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LEFT-ORDERABLE COMPUTABLE GROUPS
MATTHEW HARRISON-TRAINOR

Abstract. Downey and Kurtz asked whether every orderable computable group is classically isomorphic
to a group with a computable ordering. By an order on a group, one might mean either a left-order or
a bi-order. We answer their question for left-orderable groups by showing that there is a computable left-
orderable group which is not classically isomorphic to a computable group with a computable left-order.
The case of bi-orderable groups is left open.

§1. Introduction. A left-ordered group is a group G together with a linear order
< such that if ¢« < b, then ca < c¢b. G is right-ordered if instead whenever a < b,
ac < bc, and bi-ordered if < is both a left-order and a right-order. A group
which admits a left-ordering is called left-orderable, and similarly for right- and bi-
orderings. A group is left-orderable if and only if it is right-orderable. Some examples
of bi-orderable groups include torsion-free abelian groups and free groups [1.7,9].
The group (x.y : x~'yx = y~!) is left-orderable but not bi-orderable. For a
reference on orderable groups. see [5].

In this paper, we will consider left-orderable computable groups. A computable
group is a group with domain @ whose group operation is given by a computable
function v x @ — w. Downey and Kurtz [2] showed that a computable group, even
a computable abelian group, which is orderable need not have a computable order.
If a computable group does admit a computable order, we say that it is computably
orderable. Of course, by the low basis theorem, every orderable computable group
has a low ordering.

For an abelian group. any left-ordering (or right-ordering) is a bi-ordering. An
abelian group is orderable if and only if it is torsion-free. Given a computable
torsion-free abelian group G, Dobritsa [3] showed that there is another computable
group H, which is classically isomorphic to G, which has a computable Z-basis.
Note that H need not be computably isomorphic to G. Solomon [8] noted that a
Z-basis for a torsion-free abelian group computes an ordering of that group. Hence
every orderable computable abelian group is classically isomorphic to a computably
orderable group.

Downey and Kurtz asked whether this is the case even for nonabelian groups:

QuestioN 1.1 (Downey and Kurtz [4]). Is every orderable computable group
classically isomorphic to a computably orderable group?
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If one takes “orderable” to mean “left-orderable” then we give a negative answer to
this question. (We leave open the question for bi-orderable groups.)

THEOREM 1.2. There is a computable left-orderable group which has no presentation
with a computable left-ordering.

Our strategy is to build a group
G=NxH/R

and code information into the finite orbits of certain elements of N under inner
automorphisms given by conjugating by elements of 7/R. This strategy cannot
work to build a bi-orderable group, as in a bi-orderable group there is no generalized
torsion—i.e., no product of conjugates of a single element can be equal to the
identity—and hence no inner automorphism has a nontrivial finite orbit. We leave
open the case of bi-orderable groups.

§2. Notation. We will use caligraphic letter such as G, N, and H to denote groups.
For free groups, we will use upper case latin letters such as 4, B, C, U, V. and W
to denote words, while using lower case letters such as a, b, and ¢ to denote letter
variables. We use e for the empty word, 0 for the identity element of abelian groups,
and 1 for the identity element of nonabelian groups (except for free groups, where
we use €).

83. The construction. Fix y a partial computable function which we will specify
later (see Definition 3.6). Let p,. ¢;. and r; be a partition of the odd primes into
three lists.! Let H be the free abelian group on «;. f;. and y; for i € w. We write H
additively. Let R be the set of relations

R = {Ri‘t . l//att(i) J/}
where
R dpia=aifi ifya(i) =0,
N : .
’ piai = —qifi ifya (i) = 1.
By wa (i) = 0, we mean that the computation y (i) has converged exactly at stage
¢ (but not before) and equals zero.

The idea is that these relations force, for any ordering < on H /R, thatif (i) = 0
then a; > 0 < B; > 0 (and if w(i) = 1 then oy > 0 <= B; < 0). The strategy
is, in a very general sense, to use y to diagonalize against computable orderings
of H/R. The semidirect product will add enough structure to allow us to find o;
and f; within a computable copy of G. (One cannot find ¢; and f8; within a copy of
H/R. since H/R is a torsion-free abelian group.) Note that

H/R = (@Wnﬁi)/ﬁ) @ (@<Vi>) :

where R; = R, if wa (i) | for some ¢, or no relation otherwise. Define
Vi:RU{p,-oziZO}, W,':RU{qiﬂi:O}, .)C}:RU{V,'VI':O},
yi:RU{a,»:yi}, ZiZRU{ﬂ,':Vi}.

IWe use the fact that 2 does not appear in these lists in Lemma 5.3.
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Let AV be the free (nonabelian) group on the letters
{ui i cw}U{vig:g e ”H/Vi.i c o} U{wig:g € H/W;.i € w}
U{xig:geH/XicwtU{yig:geH/ViicwtU{zig:g€eH/Ziicw}.
Let G = N x (H/R), with g € H/R acting on N via the automorphism ¢, as
follows:
pg (i) = u;., Pg (Vin) = vign. @g(win) = wigin
@g (Xin) = Xign, @ (Vin) = Vig+n, @g(zin) = Zigsn-
Here, g is the image of g under the quotient map H/R — H/V; (or H/W;, H/X:.
etc.). Recall that the semidirect product G = N x (H /R ) is the group with underlying
set V' x (H/R) with group operation
Note that ¢, permutes the letters of A, and so given a word 4 € N, ¢,(4) is a
word of the same length as 4. We write G multiplicatively.
LemMa 3.1. H/R has a computable presentation.
Proor. It suffices to show that we can decide whether or not a relation of the

form
k k k
> lioi +> mifi+Y niyi =0
i=1 i—1 i=1

holds. This sum is equal to zero if and only if each n; = 0 and for each i we have
Lia;+m;f; = 0.So it suffices to decide, for a given £ and m in Z, whether Lo, = mp;.

Looking at R, £a; = mp; if and only if either

(1) forsome ¢, wa,(i) = 0 and thereis s € Z such that £ = sp! and m = sq! or

(2) forsome ¢, wa,(i) = 1 and thereis s € Z such that £ = sp! and m = —sq.
If t > |¢] or t > |m| then neither of these can hold. So we just need to check. for
each ¢ < |£|, |m|, whether y,, (i) converges. =

LemMmA 3.2. G has a computable presentation.

