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We present simultaneous experimental measurements of the dynamics of anisotropic
particles transported by a turbulent flow and the velocity gradient tensor of the flow
surrounding them. We track both rod-shaped particles and small spherical flow tracers
using stereoscopic particle tracking. By using scanned illumination, we are able to
obtain a high enough seeding density of tracers to measure the full velocity gradient
tensor near the rod. The alignment of rods with the vorticity and the eigenvectors
of the strain rate from experimental results agree well with numerical findings. A
full description of the tumbling of rods in turbulence requires specifying a seven-
dimensional joint probability density function (jPDF) of five scalars characterizing the
velocity gradient tensor and two scalars describing the relative orientation of the rod.
If these seven parameters are known, then Jeffery’s equation specifies the rod tumbling
rate and any statistic of rod rotations can be obtained as a weighted average over the
jPDF. To look for a lower-dimensional projection to simplify the problem, we explore
conditional averages of the mean-squared tumbling rate. The conditional dependence
of the mean-squared tumbling rate on the magnitude of both the vorticity and the
strain rate is strong, as expected, and similar. There is also a strong dependence on
the orientation between the rod and the vorticity, since a rod aligned with the vorticity
vector tumbles due to strain but not vorticity. When conditioned on the alignment of
the rod with the eigenvectors of the strain rate, the largest tumbling rate is obtained
when the rod is oriented at a certain angle to the eigenvector that corresponds to
the smallest eigenvalue, because this particular orientation maximizes the contribution
from both the vorticity and strain.

Key words: multiphase and particle-laden flows, particle/fluid flow, turbulent flows

1. Introduction
Particles carried by turbulent flows in nature, such as ice crystals in clouds

(Korolev & Isaac 2003; Shaw 2003; Pinsky, Khain & Shapiro 2007) or plankton in
the oceans (Karp-Boss, Azevedo & Boss 2007; Jumars et al. 2009; Guasto, Rusconi
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& Stocker 2012), are rarely spherical; instead, they often have non-trivial, anisotropic
shapes that may influence their motion as they are carried by the flow. The simplest
shape to consider after a sphere is that of an ellipsoid. The tumbling rate of an
axi-symmetric ellipsoid in Stokes flow is determined by the particle orientation and
the velocity gradient tensor (Jeffery 1922):

ṗi =Ωijpj + α
2 − 1
α2 + 1

(Sijpj − pipkSklpl), (1.1)

where p̂ is a unit director along the symmetric axis of the particle, α is the aspect
ratio of the ellipsoid, and Sij and Ωij are the symmetric and antisymmetric parts of
the velocity gradient tensor, respectively.

In a turbulent flow, a small ellipsoidal particle rotates in response to the velocity
gradients along its Lagrangian trajectory. Because these Lagrangian velocity gradients
are controlled by the small scales, they are similar in many different turbulent flows
and have been the focus of extensive study (Meneveau 2011). To understand the
dynamics of ellipsoidal particles in turbulence, we need to extend our understanding
of the Lagrangian statistics of the velocity gradient tensor to include the orientational
dynamics that result from integrating equation (1.1) along particle trajectories. This
is a challenging problem, both because of the complexity of statistically quantifying
the particle orientation with respect to the velocity gradient tensor, and due to the
difficulty of measuring the dynamics of anisotropic particles simultaneously with the
velocity gradient tensors.

The study of anisotropic particles in fluid flows has a long history because of
the many relevant applications. Leal (1980) provides a review of the older literature,
and a wide range of work has followed, for example: Koch & Shaqfeh (1989),
Szeri & Leal (1993), Herzhaft et al. (1996), Olson & Kerekes (1998), Parsa et al.
(2011), Andersson & Soldati (2013) and Rosen, Lundell & Aidun (2014). Turbulent
flows advecting anisotropic particles provide a compelling test case, both because of
the many applications and because of the nearly universal statistics of the velocity
gradients experienced by small particles in many turbulent flows at large Reynolds
number. However, the difficulty of accessing particle and fluid variables in turbulent
flows has hindered work in this area. Rod-shaped particles (α� 1) were the first to
be studied. Shin & Koch (2005) provided an extensive numerical study of rotational
diffusion and the tumbling rate of rods in turbulence. They observed that the tumbling
rate of rods is much smaller than that predicted for randomly oriented rods. Pumir
& Wilkinson (2011) showed from numerical simulations that this suppression of the
tumbling rate is caused by rods aligning with the vorticity vector. Parsa et al. (2012)
extended numerical study of the tumbling rate across the full range of aspect ratios of
axi-symmetric ellipsoids and found that preferential alignment decreases the tumbling
rate for almost all shapes. They also provided the first time-resolved experimental
measurements of tumbling of rods in turbulence. Chevillard & Meneveau (2013)
studied the full parameter space of tri-axial ellipsoids in numerical simulations and
showed that the tumbling of rods is a challenging test case for stochastic models of
the velocity gradient tensor in turbulence. Gustavsson, Einarsson & Mehlig (2014)
used analytical and numerical methods to show that the differences in tumbling
between rods and disks can be understood using Lagrangian three-point correlations
of the velocity gradient tensor. Parsa & Voth (2014) made experimental measurements
of the rotation of rods with lengths extending into the inertial range of turbulence and
proposed that rotations of long rods should show inertial range scaling. Ni, Ouellette
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& Voth (2014) showed how Lagrangian stretching aligns the long axis of a particle
with the vorticity in turbulence.

A question that remains unanswered is how to quantify the preferential orientation
of particles that decreases their tumbling rate in turbulence. From numerical
simulations (Pumir & Wilkinson 2011; Gustavsson et al. 2014) we know the
probability distributions of the projection of p̂ onto the vorticity and the eigenvectors
of the strain rate. But predicting the tumbling rate requires the full joint probability
distribution of the velocity gradient tensor and the particle orientation. This could
be obtained from numerical simulations, although a thorough study has not yet
been published. In this paper we show that this joint probability distribution is now
accessible to experimental measurements.

One of the main challenges in simultaneous measurement of the orientations
of particles and the velocity gradient tensor along the particle trajectory is that
measuring the Lagrangian velocity gradient tensor is difficult and typically has large
experimental uncertainties. This is primarily because the Kolmogorov length scale η
over which the flow is roughly linear is small, typically tens or hundreds of microns
at high Reynolds numbers. Achieving this spatial resolution in an experiment is
highly non-trivial. Multi-sensor hot-wire probes (Wallace & Vukoslavc̆ević 2010) can
provide the required resolution, but acquire only single-point Eulerian information
and typically require the use of Taylor’s hypothesis and a strong mean velocity.
Non-intrusive optical methods, such as laser-induced fluorescence (LIF), particle
image velocimetry (PIV), and particle tracking, are potentially viable alternatives.
Particle tracking is best suited for our purposes, as it directly provides Lagrangian
information without requiring interpolation or integration of velocity fields. But since
particle tracking follows the motion of individual tracer particles, it has typically been
restricted to fields that are sampled too sparsely to resolve the velocity gradient. At
small Reynolds numbers, however, Lüthi, Tsinober & Kinzelbach (2005) successfully
used particle tracking to measure the velocity gradient; thus, if the seeding density
can be made large enough, the gradient can be resolved. One promising method
for increasing the seeding density in particle tracking is to illuminate not the entire
measurement volume at once but rather to section it into successively illuminated
slabs by scanning a laser through it (Hoyer et al. 2005). This scanning particle
tracking opens the door for using particle tracking to measure the velocity gradient at
larger Reynolds numbers, and has been used, for example, along with LIF to study
the joint evolution of the velocity gradient and the density field in turbulent gravity
currents (Krug et al. 2014).

