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Determining the stability of steady
two-dimensional flows through imperfect
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In 1875, Lord Kelvin stated an energy-based argument for equilibrium and stability
in conservative flows. The possibility of building an implementation of Kelvin’s
argument, based on the construction of a simple bifurcation diagram, has been the
subject of debate in the past. In this paper, we build on work from dynamical
systems theory, and show that an essential requirement for constructing a meaningful
bifurcation diagram is that families of solutions must be accessed through isovortical
(i.e. vorticity-preserving), incompressible rearrangements. We show that, when this
is the case, turning points in fluid impulse are linked to changes in the number
of the positive-energy modes associated with the equilibria (and therefore in the
number of modes likely to be linearly unstable). In addition, the shape of a velocity-
impulse diagram, for a family of solutions, determines whether a positive-energy
mode is lost or gained at the turning point. Further to this, we detect bifurcations
to new solution families by calculating steady flows that have been made ‘imperfect’
through the introduction of asymmetries in the vorticity field. The resulting stability
approach, which employs ‘imperfect velocity-impulse’ (IVI) diagrams, can be used to
determine the number of positive-energy (likely unstable) modes for each equilibrium
flow belonging to a family of steady states. As an illustration of our approach, we
construct IVI diagrams for several two-dimensional flows, including elliptical vortices,
opposite-signed vortex pairs (of both rotating and translating type), single and double
vortex rows, as well as gravity waves. By also considering an example involving
the Chaplygin–Lamb dipole, we illustrate how the stability of a specific flow may
be determined, by embedding it within a properly constructed solution family. The
stability data from our IVI diagrams agree precisely with results in the literature. To
the best of our knowledge, for a few of the flows considered here, our work yields
the first available stability boundaries. Further to this, for several of the flows that we
examine, the IVI diagram methodology leads us to the discovery of new families of
steady flows, which exhibit lower symmetry.
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1. Introduction
Over a century ago, Sir William Thomson (now more widely known as Lord

Kelvin) proposed an energy argument for determining equilibrium and stability in
an inviscid, homogeneous flow (a printed version of his 1875 contribution to a
meeting of the Royal Society of Edinburgh appeared as Thomson 1876). Thomson
stated his argument without proof; the first analytical confirmation of his ideas is
traditionally attributed to Arnol’d (1966) or Benjamin (1976). Kelvin considered flows
that are steady when observed in a reference frame that is translating or rotating
with constant velocity, and proposed that any such flow corresponds to a stationary
value of the energy, under perturbations that preserve vorticity and impulse (see § A.1
for a mathematical outline). Kelvin went on to note that, for flows that conserve
energy, the link between stationary points of the energy and steady flows has important
consequences for stability. If the steady flow corresponds to a maximum or minimum
of the energy, a displacement of the system away from the equilibrium point would
require a change of energy, which is impossible. Hence the equilibrium flow must be
stable. By the same reasoning, a necessary condition for instability is that the flow
must correspond to a saddle of the energy. This idea is at the core of the well-known
stability theorems of Arnol’d (1965, 1966), and forms the basis of several stability
methodologies (e.g. Holm et al. 1985).

However, the application of these energy-based ideas to determine stability is often
limited by practical considerations, since one has to evaluate the second-order change
in energy (that is, the second variation) for all admissible perturbations. This may be
possible for certain flows that admit explicit analytical solution. On the other hand,
computing the second variation of the energy for a numerically obtained flow is
prohibitively difficult, as one has to consider a second-order expansion involving an
infinite number of possible perturbations (as discussed by Dritschel 1985). This issue
places a severe limitation on the practical implementation of Kelvin’s argument.

Seeking to circumvent this difficulty, Saffman & Szeto (1980, 1981) proposed a
different implementation of Kelvin’s argument. We summarize here the approach
followed in their 1980 paper. Saffman and Szeto computed numerically a family
of steady, co-rotating vortex pairs, having equal area and uniform vorticity. Having
obtained the steady states, they calculated their energy E and angular impulse J. In an
attempt to heuristically deduce which solutions represented maxima of the energy, for
a given impulse, they examined possible values of E, for a given J; for their family
of solutions, they found that the solutions displayed a simultaneous turning point in
E and J (as schematically shown in figure 1). Saffman & Szeto (1980) then proposed
that the ‘highest’ curve in the plot would be a maximum in E (for a given impulse J),
while the lower branch would likely be a saddle of E. Hence the top branch would
be stable, the lower branch would likely be unstable, and the connection between the
two branches could correspond to a change of stability. For this flow, Kamm (1987)
and Dritschel (1995) later found that the stability boundary obtained from a (J,E) plot
agreed with detailed linear stability calculations.

However, the approach proposed by Saffman & Szeto (1980) is affected by a
number of issues. Two problems were first pointed out by Dritschel (1985), in a
seminal paper on the stability of vortex arrays. Firstly, Dritschel (1985) observed the
absence of a rigorous link between the properties of the energy surface and the
shape of an energy-impulse plot. Secondly, Dritschel (1985) remarked that, even
if such a link could be firmly established, additional changes of stability could
also occur away from extrema in E and J, by means of bifurcations to (hitherto
undiscovered) families of solutions (illustrated schematically in figure 1b). This
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FIGURE 1. Sketch of impulse and excess energy for a co-rotating vortex pair, illustrating the
approach of Saffman & Szeto (1980).
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FIGURE 2. Sketches illustrating two issues associated with turning-point approaches for
vortex flows, which may lead to inconsistencies in the stability boundaries: (a) dependence on
how the family of solutions is constructed, (b) dependence on choice of control parameter.

point was corroborated by the numerical stability findings on opposite-signed vortex
pairs reported in Dritschel (1995). These results led Dritschel (1995) to conclude,
regarding Saffman’s interpretation of Kelvin’s ideas, that ‘the argument, based on
Kelvin’s variational principle . . . that the margin of stability can be decided from
the E(J) curve alone . . . does not always work’. As a consequence of these two
concerns, the stability method proposed by Saffman & Szeto (1980) has since been
considered unreliable (D. Crowdy, 2008, private communication); indeed, to the best
of our knowledge, energy-impulse plots have not been employed in any other vortex
dynamics studies to date.

In addition to the two issues summarized above, we note here two additional
problems, which do not seem to have been previously recognized. These concern:
(i) the rules used to build solution families; and (ii) the choice of a physically relevant
parameter to characterize solutions. To expand on the first point, one can note that
since fluid problems are typically infinite-dimensional, any two distinct vortex flows
may be connected through an infinite number of possible paths, involving series of
intermediate solutions. The presence (or absence) of turning points can be intuitively
seen to depend on the choice of path, as sketched in figure 2(a). Point (ii) above can
also be appreciated through a simple schematic illustration, in figure 2(b), showing
that different choices of control parameter can lead to inconsistent stability predictions.
We feel that the need for clarification on these two points is well exemplified by
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326 P. Luzzatto-Fegiz and C. H. K. Williamson

considering a statement appearing in the monograph of Saffman (1992, p. 191). This
considers the stability of the family of Stuart vortices, which can be written in closed
form as a function of a parameter C: ‘the absence of a transition (to instability) is
associated with the non-existence of a fold or limit point in the properties of the
family of Stuart vortices, as C decreases from ∞ to 1’. As we deduce in appendix A,
Stuart vortices do not actually form a family that is amenable to a turning point
analysis. In addition, the chosen parameter C is not necessarily a control parameter
that is meaningful for stability calculations.