PrOOF. We just need to check that 7 /V;, H/W;, and so on have computable
presentations. We will see that the embeddings of the computable presentation (from
the previous lemma) of #/R into these presentations are computable. Then the
action ¢ of H/R on N is computable. We can construct a computable presentation
of G as the semidirect product A" x (#/R) under this computable action.

We need to decide whether in 7 /V; we have a relation

k k k
Zéjozj +ij'ﬁj +Zi’ljyj =0.
j=1 j=1 J=1

It suffices to decide. for a given j, whether

Laj+mp; +ny; =0.

s

If j # i, this is just as in the previous lemma. Otherwise, this holds if and only if
p; divides £. ¢* divides m for some ¢ with wu (i) J. and n = 0. As before, we can
check this computably.

The other cases—for H/W;, H/X;., and so on—are similar. =
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LemMmA 3.3. H/R is a torsion-free abelian group.
PROOF. H /R is abelian as # was abelian. Recall that

H/R = <@<anﬁi>/Ri> ® <EB<y,->> :

1

1

where R; = R, if wa,(i) | for some ¢, or no relation otherwise. So it suffices to
show that (a;. ;) /R; is torsion-free. If R; is no relation, then this is obvious. So
now suppose that (i) = 0 and that

k(ma; +nf;) = £(pjoi — q] fi)

in {a;, B;). Since H is torsion-free, we may assume that ged(k. £) = 1. Thenkm = £p!

and kn = —£q!. So we must have k = £1, in which case mo; + np; is already zero
in {a;, fi)/Ri. Thus (a;, f;i)/R; is torsion-free. The case where wy (i) = 1 is
similar. 4

Lemma 3.4. G is left-orderable.

ProOF. Since H/R is a torsion-free abelian group, it is bi-orderable. A is
bi-orderable as it is a free group. Then by the following claim, G is left-orderable
(see Theorem 1.6.2 of [5]).

Cram 3.5. Let Ax B be a semi-direct product of left-orderable groups. Then Ax B
is left-orderable.

PrOOF. Let ¢ be the action of B on A. Let <4 and <p be left-orderings on A
and B respectively. Define < on A x B as follows: (a.b) < (a’.b’) if b <5 b’ or
b =b"and p,-1(a) <4 p,-1(a’). This is clearly reflexive and symmetric. We must
show that it is transitive and a left-ordering.

Suppose that (a.b) < (a’.b’) < (a”.b"”). Then b < b’ <p b".1f b <z b". then
(a.b) < (a”.b"), so suppose that b = b’ = b". Then

p-1(a) Sagp-1(a’) = pp-1(a") <apy-1(a”) = pp-1(a”).

So pp-1(a) <4 @p-1(a”) and so (a.b) < (a”,b"). Thus < is transitive.
Given (a.b) < (a’.b’) we must show that (a”.b"”)(a.b) < (a”.b")(a’.b"). We
have that
(a”.b")(a.b) = (a"pp(a).b"b) and (a”.b")(a’.b") = (a" gy (a’).b"D").
If b <5 b'. then b”’b <5 b"b’. and so (a”.b")(a.b) < (a”.b")(a’,b"). Otherwise,
ifb=10"and p-1(a) <4 @p-1(a’). then b”b = b"b’ and
Pbb)-1 (a"pp(a)) = Pbb)—1 (a")pp-1(a)
<A pprp)-1(a”)pp-i(a")
= Pprp)-1 (a"pp(a’)).
So (a”.b")(a.b) < (a”.b")(a’.b"). -
_|

Note that if < is any left-ordering on G, if wa,(i) = 0 then (e, ;) > 1if and
only if (e.8;) > 1. On the other hand, if y,,(i) = 1 then (e.,0;) > 1 if and
only if (e. ;) < 1. Later, in Definition 4.8, we will define existential formulas
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Same(i) and Different(i) (with no parameters) in the language of ordered groups.
We would like to have that for any left-ordering < on G, (G, <) | Same(i) if
and only if (e,a;) > 1 < (e. ;) < 1, and (G. <) [ Different(i) if and only if
(e.a;) > 1 <= (e, fi) < 1. We will not quite get this for every ordering <, but this
will be true for those against which we want to diagonalize (see Lemma 3.7).

DEFINITION 3.6.  Fix alist (F;. <;);cq of the (partial) computable structures in the
language of ordered groups. Let  be a partial computable function with w (i) = 0if
(Fi.<:) E Different(i) and w(i) = 1if (F;, <;) = Same(i). It is possible, a priori,
that we have both (F;, <;) = Same(i) and (F;, <;) = Different(i): in this case, let
w (i) be defined according to whichever existential formula we find to be true first.

In fact, we will discover from the following lemma that we cannot have both
(F:.<i) | Same(i) and (F;, <;) = Different(i).

Lemma 3.7. Fix i. Suppose that F; is isomorphic to G and <; is a computable
left-ordering of F;. Let < be an ordering on G such that (G, <) = (F;. <;). Then:

(1) (G.<) = Same(i) if and only if (e, c;) > 1 < (e. i) > 1.
(2) (G.<) E Different(i) if and only if (e, ;) > 1 <= (e, i) < 1.

This lemma will be proved later. We will now show how to use Lemma 3.7 to
complete proof.

Lemma 3.8. G has no computable presentation with a computable ordering.

PrOOF. Let i be an index for (F;.<;) a computable presentation of G with a
computable left-ordering. Let < be an ordering on G such that (G, <) = (F;. <;).
Now by Lemma 3.7 either (G, <) & Same(i) or (G, <) | Different(i) (but not
both). Suppose first that (G, <) |= Same(i). So (F;. <;) |= Same(i). By definition,
w(i) =1.say wa,(i) = 1. Then, in H/R. pley = —q!fi. So (€. ;) > 1 if and only
if (e, f;) < 1, contradicting Lemma 3.7 and the assumption that (G, <) |= Same(i).
The case of (G. <) [= Different(i) is similar. Thus G has no computable copy with
a computable left-ordering. -

All that remains to prove Theorem 1.2 is to define Same(i) and Different(i) and
to prove Lemma 3.7.