In this paper, we report experimental results on the joint dynamics of rods and the
velocity gradient tensor in turbulence using a scanning particle tracking system. In
§ 2, we show an example of a rod trajectory along with the local velocity gradient
tensor to give a qualitative idea of the different ways the gradient contributes to the
rod tumbling rate. In § 3, we present in detail our experimental setup and our scanning
particle tracking system; an analysis of our experimental uncertainties in measuring
the gradient is reserved for the appendices. Details of the data analysis are addressed
in § 4. In § 5, we discuss our experimental results concerning the dependence of the
rod tumbling rate on the velocity gradient; in particular, we describe quantitatively
the relative contributions from the vorticity and the strain rate and show that both are
necessary for understanding the orientational dynamics of rods.

2. Example
Before describing our techniques for measuring rod motion and the velocity gradient

tensor in detail, we show in figure 1 an example of a measured rod trajectory along
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Frame 526

Frame 0
Tumbling rate magnitude (s–1)

3.12 14.6

5 7.5 10 12.5

FIGURE 1. (Colour online) Reconstructed three-dimensional trajectory of a rod (700 µm
in length) over 1 s (527 frames). The colourmap shows the tumbling rate of a rod. The
blue and the red arrows represent the vorticity vector ω and the largest stretching direction
ê1, respectively. The length of the two arrows indicates the magnitude of ω and the
eigenvalue λ1 of strain-rate tensor corresponding to the largest stretching direction ê1.

with vectors characterizing the local velocity gradients. The ribbon shows the full
trajectory with a solid rod plotted only once every 25 time steps. The colour indicates
the magnitude of rod tumbling rate |ṗ|, which depends on the straining and swirling
motion of the surrounding flow. The tumbling rate due to strain is

ṗS
i =

α2 − 1
α2 + 1

(Sijpj − pipkSklpl) (2.1)

and this tends to align the rod with the most extensional direction of the local flow
(red arrow), which is given by the eigenvector ê1 of the strain-rate tensor Sij that
corresponds to its largest eigenvalue λ1. Local swirling is characterized by the rotation-
rate tensor Ωij, which tends to rotate the rods about the local vorticity direction ω̂
(blue arrow) at a rate of

ṗΩi =Ωijpj. (2.2)

For this rod trajectory, the magnitude of the total tumbling rate ṗ as well as its two
component contributions ṗΩ and ṗS are shown in figure 2(a,b). The total tumbling rate
can be computed in two ways: by differentiating the rod orientation signal or by using
measurements of the velocity gradient tensor and Jeffery’s equation ṗJ = ṗΩ + ṗS. As
shown in figure 2(a), the two measurements agree well with each other, indicating
both that our measurement of the velocity gradient tensor is accurate and that the rod
is small enough that Jeffery’s equation holds. In figure 2(c), we plot the cosine of the
angle between ṗΩ and ṗS. When this quantity is negative, the contribution to the rod
tumbling due to strain works against that due to rotation. But when it is positive, the
two contributions work cooperatively and lead to large tumbling rates, as can be seen
at 0.16 and 0.56 s in figure 2 (corresponding to the red regions in figure 1).

3. Experimental apparatus and setup
We generated a turbulent flow in an octagonal Plexiglas water tank measuring 1×

1 × 1.5 m3. Two grids with a mesh size of 8 cm were oscillated in phase with an
amplitude of 12 cm. Details about the apparatus are given in Blum et al. (2010).
In this paper, all experiments were performed with a grid frequency of 1 Hz which
creates turbulence in the centre of the tank with Reynolds number Rλ = 140. The
Kolmogorov length scale is η= (ν3/ε)1/4 = 0.31 mm and the Kolmogorov time scale
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FIGURE 2. (Colour online) The time series of the rod tumbling rate for the trajectory
shown in figure 1. (a) The magnitude of total tumbling rate from two different
measurements: ṗ determined by differentiating the rod orientation (curve) and ṗJ calculated
from Jeffery’s equation using the velocity gradient measurements around the rod (circles).
(b) Two contributions to tumbling rate from vorticity |ṗΩ | and from strain |ṗS|. (c) The
cosine of the angle between two vectors ṗΩ and ṗS.

is τη = (ν/ε)1/2 = 0.093 s, where ν is the kinematic viscosity and ε is the energy
dissipation rate per unit mass whose measurement is described in appendix B. The
temperature of the water was almost constant at 21.8 ± 0.2 ◦C, giving a kinematic
viscosity of ν = (9.61± 0.05)× 10−7 m2 s−1.

To measure the velocity gradient tensor simultaneously with rod motion, we need
two kinds of particles: the rods themselves and small, spherical tracer particles. A key
to this experiment is obtaining suitable particles. Fluorescent particles are convenient,
as they will produce much better images, since some small residue from aluminium
top and bottom plates and the bearings may be carried into the measurement volume.
For tracer particles, we therefore used internally dyed polystyrene divinylbenzene
(PS-DVB) particles with 30 µm diameter and density 1.05 g cm−3, purchased from
Thermo Scientific. The rods were nylon fibre (density 1.10–1.13 g cm−3) from DonJer
Corp., with major and minor axes of roughly 700 and 30 µm, respectively, giving
an aspect ratio of 23.3. We dyed the rods with Rhodamine-B, so that they absorbed
green light (wavelength λ = 532 nm) from our laser and emitted red light at the
same wavelength as the tracer particles. A typical image of these fluorescent particles,
captured through a Schneider B+W MRC Orange 550 band-pass filter, is shown
in figure 3. The shapes of the two types of particles are well-defined and distinct
from each other, and thus the particles can be easily separated using automated image
analysis. Note that the brightness of the two kinds of particles is very similar, another
important factor in the experiment: if the brightness of two types of particles were
very different, it would be difficult to determine their positions accurately at the same
time. Even though the tracer particles are much smaller than the rods, the internal
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(a) (b)

FIGURE 3. (Colour online) The full resolution (a) and zoomed-in (b) images captured by
one of the three cameras. The circle in (b) is centred at the centroid of a rod with 2 mm
(6.7η) radius. The tracer particles that fall in such a sphere will be used to calculate the
velocity gradient tensor.

dyeing emitted a much stronger fluorescent signal than the rods, which we dyed
ourselves.

