〈u′2〉2. Extreme events with negative Su and
large Fu can only be found in the cases with larger gap ratios (Ld/T0 = 6 and 8).
In contrast, the profiles of Su and Fu for the case with Ld/T0 = 4 are more or less
flat. The most intense events occur at X/X∗ ' 0.2 and with downstream distance, Su
and Fu gradually acquire the corresponding values of a Gaussian distribution. Note
that the location with the largest negative value of Su, i.e. X/X∗' 0.2, is close to the
corresponding location in the turbulence generated by a single square grid (Zhou et al.
2014a; Laizet et al. 2015b). It is worth mentioning that in a previous study of the
turbulence generated by a single square grid (Zhou et al. 2014a), the corresponding
gap ratio was 9.1, which is close to the cases with Ld/T0 = 8. It is therefore clear
from figure 6 that only for the cases with larger Ld, can the extreme events be found
and the distribution of the velocity fluctuations in the upstream region is highly non-
Gaussian. As shown in figures 6 and 7, for the case with larger gap ratios (Ld/T0= 6
and 8) the use of the wake-interaction length scale X∗ does return a better description
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FIGURE 7. (Colour online) Streamwise evolution of the flatness of fluctuating streamwise
velocity Fu along the centreline. (a) As a function of X/T0; (b) as a function of X/X∗.
The horizontal dashed line indicates Fu = 3.

of the streamwise evolution of Su and Fu, albeit that the two profiles do not completely
collapse and the profiles for the case with Ld/T0 = 8 are not well converged.

In this subsection, we test the wake-interaction length scale X∗ and reveal that
for the case with Ld/T0 = 4, the streamwise evolution of various centreline statistics
does not scale with X∗. Recall that the derivation of X∗ is based on the interactions
of two independent wakes. And it is demonstrated that for the case with Ld/T0 = 4
the two wakes merge into one in the downstream region (i.e. X/T0 > 8). As a
result, it is not surprising that the wake-interaction length scale cannot be applied.
However, for the case with larger separation distance (i.e. Ld/T0 = 6 and 8), some
of the turbulence characteristics more or less scale with X∗, as happens in the case
of the grid-generated turbulence, rather than simply X/T0. Note that for a typical
low-blockage space-filling grid, the corresponding Ld/T0 is much larger. For example,
as shown in Nagata et al. (2013) the ratios of the largest mesh size to the thickness of
the largest bars considered are 12.4, 13.8 and 14.0, respectively. Thus, the separation
distances considered (i.e. Ld/T0 = 4, 6 and 8) may not well represent the two wake
problem when the wakes are far enough from each other.

3.3. Extreme events
As mentioned in the introduction, extreme events can be closely related to the
appearance of the −5/3 spectra. In this subsection, the characteristics along with
the formation mechanism of the extreme events shall be discussed. It can be seen
that extreme events are found in the cases with relatively larger gap ratios, namely,
Ld/T0 = 6 and 8. For the case with the largest gap ratio Ld/T0 = 8, however, the
dual-wake flow still undergoes transition at the furthest downstream location at which
the numerical data are available and the corresponding skewness Su takes a large
negative value. From now on we therefore concentrate attention on the case with
Ld/T0 = 6, which allows us to perform a complete investigation of the extreme
events.

Figure 8 shows the PDFs of the streamwise velocity fluctuations u′ and their time
derivative ∂u′/∂t at X/T0 = 6 and 26. Note that at X/T0 = 6 the most intense events
occur, whereas the turbulent flow is almost Gaussian distributed at X/T0=26 (i.e. Su'

0 and Fu' 3). The distributions of u′ and ∂u′/∂t at X/T0= 6 have significant fat tails
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FIGURE 8. (Colour online) PDF distributions of (a) u′ and (b) ∂u′/∂t at X/T0= 6 and 26.
The corresponding Gaussian fits at X/T0 = 26 (represented by red open circles) are also
plotted for comparison.
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FIGURE 9. (Colour online) Time traces of (a) u′/Urms and v′/Vrms and (b) time traces of
Ω and u′/Urms at X/T0 = 6 and Y/T0 = 0. The origin of time for all lines is the same.
Two different time frames (TF1 and TF2) with the appearance of extreme events can be
identified.

compared with those at X/T0 = 26, suggesting the probability of the rare events (i.e.
intense value of u′ and ∂u′/∂t) at X/T0 = 6 is considerably larger.