§4. Same(i), Different(i), and the proof of Lemma 3.7. To define Same(i). we
would like to come up with an existential formula which says that (e, o;) > 1 <=
(e.B:) > 1. A first attempt might be to try to find an existential formula defining
(€. ;) and an existential formula defining (e. ;). This cannot be done. but it will
be helpful to think about how we might try to do this.

We will consider the problem of recognizing «; and f; inside of /R by their
actions on N. Note that «; has the property that ¢ (vio) = via # 0, but
©pia; (Vi0) = vig. SO a; acts with order p; on some element of AV. In fact, it is
not hard to see that the only elements which act with order p; on an element of A
are the multiples no; of a;, where p; 1 n. (Note that if ; acts with order p; on a
word in NV, then it either fixes or acts with order p; on each letter in that word. and
it acts with order p; on at least one letter.)

One difficulty we have is that /R and A are not existentially definable inside of
G. The problem is that if some element of G satisfies a certain existential formula,
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then every conjugate of G does as well. So it is only possible to define subsets of G
which are closed under conjugation. Given S C G. let SY be the set of all conjugates
of S by elements of G.

In this section, we will take for granted the following lemma about existential
definability in G. It will be proved in the following section. The lemma says that we
can find H /R inside of G, up to conjugation, by an existential formula.

LemMA 4.1. (H/R)Y is 3-definable within G without parameters.

The different conjugates of H/R cannot be distinguished from each other.
Instead, we will try to always work inside a single conjugate of #/R. The following
lemma tells us when we can do this.

LemMMA 4.2. Suppose thatr,s € (H/R)Y andrs € (H/R)Y. Then thereis A € N
and g, h € H/R such that

r = (4.0)(e.g)(47",0)

and
s =(4.0)(e.h)(471,0).
Thus r and s commute.

The following remarks will be helpful not only here, but throughout the rest of
the paper. They can all be checked by an easy computation.

REMARK 4.3. If r € (H/R)9. then for some 4 € N and f € H/R we can write
r in the form
r=(4.0)(e. /)(47".0).

REMARK 4.4. Let r = (4, f) be an element of (H/R)Y. If K C H/R. then
r € K9ifand onlyif f/ € K.

REMARK 4.5. If ,(B) = B, then
(4B.0)(e.g)(4B.0)~" = (4.0)(e. g)(4.0)".
ProOF OF LEMMA 4.2. Using Remark 4.3, let
r=(4.0)(e.g)(47".0). s = (B.0)(e.h)(B".0).
rs = (C.0)(e.g +h)(C~1,0).

By conjugating r and s by some further element of G (and noting that the conclusion
of the lemma is invariant under conjugation), we may assume that A~'B is a
reduced word, that is, that 4 and B have no common nontrivial initial segment.
Using Remark 4.5, we may assume that A, (4~"), By, (B~'), and Cpyi,(C 1)
are reduced words. Indeed. if, for example, 4¢p, (A*I) was not a reduced word, then
we could write 4 = A’B where B is a word which is fixed by ¢,. and such that

A, (A’ 1) is a reduced word. Then, by Remark 4.5,
(4.0)(e.g)(4.0)~" = (4"B.0)(e. g)(4'B.0)~" = (4".0)(e. g)(4".0)~".

So we may replace 4 by A’.
We have

(4.0)(e. g)(47".0)(B.0)(e. h)(B~'.0) = (C.0)(e. g + h)(C~".0).
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Multiplying out the first coordinates, we get
Ape (A7 )pg (B)pgin(B™1) = Cipgin(C 7).

By the assumptions we made above, both sides are reduced words. 4 is an initial
segment of the left hand side, so it must be an initial segment of the right hand side,
and hence an initial segment of C. On the other hand, taking inverses of both sides,
we get
©g+i(B)pg (Bil)‘Pg (4)A~" = Pg+h (c)c!

Once again both sides are reduced words, and ¢, (B) is an initial segment of the
left hand side. and hence of ¢,,(C). But then B is an initial segment of C. So it
must be that A4 is an initial segment of B or vice versa. This contradicts one of our
initial assumptions unless 4 or B (or both) is the trivial word. Suppose it was 4
(the case of B is similar). Then

©g(B)pg i (B! = C‘Pg+h(cil)
and both sides are reduced words. Then we get that C = B and C = ¢,(B). So

r=(e.g) = (B.0)(e.)(B.0)""!
by Remark 4.5. )

Above, we noted that the set {na; : p; { n} is the set of elements of /R which
act with order p; on an element of . Our next goal is to show that if we close under
conjugation, then this set (and a few other similar sets) are definable. The key is the
following remark which follows easily from Lemma 4.2.

REMARK 4.6. Fix 7. 51,50 € (H/R)Y. Suppose that rs; € (H/R)Y and rs, €
(H/R)¥¢ but 51 and s, do not commute. By Lemma 4.2 we can write

r=(4.0)(e. f)(47".0) = (B.0)(e. /)(B~".0),
s1=(4.0)(e.g)(47".0).
s5=(B.0)(e.h)(B~',0).
Then there is some element of N which is fixed by ¢ s but which is not fixed by ¢,.
Indeed. since (4.0)(e. £)(47'.0) = (B.0)(e. £)(B~'.0), we see that
B7'4 =y, (B7'4).
Suppose for the sake of contradiction that ¢, also fixes B~' 4. Then
s1=(4.0)(47"'B.0)(e.g)(B~'4.0)(47".0) = (B.0)(e. g)(B~".0).

So s; and s, would commute. This is a contradiction. So there is some element of
N which is fixed by ¢, but which is not fixed by ¢,.

Lemma 4.7. There are 3-formulas which express each of the following statements
about an element a in G:
(1) a € {nay : p; tn}9.
2) a€{npi:qitn}9.
3) a € {ny :rifn}9.
4) a € {n(a; —p;): pi.ri fn}9.
5) ae{n(Bi =) qiritn}9.
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ProoF. For (1), we claim that @ € {na; : p; t n}9 ifand only if a € (H/R)9 and
there is b € (H/R)Y such that a”'b € (H/R)Y but a and b do not commute. This
is expressed by an 3-formula by Lemma 4.1.