In our subsequent analysis, we make the assumption that the rods and the tracers
do not exhibit inertial effects caused by their finite size or density difference with
respect to the fluid. To characterize the validity of this assumption, we consider the
lengths and Stokes numbers of the particles. The length of a rod is roughly 2.3η.
Studies of long neutrally buoyant rods show that the tumbling of a rod of this length
is very close to the short rod limit (Shin & Koch 2005; Parsa & Voth 2014). The
tracer particles have diameters of 0.1η, which is clearly in the small sphere limit (Voth
et al. 2002). The Stokes number St = τp/τη is defined as the ratio between the time
scale of the Stokes viscous drag τp = r2/(3βν) and the Kolmogorov time scale τη.
Here, r is the radius of the particle and β = 3ρf /(2ρp + ρf ) is a coefficient capturing
the effect of a density difference between the fluid (with density ρf ) and the particle
(with density ρp). If the particle response time τp is much smaller than the smallest
scale τη, the inertial effect of the particle is negligibly small, and the particles can be
safely treated as tracers. For our spherical particles, St = 8.6 × 10−5� 1. For a rod,
the relaxation time is given by τr = 2αρpr2 ln(α + √α2 − 1)/9ν

√
α2 − 1ρf , where r

is the semi-minor axis (Shapiro & Goldenberg 1993; Zhang et al. 2001). Using this
expression, the Stokes number for the rods is τr/τp = 8× 10−3, which is also much
less than unity. Thus, both the rods and the spherical particles are in the tracer limit,
and will follow the fluid motion accurately.

3.1. Scanning system
Once the particles are chosen, we need to determine the proper seeding density
for the experiment. Generally speaking, we want a very high density of spherical
particles and relatively low density of rods. The density of spherical particles is
directly related to the spatial resolution, which is crucial for measuring the velocity
gradient tensor. The maximum density is limited, however, if we illuminate the entire
measurement volume, because the images of individual particles will overlap with
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Top camera 1

Top camera 2

Detection
volume

Piezo-electric
mirror

Cylindrical lens 
group 1

Cylindrical lens
group 2

Nd:YAG laser

Scanning
direction

FIGURE 4. (Colour online) Schematic of the experimental apparatus. Lens group
1 controlled the thickness of the laser beam and needed to be placed before the
piezo-electric mirror. Lens group 2 ( f = 15 mm and f = 150 mm) expanded the beam in
the vertical direction to form the final laser sheet. The laser sheet stayed nearly parallel
across the whole scanning range (divergence is exaggerated in the figure). Detection
volume is not to scale. Camera 3 is located below camera 1.

each other when the particle seeding density is high. We therefore use a scanning
particle tracking system for our measurements (Hoyer et al. 2005). The basic principle
of this technique is a sacrifice of temporal resolution for improved spatial resolution.
By subdividing the measurement volume into 10 slabs, for example, and successively
scanning the illumination through them, we can increase the particle seeding density
by a factor of 10 (in the ideal case), albeit at the cost of requiring a factor of 10
increase in camera frame rate and a decrease in total recording time.

A schematic of the experimental setup is shown in figure 4. The beam from a pulsed
Nd:YAG laser with an average output power of 50 W was stretched independently in
height and in width by two sets of lenses to create an illumination slab measuring
50 mm × 3 mm. To ensure a relatively uniform slab depth over a height of 30 mm,
we did not image the top and bottom 10 mm of the laser slab. The scanning of
the light slab was controlled by a piezo-electric driven mirror (S-224, PI Inc.) with
a diameter of 15 mm and a maximum deflection angle of 2.2 mrad with sub-µrad
resolution. The small deflection angle is magnified through the optical system to give
a 12 mm scanning range in the centre of the flow chamber. For reasons we will
explain in § 4.2, each slab overlaps with the previous one by ∼50 %. Compared to
previous designs using a rotating prism to scan the illumination slab (Hoyer et al.
2005), a piezo-electric driven mirror or an acousto-optic deflector has the potential
to generate faster scanning rates, which are more suitable for turbulence with even
higher Reynolds number.

Three Photron FASTCAM SA5 cameras with a resolution of 1024 × 1024 pixels
were used to image the particles in a small volume measuring approximately 3× 3×
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4 cm3 in the centre of the tank. To resolve this small volume more than a half metre
away from the sidewalls of the tank, each camera was fitted with a Nikkor 200 mm
macro lens and a Kenko 1.6 teleconverter. The cameras were mounted on a custom-
built frame on an optical table uncoupled from the turbulence tank to minimize camera
vibration. Two of the cameras (labelled as ‘top cameras’ in figure 4) were mounted
in the same lateral plane with a 90◦ angular separation, and looked down into the
detection volume at an angle of 16◦. The third camera was aimed up toward the same
volume at an angle of 21◦. Situating the three cameras in different planes helps to
increase the stereomatching accuracy (Ouellette, Xu & Bodenschatz 2006).

The piezo-electric mirror was driven with an adjusted saw-tooth signal at a
frequency of 500 Hz, rising linearly for 80 % of each cycle and falling for the
remaining 20 %. This driving produced a nearly linear scanning motion of the laser
beam through the measurement volume followed by a quick return to the initial
position. The cameras recorded images at a frame rate of 5000 Hz, so that each
cycle of the mirror resulted in 10 captured sets of images, with eight of these
linearly positioned through the measurement volume. We set the cameras to store
only eight out of every 10 frames to conserve on-board memory, which could hold a
total of 5456 images. Thus, approximately 1.4 s (14.7τη or 0.44 large-eddy turnover
time) of data is held in the camera memory before being transferred to the computer
hard drive. Our experimental protocol thus consisted of several steps. First, the two
grids were driven at 3 Hz for 30 s to stir up the fluid and particles. The grids were
then slowed to a 1 Hz oscillation rate, and the flow was given 1 min (approximately
17.5 large-eddy turnover times) to stabilize. The cameras then recorded images until
their memory was full (for approximately 1 s), and the system subsequently rested
until the data transfer to the hard drive was complete. The timing of this system was
automatically controlled with Labview scripts. The results reported here come from a
full day of measurements, giving roughly 300 data sets.

3.2. Simulation
To compare with the experimental data, one dataset from a direct numerical simulation
(DNS) of homogeneous isotropic turbulence at Reynolds number Rλ = 180 was used.
There are total of N3 = 5123 collocation points for the entire volume. A total of
7 × 104 Lagrangian trajectories of the velocity gradient tensor were followed for
O(1) large-eddy turnover times, and the time step for integrating the Navier–Stokes
equations and tracking Lagrangian points was O(10−2τη). Along each Lagrangian
trajectory, the orientation of a virtual infinitesimal rod with an aspect ratio of 20 was
computed by integrating Jeffery’s equation (1.1) using a fourth-order Runge–Kutta
method (Parsa et al. 2012). The details of this simulation are given by Benzi et al.
(2009).