To provide deeper insight into the extreme events, figure 9(a) presents the
time traces of the centreline velocity fluctuation u′/Urms and v′/Vrms at X/T0 = 6,
where v′ and Vrms are the vertical velocity fluctuations and the corresponding r.m.s.
velocity, respectively. The variations of u′ and v′ are relatively smooth and exhibit
quasi-periodic (regular) oscillations except for the TF1 and TF2. Figure 9(b) shows
the time evolution of the magnitude of vorticity Ω and u′ at X/T0= 6, which suggests
that non-turbulent regions (i.e. quiescent regions with negligibly small magnitude of
vorticity) are dominant. The occurrences of the extreme events are only found in the
turbulent region (i.e. fluctuating region with high vorticity). Note that in the case of
the dual-wake flow, the most intense events occur at a location where the flow is not
always in the turbulent region, as in the turbulence generated by a single square grid
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FIGURE 10. (Colour online) Joint PDFs of u′/Urms and v′/Vrms. (a) At X/T0 = 6; (b) at
X/T0 = 26. A total of six contour levels (i.e. 0.1, 0.05, 0.01, 0.005, 0.001 and 0.0005)
are shown.

(see figures 5 and 8 in Zhou et al. (2014a); figures 9 and 10 in Laizet et al. (2015b)).
Another finding from figure 9 concerning the occurrence of the extreme events is that
u′ and v′ are closely correlated (i.e. in phase within TF1 and anti-phased within TF2).
More quantitatively, the joint PDFs of u′ and v′ at X/T0 = 6 are shown in figure 10.
The joint PDFs at a further downstream location X/T0 = 26 are also presented for
comparison. Figure 10(a) suggests that the flow particles with either high positive
or high negative v′ tend to possess large negative u′. This observation is therefore
in accord with the assumption that the large magnitude of v′ is more likely to be
associated with a large negative u′. The contour lines corresponding to rare events
are approximately symmetrical with respect to the horizontal line, i.e. v′/Vrms = 0,
confirming that u′ and v′ can be either in phase or out of phase with each other. At
X/T0 = 26, however, all contour lines acquire a ‘pancake’ shape instead, suggesting
that u′ and v′ are essentially statistically uncorrelated.

The formation of the extreme events can be explained by using a Lagrangian
description. One can imagine that the local fluid particles along the centreline with
large magnitude of v′ have a better chance of being from a location with a larger
vertical distance from the centreline. In the near field of a square cylinder, the
turbulent wake consists of vortex tube clusters, which are usually characterized by a
large magnitude of vorticity, and the velocity deficit is still significant. These slower
vortex tube clusters serve as obstacles and can easily slow down the local turbulent
flow, resulting in the extreme events with negative Su. Relying on the direction of the
vertical movement, u′ and v′ can be either in phase or out of phase with each other
along the centreline as shown in figures 9 and 10.

4. Energy spectra and structure functions

In this section, we shall answer the two important remaining questions: the
relationship between the occurrence of the extreme events and the well-defined −5/3
energy spectra and also the characteristics of the second-order structure function at
the location where the extreme events occur and the flow is highly intermittent.
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FIGURE 11. (Colour online) (a) Energy spectra of u′ at X/T0= 6 and 26 for the case with
Ld/T0 = 6. The vertical dashed line indicates St= f T0/Uin = 0.142; (b) the corresponding
compensated energy spectra Euu( f T0/Uin)

5/3. The horizontal (i.e. frequency) axis is linear.