Suppose that « satisfies this 3-formula, as witnessed by b. Let a = (4. f) and
b = (B.g). Then by Remark 4.6 (taking r = a?', s; = a, and s, = b), there is an
element of A/ which is fixed by ¢,, ; but not by ¢,. Thus we see that p; f = 0 but
f #0inH/V;. and f = no; for some n with p; { n. (It must be in #/V;. because
this cannot happen in any of #/V; for j # i. or H/W;. H/X;. H/Y;. or H/Z;.)
Thus by Remark 4.4, a € {na; : p; { n}9.

On the other hand, suppose that a € {na; : p; { n}9. Write

a = (A4.0)(e.na;)(47",0)

with p; not dividing n. Then let b = (Av;(.0)(e. na;)((Avio)~'.0). By Remark 4.5,
SINCe W p,a; (Vi0) = vio. We have

a” = (4.0)(e.np;a;)(47".0) = (Av;0.0)(e. np;e;) ((Avig) . 0).
So a?'h € (H/R)¢. On the other hand.

ab = (Apua, (vi0)P2ma, (Vi0) ™ Pana, (A7), 2n0x;)
and
ba = (Av;0Pna, (vi0) ' Poma, (A7), 2n0).
So a does not commute with b since @uq, (Vio) = Vina, # vio. The proofs of
(2) and (3) are similar.

For (4). we claim that @ € {n(a; — y;) : pi.r; 1 n}9 if and only if there are
by € {na; : pitn}9. by € {ny; : ;i fn}9, and ¢ € (H/R)Y such that a = b1b; ",
ac,aby € (H/R)Y, and ¢ does not commute with b;.

Suppose that there are such by, by, and ¢. We can write by = (B, ma;) with p; { m
and by = (Ba.,ny;) with r; { y;. Thus we can write @ = b1by ' = (4. ma; — ny;).
By Remark 4.6 (with r = a. s; = by, and s, = ¢). Oma, —ny, fixes some element of N/
which is not fixed by ¢ye,. Thus, in one of H/V;, H/W;. H/X;, H/Y;. or H/Z;
for some j we have ma; — nj; = 0 but ma; # 0. Since p; 1 m, it must be in H /Y.
So n = m. Note that p; and r; do not divide n.

On the other hand, suppose that @ € {n(a; — ;) : pi.r; { n}9. Then write

a =(A4.0)(e.na; — ny;)(471.0)
with p; and r; not dividing n. Let
by = (4.0)(e.ney ) (A1, 0) and by = (4.0)(e. ny;) (471, 0)
and let
¢ = (Ayi0.0)(e.no;)((Ayio)~". 0).
Then a = b1b; . Clearly aby € (H/R)9. Also, since Yna, —ny, (¥io) = Vio.
ac = ca = (Ay;0.0)(e. 2n0o; — ny;)((Ayi0)~'.0).

So ac € (H/R)Y and a and ¢ commute. On the other hand. b; does not commute
with ¢ since @, (i0) = Vita, # Vio as p; does not divide £. =

We will now define Same(i) and Different(i).
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DEFINITION 4.8. Same(i) says that there are «, b. and ¢ such that:

(1) a.b. c.and ab arein (H/R)Y.

2) a>l<=b>1.

(3) a € {na; : pi tn}¥,

(4) b e {nﬁl qi an}g

(5) ce {ny, crifn}o,

(6) a E{n(al—%) piari'fn}g-

(7) bc Ve (n(Bi —yi) - qi.ri ¥ n}9.
Different(i) is defined in the same way as Same(i). except that in (2) we ask that
a>lifandonlyifb < 1.

Suppose, for simplicity, that a, b, and ¢ are all in #/R. Then we would have
that a = (e.4a;). b = (e.mf;). and ¢ = (e.ny;). Now ac™' = (e.£o; — ny;) is a
power of (e.a; — ;). and so £ = n. Similarly, bc=' = (e.mp; — ny;) is a power
of (e.f; —7;). and so m = n. Thus £ = m. Since (&,fa;) > 1 <= (.4B;) > 1
(e.0;) > 1 <= (e.B;) > 1. Checking that this works even if @, b, and ¢ are
conjugates of H /R is the heart of Lemma 4.9.

LEmMA 4.9. Let < be a left-ordering on G. Then:

(1) If (e.a;) > 1 == (e, Bi) > 1. then (G, <) |= Same(i).

(2) If (e.a;) > 1 == (e, Bi) < 1. then (G. <) |= Different(i).

(3) Ifw(i) |, then (e, ;) > 1 <= (e, ;) > 1 if and only if (G. <) = Same(i).

(4) Ifw(i) |.then (e, ;) > 1 <= (e, fi) < lifandonly if (G. <) = Different(i).

Proor. First, for (1), suppose that (e,c;) > 1 <= (e, ;) > 1. Then (G.<) =
Same(i) as witnessed by ¢ = (e. ;). ¢ = (. f;). and ¢ = (&, ;). (2) is similar.

Now for (3), suppose that (G, <) = Same(i) as witnessed by @, b, and ¢, and that
w(i) |. Let £, g, and h be the second coordinates of @, b. and ¢ respectively. Write
f =4La; with p; 1 £. g = mp; with ¢; t m, and h = ny; with r; 4 h. Then since ' — h
is a multiple of o; — y;, £ = n. Similarly, m = n, and so £ = m.

Since ab € (H / R)g and « and b commute, by Lemma 4.2 we can write

a = (B.0)(e. fa;)(B.0)™!

and
b= (B.0)(e.£5;)(B.0)"".

Now since w (i) |. in H/R either p'a; = g!f: or play = —q!p; for some z. In the
second case, a”’ = b—% which contradicts the fact that « > 1 —= b > 1. Thus
play =q!pi.andso (e,a;) > 1 <= (e. i) > 1.

(4) is proved similarly. —|

PrOOF OF LEMMA 3.7. We will prove (1): (G.<) & Same(i) if and only if
(e.a;) > 1 <= (e.p;) > 1. The proof of (2) is similar. The right to left direc-
tion follows immediately from (1) of Lemma 4.9. For the left to right direction,
suppose that (F;. <;) = Same(i). Then y (i) |. Then the lemma follows from (3) of
Lemma 4.9. —

§5. An existential definition of (7{/R)9. The goal of this section is to prove
Lemma 4.1, which says that (H / R)g is definable within G by an existential formula.
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To prove this lemma, we will first have to give a detailed analysis of which elements

of G commute with each other.

