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Abstract. In this work we investigate the effect of relativistic degeneracy on different
properties of low-dimensional quantum plasmas. Using the dielectric response from
the conventional quantum hydrodynamic model, including the quantum diffraction
effect (Bohm potential) on free electrons, we explore the existence of the Shukla–
Eliasson attractive screening and possibility of the ion structure formation in low-
dimensional, completely degenerate electron–ion plasmas. A generalized degeneracy
pressure expression for arbitrary relativity parameter in two-dimensional case is
derived, indicating that change in the polytropic index (change in the equation of
state) for the two-dimensional quantum fluid takes place at the electron number-
density of n0 � 1.1 × 1020 cm−2 whereas this is known to occur for the three-
dimensional case in the electron density of n0 � 5.9 × 1029 cm−3. Also, a generalized
dielectric function valid for all dimensionalities and densities of a degenerate electron
gas is calculated, and distinct properties of electron–ion plasmas, such as static
screening, structure factor and Thomson scattering, are investigated in terms of
plasma dimensionality.

1. Introduction
A large portion of recent literature belongs to the
investigation of dense quantum plasmas with applica-
tions ranging from the low-density ultracold Rydberg
plasma and the unitary Fermi gas to warm dense matter
and astrophysical condensed hot matter (Shukla and
Eliasson 2011; Shukla and Akbari-Moghanjoughi 2013).
Recent improvements in quantum hydrodynamic (QHD)
and quantum magnetohydrodynamic (QMHD) theor-
ies, including relativistic momentum, spin magnetization
and wave–particle interaction features (Manfredi 2005;
Shukla 2009; Shukla and Eliasson 2009; Shukla and
Eliasson 2010), have turned the primary theories to
one of the most useful theories for the investigation
of diverse collective properties of dense fermionic sys-
tems, such as instabilities, localized excitations, light–
matter interactions and optical and electrical properties
of plasmas. Application of QHD theories has been
shown to be capable of explaining some key features
in quantum systems, such as quantum stream instability
(Haas 2011), negative differential resistivity of semi-
conductors (Gardner 1994), white dwarf core-collapse
beyond a critical mass-density (Akbari-Moghanjoughi
2013a), ordered structure formation in metallic density
plasmas (Shukla and Eliasson 2012), warm dense matter
(Glenzer et al. 2007) and many others.

One of the most important features of dense astro-
physical plasmas is the relativistic degeneracy, which is
the direct consequence of Pauli-exclusion and
Heisenberg-uncertainty effects. In a compact star like
a white dwarf, the internal electron pressure rises due to

the existence of huge inward gravitational pull, which
consequently leads to increase in electron momentum
and kinetic energy. Since the electrons are fermions
and degenerate quantum species confined to specific
energy levels, their column collisions with other elec-
trons are limited due to the Pauli-blocking mechanism,
and the electron momentums become relativistic where
their momentum becomes comparable with or even
larger than their rest energy, a phenomenon known
as the relativistic degeneracy (Chandrasekhar 1939).
Therefore, as one moves deeper into a white dwarf,
the gravitational pressure increases and the quantum
degeneracy becomes more relativistic. The relativistic
degeneracy is known to lead to many critical features
of quantum plasmas such as the mass-limit and core-
collapse in white dwarf stars (Chandrasekhar 1953,
1984), radical change in the equation of state of de-
generate electron gas (Kothari and Singh 1942) and
distinct features in linear and nonlinear wave dynamics
(Akbari-Moghanjoughi 2010a, b). More recently, using
the QHD approach, including the relativistic degeneracy
and quantum diffraction effects on electron–ion plasmas,
it has been shown that white dwarfs maximally scatter
electromagnetic waves at the soft-Xray regime in their
surface area with a typical mass-density of 106gr cm−3

(Akbari-Moghanjoughi 2013b). On the other hand, real
low-dimensional quantum plasmas or electron fluids
are expected to be produced in the near future. In
fact, such low-dimensional degenerate electron fluids are
found in recently manufactured atom-thick monolayer
graphene, carbon nanotubes or fullerene structures and
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other allotropes of carbon with some extraordinary
collective plasmon features (Castro Neto et al. 2009). We
organize the paper as follows. A generalized dielectric
function is calculated based on QHD model in Sec. 2.
The static structure (SSF), radial distribution function
(RDF) and Thomson elastic scattering cross section
are calculated in Sec. 3. Discussion and summary are
presented in Sec. 4.