4.1. One-dimensional energy spectra
Before investigating the relationship between the extreme events and the energy
spectra, we need to obtain the shape of the one-dimensional energy spectra first. The
one-dimensional energy spectra of the streamwise velocity fluctuation u′ at X/T0 = 6
and 26 along the centreline for the case with Ld/T0 = 6 are given in figure 11.
Note that at the upstream location (i.e. X/T0 = 6) the turbulent flows are highly
non-Gaussian distributed and highly intermittent, whereas at the far downstream
location (i.e. X/T0 = 26) the flow field becomes approximately Gaussian distributed
and approximately fully turbulent. The spectra at the two chosen locations display
pronounced peaks at the normalized frequency St = f T0/Uin = 0.142 corresponding
to the vortex shedding frequency (more specifically, the regular and slow oscillation
of u′ at X/T0 = 6 as shown in figure 9). The dominant frequency f T0/Uin = 0.142
is approximately half the value found in the flow behind a single square cylinder.
For example, as presented in Portela, Papadakis & Vassilicos (2017) when the inlet
Reynolds number is ReT0 = 3900, the corresponding f T0/Uin is 0.267. In a previous
experiment of dual-wake flows with a slightly smaller gap ratio Ld/T0 = 5 and much
larger inlet Reynolds number ReT0 = 47 000, the returned St is 0.128, which is close
to our simulation result (Alam & Zhou 2013).

Compared with X/T0 = 26, at X/T0 = 6 the vortex shedding contains more energy;
that is the peak value of Euu is much larger at X/T0 = 6. However, except for the
narrow frequency range corresponding to vortex shedding, the energy spectrum at
X/T0 = 6 is always much smaller than that at X/T0 = 26. This is due to the smooth
evolution of u′ as shown in figure 9, albeit the extreme events bearing large fluctuating
energy (see figure 9). Note that even the velocity fluctuations at X/T0 = 6 and 26
appear to have more or less identical strengths (magnitudes of Urms) (see figure 5),
their intrinsic properties are actually quite different as already shown in figures 8
and 11.

The energy spectrum at X/T0 = 6 exhibits a well-defined −5/3 power law with a
range for more than a decade. With downstream distance, however, the range of the
−5/3 power law is eroded, albeit the corresponding r.m.s. velocity is even slightly
larger (see figure 5) and the local Reynolds numbers based on the Taylor microscale
remains approximately unchanged, that is, Reλ ' 100 (not shown herein). Another
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interesting finding is that for both locations, the shedding frequency St= 0.142 defines
the beginning of the −5/3 power-law energy spectra.

Similar observations have already been reported in various kinds of turbulent flows.
For instance, in the near field of grid-generated turbulence (single square grid (Laizet
et al. 2015b; Paul et al. 2017), regular grid (Isaza, Salazar & Warhaft 2014), fractal
grid (Laizet, Vassilicos & Cambon 2013; Hearst & Lavoie 2014)), the power spectrum
exhibits a well-defined power law with an exponent close to −5/3 and the range of
the −5/3 scaling narrows with downstream distance. Zhou et al. (2018) demonstrated
in a dual-plane jet flow, the range of the −5/3 power law also decreases further
downstream. Even downstream of a single square prism, a similar observation can also
be found (Portela et al. 2017).