The first lemma is the analogue of the following well-known fact about free
groups: two elements ¢ and b in a free group commute if and only if there is ¢ such

that @ = ¢™ and b = ¢" (see [6. Proposition 2.17]).

LemMA 5.1. Let r.s € G commute. Then there are W,V €
k.t € Z such that
r=(W0)(V.x) (e.y)(W0)~!

and
s = (W0)(V.x) (e.2)(W.0)~".

Ifk #0thenp-(V) =V, andif £ # 0 then ¢, (V) = V.
It is easy to check that two such elements commute.

PrOOF. Suppose that rs = sr. Let r = (4, g) and s = (B, k). Then we find that

rs = (A.g)(B.h)
= (Agpg(B).g +h).
st =(B.h)(4.g)
= (Bpn(A4).g +h).
So Apg(B) = By, (A) in N. Write
A=ay - apy_1and B =by---b,_;
as reduced words. So
ao- - am—1pg(bo) - g (by_1) = by by_1p5(ao)
We divide into several cases.

CASE 1: A4 is the trivial word.

We must have B = ¢4 (B). Thenr = (e, g) and s = (B.h). Take W = ¢, V = B,

x=hy=g,z=0,k=0,and ¢ = 1.

CASE 2: B is the trivial word.

We must have 4 = ¢;,(A). Thenr = (4.g) and s = (. h). Take W =¢. V = A,

x=g.y=0,z=h.k=1,and ¢ = 0.

Cask 3: Neither 4 nor B is the trivial word, and both Ay, (B) and By, (A) are

reduced words.

We have Ap, (B) = Bypj,(A) as reduced words. Assume without loss of generality

that |[4] =m > n = |B|. Then n.m > 0 and

N.x.y.z € H/R. and

e (ph(am—l)~

ap - 'amfl(Pg(bO) T (Pg(bnfl) =bgy-- 'bnfl(Ph(aO) C P (amfl)

as reduced words. So

a; = b; for0<i<n,
a; = (ph(aifn) forn <i<m,
Pg (bl) = ©n (amfnﬂ') for0 <i<n.
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Let d = ged(m, n). (This is where we use the fact that m, n > 0.) Let n’ = n/d and
m' =m/d.

Given p,q > 0, writei = gn— pm+rwith 0 < r < d and assume that 0 < i < m.
Note that every i, 0 < i < m, can be written in such a way. We claim that

a; = Pgh—pg (ar)-
We argue by induction, ordering pairs (g. p) lexicographically. For the base case
p = q = 0 we note that a, = ¢g(a,). Otherwise, if n < i < m, then we must
have ¢ > 0. By the induction hypothesis. a;,_, = <p<q,1)h,pg(a,). So
a; = (Ph(aifn) = (th—pg(ar)-
If0 < i < n, and (q.p) # (0.0), then ¢ > 0 and p > 0. Note that a,,_,4; =
©(g—1h—(p—1)¢(ar) by the induction hypothesis and so
aj =b; = (Ph—g(amfnJri) = (th—pg(ar)-

This completes the induction.

Write d = gn — pm with p,q > 0. Let f = gh — pg. Theneach i, 0 < i < m,
can be writtenasi = kd +r with0 <r < d.and so a; = <pk_f-(a,).

Let C =ag---ay;_;. Then

A= C‘pf(c) o 'So(m’fl)f(c)
and so )
r=(4.g)=(C.f)"(e.g —m'f).
Since for 0 < i < n, a; = b;, we have
s=(B.h)=(C f) (e.h—n'f).

This is in the desired form: take W =¢e. V =C,x = f.y=g-m'f.z=h—n'f,
k=m',and ¢ =n'.
We still have to show that ¢, (V) = ¢.(V) = V. Noting that

(nWg—1n—mpm=n'(gn— pm)—n=n'd —n=0

we have, forall0 < r < d,
ar = So(n’q—l)h—n/pg(ar) = Son/ffh(ar)
Similarly,
ady = Pm' f—g (ar)~

Hence Sogfm’f(c) = ‘thn’f(c) =C.

Case4: Neither 4 nor B is the trivial word, and both B~'4 and ), (A4)p, (B) ™!
are reduced words.

Note that B~'4 = ¢;,(A4)p, (B) . We can make a transformation to reduce this
to the previous case. Let

A =B, B =, (A4), g =—h h =g

Then A’p,/(B') = B'¢(A’) and these are reduced words. Hence by the previous
case there are C € N, f € H/R, and m, n € Z such that

(A'.g") = (C.f)"(e.g" —mf)
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and
(B".h'") = (C.[)" (e —nf)
and such that ¢,/ _,,(C) = C and ¢}, ;(C) = C. Now

(4.g) = (e.=h)(en(A4).g)(e. 1)
—h)(B'.1")(e. h)

e.—h)(C. )(ah’—nf)(&h)
W(C). f)"(e.g —nf).

Note that ¢,/ (C) = @p—ns(C) = C. and s0 @z, r(p_n(C)) = @_4(C).
Similarly,

(e.
= (e
= (
= (p-

(e.—h)(B~'.—=h)"(e.h)

= (e.—h)(4'.g")"(e. h)

=(e.—h)(e.g' —mf) N (C.f)"(e.h)

=(e.mf)(C. f)"(e. h)

= (ms(C). f)"(e.h +mf).

Since @y 1mf(C) = @gr—ms(C) = C. oy (C) = @_;(C). So
(B.h) = (p_n(C), )" (e.h +mf).

This completes this case, taking W = ¢, V = ¢ ,(C), x = f.y = g —nf,
z=h+mf,k=n,andl = —m.

(B.h) =

s

Cast 5: |4| = 1. B is not the trivial word. and neither Ay, (B) = Bypj(A) nor
B~'4 = ¢, (A)pg (B~!) are reduced words.