4. Data analysis
4.1. Image processing

To determine particle positions, the digital image from each camera is first segmented
into groups of bright pixels, representing both tracers particles and rods. Typically, the
image of one spherical tracer particle contains 4–9 pixels, corresponding to 2–3 pixels
in diameter. The number of pixels in a rod image depends on its relative orientation
to the camera. The maximum size is ∼320 pixels when its long axis is perpendicular
to the optical path of the camera, in which case it is also highly anisotropic. But
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FIGURE 5. Diagram of one particle passing from one slab n (box in solid line) to the next
one n+ 1 (box in dashed line). The positions of the same particle in slab n and n+ 1 are
represented by solid circles and crosses, respectively. The time between two consecutive
volume scans is 1t, and the time between two slabs is δt. In the overlapping region, there
are three pairs of joins, which can be used to connect two segments of trajectories in
different slabs together.

the image of a rod becomes quasi-spherical with an area of ∼16 when it points
directly toward the camera. Ideally, the images of rods and spherical particles could
be separated solely by their area. However, sometimes a spherical particle looks
larger if it is out of focus. So we add another criterion for separating the images of
spheres and rods: eccentricity, which is defined as the degree of geometrical deviation
from a circle. It is determined by finding the best-fit ellipse to the pixel cluster and
calculating the ratio of the distance between the foci and the major axis of the ellipse.
We find that the eccentricity ranges from 0 to 0.6 for spherical particles and from 0.8
to 1 for rods. In practice, a particle image is considered to be a rod if its eccentricity
is larger than 0.9 and its area is larger than 30 pixels. These criteria separate almost
all rods from spherical tracer particles. Sometimes a rod that points directly toward
one camera will be mistakenly identified as a tracer in that camera; but because we
have other cameras viewing the same rod from different directions, where it will be
distinctly elongated, it can be correctly identified by combining the information from
all the cameras.

4.2. Particle tracking
Once we know the particle type, its centre is determined by averaging the positions of
its pixels weighted by their brightness values. This procedure is used for both types
of particles. From the two-dimensional positions of the particles as measured by
each camera, the three-dimensional positions can be found by stereoscopic matching,
and subsequently connected together in time from one volume scan to the next
(Ouellette et al. 2006), although some modifications of common tracking algorithms
are required.

In traditional particle tracking, the entire measurement volume is illuminated and is
imaged at a constant rate of 1/1t, where 1t is the time interval between two frames.
Thus, finding candidate particles to extend a given trajectory requires searching for
potential matches only at a time 1t in the future. But for the scanning system, as
is sketched in figure 5, there are two relevant time intervals: 1t= 1/500 s, the time
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FIGURE 6. (Colour online) (a) The trajectories that pass through at least five laser slabs
in one typical movie with 5457 frames. Particle positions that belong to different laser
slabs are shown by a different colour. (b) The histogram of y positions of the particles in
each slab. Only particles from the centre of the detection volume (−5 mm < x < 5 mm
and −5 mm< z< 5 mm) were used to ensure that the histogram represents the slab width
and overlap.

between two full scans of the volume; and δt = 1/5000 s, the time between the
illumination of two neighbouring slabs of the volume. Since a particle may or may
not pass from one slab to another over an interval of δt, the time at which a particle
corresponding to the continuation of a trajectory may be found is not obvious: it
may be found at δt in the future, for example, if the particle moved between two
successive slabs; at 1t in the future if it remained in the same slab; at 1t − δt
in the future if it moved to a previous slab; or even potentially at other times. A
previous scanning tracking system by Hoyer et al. (2005) performed the search for
the continuation of a particle trajectory in slabs n, n− 1, and n+ 1. To handle this
ambiguity, we first track the particles found in each individual slab separately, and
then subsequently merge the short segments that belong to different slabs but that
refer to the same particle. Within each slab, particles are tracked using a standard
predictive tracking algorithm (Ouellette et al. 2006), with a recording time of roughly
∼d/1tũ = 75 frames, where d = 3 mm and ũ ∼ 2 cm s−1 are the thickness of one
laser slab and the root-mean-square velocity of the flow, respectively. In figure 6(b),
it is seen that each pair of neighbouring slabs overlaps by dov ∼ 1.5 mm. Thus, since
the velocity of a particle is bounded, a particle that moves from one slab to the next
will inevitably pass through the overlapping region and will be recorded twice during
each volume scan. We refer to each doubly recorded position as a ‘join’ between
the two trajectory segments. In figure 5, where we schematically demonstrate our
tracking method, there are four joins. In principle, two joins are enough to merge
two trajectory segments into one longer track. Estimating the number of joins in the
overlapping region using simple kinematics gives dov/1tũ= 32. Thus, even a particle
with a speed of 10ũ would still have more than two joins in the overlapping region.
We apply this merging procedure consecutively for all neighbouring slabs, and thus
link all segments in different slabs together into longer trajectories. In figure 6(a), we
show those trajectories that pass through at least five different slabs, which evenly
cover the entire volume, to demonstrate qualitatively that our measurements are robust
and that the overlapping regions are large enough for splicing.
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The stereomatching and tracking procedures for rods are almost the same as for
the tracers. The primary difference is that we need to keep track of the orientation
of a rod in addition to its position. In two dimensions, the orientation, defined as
the angle between the major axis of the rod and horizontal axis of the image, can
be extracted from all three cameras. The three-dimensional orientation of rods can
then be uniquely determined from these three two-dimensional angles and the viewing
directions of the cameras (Parsa 2013). Errors in determining the orientation arise
mainly from the finite aspect ratio of the rods. In the experiments reported here, the
aspect ratio of the rods is 20, roughly four times that in our previous experiments
(Parsa et al. 2012). Thus, the uncertainty in orientation in these data is smaller than
it was for our previous results (Parsa 2013).

4.3. Interpolation and differentiation
The next step in processing the data is to filter and differentiate the trajectories to
obtain the velocities of the tracers and tumbling rates of the rods. Common methods
to accomplish this task include convolving the trajectory with appropriate kernels
(Mordant, Crawford & Bodenschatz 2004) and polynomial fitting (Voth et al. 2002).
In the scanning system, the convolution method is difficult to apply because the
points along the trajectories are not evenly spaced in time, leading to difficulties
in accurate numerical integration. We therefore use polynomial fitting. In addition
to smoothing and differentiating, fitting also allows us to accurately interpolate the
measured positions and velocities in time so that all data throughout the measurement
volume are contemporaneous. That is, we can use the fits to extract the kinematics
of the flow field not at the measured space–time positions of the particles but
rather at the times tn = 4δt + n1t (n = 0, 1, 2, 3, . . .), so that we acquire one full
velocity field for each scan of the volume, measured at the time corresponding to
the illumination of slab 5 (halfway through the volume scan). To accomplish this
interpolation, for each n, we fit a polynomial to all measured data points in the
range [tn − (τf − 1)/2, tn + (τf − 1)/2] along each track, where τf = 91t is the
temporal length of the fit. This choice minimizes noise without unduly affecting the
signal (Voth et al. 2002). From the polynomial fits, we extract smoothed positions,
velocities, and accelerations of the tracers at tn spread over the entire volume. We
apply a similar process to the rods to extract their orientation and tumbling rate. Note,
however, that we define the orientation of the rods by a unit vector along their major
axis. Smoothing the orientation signal decreases random error in the measurement of
the orientation direction, but may change the magnitude of this vector. Therefore, we
must re-normalize the orientation vector for each rod after smoothing.