2. The generalized hydrodynamic model and
dielectric function

Consider an η-dimensional homogenous degenerate elec-
tron gas with a fixed inertial singly ionized ion back-
ground. We assume the plasma to be quasineutral and
collisionless. Similar to the case of three-dimensional
quantum plasma, the governing hydrodynamic equations
are as follows:

dn

dt
+ n∇ · u = 0,

me

du

dt
= −eE − 1

n
∇PG +

�2

2me

∇
(

Δ
√
n√
n

)
, (1)

∇ · E = 4πe(n0 − n),

where n, u, E and PG denote the number-density, the
electron fluid velocity, the electrostatic field and the
degeneracy pressure, respectively. The last force in
the momentum equation corresponds to the Bohm po-
tential, causing the collective electron wave interference
and the Shukla–Eliasson attractive phenomenon. Other
symbols, such as me, � etc., have their standard meanings.
The generalized quantum degeneracy pressure, PG, is
a function of the relativity parameter, R = pFe/mec

(pFe being the relativistic Fermi-momentum) due to the
fact that the electron relativistic velocity is a nonlin-
ear function of the momentum, in general, i.e. u =
cx/

√
1 + x2 with x = p/mec. This can be physically

interpreted as if the electrons confined in a Pauli’s
quantum-box become relativistic as the external pressure
or the electron number-density increases. To this end, we
derive the generalized relativistic degeneracy pressure
for the two-dimensional case by simply following the
procedure for three-dimensional case (Chandrasekhar
1939). We use the general relation for the relativistic
degeneracy pressure as

Pη =
1

η

∫ pFe

0

pu(p)nη(p)dp, n3(p) =
8πp2

h3
, n2(p) =

4πp

h2
,

(2)

where η = 1, 2, 3 denotes the dimensionality of the
system, and the number-densities, nη =

∫ pFe
0

nη(p)dp, for
η-dimensions are n3 = 8πm3

ec
3R3

3/3h
3, n2 = 2πm2

ec
2R3

2/h
2

and n1 = 2mecR1/h, respectively. Therefore, we have
R3 = (n/nc3)

1/3, R2 = (n/nc2)
1/2 and R1 = (n/nc1) with

nc3 � 5.9 × 1029 cm−3, nc2 � 1.1 × 1020 cm−2 and nc1 �
8.2 × 109 cm−1 being relativity parameters for

η-dimensional cases, respectively. In the forthcoming
analysis we will avoid using the dimensionality index for
n, for clarity. We readily derive the relativistic degeneracy
pressures, Pη , as

P3 =
πm4

ec
5

3h3

[
R3

(
2R2

3 − 3
)√

1 + R2
3 + 3sinh−1R3

]
,

P2 =
2πm3

ec
4

3h2

[
2 +

(
R2

2 − 2
)√

1 + R2
2

]
, (3)

P1 =
m2

ec
3

h

(
R1

√
1 + R2

1 − sinh−1 R1

)
.

Before proceeding, an important point needs clear
attention. It might be argued that for the case of a
relativistic degenerate plasma one should apply the fully
relativistic hydrodynamics model, and the Bohm poten-
tial calculated from the non-relativistic approach is not
appropriate in this context. However, this is not the case
because the relativistic degeneracy of an electron gas
starts at a mass-density of about 4.19 × 106 gr cm−3

in the core of a 0.3 solar-mass white dwarf, which
corresponds to the Fermi momentum, PFe = 1.29 mec

(or the relativistic degeneracy parameter value of R03 =
1.29) or the threshold velocity of uFe = 0.63 c with
the Fermi relativistic factor of γFe = 1.287, indicating
that one may safely use a QHD model, ignoring the
relativistic electron dynamic features.