Let A = a.Thena~! = @, (by) and b,—1 = ¢ (a~"). Recall that B = by -+ - b,y
From the nonreduced words Ay, (B) = By, (A). we get. as reduced words,

©g(b1)pg(ba) - - - g (by—1) = boby - - by _».
Then, for 0 < i < n — 1 we get ,(b;s1) = b;. Thus a = @ueis(a). Also, letting
C = by.
r=(p(C)".g)=(C.—g)!
and
s =(C.—g)"(e.h +ng).

Note that ‘pthng(C) = Ph4ng (bO) = by since a = ‘Png+h(a) and by = P—g (a_l)~
Sointhiscase wetake W = e, V =C,x =g,y =0,z =h+ng. k = —1,
and £ = n.

Cast 6: |B| = 1, 4 is not the trivial word, and neither A, (B) = Bp;(A) nor
B~'4 = ¢, (A)pg (B~') are reduced words.

This case is similar to the previous case.

Case7: |A|.|B| > 2andneither Ap,(B) = By, (A)nor B~'4 = ¢;,(A)p,(B~")
are reduced words.
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We have b, 1 = @5(ao) ™" and @y (am—1) = ¢ (b,—1) and so

(Pg(aO) = (Pg(a()_l)71 = (Pg—h(bnfl)il = an—zly

Letting
A =ay-apr = ay  Apg(ap)
and
B’ =ay'boby -+ by = ay ' Boy(ao)
we have

B'oy(A)pg(B') ™" = B'by_104(a0)en(A)on(am—1)pe(bu—1) oo (B) "
=ay ' Bey(A)p,(B)a, !
= ao_lAa,;l]
= A/
So (4’.g) and (B’', h) still commute.

Note that |4’| < |A] and |B’| < |B|. So we only have to repeat this finitely many
times until we are in one of the other cases. Thus, for some word D we get reduced
words

A" =DAp, (D7)
and

B' = DBp,(D™")
which fall into one of the other cases. So

(d'.g) = (C.[)"(e.g —m[)

and
(B".h) = (C. f)"(e.h —nf).
Thus
r=(DA'p,(D7").g) = (D.0)(4".g)(D~".0)
and
s = (DB'@;(D™1).h) = (D.0)(B".h)(D~".0)
are in the desired form. -

The next lemma gives a criterion for knowing that an element r isin (#/R)Y. but
it requires knowing that two particular elements s; and s, are not in (H/R)9. This
does not seem useful yet, but in Lemma 5.4 we will show that any three elements
S1, 82, and s3, such that » commutes with each of them but s;. 57, and s3 pairwise do
not commute, give rise to two such elements which are not in (H/R)¢.

LEMMA 5.2. Letr, sy, s; € G. Suppose that r commutes with sy and s», but s and s,
do not commute. If s1. 55 ¢ (H/R)Y. thenr € (H/R)“.

PROOF. Suppose to the contrary that r ¢ (#/R)Y. Since r and s; commute, and
r and s, commute, by Lemma 5.1 we can write

r=(4.0)(C. f1)"(e.g1)(471.0) = (B.0)(D. f2)™(e.g2)(B~".0).
s1= (4.0)(C. f1)" (e. h)(A71.0).
52 = (B.0)(D. f2)"(e.ho)(B~.0).
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Since r. s1. and s, are notin (#/R)9. C and D are nontrivial and m, my. ny, ny # 0.
S0 ¢, (C) = ¢, (C) = C and g, (D) = ¢;,(D) = D. Moreover, we will argue
that we may assume that

Cps,(C) @ —1)7,(C) and Doy, (D) -+ @, 1) 7, (D)
are reduced words. If the former is not a reduced word, then it must have length at
least 2, and we can write C = aC’¢ (a~"). Then

C‘Pf, (C) Pl —1) [y (C) = aC/SOfl (Cl) Pl —1) f4 (C/)%mf] (a_l)
and so. since g, fixes C and hence a.
r=(4a.0)(C". f1)"(e.&1)(@'47".0).
Similarly,
s1=(4a,0)(C", f1)" (e, ) (a~'471,0).
So we may replace A by Aa and C by C’. We can continue to do this until
Cor (C)-- @i —1)7,(C) is a reduced word. The same argument works for
Dps,(D) -+ iy —1) 1, (D).
Rearranging the two expressions for r, we get

(B~'4.0)(C. f1)" (g, (47" B).g1) = (D. f2)™ (€. g2).
Looking at the first coordinate,

BilAC(pfl (C)902f1 (C) P —1) 1, (C)Som1fl+gl (AilB)

= DL)Ofg(D)(szg(D) o '(p<mz—l)f2(D)'
We claim that we can write B~'4 = E, 'E| where ¢, (E1) = ¢4, (E1) = E; and
Pg, (Ez) = ©¥n, (Ez) = E5. Recall that
C(Pfl (C)902f1 (C) e So(ml—l)fl (C)
is a nontrivial reduced word. Taking a high enough power £, the length of
(Cos, (C)pap, (C) -+ @, 1) 7, (C))
as a reduced word is more than twice the length of B~' 4. Then
B~ A(Cos, (C)p27,(C) - @ny—1)£,(C)) @y 14 (A7 B)
= (D(pfz (D)(piz (D) U Plma—1) 1, (D))e

We can write B~'4 = E; E, as a reduced word where E; Uappears at the start of
the right hand side when it is written as a reduced word, and E; cancels with the
beginning of (Cpy, (C)as,(C) -+ @ 1) 7, (C))*. Thus E is fixed by g, and ¢y,
since they fix each letter appearing in the word (Ce 7, (C)pa7, (C) -+ 9,1y 1, (€))L,
and E, is fixed by ¢,, and ¢, since they fix each letter appearing in the right hand

side.
Since E,B~ ' = E\A7 !,
E;B~'rBEy ' = (E1.0)(C. f1)" (e.g1)(E[".0)
= (E2.0)(D. f2)"™(e. g2)(E; . 0).
E;B™'siBEy ' = (E1.0)(C. f1)" (e.n)(E; . 0),
EyB's;BE; " = (E».0)(D. f2)"(e. hy)(E; . 0).
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So. applying the automorphism of G given by conjugating by E,B~! (and noting
that this automorphism fixes (H/R)9) we may assume from the beginning that
Pe (A) = Pn (A) = A and P (B) = ‘th(B) = B. Thus