4.4. Seeding density and shape factor
To determine how large we could make the seeding density of the spherical tracer
particles and still obtain good measurements, we tested the scanning system by slowly
increasing the number of tracer particles. When the particle concentration is low, the
ratio between the number of successfully stereomatched particles and the number
of particles detected in each two-dimensional image is almost constant. We can
determine the maximum seeding density at which we can still resolve the particles by
locating the point at which this ratio begins to decrease. In our experiments, this point
corresponds to roughly 500 stereomatched particles in each slab. After accounting
for doubly imaged particles in the overlapping regions and trajectories shorter than
τf , for which we cannot measure velocities or accelerations, we can reliably measure
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about 2000 velocity vectors in each volume scan. This number varies somewhat
over time due to sedimentation of particles to the sidewalls and bottom plate, so we
add particles over the course of an experimental run to maintain a roughly constant
particle concentration. The seeding density of rods is kept low to avoid interactions
between them. We have roughly 10 rods in the measurement volume at any given
time, so the non-dimensional concentration is roughly n`3 ∼ 10−3, where n is the
number density and ` is the length of a rod. This is far below the concentration at
which rod–rod interactions become important.

After tracking, smoothing, and differentiation, we are left with trajectories of rod
orientations along with the velocities of many tracers surrounding them. Measuring
the velocity gradient tensor around each rod requires us to estimate the spatial
gradient from multiple velocity vectors inside a small volume. To do this, we first
locate all tracers within a 2 mm (∼6η) radius of the centre of a rod. This radius
is chosen to have sufficient tracer particles (6–10, given our tracer-particle seeding
density) surrounding the rod to estimate the velocity gradient well. This number is
comparable to what has been used in previous experiments, where a radius of nearly
8η was found to be sufficient so that viscous effects dominate and the velocity field
is close to linear (Lüthi et al. 2005).

To estimate the gradient, consider N tracers at positions xn(t) and with velocities
un(t) (n = 1, 2, 3, . . . , N) that are sufficiently close to a rod. Their relative
position and velocity with respect to the centre of mass of the particle cloud are
x′n(t)= xn(t)−∑n xn(t)/N and u′n(t)= un(t)−∑n un(t)/N, respectively. Determining
the velocity gradient tensor Aij can then be formulated as a least-squares problem
by finding the minimum value of the squared residuals S = ∑n[u′ni (t) − Aijx′nj (t)]2
(Pumir, Bodenschatz & Xu 2013). In general, however, the tracer particles in the
cloud surrounding a rod are randomly distributed in space, and will sometimes lie in
almost the same plane. Such cases will introduce a large error in the determination
of the out-of-plane components of the velocity gradient. To exclude these cases, we
use the inertia tensor I = g/tr(g) with gij =

∑
n xn

i xn
j to characterize the shape of

the tracer-particle cloud. I can be diagonalized in an orthogonal basis with three
eigenvalues I1 6 I2 6 I3. For a symmetric object, I1 = I2 = I3 = 1/3, while for a
co-planar particle cloud I3 ≈ 0. In our experiment, we require I3 > 0.1 to rule out
cases that will have large errors. Empirically, we find that our results are not sensitive
to the choice of this threshold when it is in the range from 0.07 to 0.2. In addition
to the overall shape of the particle cloud, the distribution of the tracer particles
inside the cloud may also affect the estimate of the velocity gradient: sometimes, the
particles will all be concentrated in a corner, for example, and the centre of mass
of the tracer cloud will be far away from the rod centre. This situation will lead to
a biased estimate of the velocity gradient at the rod centre. To avoid this case, we
require that the distance between the rod centre and centre of the tracer cloud be no
more than one third of the radius of gyration of the tracer cloud.

4.5. Alignment between vorticity and strain-rate tensor
Details of the errors in our measurements and a comparison between the dissipation
rate estimated from the measured velocity gradient tensor and the velocity structure
functions are reported in appendices A and B. To demonstrate the quality of our
measurements, however, we briefly consider some of the well-known geometric
properties of the velocity gradient – in particular, the alignment between the vorticity
and the eigenvectors of the rate of strain. The rate of strain Sij is a symmetric
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FIGURE 7. (Colour online) Probability distribution function of the cosine of the angle
between vorticity ω̂ and eigenvectors of the strain-rate tensor êi: (a) experimental
measurements, (b) simulation results.

second-rank tensor, and can be described by its three eigenvectors êi (i = 1, 2, 3),
which correspond to the eigenvalues λi with λ1 > λ2 > λ3. Intuitively, one would
expect that the vorticity ω̂ would tend to align with the most extensional eigenvector,
ê1. But, in general, vorticity is preferentially aligned with the intermediate eigenvector
ê2 (Ashurst et al. 1987). We show the probability distribution functions (PDFs) of
the cosine of the angle between ω̂ and the êi in figure 7 for our measured velocity
gradients and for the direct numerical simulation. We choose to use the cosine of
the angle instead of the angle itself because two vectors that are randomly oriented
with respect to each other in three-dimensional space will have a uniform distribution
for the cosine of the angle between them. In figure 7, the overall trend of the PDFs
is very similar for the experiments and the simulation: as expected, the vorticity is
best aligned with ê2. The trends, however, are more pronounced in the simulation
due to experimental inaccuracies in the measurement of the velocity gradient, and
potentially from the coarse-graining introduced by estimating the velocity gradient
from a finite-sized tracer cloud.

5. Results and discussion
Figure 8 shows the alignment of rods with respect to the vorticity, ω̂, and the three

eigenvectors of the strain rate, êi, for both our experiments and the simulation. For
both cases, rods are much more strongly aligned with ω̂ than they are with êi. This
is because ω̂ and p̂ each independently tend to align with the strongest Lagrangian
stretching direction, as defined by the maximum eigenvector of the left Cauchy–Green
strain tensor (Ni et al. 2014). The alignments of rods with the strain-rate eigenvectors
are weaker because rods align with the Lagrangian stretching integrated over several
Kolmogorov times, and this direction is usually quite different from the instantaneous
stretching direction defined by the strain-rate eigenvectors.

The alignment distributions from the simulation in figure 8 are in excellent
agreement with previous simulations (Pumir & Wilkinson 2011). Our experiment
agrees quite well with the simulations, except that the experiments show that rods are
slightly better aligned with ê1 than they are with ê2, while the simulations show the
opposite. Prior work on material lines (Wan 2008) has shown that the relative strength
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FIGURE 8. (Colour online) Probability distribution function of the cosine of the angle
between the rod orientation p̂ and both vorticity ω̂ and eigenvectors of the strain-rate
tensor êi: (a) experimental measurements, (b) simulation results.

of their alignment with ê1 and ê2 is sensitive to Reynolds number and perhaps to the
particular driving of the flow. Material lines rotate just like thin rods with large aspect
ratio α � 1. Thus, the small difference between the experiment and the simulation
may result from differences in Reynolds number and the forcing mechanism.