We were motivated to re-examine this problem by the fact that a simple stability
approach, based on the construction of a suitable bifurcation diagram, could be
valuable in a wide range of applications. For example, we note here that several
debates (each spanning at least a decade) have existed over the stability of
comparatively simple flows. Examples include co-rotating vortex pairs (Saffman &
Szeto 1980; Dritschel 1985; Kamm 1987; Saffman 1992; Dritschel 1995), streets
of finite-area vortices (see Meiron, Saffman & Schatzman 1984, Jiménez 1987, and
references therein), as well as ellipsoidal vortices in quasigeostrophic flows (Dritschel,
Scott & Reinaud 2005, and references therein). Similar debates have also unfolded
over the stability boundaries of steep gravity waves, where the first (erroneous)
application of a turning-point argument appears to date back to Stokes (1879) (for
more on this problem, see Saffman 1985, and references therein). It is conceivable
that a simple stability approach, beside proving valuable in its own right, could
also be used to quickly confirm correct results from linear analysis, and question
possibly spurious ones. A bifurcation-diagram stability methodology could therefore
complement more involved approaches, such as linear analysis or time-dependent
simulations, which would yield additional information about growth rates and long-
term evolution of the flow.

This paper is structured as follows. Section 2 briefly outlines, in a heuristic manner,
the key physical ideas underlying the construction of a turning-point approach for
vortex flows; the mathematical underpinnings are relegated to appendix A. In § 3, we
propose to seek bifurcations of steady vortical families by introducing ideas from the
study of imperfect dynamical systems. Several examples involving two-dimensional
vortical flows are examined in § 4. As an example involving a different type of flow, in
§ 5 we look at steep gravity waves. A brief discussion of the numerical results follows
in § 6. Finally, in § 7, we discuss possible future applications of the stability method,
as well its applicability in conjunction with other, more complex approaches.

2. Linking velocity-impulse diagrams and stability properties
We briefly discuss here the key notions underlying the construction of a turning

point approach for vortex flows, as is necessary to introduce the examples in §§ 4
and 5. The mathematical details are contained in appendix A.

In the first instance, we consider the choice of control parameter. Equilibrium vortex
calculations are usually parametrized by the velocity of the configuration (e.g. Deem
& Zabusky 1978) or by a geometric measure of the proximity of the vortices (e.g.
Makarov & Kizner 2011). However, we argue here that a selected control parameter,
chosen to be relevant to stability studies, must be constant through the unsteady
evolution of the flow; as such, we propose using the fluid impulse, which is a
conserved quantity in an inviscid fluid (e.g. Saffman 1992).

Secondly, we consider the problem of organizing vortical solutions into families.
By introducing methods from dynamical systems theory, we find that families of
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FIGURE 3. Schematic velocity-impulse diagrams. A maximum or minimum of the impulse is
associated with the addition or subtraction of a positive-signature mode, respectively, as the
curve is traversed from left to right (see appendix A).

solutions must be built through a rearrangement of the same type as the rearrangement
used for Kelvin’s argument. As discussed in appendix A, this implies that solution
families must be built from incompressible, isovortical (i.e. vorticity-preserving)
rearrangements.

To the best of our knowledge, these two points above do not appear to have
been previously recognized in the vortex dynamics literature. It is easy to verify
that the Stuart family, discussed by Saffman (1992), cannot be traversed through
isovortical rearrangements. For example, one may note that the limit C→∞ yields
a row of point vortices, which cannot be rearranged into any of the smooth vorticity
distributions obtained for finite C.

As mentioned in § 1, if one can show that, for all incompressible and isovortical
perturbations, the second variation of the energy is always negative (implying the
energy is a maximum), then the equilibrium is stable. (An energy minimum is
similarly stable, but is not realizable in an unbounded flow, and is therefore not
discussed here; e.g. Thomson 1880a.) To detect a switch from maximum to a saddle,
it is therefore of interest to search for the onset of any modes that have a positive
second variation (such modes are said to have positive energy signature, or simply
‘positive signature’; e.g. Arnol’d & Avez 1968). As we show in appendix A, properly
constructed solution families have a zero-signature mode at a turning point in impulse,
indicating a possible change in energy signature. Further to this, we show that the
direction of the change of signature (from negative to positive, or vice versa) can be
inferred from the shape of a velocity-impulse plot, as illustrated in figure 3. If the
equilibria on one side of the fold already have one positive-energy mode, this result
enables us to distinguish whether a positive-signature mode is added or subtracted
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(b)(a)

FIGURE 4. Illustration of the effect of introducing a symmetry-breaking imperfection, for a
vortical flow. (a) The streamlines of the flow field in the reference frame that is co-rotating
with the elliptical vortex shape. In order to break the symmetry in the flow, we introduce point
vortices at certain stagnation points (marked by the bull’s eyes), and seek the vortex shape and
point vortex positions yielding a steady flow.

(thereby yielding flows that are likely to have more or fewer linearly unstable modes,
respectively).

3. Introducing imperfections to reveal bifurcations in steady flows
Let us now consider the problem of detecting a bifurcation to a new family

of steady solutions. The velocity-impulse diagram introduced in § 2 is, by itself,
insufficient to find these situations, as they are not associated with turning points
in a control parameter. This is, in essence, the second objection raised by Dritschel
(1985), which applies to any stability approach based exclusively on the use of turning
points.

However, a basic result from singularity theory is that bifurcations connecting
different families of steady solutions are not robust under small changes in the
governing equations, and will instead break into distinct branches, ultimately giving
rise to turning points (e.g. Poston & Stewart 1978). The effects of this structural
instability have been observed across a wide range of areas of work, ranging from
structural mechanics (Thompson 1975) to the growth of viscous fingers at the interface
between two fluids (Casademunt & Jasnow 1991), to capillary bridges (Lowry & Steen
1995). To the best of our knowledge, this use of imperfections has not been attempted
before in the study of vortex dynamics.

For vortex flows, we propose an imperfection approach by focusing on breaking
any reflectional or rotational symmetry exhibited by the steady flow. As an example,
we consider here the steady elliptical vortices first found by Kirchhoff (1876); the
associated streamlines, as seen in a frame of reference that is rotating with the vortex
shape, are shown in figure 4(a). We choose to introduce a point vortex at each of
the two stagnation points marked by a bull’s eye in figure 4(a). We then proceed to
re-compute the steady states. Note that this involves solving also for the locations of
the stagnation points at which the point vortices are located. Figure 4(b) shows a case
where a very strong imperfection has been employed, leading to a flow that, while
steady, clearly lacks symmetry.
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FIGURE 5. Sketch illustrating the process of constructing an imperfect velocity-impulse (IVI)
diagram.