r=(4.0)(C. f1)"(47".0)(e.g1) = (B.0)(D. f2)"(B~",0)(e. £2).
s1=(4.0)(C. f1)"(47".0)(e. ).
52 = (B.0)(D. f2)"(B~".0)(e. ha).
Now looking at the first coordinate, we have
ACp s, (Cpas, (C) - @iy —1),(C)pmy £, (A) 7!
= BD¢,(D)p27,(D) - uy—1) 1, (D)o, 1, (B) .
Our next step is to argue that we may assume that these are reduced words.
Suppose that there was some cancellation, say 4 = A’a and C = a~'C’. Let
C* = C'py (a~"). Then
ACSOfl (C)‘pil (C) P —=1) 1, (C)‘pnnfl (A)_1=
= A/C*(pfl (C*)(szl (C*) Pl —1) £ (C*)(pmlfl (A,)_]'
Thus
r=(4.0)(C*. f1)"(e.&1)(4".0)"",
s1=(4".0)(C*. f1)" (e.)(4'.0)7".
Note that
(C*v fil)ml = C*(pfl (C*)(pzfl (C*) P —1) 11 (C*)
1s still a reduced word. If it was not a reduced word. then we would have m; > 0,
|C*| > 1,and ¢y, (a') = ¢s (a’) ', where ' is the first letter of C*. Thus a’ = a
is the second letter of C, which together with the fact that the first letter of C is

a~! contradicts our assumption that C is a reduced word. We have reduced the size
of A, so after finitely many reductions of this form, we get

ACSOfl (C)902f1 (C) Pl —1) f4 (C)(Pmlfl (A)_l

= BD(pfz (D)(PZ/"Z (D) T Pmy—1) 12 (D)<szf2 (B)il
and that both sides are reduced words.

Now either |4| < |B]| or |B| < |A|. Without loss of generality, assume that we
are in the first case. Then A4 is an initial segment of B (i.e., B = AB’ as a reduced
word). Then by replacing r. s, and s, with A7'r4, A='s14, and 4~ 5,4, we may
assume that A is trivial. To summarize the reductions we have made so far, we have

r=(C f1)"(e.g1) = (B.0)(D. f2)™(e.g2)(B~".0),
s1=(C. f1)"(e. ).
55 = (B.0)(D. f2)"(e. hy)(B~1,0).

The automorphisms ¢,, and ¢, fix C, and the automorphisms ¢,, and ¢, fix D
and B. Both sides of

Ctpf] (C)()OZfl (C) T (p(ml—l)fl(c)

= BDyy, (D)(PZ/"z (D) Pl —1) 12 (D)(pmzfz (B)_]
are reduced words.
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Now we will show that either m; = 1 or B is trivial. Suppose that B was nontrivial,
say B = bB’'. First note that the length of C is greater than one, as otherwise C = b
and @(,, _1)7,(C) = @m,7,(b~"): but there is no e € /R such that ¢.(b) = b~".
Then we must have C = bC'p,,, 1, (m,—1) 1, (b~!) for some C’. We have m; f1+g1 =
my f >+ g». Since b appears both in C and in B, it is fixed by both ¢,, and ¢,,. Thus
C =bC'ps (b~"). But then if m; > 1,

Cor, (C)oas, (C) -+ @i —1)7,(C)

is not a reduced word. So we conclude that either 71 = 1 or B is trivial.
CasE 1: Suppose that m; = 1.

We have
r=(C. f1)(e.g1) = (B.0)(D. f2)™(e.g2)(B~".0).
Also, as reduced words,

C = BDys, (D)2, (D) -+ @y 1)1, (D) oy 1, (B) ™

Since the right hand side is a reduced word, ¢, and ¢, fix B and D since each
letter in B and D appears in C. Thus

st = (C. f1)"(e. ) = [(B.0)(D. f2)™(B~'.0)(e. f1 — maf2)]" (e. ).

Now f1 4+ g1 = maf2 + g. Since @, and ¢y, fix B and D, s, _,, s, also fixes B
and D. Thus

st = (B.0)(D. f2)™" (e.hy +n(f1 —ma2f2))(B~".0)
and hy +ni(f1 — my f>) fixes D. Thus s1 and s, commute. This is a contradiction.
CASE 2: B is trivial.

Let |C| = k and |D| = £. Suppose without loss of generality that k > £. Let
do.dy.d>. ... be the reduced word

Cor, (C)as, (C) -+ @iy —1)£,(C) = Doy, (D)2, (D) - - - Py —1) £, (D).
Then we have
di = ¢y, (di—¢) fori > ¢,
Com—1) 1 ([dk—t4i) = Q1) 1, (di) for0 <i< /.

Let e = ged(k. £).

Given p,q > 0, write i = gl — pk + r with 0 < r < e and assume that
0 <i < mk = myl. Note that every i, 0 < i < mjk = my€, can be written in such
a way. We claim that

di = SO‘Ifz‘H?[(ml—l)fl_mlf’l](d")'
We argue by induction, ordering pairs (g. p) lexicographically. For the base case
p = q = 0 we note that d, = ¢(d,). If £ < i, then we must have ¢ > 0. By the
induction hypothesis. di—¢ = ©(,_1) £, pimy—1) f1—mo 121 (r ). SO

di = @7, (di—e) = g1y pimi—1)f1-moy (dr)-
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If0<i< ¥ and (q, p) # (.0). then ¢ > 0 and p > 0. Note that

di—eyi = W(Q*l)fﬁ(ﬂfl)[(ml*l)flfmzfz](d’) = Plafrtplim—1)f1—ma f2]—[(m —1) £} *(mz*wfz](d’)
by the induction hypothesis and so

i = Pm 1) 1 ma=1) 12 (k=) = Papot pllm 1)1 - 121 (€7)-

This completes the induction.
Write e = gf — pk with p.q > 0. Let f = qf> + p[(m; — 1) f1 — my f>]. Then
eachi,0 < i < kmy. can be written asi = se +r with0 < r < d, and so
di = Psf (dr)
Let E =d,---d,. Then

Similarly,
D =Eps(E)--- @i _y,(E)
Also,
or(E) =di-direnr = pis(do.....dem1) = pi/(E)
and

(sz(E) =dp--- dZJrefl = (Pfjf(dOa ce adefl) = (Pff(E)
So (pf](C) = QO/%f(C) and (pfz(D) = (pe%f(D). Hence

mik mlk

1= (Cfr o) = (B ) (s gy = 25 )

and
2= (DS euh) = (E.f)F (s mafs = "2 ).

