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We perform direct numerical simulations of rotating turbulent Waleffe flow, the flow
between two parallel plates with a sinusoidal streamwise shear driving force, to study
the formation of large-scale structures and the mechanisms for momentum transport.
We simulate different cyclonic and anticyclonic rotations in the range of dimensionless
rotation numbers (inverse Rossby numbers) RΩ ∈ [−0.16, 2.21], and fix the Reynolds
number to Re = 3.16 × 103, large enough such that the shear transport is almost
entirely due to Reynolds stresses and viscous transport is negligible. We find an
optimum rotation in the anticyclonic regime at RΩ = 0.63, where a given streamwise
momentum transport in the wall-normal direction is achieved with minimum mean
energy of the streamwise flow. We link this optimal transport to the strength of
large-scale structures, as was done in plane Couette flow by Brauckmann & Eckhardt
(J. Fluid Mech., vol. 815, 2017, pp. 149–168). Furthermore, we explore the large-scale
structures and their behaviour under spanwise rotation, and find disorganized large
structures at RΩ = 0 but highly organized structures in the anticyclonic regime, similar
to the rolls in rotating plane Couette and turbulent Taylor–Couette flow. We compare
the large-scale structures of plane Couette flow and Waleffe flow, and observe that
the streamwise vorticity is localized inside the cores of the rolls. We show that the
rolls take energy from the mean flow at long time scales, and relate these structures
to eigenvalues of the streamfunction.

Key words: turbulent convection, turbulent boundary layers, Taylor–Couette flow

1. Introduction
While turbulent flows are generally chaotic and random, coherent large-scale

motions can exist within them. Wall-bounded turbulent flows are not an exception,
and large-scale organized structures have been reported in both experiments and
numerics (Jimenez 2012). The study of structures was pioneered in channel flow,
i.e. the pressure-driven flow between two parallel plates, a popular model to study
wall-bounded turbulence. Using large-eddy simulation, Moin & Kim (1982) found
large-amplitude streamwise vortical structures concentrated near the wall. These
large-scale structures were attributed to a splatting effect (a net transfer of energy
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between perpendicular velocity fluctuations) and to Helmholtz-type instabilities of
intense shear layers at and near the wall. Similar large-scale structures were also
found by Moser & Moin (1984) using direct numerical simulation (DNS) in turbulent
channel flow with a curved geometry, and by Kim, Moin & Moser (1987) in a fully
turbulent channel. Kim et al. (1987) further characterized these structures through
local maxima and minima of the streamwise vorticity, i.e. a streamwise vortex model.
With the increased availability of computational power, the achievable Reynolds
numbers and domain sizes in simulations have kept on growing. Large coherent
structures have still been observed even for the recent simulations at Reτ ≈ 5200 by
Lee & Moser (2015). Coherent flow structures have also been observed in other types
of high-Reynolds-number wall-bounded flows, including pipe flows (Eckhardt et al.
2007), plane Couette flow, i.e. the shear flow between two parallel plates, in turbulent
boundary layers (Smits, McKeon & Marusic 2011), and in von Kármán flow, i.e. the
flow between two coaxial rotating discs (Zandbergen & Dijkstra 1987; Ravelet et al.
2004).