4.2. Filtered fluctuating velocity fields
To take the observation in the preceding subsection (i.e. well-defined −5/3 spectra can
be found at both streamwise locations considered) one step further, the relationship
between the energy spectra and the extreme events will be discussed here. At
X/T0 = 6, the flow field is not fully turbulent; there are alternations between laminar
large-scale oscillations and strong turbulent fluctuations (e.g. TF1 and TF2). To shed
light on the physical mechanism responsible for the wider range of the −5/3 power
law at X/T0 = 6 in the high-frequency range, we first attempt to subtract the signal
in the low-frequency range. The velocity fluctuating signals are passed through a
highpass filter with the low cutoff frequency f T0/Uin being 2.0. Thus, the filter data
are expected to contain signals with frequency f T0/Uin larger than 2.0, where the
−5/3 power law is absent. Throughout this paper, the velocity data are filtered using
eighth-order zero-lag (i.e. bidirectional) Butterworth filters (e.g. highpass, bandpass
and lowpass filters). And the scripts <, ∼ and > stand for statistics associated with
high-, intermediate- and low-frequency components, respectively. For instance, the
velocity fluctuation can be decomposed as u′ = u′> + u′

∼
+ u′<. The use of high-order

filters allows us to efficiently remove the unwanted components. Considering the
fact that filters chosen are bidirectional, the filtered signals can be expected to be
delay compensated. A further validation of the involved filtering processes is given
in supplementary appendix D.

Figure 12(a) shows the spectrum of filtered velocity fluctuations u′< corresponding
to the high-frequency range f T0/Uin > 2.0. For comparison, the spectrum of the
entire fluctuating signal u′ already shown in figure 11 is also included. The profile
corresponding to u′< in the high-frequency range remains virtually intact and
unaffected. In contrast, the fluctuating signals within the low-frequency range are
efficiently subtracted. We now apply the chosen highpass filter to the time traces
of u′ shown in figure 9. As can be seen in figure 12(b), except for the fluctuating
signals in the TF1 and TF2, the filtered signals are in a relatively quiescent state
with negligible magnitude. This observation suggests that the high-frequency signals
contribute to the extreme events.

We further divide the intermediate range (i.e. 0.2< f T0/Uin < 2.0), where the −5/3
spectrum can be found, into two subranges (u′

∼
= u′

∼,l+ u′
∼,h) to explore the erosion of

the −5/3 scaling. Figures 13(a) and 13(b) show the energy spectrum and the velocity
signal in the high-frequency zone of the −5/3 scaling range (i.e. 0.8< f T0/Uin < 2.0).
The fact that the non-zero fluctuations are mainly found in TF1 and TF2 indicates
an intimate relationship between intermittent events and the extended −5/3 power
law. In other words, we could safely draw the conclusion that the occurrences of the
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FIGURE 12. (Colour online) (a) Energy spectrum of the filtered velocity signal u′</Uin
subject to a highpass filter with a cutoff frequency of 2.0. Energy spectrum of the original
velocity signal (i.e. entire signal) u′ is also shown for comparison. The vertical dashed line
indicates f T0/Uin = 2. (b) Time traces of the filtered signals u′</Uin. The time evolution
of the original velocity signals u′ shown in figure 9 is also plotted as a comparison.
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FIGURE 13. (Colour online) (a) Energy spectrum of the filtered velocity signal u′
∼,h/Uin

subject to a band-pass filter with a lower cutoff frequency of 0.8 and a higher cutoff
frequency of 2.0. Energy spectrum of the original velocity signal (i.e. entire signal) u′
is also shown for comparison. The vertical dashed lines indicate f T0/Uin = 0.8 and 2.0.
(b) Time traces of the filtered signal u′

∼,h/Uin. The time evolution of the original velocity
signal u′ shown in figure 9 is also plotted as a comparison.

extreme events (TF1 and TF2) contribute to the formation of the −5/3 power law in
the high-frequency range (i.e. f T0/Uin & 0.8 in figure 12b). The range over which the
−5/3 power law can be found therefore is determined by two turbulence behaviours,
one being the large-scale vortex shedding and the other being the occurrence of the
extreme events. With increasing downstream distance, the strength of the extreme
events becomes weaker (see figure 6a), which results in the deterioration of the range
of the −5/3 power law.
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FIGURE 14. (Colour online) (a) Energy spectrum of the filtered velocity signal u′
∼,l/Uin

subject to a band-pass filter with a lower cutoff frequency of 0.2 and a higher cutoff
frequency of 0.8. Energy spectrum of the original velocity signal (i.e. entire signal) u′
is also shown for comparison. The vertical dashed lines indicate f T0/Uin = 0.2 and 0.8.
(b) Time traces of the filtered signal u′

∼,l/Uin. The time evolution of the original velocity
signal u′ shown in figure 9 is also plotted as a comparison.