In turbulence, the tumbling rate of rods has been found to be much smaller than it
would be if the rods were randomly oriented (Shin & Koch 2005; Parsa et al. 2012).
This decrease has been qualitatively understood to be a result of the alignment of
rods with the vorticity vector. Given the alignment of rods with the vorticity, rods
will preferentially rotate about their long axis, and therefore the contribution of Ωij to
the rod tumbling rate ṗ will be weak.

To understand the rod tumbling rate in more detail, we can start with Jeffery’s
equation to estimate the parameter space and evaluate the complexity of the
problem. Recall that the velocity gradient tensor A is a second-rank tensor with
eight independent components, assuming incompressibility. For turbulent flow with
isotropic small scales, the overall orientation in space does not matter so five scalars
are sufficient to characterize A (Meneveau 2011). There are many possible choices
for these five scalars, such as two of the eigenvalues of S and the three components
of the vorticity in the S eigenframe, or five scalars constructed from moments
of the velocity gradient tensor such as the well-known R = −(AimAmnAni)/3 and
Q=−(AimAmi)/2 (Cantwell 1992). Specifying the relative orientation of the rod in the
S eigenframe requires two additional independent angles. Thus, together with the five
scalars required to determine A, fully characterizing the rod tumbling rates requires
a seven-dimensional parameter space. Denoting the generalized coordinates in this
space by X( p, A) and the corresponding probability density function as P(X( p, A)),
the mean-squared rod tumbling rate can be expressed as

〈ṗiṗi〉 =
∫

dX( p, A)P(X( p, A))

[
Ωijpj + α

2 − 1
α2 + 1

(Sijpj − pipkSklpl)

]
×
[
Ωimpm + α

2 − 1
α2 + 1

(Simpm − pipqSqnpn)

]
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=
∫ [

ΩijΩimpjpm +
(
α2 − 1
α2 + 1

)2

(SijSimpjpm + pipkSklplpipqSqnpn)+ T

]
× dX( p, A)P(X( p, A)), (5.1)

where T represents six cross-terms between strain and rotation. If we assume that
the rods are randomly oriented and are uncorrelated with the velocity gradient
tensor, this equation simplifies considerably because some of the averages can be
taken independently; for example, 〈SijSimpjpm〉 = 〈SijSim〉〈pjpm〉. This assumption
leads to

〈ṗiṗi〉 = 〈ΩijΩij〉
3
+ 1

5

(
α2 − 1
α2 + 1

)2

〈SijSij〉. (5.2)

Given that, in isotropic turbulence, 〈SijSij〉 = 〈ΩijΩij〉 = 〈ε〉/ν, the normalized rod
tumbling rate would depend only on its eccentricity:

〈ṗiṗi〉
〈ε〉/ν =

1
6
+ 1

10

(
α2 − 1
α2 + 1

)2

. (5.3)

However, in turbulence, rods are not randomly oriented, but are coupled with the
velocity gradient tensor. Thus, characterizing their tumbling requires understanding of
the full seven-dimensional PDF P(X( p,A)). Since the Lagrangian velocity gradients
are similar in many different turbulent flows, this PDF should be approximately
universal. Experimentally, we do not have enough samples to obtain this PDF at
a reasonable bin size, and it would be difficult to present even if we obtained it.
The typical way to approach this complicated PDF would be to try to find a suitable
low-dimensional projection to simplify the problem. We will show below that although
the two most important dimensions are the magnitude of the strain and the enstrophy,
the relative orientation of a rod in turbulence cannot be neglected in determining its
tumbling rate.

In the rest of this paper, we will use the conditional average of the rod tumbling
rate along different dimensions to characterize the importance of each dimension
and to provide new experimental insights into rod tumbling dynamics. Recall that,
as shown in figure 2, we have two different ways of experimentally determining
the rod tumbling rate: a direct measurement, ṗi, and a measurement inferred
from Jeffery’s equation, ṗJ

i . To check for any potential systematic offset between
these different measurements, we computed the mean-squared tumbling rates for
each, finding 〈ṗiṗi〉 = 0.10〈ε〉/ν and 〈ṗJ

i ṗJ
i 〉 = 0.09〈ε〉/ν for experiments and

〈ṗiṗi〉 = 〈ṗJ
i ṗJ

i 〉 = 0.09〈ε〉/ν for simulations. Since ṗJ
i = ṗS

i + ṗΩi , the mean-squared
tumbling rate has three contributions, 〈ṗS

i ṗS
i 〉, 〈ṗΩi ṗΩi 〉 and 2〈ṗS

i ṗΩi 〉, which are
respectively equal to 0.053, 0.069 and −0.039 for experiments and 0.062, 0.073,
and −0.045 for simulations. To compare the experiment with simulation in detail,
we systematically shifted the values of ṗJ

i and the tumbling rates computed from the
simulation so that their mean-squared values were 0.10〈ε〉/ν. The shift was done
by multiplying all data points in ṗJ

i and simulation results by 1.11, which will only
move the curve up without changing its trend.

In figure 9, we plot the mean-squared rod tumbling rate conditioned on 〈p̂ · ω̂〉 for
ṗi, ṗJ

i , and the simulation. All three curves nearly collapse, and show that the rod
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FIGURE 9. (Colour online) Mean-squared tumbling rate of rods conditioned on the
alignment between rod and vorticity 〈p̂ · ω̂〉. The black dash-dotted line represents the
mean-squared tumbling rate and the dashed line is from simulation results. Open symbols
show the tumbling rate from differentiating the rod trajectories of orientation, and closed
symbols show the calculation from Jeffery’s equation applied to the measured velocity
gradient tensor.

tumbling rate monotonically decreases by more than 50 % as its alignment with the
vorticity increases. For 〈p̂ · ω̂〉 = 0, the rod is almost perpendicular to the vorticity
vector and its tumbling rate has a larger contribution from the vorticity than from
the strain. If only the vorticity contributed, the mean-squared tumbling rate should
be 〈ṗiṗi〉 ≈ 〈ΩijΩij〉/3. Since 〈ΩijΩij〉 = 〈ε〉/2ν, 〈ṗiṗi〉/(〈ε〉/ν) at 〈p̂ · ω̂〉 = 0 should
be 1/6, which is close to but slightly larger than the measured result of ∼0.14. This
discrepancy indicates that the strain contribution for 〈p̂ · ω̂〉 = 0 is on average in the
direction opposed to the vortical motion, just as it would be for a rod in Jeffery orbits
in a uniform shear flow.