We must stress here that the imperfection involves the construction of a new,
slightly asymmetric steady flow, which is closely related to a previously known, more
symmetric equilibrium flow. In other words, this essentially involves the solution of a
modified equilibrium problem. This is not to be confused with the introduction of a
symmetry-breaking perturbation, which may lead to a dynamical behaviour that also
exhibits similar symmetry breaking.

To consider the practical implementation of this idea, suppose we have computed
a family of steady solutions numerically (as shown schematically in figure 5a), and
wish to verify whether any bifurcations exist. We then introduce a symmetry-breaking
imperfection, in the manner explained above; for all the examples that we consider,
if a hidden branch exists, we find that the basic family is broken into two imperfect
branches (figure 5b). By taking the strength of the point vortices back to zero, we
recover the underlying bifurcated branch (shown as the red line in figure 5c). The
turning points in the imperfect branches (which are now shown as dashed lines in
figure 5c) can be used to diagnose stability for both the basic and the bifurcated
branch.

It should be made clear that, for these fluid problems, there is no proof that
such imperfections must capture all bifurcations. However, we have found that in
all the examples we have studied so far (in this paper, as well as Luzzatto-Fegiz
& Williamson 2010, 2011b) this use of imperfections correctly delivers all existing
bifurcations, as verified by separate stability analyses.

4. Stability of two-dimensional vortical flows from IVI diagrams
In the two-dimensional vortical examples considered below, the velocity and impulse

(defined in appendix A) of the configurations are normalized as (with unit density):

Ω∗ =Ω ω̃−1, U∗ = U (Γ̃ ω̃)
−1/2

, (4.1a)
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J∗ = J ω̃Γ −2, I∗ = I Γ̃ −3/2ω̃1/2, (4.1b)

where Γ is the total circulation of the flow, Γ̃ = ∫ |ω| dA and ω̃ = max|ω|.
For spatially periodic solutions of energy E, in a periodic cell of width L,
we also employ

E∗ = E Γ̃ −2, L∗ = L Γ̃ −1/2ω̃1/2. (4.2)

Since our main focus here is on the stability methodology, we represent each flow
through a collection of uniform-vorticity regions. The requirement that solutions must
be built through incompressible, isovortical rearrangements is satisfied by fixing the
area of uniform vorticity inside each patch. In spite of this simplification, accurate
computation of steady uniform vortices remains non-trivial. Here we employ a recently
developed numerical method, capable of calculating vortices of arbitrary shape, which
features an adaptive discretization procedure to accurately resolve any fine-scale
features that may arise; the details are reported in Luzzatto-Fegiz & Williamson
(2011a).

4.1. The Kirchhoff elliptical vortices

The elliptical vortices discovered by Kirchhoff (1876) constitute a family of solutions
that begins with a circular vortex and terminates with a vortex sheet (see Saffman
1992 for a modern treatment). These steady states can be characterized analytically;
their impulse and velocity are related by J∗ = (2Ω∗ − 1) (8πΩ∗)−1, where the angular
velocity is related to the axis ratio λ = b/a by Ω∗ = λ (λ+ 1)−2. Since J∗ = − (4π)−1

for the circular vortex, while J∗→−∞ as the vortex sheet solution is approached,
we choose to plot − (4πJ∗)−1 instead of J∗ (as shown in figure 6a). Since J∗(Ω∗) is
monotonic, any positive-signature modes have to arise at bifurcations. (In general, the
bifurcated branches will not admit an analytic representation.)

The initial configuration corresponding to a circular vortex can be argued to
constitute an energy maximum (see Thomson 1880b). In order to search for
bifurcations, we initialize our calculations by introducing an imperfection in a near-
circular vortex, through the placement of two point vortices (of strength ΓPV ) at certain
stagnation points of the co-rotating flow, as shown in figure 6(d). Their circulation is
set to ΓPV/Γ = 10−4. We compute imperfect flows with progressively lower velocity
and impulse. At (Ω∗, J∗) .= (0.18815,−0.13183), we encounter a turning point in
impulse in the imperfect branch, after which J∗ begins to increase, thus revealing
the introduction of a positive-signature mode (this imperfect branch is shown by the
right-hand dashed line in figure 6c).

We continue to seek bifurcations from the basic solution family by considering an
elliptical vortex located shortly after the turning point described above (as we travel
along the solution branch to smaller Ω∗), where we introduce the same imperfection
again. This enables us to map the second imperfect branch, for both increasing and
decreasing J∗ (a portion of this branch is shown by the dashed line on the left-hand of
figure 6c). By repeating this process, we detect the first three bifurcations, all of which
turn out to correspond to the introduction of additional positive-signature (possibly
unstable) modes, as marked in figure 6(b) by 1U, 2U, 3U, . . . .

By taking the strength of the point vortices to zero, we are able to recover the
underlying bifurcated branches (shown by red lines in the figure), which are found to
terminate with the limiting shapes shown in figure 6(b). The intersection between the
bifurcated and original solution series yields the locations of the bifurcations.
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FIGURE 6. (a) The velocity-impulse plot for the Kirchhoff ellipses. We introduce
imperfections by placing weak point vortices at certain stagnation points of the co-rotating
flow (marked by bull’s eyes � in d). (b) The first three bifurcated branches found using this
approach. (c) A close-up of the structure of the first bifurcation. Filled and empty circles
denote limiting shapes and stability boundaries, respectively.

To conclude this section, we note that the locations of changes of stability presented
here, obtained from an IVI diagram, match the results from the linear stability analysis
of Love (1893) to at least seven significant figures. Love’s analysis formed the basis
of part of the work of Kamm (1987), who computed the beginning of the bifurcated
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branches presented here; the second bifurcated branch (shown in red in figure 6b)
was later explored in its entirety by Cerretelli & Williamson (2003). More detailed
information about the IVI diagram for the elliptical vortices (including a different
choice of imperfection) can be found in Luzzatto-Fegiz & Williamson (2010).

4.2. The unequal-circulation pair
We examine pairs of opposite-signed vortices having equal vorticity magnitude but
unequal circulation. Flows of this type were first computed by Dritschel (1995).
We consider here the family of solutions obtained for circulation ratio given by
Γ2/Γ1 =−0.3.

It can be shown that a pair of well-separated vortices is a maximum of the energy,
for a given impulse (Luzzatto-Fegiz & Williamson 2011b). As the vortices are brought
closer together, one obtains the basic family of steady states shown in figure 7(a).
We can immediately point out the addition of a positive-signature mode at a turning
point in J∗. In order to seek out bifurcations, we break the reflection symmetry in
the vorticity distribution shown in figure 7(d) by placing a point vortex at one of the
saddle-type stagnation points of the co-rotating flow. The point vortex has strength,
relative to the largest vortex, ΓPV/Γ1 = 10−4. As we proceed to compute steady
imperfect flows with progressively lower J∗, we discover a turning point in impulse
at (Ω∗, J∗) .= (0.11426,−0.00405), which introduces an additional positive-signature
mode (as shown by the close-up in figure 7c). Following a procedure similar to the
one employed for the elliptical vortices, we computed the next imperfect branch, and
sought additional bifurcations from the original family; however, we found none. For
this flow, the bifurcated branch (shown in red in figure 7b,c) corresponds to a new
family of vortices, whose shapes do not exhibit any symmetry. This family of solutions
terminates with the limiting shape shown in figure 7(b).