Taylor–Couette flow (Grossmann, Lohse & Sun 2016), the flow between two
coaxial and independently rotating cylinders, is another canonical wall-bounded flow
where coherent large-scale structures are present. Their formation has usually been
attributed to centrifugal (linear) instabilities since the seminal study by Taylor (1923).
Because of this, they are usually referred to as Taylor rolls. Owing to the centrifugal
effects, Taylor–Couette flow and its structures have usually been studied from the
point of view of angular momentum convection, and not from the perspective of
a wall-bounded flow (Lathrop, Fineberg & Swinney 1992). A notable difference
between Taylor rolls and more general structures in wall-bounded flows is that Taylor
rolls are pinned, i.e. they do not move around the fluid domain, and this is true
with increasing Reynolds numbers up to the so-called turbulent Taylor rolls seen at
Re ' 106 by Huisman et al. (2014). Turbulent Taylor rolls survive at high Reynolds
number only for some combinations of curvature and mild outer-cylinder rotation
(Huisman et al. 2014; Ostilla-Mónico et al. 2014). Remarkably, in a Taylor–Couette
geometry with a large curvature, rolls do not exist at high Reynolds number for pure
inner-cylinder rotation (Ostilla-Mónico et al. 2014). This means that something else
aside from centrifugal effects must play a role. Numerical studies of Taylor–Couette
flow conducted by Sacco, Verzicco & Ostilla-Mónico (2019) found that turbulent
Taylor rolls appeared with a combination of shear and mild anticyclonic rotation.
Their onset was not controlled by the curvature of the system. At high Reynolds
numbers, Taylor rolls would unpin, or even disappear, if anticyclonic rotation was
removed. Sacco et al. (2019) also found that the rolls are persistent in the limit of
vanishing curvature, i.e. when Taylor–Couette flow becomes rotating plane Couette
flow, if anticyclonic rotation is present.

This showed that the study of turbulent Taylor rolls could be better approached
from a shear flow perspective, and not simply by thinking of them as a continuation of
the centrifugal linear instability seen at low Reynolds numbers. Indeed, low-curvature
Taylor–Couette flow shows some characteristics of shear flows for Reynolds numbers
just beyond the onset of the linear, centrifugal instability. Taylor rolls develop a
streamwise modulation, after which they are usually denoted ‘wavy’ Taylor vortices
Andereck, Liu & Swinney (1986). This is linked to the appearance of large-scale
streaks (Dessup et al. 2018). Taylor rolls are then fed by the nonlinear interaction of
streaks. This nonlinear interaction between the pinned Taylor roll and the streak was
attributed to the activation of the self-sustained process (SSP) of shear flows (Dessup
et al. 2018), which is described below. In this spirit, Sacco et al. (2019) showed that
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the energy of turbulent Taylor rolls and streaks varied periodically with a distinct
phase shift, and a long-time-scale multistage process energized the pinned structures.
But despite the low-Reynolds-number link (Dessup et al. 2018), it is not clear how
the high-Reynolds-number turbulent Taylor roll–streak process is related to the SSP
responsible for the generation of turbulence in shear flows.

The name SSP commonly refers to a multistage process responsible for regenerating
wall-bounded turbulence, where streamwise rolls interact with streamwise velocity to
cause streaks. These unstable streaks interact nonlinearly, reinforcing the rolls and
completing the SSP cycle. Waleffe (1997) was the first to show that a generic
process was responsible for the regeneration of turbulence in wall-bounded flows.
Unlike earlier studies of the regeneration mechanisms in channel flow (Hamilton,
Kim & Waleffe 1995), Waleffe (1997) studied the SSP in a fluid system where the
flow is bounded by two infinite stress-free plates and forced using a body shear force.
Waleffe (1997) was the first to study this system in detail to assess the role of the
no-slip condition in the SSP, even if it had been used by Tollmien (1936) to show
that an inflection point was not a sufficient condition for linear instability (Drazin
& Reid 2004). Because of this, it has been recently associated with Waleffe’s name
(Beaume et al. 2015; Chantry, Tuckerman & Barkley 2016), and we will refer to it
as Waleffe flow from here on.

In the spirit of Waleffe (1997), we set out to investigate whether the large-scale
coherent structures of plane Couette and Taylor–Couette flow are part of a more
general class of structures, which require only shear (and anticyclonic rotation), as
the SSP does, or if they are something distinct, separated from the SSP because
they require the presence of a no-slip wall. The natural system to investigate this is
rotating Waleffe flow.