It is interesting to note in Fig. 1 that the polytropic
index, γη , of the generalized pressure, Pη/P0η = (n/ncη)

γη ,

has limiting values of {5/3, 4/3}, {2, 3/2} and {3, 2} for
the extreme non-relativistic and ultra-relativistic degen-
erate cases of Rη = {0,∞}, respectively, for three- and
two-dimensional electron fluids. On the other hand, we
can also calculate generalized potential for the degener-

acy pressure as Ψη =
∫

(∂RPη)/nηdRη = mec
2
√

1 + R2
η .

This is a surprisingly universal relation for all dimension-
alities with Rη defined above in terms of the correspond-
ing electron number-densities. Hence, we may apply the
exact findings of Akbari-Moghanjoughi (2010b) to the
two-dimensional case just with different definition for
relativity parameter. Ignoring the Coulomb and electron
exchange effects, we find the following static dielectric
function for the two-dimensional degenerate electron
fluid,

Dη(0, k) = 1+ω2
pη

[
�2k4

4m2
e

+ Tηc
2k2

]−1

, Tη =
R2

0η

3
√

1 + R2
0η

,

(4)

where ωpη =
√

4πn0ηe2/me is the electron plasmon

frequency and R02 = (n02/nc2)
1/2 is the two-dimensional

relativistic degeneracy parameter. Following the original
work by Shukla and Eliasson (2012), we write the
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Figure 1. (Colour online) Variation of the polytropic index γη with respect to the normalized electron number-density for two-
and three-dimensional quantum electron gas. The dashed lines correspond to the liming cases of Rη = {0,∞} for each dimension.

0 1 1025 2 1025 3 1025 4 1025
0.0

0.2

0.4

0.6

0.8

1.0

n03 cm 3

α 3

0 5.0 108 1.0 109 1.5 109 2.0 109
0.0

0.2

0.4

0.6

0.8

1.0

n02 cm 2

α 2

Figure 2. (Colour online) Variation of the Shukla–Eliasson potential parameter, αη , with respect to the electron number-density,
n0η . The densities αη > 1/4(αη < 1/4) represent the attractive (repulsive) potential around the stationary positive test charge in
quasineutral electron–ion quantum plasmas.

electrostatic potential as

φη(r) =
Q

4π2

∫ [
1 + bη

k2 + k2
+η

+
1 − bη

k2 + k2
−η

]
exp(ik · r)dηk,

(5)

with the required parameters defined as

k2
∓η = k2

0η

1 ∓
√

1 − 4αη

2αη
, bη =

√
1 − 4αη,

αη =
�2ω2

pη

4m2
ec

4T 2
η

, k0η =
ωpη

c
√
Tη

. (6)

The positive stationary charge-screening potential for
the case of a three-dimensional quantum electron gas is

φ3(r) =
Q

2r

[
(1 − b3)

e−k−3r

r
+ (1 + b3)

e−k+3r

r

]
, (7)

where we have used the integration formula in spherical
polar coordinate

lim
ν→0

∫ 2π

0

[∫ 1

−1

(∫ ∞

0

exp(ikrμ − νk)

k2 + k2
s

k2dk

)
dμ

]
dϕ

= 2π2 e−ksr

r
, μ = cos θ. (8)

On the other hand, for the screening potential of a
two-dimensional electron gas, we obtain

φ2(r) =
Q

2π
[(1 − b2)K0(k−2r) + (1 + b2)K0(k+2r)] , (9)
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Figure 3. (Colour online) Electrostatic Shukla–Eliasson screening potential around a stationary positive charge Q within the two-
(solid curves) and three-dimensional (dashed curves) quantum electron fluids. The attractive (the left plot) and repulsive (the
right plot) indicate the transition of Fermi gases when the electron number-density value crosses the critical case of α0η = 1/4.