The stability boundaries found from the IVI diagram turn out to match results
from the linear analysis of Dritschel (1995). Furthermore, the IVI diagram delivers a
new family of non-symmetric steady vortices (figure 7b), together with their stability
properties.

4.3. The equal-circulation pair
This section focuses on the special case involving an opposite-signed vortex pair with
equal vorticity and circulation magnitude. The basic family of solutions (shown in
figure 8a) was first obtained by Pierrehumbert (1980). It should be noted that the
limiting shape (first accurately computed by Saffman & Tanveer 1982) has a ‘rugby
ball’ appearance, which is drastically different from the limiting shapes that one
obtains for unequal-strength vortices (see figures 7a and 8a). This discrepancy persists
as Γ2/Γ1 takes values close to −1. As noted by Dritschel (1995), reconciling these two
solution series represents an outstanding question.

For this flow, we introduce an imperfection by letting the two vortices have slightly
different areas (such that Γ2/Γ1 =−0.995), while also placing a point vortex at one of
the saddle-type stagnation points, marked by a bull’s eye in figure 8(d). The strength
of the point vortex is fixed by the requirement that the configuration must still translate
along a straight line, which in turn implies that the overall circulation must be zero
(that is, Γ1 + Γ2 + ΓPV = 0).

By starting with a well-separated pair, and following the imperfect branch to lower
values of impulse, we discover a turning point for (U∗, I∗) .= (0.10820, 0.27531),
corresponding to the addition of a positive-signature mode (shown in detail in
figure 8c). Continuing the search for new solution branches, we find a rich bifurcation
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FIGURE 7. (a) The velocity-impulse diagram for the opposite-signed, uniform vortex pair
with area ratio A1/A2 = 0.3. The imperfection is constructed by introducing a point vortex
at the stagnation point marked by a bull’s eye in (d). (b) A new family of vortices. (c) A
close-up of the associated bifurcation.

structure. These further bifurcations are not reported here; we hope to give a detailed
account of these results in a future contribution. The first bifurcation described above
leads to a new family of steady vortices, shown by the red line in figure 8(b,c). We
should stress that, in spite of their lower symmetry, these vortices translate along a
straight line.
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FIGURE 8. (a) The velocity-impulse plot for the equal-area, translating vortex pair. The
symmetry of the flow is broken by decreasing the area of one of the two vortices, while also
introducing a point vortex. (b) The IVI diagram shows the first bifurcation uncovered through
this approach. (c) A close-up of the first bifurcation. Other bifurcations were detected through
the IVI diagram approach; these are not shown here.

The location of the first loss of stability matches the stability boundary calculated
by Dritschel (1995) through a linear analysis. The IVI diagram approach also leads
us to the discovery of a new family of lower-symmetry vortices. Furthermore, we
may recognize the limiting shape shown on the left of figure 8(b) as the equal-area
version of the limiting state for the unequal-area vortices, seen in figure 7(a). We may
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FIGURE 9. Stability of the linear vortex array, for superharmonic perturbations. The flow is
made non-symmetric through a two-step process, as shown in (b–d). The neighbourhood of a
stagnation point (highlighted by a grey box in b) is first altered by introducing a point vortex
of strength ΓPV (marked by the bull’s eye in c), which changes the local flow topology. This
creates two new stagnation points near the original one. Introducing a further point vortex at
one of these locations (marked by the left-hand bull’s eye in d) breaks the left/right symmetry.
No bifurcations were found, consistently with classic stability results.

therefore interpret the unequal-area vortices of § 4.2 as the first imperfect branch of the
equal-area family, for which the imperfection (in this case, the circulation difference
between the vortices) has been brought to large values. Therefore the imperfection
technique proposed here naturally reconciles the two families of solutions.

4.4. The single vortex row
We next examine a row of identical uniform vortices, whose centroids are separated by
a non-dimensional distance L∗. Solutions of this type were first computed numerically
by Pierrehumbert & Widnall (1981) and Saffman & Szeto (1981). Since these vortices
are spatially periodic and do not translate, we must construct the vortex spacing-energy
plot (L∗, ∂E∗/∂L∗), as explained in § A.4. In the case of well-separated vortices (that
is, L∗� 1), it is easy to see that the flow is at an energy maximum, if superharmonic
perturbations are considered (see Luzzatto-Fegiz & Williamson 2012). By building the
plot shown in figure 9(a) for the basic family, we immediately detect the addition of a
positive-signature mode at a turning point in L∗.

To introduce an imperfection in this periodic flow, we employ a two-step process, as
shown in figure 9(b–d). Firstly, we place a point vortex at the saddle-type stagnation
point between the vortices (highlighted by a grey box in figure 9b). This changes
the local flow field, turning each original saddle into a centre, and creating two
new saddle-type stagnation points in its neighbourhood, as exemplified in figure 9(c).
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Depending on the sign of the point vortex, the new stagnation points are along a line
that is either parallel to the vortex row (for ΓPV/Γ > 0, shown in c), or orthogonal
to it (for ΓPV/Γ < 0; this is not shown here). Therefore, by introducing an additional
point vortex at one of these new stagnation points, we can break either the left/right or
top/bottom symmetry in the figure, respectively.

We found that introducing these imperfections does not lead to new bifurcated
branches for the linear array. These stability are consistent with the linear analysis of
Kamm (1987).

4.5. The finite-area von Kármán vortex street
Saffman & Schatzman (1981, 1982) computed steady flows obtained by replacing each
point vortex, in a von Kármán street, with a finite-area vortex. In their studies, closely
spaced vortices proved prohibitively expensive to resolve, and were not computed.

Following steps similar to those in Luzzatto-Fegiz & Williamson (2011b), it can
be shown that a street of well-separated vortices is an energy maximum, with a
given impulse, if only superharmonic perturbations are considered. In the example
considered here, the calculations are performed by choosing a specific value of the
impulse I∗ = 0.4, and computing steady flows as L∗ is varied. The basic family of
solutions is shown in figure 10(a).

The imperfection is constructed by following again the procedure employed for a
single row of vortices. It can be shown that, for vortices in a periodic strip that
translate along a straight path, the total circulation must be zero (Meiron et al. 1984).
Therefore, the size of the vortex in the top row was reduced to ensure that the total
circulation in the periodic strip remained zero. Following the imperfect solution branch
leads to a bifurcation, occurring after the turning point in L∗ described above; this is
shown in figure 10(c). We should note that the turning point in the imperfect branch
shown in figure 10(c) persists even if a single point vortex is employed to set up the
imperfection; in this figure, a single point vortex with strength ΓPV/Γ1 = 10−4 was
used.