The absence of a no-slip wall also provides for a second avenue of investigation.
In Taylor–Couette and in rotating plane Couette flow, the transport of torque or
shear is greatly enhanced by the presence of large-scale structures. In particular, in
Taylor–Couette flow, the angular velocity current, non-dimensionalized as a Nusselt
number (Nuω), depends mainly on three parameters: first, the shear, which can
be non-dimensionalized as a shear Reynolds number, Res = U(ro − ri)/ν; second,
the solid-body system rotation, which appears in the equations as a Coriolis
force, and its magnitude can be expressed non-dimensionally as a rotation number,
RΩ = 2Ω(ro − ri)/U; and finally, the curvature, expressed as a radius ratio, η= ri/ro.
Here, ri (ro) is the inner (outer) cylinder radius, U is a characteristic shear velocity,
ν is the kinematic viscosity of the fluid and Ω is the background rotation. Each
of these parameters is linked both to the torque and to the presence of large-scale
structures (van Gils et al. 2012; Brauckmann & Eckhardt 2013; Ostilla-Mónico et al.
2014). In the low-curvature regime (η> 0.9), where centrifugal forces are negligible,
Brauckmann, Salewski & Eckhardt (2016) showed that, at Res ∼ O(104), there are
two local maxima in the Nuω(RΩ) curve: one narrow and one broad. The ‘broad
maximum’ at RΩ ≈ 0.2 dominated at lower shear Reynolds number (Res) and was
related to the enhancement of large-scale vortical flow structures (Brauckmann et al.
2016). On the other hand, the ‘narrow peak’ at RΩ = 0.02 was linked to a shear
instability due to turbulent boundary layers (Brauckmann & Eckhardt 2017) and
emerged with increasing Res. It was argued that this narrow peak would supersede
the broad peak at very high Res (Brauckmann et al. 2016; Brauckmann & Eckhardt
2017), and this was confirmed experimentally (R. Ezeta, unpublished observations).

The broad and narrow peaks in the shear/torque transport were found to exist even
in the limit of rotating plane Couette flow, when curvature was completely absent.
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If large-scale vortical structures similar to the so-called turbulent Taylor rolls appear
in Waleffe flow, one could expect that, in the regions of parameter space where they
are strengthened, a similar shear transport enhancement will exist. And if it existed,
this optimal transport would survive well into the turbulent regime, as it would not
be superseded by boundary layer instabilities from a no-slip wall. Thus the second
and third questions we set out to answer are these: (i) Does optimal transport exist in
rotating Waleffe flow? (ii) If so, how is it linked to large-scale structure enhancement?

The paper is organized as follows. In § 2, we define the numerical set-up, control
parameters, spatial resolution and domain size study. These include details of the
numerical scheme (§ 2.1), energy spectrum studies to assess the spatial resolution
(§ 2.2) and autocorrelation studies (§ 2.3) to assess the size of the domain. We
then detail the results of our investigation in § 3, including a characterization of
the transport of shear in § 3.1, the effect of rotation on the statistics of Waleffe
flow at high Reynolds number in § 3.2, including a discussion of optimal transport,
the effect of rotation on the large-scale structures, and how it is further linked to
optimal transport and measures against plane Couette flow in § 3.3, and a further
characterization of these structures in § 3.4. We conclude in § 4 with a brief summary
and an outline for further research.

2. Numerical set-up
2.1. Problem set-up and non-dimensionalization

We perform DNS of rotating Waleffe flow in a three-dimensional domain that is
bounded by free-slip walls in the y direction at y = 0 and y = d, and is periodic
in the streamwise (x) and spanwise (z) directions with periodicity lengths Lx and
Lz, respectively. A body force f is used to force the flow. A Coriolis body force is
used to simulate solid-body rotation in the flow, which can be either cyclonic, i.e.
where the spanwise rotation vector is parallel to the vorticity of the laminar base
flow (RΩ < 0), or anticyclonic, i.e. the spanwise rotation vector is antiparallel to the
vorticity of laminar base flow (RΩ > 0). With this, the Navier–Stokes equations thus
read

∂u
∂t
+ u · ∇u+ 2Ω(ez × u)=−∇p+ ν∇2u+ f , (2.1)

which are solved alongside the incompressibility condition

∇ · u= 0, (2.2)

where u is the velocity, Ω is the background spanwise rotation, p is the pressure and
t is time.