It must, however, be pointed out that there is a large part of the −5/3 power law
which is not in the highpass filtered field, that is, the intermediate-frequency range
0.2. t/(T0/Uin). 0.8. To investigate what is responsible for this part of the spectrum,
we use a bandpass filter to extract the velocity signals within this range. And the
higher and lower cutoff frequencies are set to f T0/Uin= 0.8 and 0.2, respectively (see
figures 14a and 14b). The time-traces of the filtered signals u′

∼
demonstrate that the

strength of the filtered velocity u′
∼

is weak and as expected the oscillation behaviour
possesses smaller periods. In contrast to the formation of the −5/3 scaling in the
high-frequency range where the turbulent motions are dominant, in the intermediate-
frequency range both laminar and turbulent motions contribute to the appearance of
the −5/3 scaling.

Let us finally consider the behaviour in the low-frequency range (i.e. f T0/Uin .
0.2), which stems from large-scale vortex shedding. A lowpass filter with the cutoff
frequency of f T0/Uin= 0.2 is used. Expect for TF1 and TF2, as shown in figure 15(b)
the large-scale periodic oscillations of u′> corresponding to the energy containing range
hold most of the energy.

Figure 16 shows the PDFs of the normalized velocity components u′>/U
>
rms,

u′
∼
/U∼rms and u′</U

<
rms at X/T0 = 6. The probability distribution of u′/Urms is shown

for comparison. Except for the profile corresponding to u′<, all other probability
distributions are negatively skewed and the profiles of u′

∼
and u′< exhibit pronounced

fatter tails. The statistical characteristics of u′, u′>, u′
∼

and u′< (e.g. r.m.s., skewness
and flatness) at X/T0 = 6 and 26 are listed in table 2. For instance, the skewness of
u′> is obtained as S(u′>) = 〈u

′3
>〉/〈u

′2
>〉

3/2. At the downstream location X/T0 = 26, the
definitions of the components u′>, u′

∼
and u′< are the same as those at X/T0 = 6. The

negative values of S(u′>) and S(u′
∼
) at X/T0= 6 imply that the probability distributions

within different frequency ranges are negatively skewed, whereas S(u′<)' 0 suggests
a symmetrical shape. And the velocity signals in the intermediate- and high-frequency
ranges are significantly intermittent for F(u′

∼
) = 33 and F(u′<) = 79. These findings
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FIGURE 15. (Colour online) (a) Energy spectrum of the filtered velocity signal u′>/Uin
subject to a lowpass filter with a lower cutoff frequency of 0.2. Energy spectrum of the
original velocity signal (i.e. entire signal) u′ is also shown for comparison. The vertical
dashed line indicates f T0/Uin = 0.2. (b) Time traces of the filtered signal u′>/Uin. The
time evolution of the original velocity signal u′ shown in figure 9 is also plotted as a
comparison.

X/T0 Urms U>
rms U∼rms U<

rms S(u′) S(u′>) S(u′
∼
) S(u′<) F(u′) F(u′>) F(u′

∼
) F(u′<)

6 0.11 0.098 0.038 0.012 −0.47 −0.21 −1.5 0.0087 6.8 3.0 33 79
26 0.14 0.11 0.077 0.018 −0.13 −0.16 −0.033 0.028 3.2 3.1 3.7 6.8

TABLE 2. Strength (i.e. r.m.s.), skewness and flatness of u′, u′>, u′
∼

and u′< at X/T0 = 6
and 26.

are in accord with the corresponding probability distributions shown in figure 16.
With downstream distance at X/T0 = 26, the magnitudes of the flatness are close to
that of a Gaussian distribution.