Past studies of the stability of the finite-area von Kármán street have focused on
the behaviour of subharmonic modes for well-separated vortices (Meiron et al. 1984,
and references therein). To the best of our knowledge, the stability boundaries that
we describe in this section are new. As a check, we also performed a linear stability
analysis; eigenvalues are reported in appendix B. We should also remark that the
stability properties of the street change, as one examines streets with different impulse
I∗; this is discussed in a forthcoming paper (Luzzatto-Fegiz & Williamson 2012).

4.6. Distributed vortices: the Chaplygin–Lamb dipole
We examine here the properties of a more realistic representation of a vortex pair, and
consider the symmetric, translating pair solution that was described independently by
Chaplygin (1903) and Lamb (1932), which involves an analytic representation of a
steady, smooth vorticity distribution extending over a finite region (see also Meleshko
& van Heijst 1994). In order to construct an IVI diagram for this flow, we must
embed the Chaplygin–Lamb dipole into a family of solutions that has been constructed
through incompressible, isovortical rearrangements. This family of solutions would
connect the Chaplygin–Lamb solution with a steady flow given by two well-separated
vortices.

We choose to approximate each vortex by a set of nested, uniform-vorticity regions.
The discretization is constructed using the procedure described by Legras & Dritschel
(1993), who showed that using eight contours for a vortex with compact support yields
an excellent approximation for the dynamics of the flow. Once all of the areas Ai and
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FIGURE 10. Stability diagram for the von Kármán street, for varying L∗, and fixed impulse
I∗ = 0.4. The imperfection is constructed by introducing a weak point vortex at one of the
stagnation points marked by a bull’s eye in (d). Re-computing the steady states, we find that
the solution family is broken into two distinct branches (shown by the dashed lines in c).

vorticity jumps 1ωi are computed (with i = 1, 2, . . . , 8), keeping all Ai,1ωi constant
along the family is sufficient to ensure that the solutions can be traversed through
incompressible, isovortical rearrangements.

The basic family of steady flows that we computed is shown in the velocity-impulse
diagram in figure 11. For reference, the same figure also displays (with a bull’s
eye) the impulse and velocity for the exact Chaplygin–Lamb dipole. Note that the
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FIGURE 11. Velocity-impulse diagram for the family of distributed vortices based on the
Chaplygin–Lamb dipole. The vorticity distribution is approximated using a collection of
nested uniform vortices. Introducing an imperfection does not yield any bifurcations, at least
up to U∗ ≈ 0.083. The original Chaplygin–Lamb dipole is marked by a bull’s eye.

original solution is remarkably close to the approximate family (for the same velocity
U∗, the impulse difference is I∗ − I∗Lamb = 7.7 × 10−4, or ∼0.2 %), which suggests
that the integral properties of the configuration are represented very accurately. The
imperfection is constructed as in § 4.3, through the combined introduction of a point
vortex at one of the saddle-type stagnation points, and the shrinking of the area of
one of the outermost vortex patches. While we computed imperfect branches with a
variety of point vortex strengths (in the range ΓPV/Γ1 = 10−4–10−2), we did not find
any bifurcation, at least up to U∗ ≈ 0.083 (past the Chaplygin–Lamb approximation),
after which the numerical procedure for the imperfect system converged very slowly to
a steady solution. To interpret these results, it may be helpful to note that, in separate
calculations, we found that progressively increasing the number of contours (starting
with the uniform pair of § 4.3) shifted the bifurcation of figure 8 progressively closer
to the end of the family.

If one were to assume that our calculations can capture all bifurcations, the absence
of turning points in I∗, or bifurcations, before the bull’s eye in figure 11 would
lead to the conclusion that the discretized version of the Chaplygin–Lamb dipole
is stable. This suggests that the original, smooth solution should also be stable, at
least in a global sense. Of course, one may expect that the lowest vorticity levels
(not represented in our discretization) may be rapidly stripped from the configuration
through the neighbourhood of the rear stagnation point.

We should note that there is evidence from viscous simulations that certain flows
with non-zero linear impulse may spontaneously evolve towards a state close to the
Chaplygin–Lamb dipole, which would suggest that this solution is at least robust under
viscous evolution (e.g. Delbende & Rossi 2009, and references therein). However, to
the best of our knowledge, no linear stability analysis has been performed on this
flow before (as noted, for example, by Waite & Smolarkiewicz 2008). Surprisingly,
the analysis presented here appears to be the first stability result for a discretized
Chaplygin–Lamb dipole.
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As a check, we also performed a linear stability analysis of this flow; the results are
consistent with our IVI diagram, and are reported in appendix B.

5. Stability of steep gravity waves from velocity-impulse diagrams
To highlight the fact that the IVI diagram technique can be applied to other

conservative flows for which steady states are associated with a variational principle,
we briefly consider here steep gravity waves on the surface of a homogeneous,
irrotational fluid of infinite depth. For this flow, a variational principle follows
directly from the Hamiltonian formulation of Zakharov (1968). For fixed wavelength
λ, waves that steadily translate with velocity c correspond to a stationary point of the
Hamiltonian H, defined such that

δH = δ[(T + V)− c (P− P0)] = 0, (5.1)

where T and V are the kinetic and potential energy, respectively, and P is the wave
impulse per unit wavelength, given by P = λ−1

∫
u dA (for a fluid of unit density).

Since there is a clear correspondence between (T + V, c,P) above and (E,U, I) from
appendix A, turning points in wave impulse P are associated with the introduction of a
positive-energy mode.

In order to find the shape ysurface = η(x) for the steady waves, we solve numerically
the classic problem involving the steady Bernoulli equation 1/2 |u(x, η(x))|2+gη(x) −
cu(x, η(x)) = const. and the kinematic condition ψ = ψ(x, η) − cη(x) = 0 at the
interface. As discussed in § 4, the numerical method needs to be able to resolve lower-
symmetry flows and fine-scale features in the interface; the discretization procedure
used is therefore similar to the one employed for the steady vortices (Luzzatto-Fegiz &
Williamson 2011a). Given an initial guess for η(x), the surface velocities are found by
solving the Dirichlet problem for ψ , given ψ = 0 on the surface (see Longuet-Higgins
& Cokelet 1976). We then iteratively adjust η until the steady Bernoulli equation is
satisfied.

As is customary, we normalize P and c by the wavenumber k = 2π/λ and by the
gravitational acceleration g, such that P∗ = Pg−1/2k3/2, c∗ = cg−1/2k1/2.