Note that ¢;, and ¢, both fix E, since they fix C and D respectively. Also, since
o (E) = <p§f(E), Ty fixes E. Similarly, s fixes E. So s1 and s,
commute. This is a contradiction. -

LEMMA 5.3. Fixr € G. Ifr> € H/R. thenr € H/R.

ProoF. Write r = (4. ). We will show that if r ¢ H/R, ie., if A # €, then
r? ¢ H/R. Since

r? = (dps(4).2f)

we must show that Ap(A4) is nontrivial. Suppose that it was trivial; then the length

of A as a reduced word must be even. (If the length of 4 was odd. say 4 = A,aA,
with A} and A, of equal lengths. then

Apy(A) = Adradrpr (A1) pyr(a)pr(42) = €.
So it must be that ¢, (a) = a~!, which cannot happen for any letter a.) Write
A = BC, where B and C are each half the length of 4. Then since Ay (A4) is the
trivial word, Cyp(B) is the trivial word; thus C = ¢/(B~!). So 4 = Bp;(B~!),
and
Ap;(A) = Bor(B~ ) (B)pas (B™") = Bpas(B™).
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Since Ay (A) is the trivial word. ¢»,(B) = B. Since A4 is not the trivial word,
B # ¢;(B). But this is impossible, as p;. ¢;. and r; were all chosen to be odd
primes. -

The next lemma is the heart of the existential definition of (H/R)9. The proof is
to show that under the hypotheses of the lemma, elements not in (H/R)Y such as
in Lemma 5.2 must exist.

LemmA 5.4. Let r, 51,582,583 € G. Suppose that r commutes with sy, s», and s3. but
that no two of sy, s2, and s3 commute. Then r € (’H/R)g

Proor. If at least two of sy, s». and s3 are not in (’H/R)g, then this follows
immediately by Lemma 5.2. Otherwise, without loss of generality suppose that
sy and s are in (H/R)9. By Lemma 4.2, 5157 ¢ (H/R)“.

Note that » commutes with 515, and with s;(s2)%. Also, 5152 does not commute
with s1(s»)2, since if it did, then

$1525152852 = S1525251852 = 152 = $297.

We claim that s1(s2)? & (H/R)9. If s1(s2)*> was in (H/R)Y, then by Lemma 4.2, we
could write

s1=(A4.0)(e.2)(47".0) and (5,)* = (4.0)(e. h)(4~",0).

Then let 55 = (47",0)s2(4,0) = (C. ). Then (s3)*> = (e, h), and so by Lemma 5.3,
sy = (e, f). Thus s, = (4.0)(e. f)(A471.0). So 51 and s, would commute; since we
know that s; and s, do not commute, s;(s2)*> ¢ (H/R)9.

By Lemma 5.2, with r, 5155, and slszz, we see that r is in (’H/R)g. -

The existential definition of (H/R)Y comes from the previous lemma. It remains
only to show that if r € (H/R)Y. then the hypothesis of the previous lemma is
satisfied.

ProoF oF LEMMA 4.1. By the previous lemma, it suffices to show that if
r € (H/R)Y. then there are s, s,. and s3 such that r commutes with s, 55, and s3.
but no two of these commute with each other. If r = (4.0)(e. g)(471.0). let 51 =
(4.0)(1u9.0)(A71.0). 55 = (A4.0)(11.0)(A47",0), and s3 = (4.0)(u2.0)(A4".0).
Then r commutes with 51, 52, and s3 since g fixes ug, u;, and uy, but no two of sy,
52, and s3 commute with each other as ug. u;. and u, do not commute with each
other. =

86. Acknowledgments. The author was partially supported by the Berkeley Fel-
lowship and NSERC grant PGSD3-454386-2014. The author would like to thank
Antonio Montalban for reading and commenting on a draft of this article.

REFERENCES

[1]1 G. M. BERGMAN, Ordering coproducts of groups and semigroups. Journal of Algebra. vol. 133
(1990), no. 2. pp. 313-339.

[2] R. G. DowNEY and S. A. KURTZ, Recursion theory and ordered groups. Annals of Pure and Applied
Logic. 32 (1986). no. 2. pp. 137-151.

[3] V. P. DOBRITSA, Some constructivizations of abelian groups. Sibirskii Matematicheskii Zhurnal,
vol. 24 (1983). no. 2. pp. 18-25.

https://doi.org/10.1017/js1.2017.19 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2017.19

LEFT-ORDERABLE COMPUTABLE GROUPS 255

[4] R. G. DowNEY and J. B. REMMEL, Questions in computable algebra and combinatorics, Computabil-
ity Theory and its Applications (Boulder, CO, 1999) (P. A. Cholak. S. Lempp. M. Lerman. and R. A.
Shore, editors), Contemporary Mathematics. vol. 257, American Mathematical Society, Providence. RI,
2000, pp. 95-125.

[S] V. M. Kopytov and N. Y. MEDVEDEV, Right-Ordered Groups, Siberian School of Algebra and
Logic, Consultants Bureau, New York, 1996.

[6] R. C. LynpoN and P. E. Scuupp, Combinatorial Group Theory. Classics in Mathematics, Springer-
Verlag, Berlin, 2001. Reprint of the 1977 edition.

[7] H. SHIMBIREVA, On the theory of partially ordered groups. Matematicheskii Shornik. vol. 20 (1947).
no. 62, pp. 145-178.

[8] R. SoLomON, H(l) classes and orderable groups. Annals of Pure and Applied Logic. vol. 115 (2002).
no. 1-3, pp. 279-302.

[9] A. A. VINOGRADOV. On the free product of ordered groups. Matematicheskii Shornik. vol. 25 (1949),
no. 67, pp. 163-168.

GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE
UNIVERSITY OF CALIFORNIA
BERKELEY, CA, USA
E-mail: matthew.h-t@berkeley.edu
URL: www.math.berkeley.edu/~mattht

https://doi.org/10.1017/js1.2017.19 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2017.19