The intermittent features found at X/T0 = 6 in the intermediate- and low-frequency
ranges are distinctly different from the so-called ‘dissipation-range intermittency’,
which is believed to be only associated with scales that are comparable to or smaller
than the Kolmogorov dissipation scale (see, for example, Frisch (1995) and references
therein). It has been suggested that the concept of ‘dissipation-range intermittency’
does not necessarily violate the self-similarity in the inertial subrange, which is not
the case for our study.

We close this subsection with a short remark concerning the appearance of a
well-defined −5/3 power-law spectrum in the near field, where the turbulent flow
is still developing and suffers a subsequent deterioration in the −5/3 range. First,
the corresponding velocity fluctuations are highly intermittent, which can be roughly
resolved into two parts, one being the large-scale vortex shedding and the other
being the occurrence of the extreme events. As has already been confirmed in § 3,
the formation of the extreme events is not necessarily directly related to the local
Reynolds number. This suggestion is in accord with the previous findings that a
well-defined −5/3 power law can be found at the location where the local Reynolds
number is very small. Similar conclusions have been drawn by previous researchers.
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FIGURE 16. (Colour online) Probability distributions of u′>/U
>
rms, u′

∼
/U∼rms and u′</U

<
rms at

X/T0 = 6. The profile of P(u′/Urms) is also shown for comparison.

It was pointed out by Kraichnan (1974) that ‘Kolmogorov’s 1941 theory has achieved
an embarrassment of success. The −5/3-spectrum has been found not only where it
reasonably could be expected but also at Reynolds numbers too small for a distinct
inertial range to exist and in boundary layers and shear flows. . . ’. A similar but more
recent statement is as follows: ‘Conditions for the occurrence of a −5/3 spectrum
appear to be more “forgiving” than those initially outlined by Kolmogorov’ (Isaza
et al. 2014).

It is the large-scale vortex shedding and the occurrence of the intermittent
fluctuations instead of the local Reynolds number Reλ that actually determine the
range of the −5/3 power law. Our current work contributes to the understanding
of the appearance of the −5/3 power-law scaling in the near field of a spatially
developing turbulent flow (see, for example, Gomes-Fernandes et al. 2014; Laizet
et al. 2015b; Paul et al. 2017; Portela et al. 2017). Finally, it should be stressed
that the frequency range over which the spectrum has an exponent close to −5/3
is defined by two distinctly different behaviours corresponding to large-scale vortex
shedding and occurrence of the extreme events. This finding obviously disobeys the
predictions given by Kolmogorov (1941a,b,c). It must be pointed out that in this
work, we confirm that the extreme events and the −5/3 energy spectrum at X/T0= 6
are closely related. One cannot claim that it is the extreme events that are causing
the −5/3 energy spectrum.

4.3. Second-order structure function
In this subsection, we address the final question raised in the introduction section,
that is, the shape of the second-order structure function in the flow region where the
extreme events can be identified. Thus, we explore the second-order structure function
〈δu′2(1t)〉 with δu′(1t) being u′(t + 1t) − u′(t) at the two extensively investigated
locations (i.e. X/T0=6 and 26). According to our definition, the second-order structure
function 〈δu′2(1t)〉 depends on the streamwise location X and time difference 1t.
According to the Kolmogorov phenomenology, in the so-called ‘inertial subrange’ we
have the well-known 2/3 power law (i.e. equivalent to the −5/3 energy spectrum
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FIGURE 17. (Colour online) Second-order structure functions 〈δu′2(1t)〉 at X/T0 = 6 and
26 along the centreline. The vertical dashed line corresponds to half-vortex shedding cycle
(i.e. the phase difference between u′(1t) and u′(t+1t) is π).

in frequency space) albeit the range of the 2/3 power law in real space is always
much smaller than the frequency range over which the −5/3 power law can be found
(see, for example, Tennekes & Lumley 1972; Frisch 1995; Pope 2000). It is worth
mentioning that structure functions considered here are actually averaged structure
functions.