5.1. Superharmonic instabilities of gravity waves

The basic family of steady solutions, which originates with an infinitesimal wave, and
terminates with waves exhibiting a 120◦ corner (see e.g. Longuet-Higgins & Fox 1978,
and references therein), is shown in figure 12(a). We consider stability with respect
to superharmonic perturbations, that is, disturbances with the same wavelength as the
basic flow. A turning point (associated with the introduction of a positive-signature
mode) is visible in figure 12(a). An imperfection was constructed by introducing a
non-uniform surface tension T = T0 F (τ ), where τ is the arclength measured along
the surface, F (τ )= sin(2π τ/τmax), and T0 = 10−5gk−2. The steady Bernoulli equation
is then 1/2 |u|2+gη− cu−Tκ = const., where κ is the signed curvature. No bifurcated
branches were found, in agreement with predictions from linear analysis (see Longuet-
Higgins 1986). We must also point out that Longuet-Higgins & Fox (1978) showed,
using asymptotic techniques, that as the limiting wave is approached, the family
of solution meets a countable infinity of turning points in c and P. By examining
equations (5.2) and (6.5) in their paper, it is easy to verify that these give rise to a
spiral in a velocity-impulse diagram. According to the work in the present paper, each
of these turning points corresponds to the addition of a positive-energy mode.
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FIGURE 12. IVI diagram for steep gravity waves with phase velocity c∗ and impulse P∗. The
waves in (b) have wavelength λ = 2λ0, where λ0 is the wavelength of the original family of
solutions shown in (a).

We should also note that, for the specific problem of water waves, Longuet-Higgins
(1984) showed that turning points in energy coincide with turning points in impulse.
The work presented in appendix A of this paper indicates that the link between
extrema in impulse and energy also holds for any conservative fluid family constructed
from incompressible, isovortical rearrangements.

5.2. Instabilities for waves with wavelength λ= 2λ0

We include two wave crests in our computational domain, and seek solutions with
periodicity η(x)= η(x+ 2λ0), which may arise as bifurcations from the original family
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–0.15–0.0296

0.15–0.0289 (b)(a)

FIGURE 13. Diagram clarifying the nature of some of the bifurcations reported. (a) The
bifurcation from the family of von Kármán vortices, in an energy-spacing diagram. (b) A plot
of 1∗, which is the non-dimensional difference between the perimeter of the top and bottom
vortex. The bifurcation can be immediately recognized as a pitchfork.

given by η(x) = η(x + λ0). Computing the imperfect solutions reveals a turning point
in P∗ (as shown in figure 12b,c). Taking the strength of the surface tension to zero, we
recover the bifurcated solution family shown in red in the figure.

The location of this bifurcation, found through the IVI diagram approach, matches
the linear stability results of Longuet-Higgins (1978). Subharmonic bifurcations were
also previously studied by Chen & Saffman (1980), who computed a substantial
portion of this lower-symmetry family of solutions. It appears that the algorithm used
by Chen and Saffman was unable to efficiently resolve the lower-symmetry limiting
state, which is obtained here for the first time.

6. Discussion
We should comment here on the specific choice of imperfection employed to

promote symmetry-breaking. In all of the vortical examples presented here, we make
use of weak point vortices, which are introduced at stagnation points of the co-moving
flow. We can report that we have also tested several different types of imperfections,
including sources and sinks, weak background flows involving simple shear, as well as
strain fields of different order (an example of the effect of different background fields
on the form of a steady state may be found in Ehrenstein & Le Dizès 2005). While
we are not aware of any proof that such imperfections must unfold all bifurcations,
we found that all bifurcations were successfully detected in our examples, provided
that all of the reflectional and rotational symmetries of the flow were broken. (The
absence of undetected bifurcations was checked through linear stability analyses.)
The algorithm used to compute the steady states adjusts automatically the step along
the solution family between neighbouring steady states (say, 1s), so as to retain a
prescribed accuracy in the results; all bifurcations shown were discovered without
the need to manually adjust 1s. Once a bifurcation was found, we computed a few
additional solutions (with 1s reduced by a factor of ∼5) near the turning points, so as
to obtain the smooth curves displayed in the insets of figures 6–12.

It may be helpful to show explicitly the correspondence between the patterns arising
in an IVI diagram, and those associated with typical bifurcation plots that may be
familiar from dynamical systems theory. The IVI diagram in figure 13(a) shows
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a close-up of the bifurcation encountered for the von Kármán street. By contrast,
figure 13(b) shows data for the same steady flows in a different plot, where the vertical
axis has been replaced by 1∗, which is the difference between the perimeter of the
top and bottom vortex. The point being made here is that, by plotting the same data
in a different manner, we can immediately see that this bifurcation is of pitchfork type.
The two sides of the fork correspond to vortices that are mirror images of one another;
these branches are collapsed into a single one in an IVI diagram, as they have the
same impulse.

We note that the IVI-diagram technique is comparatively simple to implement,
provided one can rely on an efficient numerical procedure to compute the steady states.
By comparison, to compute a bifurcated solution branch by approaches traditionally
employed in vortex calculations, one needs to first perform a linear stability analysis
to find the equilibrium solution for which the exchange of stability occurs. One then
must calculate the corresponding eigenmode and superpose it onto the equilibrium
solution, using the result as an initial guess for the new branch. It is straightforward
to see that, for a wide range of flows, it is significantly easier to instead insert one or
more symmetry-breaking flow elements, and compute the imperfect steady states. We
should also note here that the use of automated continuation and bifurcation detection
packages (such as MatCont or AUTO; e.g. Doedel 1981) does not seem to have been
explored so far in vortex flows, and may also prove useful in future work.

Finally, we must be careful to point out that the development of a saddle in the
energy surface (as detected by an IVI diagram) is, strictly speaking, only necessary for
linear instability; this indicates that an IVI diagram may overestimate the number of
linearly unstable modes for an equilibrium. However, for all examples considered in
this paper, the number of positive-energy modes from the IVI diagrams matches the
number of unstable modes from linear analysis.

7. Concluding remarks
In this paper, we take as a starting point a variational argument that has its roots

in the work of Lord Kelvin, and build on ideas from dynamical systems theory and
imperfection theory to show that the number of positive energy modes (which are
necessary to yield instability) can be detected directly from families of equilibrium
solutions.

We address the first issue raised by Dritschel (1985) with respect to the possible
use of bifurcation diagram namely, that a link between turning points and stability has
not previously been established. In this paper, we develop a turning point approach
for vortex flows, which demonstrates a correspondence between folds in impulse and
the onset or disappearance of a positive energy mode, thereby bounding the number of
linearly unstable modes. In addition, we demonstrate that one can use the shape of a
velocity-impulse diagram to infer whether a positive energy mode is lost or gained at
the turning point.

Dritschel (1985) also brought attention to the fact that, in the presence of
undiscovered bifurcations, a simple turning point approach would fail to capture all
exchanges of stability. We address this second issue by introducing symmetry-breaking
imperfections in these conservative fluid problems, thereby computing families of
imperfect steady states. In all examples considered here, this methodology enables us
to detect bifurcations to new families of steady solutions, therefore uncovering the
associated changes in stability properties. In all cases, linear analysis confirms that no
bifurcations are missed.
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A separate issue discussed here concerns the definition of a ‘proper’ family of
fluid solutions. We show that solution families must be built from incompressible,
isovortical rearrangements. It is important to note that several existing families of
analytical solutions (e.g. Stuart 1967; Mallier & Maslowe 1993) do not satisfy this
requirement. Therefore their stability may not be determined by simply seeking turning
points in some control parameter for the analytical family (this is different from what
has been previously suggested; see Saffman 1992). Instead, in order to determine
stability, one must embed an equilibrium flow into a properly constructed family of
solutions.