In the other limit, for 〈p̂ · ω̂〉 = 1, the rod is almost perfectly aligned with
the vorticity, so its tumbling rate has no contribution from vortical motion. The
tumbling rate does not vanish, however, due to the coupling to the strain field. The
contribution from the strain S can be investigated by considering the alignment of its
three orthogonal eigenvectors êi with p̂. As shown in figure 8, both simulation and
experiment suggest that the rod tends to be aligned with ê1 and ê2 and perpendicular
to ê3, indicating that the rod primarily lies in the plane formed by ê1 and ê2.

Another way to assess the relative contribution to the rod tumbling rate of
vortical motion and strain is by conditioning on the magnitude of Ωij and Sij,
which can be represented by the enstrophy ω2 = ωiωi and the dissipation rate
ε = 2ν〈SijSij〉. Figure 10 shows the mean-squared rod tumbling rate conditioned
on these two quantities. The tumbling rate monotonically increases by nearly two
orders of magnitude with a similar dependence on both enstrophy and dissipation
rate, indicating that the vorticity and the strain equally contribute to the tumbling
rate of the rod on average. This two-decade change of the conditional rod tumbling
rate is larger than other dimensions, which also suggests that the enstrophy and the
dissipation rate are the most important two dimensions.

In addition to the effect of the strain magnitude, we also investigated the effect
of the orientation between the rod and the eigenframe of the strain-rate tensor on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

16
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.16


218 R. Ni, S. Kramel, N. T. Ouellette and G. A. Voth

10–3 10–2
10–2

10–1

10–1

100

100

10–2

10–1

100

101 10–2 10–1 100 101

(a) (b)

FIGURE 10. (Colour online) Mean-squared tumbling rate of rods conditioned on
(a) normalized enstrophy and (b) normalized dissipation rate. The symbols are the same
as in figure 9.
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FIGURE 11. (Colour online) Mean-squared tumbling rate of rods conditioned on the
alignment between the rod and eigenvectors of the strain-rate tensor: (a) 〈p̂ · ê1〉;
(b) 〈p̂ · ê2〉; (c) 〈p̂ · ê3〉. The symbols are the same as in figure 9.

the tumbling rate, as shown in figure 11. Recall that, in turbulence, the vorticity
tends to be aligned with ê2 (Ashurst et al. 1987). It would then be expected that
the conditional average of the tumbling rate on 〈p̂ · ê2〉 (figure 11b) would share
some similarity with the conditional average on 〈p̂ · ω̂〉 (figure 9). In both cases, the
tumbling rate monotonically decreases with increasing alignment, but the trend is
much steeper for the case of 〈p̂ · ω̂〉, because the vorticity vector plays a stronger
role in determining the rod tumbling. The conditional average of the tumbling rate
on 〈p̂ · ê1〉 (figure 11a) is more complicated to explain. If the rod were perfectly
parallel or perpendicular to ê1, the strain would act to stretch or compress the rod
rather than to rotate it, and the tumbling rate due to strain would be zero in both
limits. But if a rod were oriented at 45◦ with respect to ê1, the strain contribution
to its tumbling rate would be maximized. So the squared tumbling rate should be
small for both limits of alignment at 〈p̂ · ê1〉 = 0 and 〈p̂ · ê1〉 = 1, but should have
a peak near 〈p̂ · ê1〉 = cos(45◦)= 0.7. Our results in figure 11(a) are consistent with
this expectation. The same argument can be made for the conditional average on
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〈p̂ · ê3〉, as shown in figure 11(c). In this case, however, the peak is much higher and
the data are skewed towards 〈p̂ · ê3〉 = 1, as compared with the data conditioned on
〈p̂ · ê1〉. Two factors are important here. First, rods are rarely aligned with ê3, as seen
in figure 8. Events where this occurs are likely to be events with large vorticity, so
the rotation rate will be large. In addition, the vorticity is preferentially perpendicular
to ê3, and so a rod that is better aligned with ê3 gains a larger contribution to its
tumbling from vortical motion. Both of these effects move the peak up and towards
〈p̂ · ê3〉 = 1.

We have now described the dependence of rod tumbling rate on five independent
dimensions: the magnitudes of the strain and the vorticity, captured by the dissipation
rate and the enstrophy, respectively, and three independent characterizations of the rod
orientation with respect to the velocity gradient tensor. All of them are important in
determining the rod tumbling rate, and none can be neglected. The additional two
dimensions necessary for determining the problem concern the orientation of vorticity
in the strain eigenframe, and can be taken to be, for example, 〈ω̂ · ê1〉 and 〈ω̂ · ê2〉. We
find that the conditional mean-square tumbling rate has only a very weak dependence
on these two dimensions. This may seem surprising since the relative orientation of
vorticity and strain determine whether they reinforce or cancel each other as seen in
figure 2. For prediction of the mean-square tumbling rate, the parameter space may be
able to be simplified to five dimensions, but it seems that a complete picture of the
rotation of rods in turbulence will require specifying the full seven-dimensional PDF
of rod orientation and the velocity gradient tensor.

6. Conclusion

We have presented an experimental investigation of the tumbling rate of rods
in turbulence. To assess the relative importance of various factors on the tumbling
rate and to thereby estimate the effective dimensionality of the problem, we also
simultaneously measured the full velocity gradient tensor near the rods. We obtained
the gradient by implementing a scanning particle tracking system, allowing us to
image a high concentration of tracer particles. The quality of our velocity gradient
measurements is comparable to previous experiments, and we were able to measure
the trajectories of anisotropic particles at the same time.

We carefully explored the mean-squared tumbling rate conditioned on several
different variables, including 〈p̂ · ω̂〉, ε, ω2, 〈p̂ · ê1〉, 〈p̂ · ê2〉 and 〈p̂ · ê3〉. These
variables were chosen to give a framework within which the relative contributions
to the rod tumbling rate are easily interpretable. We found that the mean-squared
tumbling rate was dependent on all five of these dimensions to some degree. As
these variables can be separated into two classes, those that depend on the strain rate
and those that depend on the vorticity, our results suggest that the rod tumbling rate
depends approximately equally on Sij and Ωij.

We provide experimental evidence that rods are preferentially aligned with the
vorticity, thus diminishing the potential contribution from Ωij and partially explaining
why the measured rod tumbling rates are smaller than they would be if the rod
orientation were random. We also found that the mean-squared rod tumbling rate
monotonically decreases with increasing 〈p̂ · ê2〉, where ê2 is the intermediate
strain-rate eigenvector, just as it does with 〈p̂ · ω̂〉. The contribution from the local
strain is small when the rod is either aligned with or orthogonal to ê1, but is largest
when the rod is oriented at roughly 45◦ with respect to ê1. The PDF of the rod
tumbling rate conditioned on 〈p̂ · ê3〉 is similar to that conditioned on 〈p̂ · ê1〉; the
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FIGURE 12. (Colour online) Joint probability distribution function of one of the diagonal
components of the velocity gradient tensor versus the summation of the other two. The
dashed line represents the case for incompressible fluid, i.e. ∂ui/∂xi = 0.

dependence is stronger, however, for 〈p̂ · ê3〉 because the rod feels the full effect
of both the strain and the vorticity simultaneously when it is aligned with ê3. This
result suggests that the intermittent tumbling rate of rods may be linked back to the
geometric information contained in the relative orientation of a rod with the local
velocity gradient.