Figure 17 shows 〈δu′2(1t)〉 versus 1tUin/T0 at X/T0=6 and 26 along the centreline.
At X/T0 = 6 the expected 2/3 power law is absent and the turbulent flow exhibits
a substantial power-law range with a large exponent close to 1 in the intermediate
range 0.1 .1tUin/T0 . 3 instead. In contrast, at the downstream location X/T0 = 26
the second-order structure function acquires an approximate 2/3 scaling law within
the intermediate range 0.3 . 1tUin/T0 . 3, which is in accord with Kolmogorov’s
prediction. Compared with the upstream location X/T0 = 6, at X/T0 = 26 the −5/3
frequency range is smaller but still a discernible 2/3 power law can be identified.
Thus, the absence of the 2/3 scaling law at X/T0 = 6 is unlikely to be associated
with the squeezing effect introduced by the Fourier transform.

For sufficiently small 1t, the Taylor expansion of the velocity difference is
u′(t + 1t) − u′(t) = (∂u′(t)/∂t)1t + O(1t2). The second-order structure is therefore
〈δu′2(1t)〉 = 〈(∂u′(t)/∂t)2〉1t2

+ O(1t3). Figure 17 further shows that for small 1t,
the second-order structure functions at X/T0= 6 and 26 indeed acquire a well-defined
power law with an exponent close to 2, implying that in current DNSs the small
dissipation scales are well resolved in time.

To shed light on the formation mechanism of the substantial 1 power law at X/T0=

6, the second-order structure functions of the filtered flow fields (i.e. u′>, u′
∼

and u′<)
are computed (see figure 18a). The second-order structure functions at X/T0= 26 are
shown in figure 18(b) as a further comparison. Obviously, at sufficiently large 1t, we
have 〈δu′2<(1t)〉 = 2(U<

rms)
2, 〈δu′2

∼
(1t)〉 = 2(U∼rms)

2 and 〈δu′2>(1t)〉 = 2(U>
rms)

2, which is
indeed the case as shown in both figures 18(a) and 18(b).

From Parseval’s theorem, we can derive the following relations:

〈δu′2(1t)〉 = 〈δu′2<(1t)〉 + 〈δu′2
∼
(1t)〉 + 〈δu′2>(1t)〉 (4.1)
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FIGURE 18. (Colour online) Second-order structure functions of u′<, u′
∼

and u′> at (a)
X/T0 = 6 and (b) X/T0 = 26 along the centreline. For comparison, the corresponding
profile of u′ is also plotted. From bottom to top, the three horizontal dashed lines indicate
2(U<

rms)
2, 2(U∼rms)

2 and 2(U>
rms)

2. The vertical dashed lines correspond to half-vortex
shedding cycle.

and

〈δu′2
∼
(1t)〉 = 〈δu′2

∼,l(1t)〉 + 〈δu′2
∼,h(1t)〉. (4.2)

A brief justification of the two equations can be found in supplementary appendix D.
These two equations allow us to quantify the contribution of each velocity components,
u′>, u′

∼
and u′<, on the profile shape of 〈δu′2(1t)〉. Figure 18(a) implies that the

discrepancy from the 2/3 scaling is probably associated with the strong vortex
shedding. More specifically, for the time difference 1tUin/T0 ' 3, which defines the
end of the 1 slope, the large-scale velocity components u′> make an overwhelming
contribution to 〈δu′2(1t)〉.