We apply the IVI diagram stability methodology to a wide range of two-dimensional
classical flows. Where linear stability results are available, the stability boundaries and
number of unstable modes delivered by the IVI diagrams agree precisely with data in
the literature. We also consider flows for which a corresponding linear analysis has
not yet been performed; for these problems, we obtain what are, to the best of our
knowledge, the first available stability results. These new findings include the stability
boundaries and bifurcated branches for a finite-area von Kármán street subject to
superharmonic perturbations, as well as the result that a discretized Chaplygin–Lamb
dipole is stable.

For most of the flows examined, the introduction of imperfections leads us to the
discovery of new families of steady solutions, which exhibit lower symmetry. The
stability of these new equilibrium flows also follows from the application of the IVI
diagram technique. Among the new flows presented here, we discover steady vortices
that do not exhibit any reflectional or rotational symmetry, and find non-symmetric,
equal-area vortex pairs that translate along a straight path. These results also enable us
to resolve an outstanding question on the structure of families of opposite-sign vortex
pairs, thereby reconciling results for translating and rotating pairs.

The examples considered here are two-dimensional; nevertheless, the turning
point approach in § A.2 is formulated for three-dimensional flows. It is generally
accepted that three-dimensional inviscid equilibria are saddles of the energy (e.g.
Arnol’d 1966), implying that a turning-point approach may be less useful for three-
dimensional problems. However, the IVI diagram approach may prove valuable for
three-dimensional flows where motion along one or more dimensions is constrained
(such as, for example, in certain rotating or stratified flows).

A number of interesting questions remain to be pursued. It would be valuable to
obtain a rigorous proof clarifying what types of imperfection can be expected to
unfold all bifurcations. Another direction for future work concerns the development of
numerical approaches for steady vortices with smooth vorticity distributions. Indeed,
even in two dimensions, methods that can compute non-symmetric, smooth vortices
from isovortical rearrangements have yet to be formulated (Flierl & Morrison 2011).

In conclusion, we should emphasize that the IVI diagram methodology is obviously
not meant to replace other stability approaches, such as linear analysis or simulation,
which can be used to yield, for example, growth rates and long-term evolution. Of
course, the methodology presented here may be employed in combination with other,
possibly more involved, stability approaches.
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Appendix A. Turning points in vortex flows
A.1. Kelvin’s argument

For completeness, we recapitulate here the essential steps underlying the mathematical
formalization of Kelvin’s argument (for a more detailed description, see e.g. Fukumoto
& Moffatt 2008). Consider the vorticity functional

H = E[ω] − U · I[ω] −Ω · J[ω], (A 1)

where E is the excess kinetic energy, U and Ω are the linear and angular velocities of
the vortex configuration, and I and J are the linear and angular impulses, given by

E[ω] = 1
2

∫
ω ·A dV, I[ω] = 1

(D− 1)

∫
r× ω dV, J[ω] = −1

2

∫
ω |r|2 dV, (A 2)

where r is the position vector, ω is the vorticity, A is the vector potential (such that
u = ∇ × A) and D is the number of dimensions (two or three). If the configuration
has zero net circulation, it is possible to choose axes such that J = 0 (Saffman
1992); similarly, if the net circulation is finite, one can choose the origin such that
I = 0. For brevity, consider here only the first case (similar steps can be followed for
configurations with finite circulation). Without loss of generality, choose axes such that
J = (0, 0, J), and write Ω · J =ΩJ in (A 1).

One may seek a stationary point of H for either fixed Ω , or fixed J. Here, we
fix J as the control parameter, and require it to take the prescribed value J0. As is
commonly done in variational calculus (e.g. Lanczos 1986), to seek a stationary point
of H one must therefore write

H = E[ω] −Ω(J[ω] − J0), (A 3)

take the variations in ω and Ω , and set each independently to zero:

δω : δE[ω] −ΩδJ[ω] = 0 (A 4)
δΩ : J[ω] − J0 = 0. (A 5)

Equation (A 5) states that J[ω] is prescribed, as required. If the δω variation is
assumed isovortical, the components of δω are not independent, and (A 4) needs to be
manipulated further. Let us briefly point out that the isovortical condition is equivalent
to writing

δω =∇ × (δ`× ω), (A 6)

where δ`(x) is a displacement field through which the variation is enacted (a detailed
derivation of (A 6) may be found in Lynden-Bell & Katz 1981). If the flow is
incompressible, the components of δ` are also not independent, and one must write

δ`=∇ × δa, (A 7)

where the components of δa are independent. One can then proceed to show that (A 4),
with arbitrary δa, yields the steady vorticity equation for flow in a frame of reference
rotating with angular velocity Ω (see Saffman 1992; Fukumoto & Moffatt 2008 give
the corresponding derivation for a translating configuration).
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A.2. Turning points in impulse and the introduction of positive-signature modes
We now proceed to obtain the stability result linking turning points in impulse with the
appearance of positive-signature modes. To assist with the following manipulation, we
rewrite the stationarity condition δH = 0 as

δH =
∫ 4∑

i=1

∂Ĥ

∂qi
δqi dV = 0, (A 8)

where q = (ω,Ω) and H ≡ ∫ Ĥ dV . Introduce an auxiliary parameter s, assumed to
increase monotonically along a solution branch, such that we may characterize the
solution family by [q0(s), J0(s)], where the zero subscript denotes an equilibrium value.
Differentiate (A 8) along the solution branch:

d
ds
(δH)=

∫ 4∑
i,j=1

∂2Ĥ

∂qi∂qj
δqiq̇j dV + J̇0

∫ 4∑
i=1

∂2Ĥ

∂qi∂J0
δqi dV = 0, (A 9)

where a dot denotes differentiation with respect to s. We now specialize the above
equation to the case δq = q̇. Since δq is (from Kelvin’s argument) an isovortical,
incompressible rearrangement, and q̇ is a rearrangement along the solution family,
this implies that the family of solutions must be constructed from isovortical,
incompressible rearrangements. Then∫ 4∑

i,j=1

∂2Ĥ

∂qi∂qj
q̇iq̇j dV =−J̇0

∫ 4∑
i=1

∂2Ĥ

∂qi∂J0
q̇i dV. (A 10)

Note that ∫ 4∑
i,j=1

∂2Ĥ

∂qi∂qj
q̇iq̇j dV = δ2Halong branch, (A 11)

∫ 4∑
i=1

∂2Ĥ

∂qi∂J0
q̇i dV = d

ds

(
∂H

∂J0

)
= Ω̇, (A 12)

where we have used ∂2H/∂J2
0 = 0. Substituting (A 11) and (A 12) into (A 10) gives

δ2Halong branch =−J̇0 Ω̇. (A 13)

The second variation of H, taken along a branch, is therefore zero at either a turning
point in velocity (Ω̇ = 0), or at a turning point in impulse (J̇0 = 0). However, note that
a necessary condition, for a physically admissible perturbation, is that angular impulse
J must be preserved. To satisfy this requirement we need∫ 4∑

i=1

∂ Ĵ

∂qi
q̇i dV = dJ

ds
= dJ0

ds
= 0, (A 14)

since J = J0 along a solution branch. Therefore the case of interest in (A 13) is J̇0 = 0.
To infer the direction of the change of δ2H, differentiate (A 13) with respect to s:

d
ds
(δ2Halong branch)=−J̈0 Ω̇ − J̇0 Ω̈. (A 15)
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At J̇0 = 0,

d
ds
(δ2Halong branch)=−J̈0 Ω̇. (A 16)

Equation (A 16) enables us to detect the direction of the change of δ2H, from the
shape of a velocity-impulse plot, as illustrated schematically in figure 3.