where we have used the integration formula in two-
dimensional polar coordinate

∫ ∞

0

(∫ 2π

0

exp(ikr cos θ)

k2 + k2
s

dθ

)
kdk = 2πK0(ksr), (10)

with K0(r) being the Bessel K function of order zero.
It is clearly observed that for all dimensionalities, the
potentials φη turn over from attractive to repulsive
when the parameter bη turns from real to imaginary, or
equivalently when the parameter αη crosses the critical
value of αcr = 1/4. The αη = 1/4 value coincides with
the electron number-densities of ncr3 = 1.3 × 1025 cm−3,
ncr2 = 5.4 × 108 cm−2 and ncr1 = 603 cm−1 for three,
two and one dimensions, respectively. Figures 2 and
3 show the Shukla–Eliasson potential parameters αη
(and its variation with the electron number-density) and
profiles in two- (solid profile) and three-dimensional
(dashed profile) cases for different values of α2,3 =
0.5, 0.2 corresponding to attractive and repulsive forces,
respectively (note that the horizontal axis in these plots
are not of the same scale but depend on k0η , hence
to the unperturbed electron number-density, n0η). The
value of α2,3 = 0.5 corresponds to the densities of n03 =
1.6 × 1024 cm−3 and n02 = 2.7 × 108 cm−2 for three and
two dimensions, respectively. Also, the value of α2,3 = 0.2
corresponds to densities of n03 = 2.5 × 1025 cm−3 and
n02 = 6.8 × 108 cm−2 for three and two dimensions,
respectively.

Bearing in mind the above discussion, one has to
critically inspect the applicability of the employed QHD
model which uses the zero-temperature degeneracy as-
sumption. For a fermion fluid to completely degenerate,
we should have λD > aη , where λD and aη are the de
Broglie thermal-wavelength λD = h/

√
2πmekBTp (with

the averageelectron temperature, Tp = 300 Kelvins in

this paper) and the inter-particle spacing (the Wigner–
Seitz cell radius) in the η-dimensional electron gas
(1/n03 = 4πa3

3/3, 1/n02 = 4πa2
2 and 1/n01 = a1) in η-

dimensions, respectively. The de Broglie thermal-
wavelength λD = aη leads to the densities of n03 = 5.4 ×
1017 cm−3, n02 = 1.4×1011 cm−2 and n01 = 1.3×106 cm−1

for three, two and one dimensions, respectively. It is then
clearly apparent that the zero-temperature assumption
for degenerate electron gases is valid only for densities
above n02 = 1.4 × 1011 cm−2 and n03 = 5.4 × 1017 cm−3.
Therefore, for the three-dimensional electron gases, elec-
tron density of 5.4 × 1017 cm−3< n03 < 2.5 × 1025 cm−3

satisfies the condition α3 > 1/4 and the zero-temperature
assumption, and therefore for this density range one
can have an attractive Shukla–Eliasson potential and
ion structure formation. However, for the two and one-
dimensional electron gases, the condition α1,2 > 1/4
does not satisfy the complete degeneracy criteria. The
variation of the Shukla–Eliasson parameter, αeta with the
electron number-density is depicted in Fig. 2 for two-
and three-dimensional quantum electron gases. Hence,
for one- and two-dimensional quantum electron gases,
the charge screening potential is always of the Fermi–
Thomas-like repulsive type (like the one shown in the
right plot of Fig. 3) and there is no possibility of ionic
structure formation in the absence of external confining
potential. In the forthcoming analysis, we will avoid
further discussion regarding the one-dimensional case,
for clarity.

3. Ion correlations and the Thomson
scattering

Let us now investigate the radial distribution function
(RDF) of a two-dimensional electron gas that reflects
ion structure in the plasma. Generalizing the findings
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Figure 4. (Colour online) The radial distribution function (RDF) for two- and three-dimensional quantum electron fluids for
typical number-densities relevant to each dimension. Strong oscillations for the three-dimensional case, which corresponds to the
criteria of α3 > 1/4, indicates stronger ion correlations in this case.

of (Lee and Jung 2013), we see that the static structure
factor of both two- and three-dimensional degenerate
electron gas is given as

Sη(n0η,Kη) =
K2

η

1 + K2
η + αηK4

η

, (11)

where the scattered wave-vector K = kf − ki [K2 =
2k2(1 − cosΘ)] with kf , ki and Θ being the scattered
wave-vector, initial wave-vector (in elastic scattering ki =
kf = k) and the angle between them respectively, with
K now being normalized to the value k0η . The RDF is
then given as

G2(n02, r) = 1+
k2

02

πn02

∫ ∞

0

K2 [S2(n02, K2) − 1]
sinK2r

K2r
dK2,

(12)

and

G3(n03, r)

= 1 +
k3

03

2π2n03

∫ ∞

0

K2
3 [S3(n03, K3) − 1]

sinK3r

K3r
dK3.