At X/T0=6 and 26, the second-order structure function of u′> acquire a well-defined
2 power-law scaling in the range 1tUin/T0 . 3. Moreover, the vortex shedding
periods are more or less the same (see figures 11 and 17). That is, the time scales
of u′> at X/T0 = 6 and 26 are close to each other. Therefore, the stronger vortex
shedding at X/T0 = 6, as can be seen from the height of the oscillations in figure 18
and peak values of the spectra in figure 11, corresponds to a large coefficient
〈(∂u′(t)/∂t)2〉, which can significantly contaminate the profile of 〈δu′2(1t)〉 within the
range 0.3 .1tUin/T0 . 3 (see figure 18a). In other words, fluid motions within this
intermediate range are not sufficiently separated from large-scale motions and can
directly ‘feel’ the large-scale vortex shedding. This observation violates Kolmogorov’s
universal equilibrium hypothesis. In the range 0.1 . 1tUin/T0 . 0.3, however, the
interpretation of the appearance of the approximate 1 power law should not be
pushed too far since this exponent lies between the scaling law of 2/3 and 2. It is
difficult to accurately compute the scaling law in the transition region between the
2/3 power-law range and the dissipation range with an exponent close 2. We again
demonstrate that the −5/3 energy spectrum found at X/T0= 6 is not the well-known
Kolmogorov −5/3 spectrum. On the other hand, at X/T0 = 26, the occurrence of
the 2/3 scaling of the second-order structure function along with the −5/3 energy
spectrum appear to be in accord with the Kolmogorov phenomenology.
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5. Conclusion

The streamwise evolutions of the statistical characteristics of turbulent flows behind
two side-by-side square cylinders with different gap ratios (i.e. Ld/T0 = 4, 6 and 8)
are investigated by using DNSs. The wake-interaction length scale X∗, which is widely
used to normalize the streamwise distance in the grid-generated turbulence, is explored
in this paper. It is demonstrated that for the case with large gap ratios, in which two
vortex streets are more persist, X∗ can be used to describe the evolution of some
important turbulence characteristics, at least to some extent.

To shed light on the formation mechanism of the extreme events, the turbulent flows
at X/T0 = 6 and 26 in the case with Ld/T0 = 6 are extensively investigated. Our
study confirms that the occurrences of the extreme events are associated with the large
magnitude of v′. The energy spectrum at X/T0 = 6, where turbulent flow is highly
intermittent with the occurrence of the extreme events and undergoes transition to a
fully turbulent state, acquires a well-defined −5/3 power law with a range for almost
a decade. By extracting the velocity signals in the high-frequency region, we provide
the first direct evidence that the occurrence of the well-known −5/3 power spectrum
is directly attributed to the extreme events. In the intermediate-frequency range, both
laminar and turbulent behaviours contribute to the formation of the −5/3 scaling law.
In the downstream region X/T0 = 26, however, the strength of the extreme events
becomes weaker. Consequently, the range of the −5/3 energy spectrum narrows. The
absence of the 2/3 power law of the second-order structure function at X/T0= 6 finds
its roots in the strong large-scale vortex shedding and the motions in the intermediate
range can directly ‘feel’ the large-scale vortex shedding, which violates Kolmogorov’s
universal equilibrium hypothesis.

In this work, we prove that the extreme events and the −5/3 power-law scaling
are closely related. Not limited to the dual-wake flow presented in this study, the
appearance of the non-Kolmogorov −5/3 power-law scaling can also be found in the
near field of various kinds of turbulent flows, as has already been reported. This work
may open an avenue for understanding this phenomenon.

To investigate what physical mechanisms are responsible for the emergence of the
−5/3 spectrum at X/T0 = 6, we need to explore the corresponding scale-by-scale
energy budget by resorting to the Kármán–Howarth–Monin–Hill equation, which is
directly derived from the Navier–Stokes equations without making any assumptions
and consequently can be used to study the energy transfer process in any kind of
turbulence. Also, how the strong vortex shedding in the upstream region affects the
energy cascade is another important topic, which should be pursued in future works.
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