We should note that many turning-point results have appeared previously in other
areas of mathematics and mechanics (Poincaré 1885; Katz 1978; Thompson 1979;
Maddocks 1987). However, to the best of our knowledge, this is the first work
to clarify that, for vortex flows, families of solutions must be constructed from
isovortical and incompressible rearrangements, and that the impulse is the correct
control parameter.

A.3. The link between turning points in impulse and turning points in energy
Past studies of steady uniform vortices have found numerically that turning points of
energy coincided with turning points in impulse, to the accuracy of the calculations
performed (Saffman & Szeto 1980; Dritschel 1985; Kamm 1987; Dritschel 1995). In
fact, there is a simple analysis that can be used to show that Ė = 0 and J̇ = 0 must
occur simultaneously, as we explain here.

Consider a family of solutions constructed from incompressible, isovortical
rearrangements, and let us write E = ∫ Ê dV, J = ∫ Ĵ dV . Then the stationarity
condition δH = 0 can be expressed as∫ 3∑

i=1

∂Ê

∂ωi
δωi dV =Ω

∫ 3∑
i=1

∂ Ĵ

∂ωi
δωi dV + δΩ(J − J0). (A 17)

Along a solution family, J − J0 = 0, and we can choose δω = ω̇, such that

Ė =Ω J̇. (A 18)

Therefore (provided Ω 6= 0) a turning point in impulse must correspond to an
extremum in energy. In an impulse-energy plot, this gives rise to a cusp for any
family of solutions constructed through incompressible, isovortical perturbations.

A.4. Alternative parametrization for spatially periodic flows
We briefly consider here the special case of flows that are periodic in one space
direction (say, x), such that for any flow property φ we can write φ(x, y, z) =
φ(x + L, y, z), where L is the width of the periodic strip. It can be shown that
the mathematical formulation of Kelvin’s argument discussed in § A.2 also holds for
spatially periodic flows, provided the displacement field employed to take the variation
is also periodic. Furthermore, simple physical arguments dictate that steady flows in
a periodic strip must either translate or be stationary (see Meiron et al. 1984). The
absence of any rotating equilibria implies that (Ω, J) are irrelevant, and any steady
state is associated with

δH = δ[E − U(I − I0)] = 0. (A 19)

For these flows, we may apply the velocity-impulse approach introduced earlier in
§ A.2, by simply considering families of solutions with L = constant. However, for
any flow with non-zero overall circulation over one cell of width L (such as, for
example, a row of identical vortices), the linear impulse can always be made to vanish
by placing the coordinate origin at the vorticity centroid (see e.g. Saffman 1992).
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FIGURE 14. Eigenvalues for the basic branch of the finite-area von Kármán street: (a) overall
view; and (b) close-up of the two exchanges of stability.

Therefore, for a wide class of flows, one cannot use turning points in I0 for stability
purposes. Furthermore, even for flows with non-zero impulse (such as a von Kármán
vortex street) it may be advantageous to be able to parametrize the solution family
by L, instead of I0. We therefore show here how to recast the turning-point approach
in terms of this parameter.

Consider solutions for which I0 takes a single prescribed value, such that the
dependence on the fluid impulse vanishes along the solution family, and such that
L may be considered the control parameter. This implies that the flow remains spatially
periodic at all times, which in turn requires that any perturbation must have the same
periodicity as the original flow (i.e. only superharmonic perturbations are considered).
Then, by following steps similar to those in § A.2, with q= (ω,U), we first find

δ2Halong family = L̇
∫ 4∑

i=1

∂2Ĥ

∂qi∂L
q̇i dV. (A 20)

Since the impulse is constant along the family of solutions, we have that ∂H/∂L =
∂E/∂L. We can therefore write

δ2Halong family = d
ds

(
∂E

∂L

)
L̇, (A 21)

and, differentiating with respect to s,

d
ds
(δ2Halong family)= d

ds

(
∂E

∂L

)
L̈ at L̇= 0, (A 22)

which is essentially the same result as in § A.2, with (Ω, J) replaced by (∂E/∂L,−L).
Therefore, a turning point in L corresponds to the addition or subtraction of a positive-
energy mode, as can be inferred from a plot of L and ∂E/∂L.

Appendix B. Stability from linear analysis
For two of the flows that we considered in § 4 (namely, the finite-area von Kármán

street and the Chaplygin–Lamb dipole), linear stability results are not available in the
literature (for the von Kármán street, Meiron et al. 1984 only computed eigenvalues
for well-separated vortices). Therefore, as a check on our IVI diagrams, we computed
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Chaplygin–Lamb dipole

0.2

0.06 0.07 0.08
0

0.4

0.05 0.09

FIGURE 15. Eigenvalues for the family of solutions based on the Chaplygin–Lamb dipole.

eigenvalues associated with perturbations of the form eσ t (such that a purely imaginary
eigenvalue is spectrally stable). The stability method is reported in Luzzatto-Fegiz
& Williamson (2011a); its use is also illustrated in Luzzatto-Fegiz & Williamson
(2011b).

The eigenvalues for the von Kármán street with I∗ = 0.4 are plotted against L∗ in
figure 14. Two exchanges of stability are visible, at L∗ = 1.40578 and 1.40851; these
match the stability boundaries from the energy-spacing diagram of figure 10 to six
significant figures.

Figure 15 shows eigenvalues for the family of vortices based on the discretized
Chaplygin–Lamb dipole. The value of U∗ corresponding to the Chaplygin–Lamb
solution is marked by a dot-dashed line; all eigenvalues are still purely imaginary
at this location, indicating that the discretized flow is spectrally stable, in agreement
with the IVI diagram of figure 11.

The von Kármán street calculations used 101 normal modes per vortex, whereas
those for the Chaplygin–Lamb dipole used 41 modes for the six innermost vorticity
contours, and 101 for the outermost ones. Doubling the number of normal modes for
selected cases had no appreciable effect on the eigenvalues reported here. Eigenvalues
for solutions near the limiting states require a greater number of normal modes, and
are not described here.

R E F E R E N C E S

ARNOL’D, V. I. 1965 Conditions for nonlinear stability of stationary plane curvilinear flows of an
ideal fluid. Dokl. Akad. Nauk SSSR 162, 773–777.

ARNOL’D, V. I. 1966 Sur un principe variationnel pour les écoulements stationnaires des liquides
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