Finally, the new experimental technique we describe enables us to extract the
flow motion near particles in a fully turbulent three-dimensional system, and has the
potential to be applied to many other problems such as larger particles where larger
particle Reynolds number makes simulations much more difficult or the flow field
generated by active anisotropic particles such as bacteria.
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Appendix A. Quality of experimental measurements
Here, we examine the quality of our experimental measurement of the velocity

gradient tensor in several ways. First, we test the incompressible flow condition that
requires the trace of the gradient to vanish. Figure 12(a–c) shows the joint probability
density function (jPDF) of one of the diagonal components of the velocity gradient
tensor versus the sum of the other two. The shape of the contour lines for all panels
looks very similar, indicating that both the flow and the error are nearly isotropic. For
perfectly incompressible flow, the vertical axes should be equivalent to the horizontal
axes, as given by the dashed line. Deviations from the dashed line are caused by
experimental uncertainties in measuring the velocity gradient. These deviations can
be quantified using the ratio between major and minor axes of the contour ellipses in
the jPDF. The larger this ratio is, the more accurate the measurement of the velocity
gradient tensor. For all three panels in figure 12, this ratio is roughly 3.3, which is
larger than the value of 2.6 in the early experiments of Lüthi et al. (2005). More
recent experiments using scanning particle tracking systems by Hoyer et al. (2005)
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FIGURE 13. (Colour online) Joint probability distribution function of the tumbling rate
ṗi from rod orientation measurements versus the tumbling rate calculated from Jeffery’s
equation ṗJ

i applied to the measured velocity gradient tensor. The dashed line represents
the case when two tumbling rates agree with each other, i.e. ṗi = ṗJ

i .

and Krug et al. (2014) have measured deviations from incompressibility that are
comparable or slightly smaller than ours.

A more stringent and relevant test of our experimental accuracy is comparing the
directly measured rod tumbling rate ṗi computed by differentiating the time-dependent
rod orientation with that calculated from Jeffery’s equation, ṗJ

i , using the measured
velocity gradient tensor. Figure 13(a–c) shows the jPDF of ṗJ

i and ṗi. The contours of
the jPDF again are ellipsoidal and deviate from the linear dashed line, just as they did
in figure 12. The ratio between the major and minor axes of the contours is also close
to 3.3, indicating that the uncertainty in the measurements of the velocity gradient
tensor is not amplified through Jeffery’s equation.

Previously, it has been proposed that the incompressibility condition can be used
as a weighting factor for smoothing trajectories (Lüthi et al. 2005). The apparent
incompressibility is characterized by

δ =

∣∣∣∣∂u
∂x
+ ∂v
∂y
+ ∂w
∂z

∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣+ ∣∣∣∣∂v∂y

∣∣∣∣+ ∣∣∣∣∂w
∂z

∣∣∣∣ . (A 1)

The weighting factor is a function of this δ; it is designed to be 1 for small δ, and
smoothly changes to zero for large δ. Thus if we smooth all the components of
the velocity gradient using this weight, it nearly guarantees that the filtered velocity
gradient has a small apparent compressibility. Note, however, that incompressibility
only relies on the three diagonal components in the velocity gradient tensor, which
are independent of the other six components; thus, compressibility may not be
directly related to the accuracy of the full velocity gradient measurement. To test
this argument, we plot in figure 14(a) the incompressibility test we used in figure 12
but only using samples with δ < 0.15. This sampling is equivalent to applying a
weighting function that equals 1 for δ < 0.15 and 0 for δ > 0.15, similar to the one
used before (Lüthi et al. 2005). After enforcing incompressibility, we would expect
that the contours should lie closer to the linear dashed line. We also plot the jPDF
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FIGURE 14. (Colour online) Comparison of the joint probability distribution function with
previous figures after setting the condition δ<0.15: (a) same plot as figure 12(a); (b) same
plot as figure 13(a)

of ṗJ
i and ṗi in figure 14(b) as we did in figure 13, but again enforcing δ < 0.15. In

this case, the shape of the contours does not change much, suggesting that weighting
by the measured compressibility does not significantly improve the overall accuracy
of the full velocity gradient tensor measurements.

Appendix B. Dissipation rate measurement
From the velocity gradient tensor, we can directly obtain the mean energy

dissipation rate 〈ε〉 = 2ν〈SijSij〉, one of the most important parameters in turbulence.
For most experiments in homogeneous, isotropic turbulence without direct access
to the velocity gradient tensor, the dissipation rate is extracted from the scaling of
the second- or third-order Eulerian velocity structure functions in the inertial range.
The velocity structure function of order n is defined to be the nth statistical moment
of the velocity increment across a spatial scale r: 〈[u(x + r) − u(x)]n〉. Applying
Kolmogorov’s theory of isotropic turbulence (Kolmogorov 1941), the longitudinal DLL
and transverse DNN components of the second-order structure function (n = 2) scale
as DLL= 〈ε〉r2/15ν and DNN = 2〈ε〉r2/15ν in the dissipative range r<η. Figure 15(a)
shows both DLL and DNN compensated with r2/15ν and 2r2/15ν respectively. There
is a very short plateau near r ≈ η, and the two compensated structure functions
collapse with each other well in that range. Thus, the value of that plateau tells
us the dissipation rate, which in our experiment is 〈ε〉 ≈ 9 × 10−5 m2 s−3. In
addition, figure 15(b) shows the third-order longitudinal structure function (DLLL). The
dissipation rate can be obtained from the Kolmogorov 4/5 law (DLLL = −4〈ε〉r/5)
in the inertial range η� r� L, where L is integral length scale. Here, because of
the finite Reynolds number and the small measurement volume, there is a sharp
cutoff near the infrared end of the inertial range. There is therefore only a narrow
peak roughly from 50η to 60η, but the estimate of 〈ε〉 from that peak is very
close to the estimate from the dissipation-range scaling of the second-order structure
functions. The dashed line in both panels shows the estimate from the velocity
gradient measurement from tracer particles within a ∼6η radius of the rod. It is
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FIGURE 15. (Colour online) The energy dissipation rate ε calculated from different
methods: (a) comparison between ε obtained from the dissipative range of the longitudinal
(DLL, dot-dashed line) and transverse (DNN, solidline) second-order structure function and
the direct measurement of the velocity gradient tensor (black dashed line). (b) Dissipation
rate obtained from compensated third-order structure function (solid line) and the direct
measurement of the velocity gradient tensor (black dashed line).

clear that this value is slightly smaller than the estimate from both velocity structure
function methods. This is because the velocity gradient is coarse-grained over a small
volume, which removes contributions from some of the smallest scales to the energy
dissipation rate.
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