(13)

Using the standard definition for the differential cross
section, we find that (Lee and Jung 2013)

dσThη

dΩ
= Nηr

2
0

(
1 − 1

2
sin2Θ

)
Sη(n0η,Kη), (14)

with Nη and Ω being the electron number and the
conical scattering angle, and r0 = e2/mec

2 being the
classical electron radius related to the standard electron
scattering cross section, σ0η , with σ0 = 8πr20/3. The

reduced scattering cross section, σ̄Thη = σThη/Nησ0η then
reads as

σ̄Thη(n0η, kη) =

∫ 1

−1

K2
η [1 − (1 − μ2)/2]dμ

1 + K2
η + αηK4

η

, μ = cosΘ.

(15)

4. Discussion and summary
Figure 4 depicts the radial distribution function for two-
and three-dimensional degenerate electron gases and
compares the profiles for two different values of electron
number-densities relevant to each dimensionality. For
the three-dimensional case, the number density of n03 =
1022 cm−3 is a characteristic metallic solid density, and
for the two-dimensional case, n02 = 1012 cm−2 is a close
value to the electron density of graphene (Hwang and
Das Sarma 2007). It should be noted that recently
Roldán et al. (in press) has used a similar hydrodynamic
model to investigate the plasmon features of Dirac
electrons in a monolayer graphene. It is observed that,
while the RDF exhibits strong oscillations for a three-
dimensional electron–ion plasma, the two-dimensional
case lacks such a signature for charge correlations in the
given plasma number-density.

In Figs. 5 and 6 we depict the variation of the normal-
ized and differential Thomson scattering cross sections
for different densities of two- and three-dimensional
electron gases, respectively. It is clearly remarked that
for both dimensionalities and all number-densities the
Thomson scattering cross-section possesses well-defined
maximum values (λm). These maximum optical responses
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Figure 5. (Colour online) The normalized Thomson scattering cross section for two- and three-dimensional electron quantum fluids
with different values of electron number-densities relevant to each dimensionality. It is observed that two- and three-dimensional
degenerate electron gases respond well to the electromagnetic waves in microwave and X-ray frequency ranges, respectively.

Figure 6. The differential Thomson scattering cross section for two- and three-dimensional electron quantum fluids with
different values of electron number-densities relevant to each dimensionality. The angular variation of scattering profiles reveals
fundamental differences between two dimensionalities.

reside typically at wavelengths of λm2 � 190 nano-
meters and λm3 � 5 Angstroms for n02 = 1012 cm−2

and n03 = 1022 cm−3 electron number-densities, respect-
ively, increasing with increase in the electron number-
densities for both two- and three-dimensional degenerate
electron gases. These maximum scattering values are
observed to tend to lower wavelengths. It is also observed
that the scattering cross section for a two-dimensional
quantum gas is typically much lower than that for
the three-dimensional case. By a close inspection of
Fig. 6, one notes a significant difference in differential
cross section between the two- and three-dimensional
quantum fluids with typical electron number-densities.
It is observed that, while in the long wavelength limit for

both dimensionalities there is a pronounced principal
maxima at Θ = π in differential scattering profiles,
with the decrease in the wavelength this maxima di-
minishes rapidly for the three-dimensional case, con-
trary to the two-dimensional case, in which the prin-
cipal maxima persists up to a very high wavenumber
values. It is also remarked that two other maxima
around Θ = π/4 and Θ = 7π/4 are much sharper
for a three-dimensional quantum electron fluid, com-
pared with the two-dimensional case. The density de-
pendence of the maximal Thomson scattering cross
section is predicted to have important application in
plasma diagnostics, laser-matter interactions and surface
sciences.
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