The geometrical configuration and the input body force of Waleffe flow is show
in figure 1. The velocities in the x, y and z directions are denoted by u, v and w,
respectively. A streamwise shear body force is required to force the flow, as, unlike
plane Couette, flow no energy is injected through the walls. A sinusoidal profile is
chosen, i.e. f = F cos(βy)ex, with β = π/d, analogous to the set-up used in Waleffe
(1997). This means that the force is maximum, but in opposite directions at both slip
walls, and zero at the mid-plane. The force must have zero average as otherwise the
flow would constantly accelerate unopposed by the free-slip walls.

Furthermore, in the absence of the Dirichlet (no-slip) boundary condition, the
system is completely Galilean-invariant. An arbitrary translation velocity can be
added in either the streamwise or spanwise direction with no effect. A reference

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

84
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.840


Large-scale structures in high-Re rotating Waleffe flow 884 A26-5

x
y

dR�

Lz
Lx

d

(a) (b)

y
x

z

FIGURE 1. (a) Two-dimensional spanwise cut of the system showing the streamwise shear
force and background rotation of the Waleffe flow system. The y origin of the system is
shown as a thick black circle. (b) Three-dimensional view of the simulation geometry.

frame must be chosen, and we take the one for which the mean streamwise and
spanwise velocities are zero. We will denote with the operator 〈· · ·〉 a streamwise,
spanwise and temporal average. In this spirit, 〈φ〉 represents a mean quantity, φ′ the
instantaneous fluctuation around the mean quantity, and 〈φ′〉 the root-mean-square
fluctuation around this mean.

The equations are non-dimensionalized using the distance between the walls
d and the forcing amplitude F. We define a characteristic velocity Ũ for non-
dimensionalization as Ũ =

√
Fd. We note that we use a different characteristic

velocity than the one classically used for Waleffe flow (cf. Beaume et al. 2015), as
we focus on the fully turbulent case, and not in perturbations around the laminar
state. This definition results in a Reynolds number defined as Re= Ũd/ν =

√
Fd3/ν,

which is our first control parameter. The second non-dimensional control parameter
accounts for the cyclonic and anticyclonic rotation of the system, and is defined as
RΩ = 2Ωd/Ũ= 2Ωd/

√
Fd. For this study, we fix Re= 3.16× 103, large enough such

that the flow is fully turbulent and that the shear transport takes place purely through
Reynolds stresses (cf. § 3.1), and vary RΩ in the range [−0.16, 2.21] to study the
effect of rotation. After the initial transient, we run the simulations between 200 and
250 d/Ũ time units to collect statistics.

The equations are discretized in space using a second-order energy-conserving
centred finite difference scheme, while temporal discretization is done using
a third-order Runge–Kutta method for the explicit terms and a second-order
Adams–Bashforth scheme for the implicit viscous terms in the wall-normal direction.
The simulation code used is based on the highly parallel FORTRAN-based AFiD
(www.afid.eu), which has been used mainly for simulating turbulent Rayleigh–Bénard
convection and Taylor–Couette flow (van der Poel et al. 2015). This code has been
comprehensively validated. Detailed information regarding the code algorithms can
be found in Verzicco & Orlandi (1996) and van der Poel et al. (2015).

2.2. Resolution study
For determining what is an adequate spatial resolution of the flow, a series of
simulations were performed at Re = 3.16 × 103, for both no rotation (RΩ = 0) and
mild anticyclonic rotation (RΩ = 0.32). We can expect the wall-normal resolution to
be less stringent in Waleffe flow due to the absence of the no-slip boundary condition.
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FIGURE 2. Energy spectra for the streamwise velocity u (blue), the wall-normal velocity
v (orange) and the spanwise velocity w (green) in the spanwise (a) and streamwise (b)
directions at the mid-gap at RΩ = 0.

However, the streamwise and spanwise directions were found to be more restrictive
than a plane Couette flow simulation at comparable Reynolds numbers. Indeed, if
one compares the Kolmogorov length scale ηK at Re∼ 3× 103 for both systems, we
obtain that ηK is between five and six times smaller for non-rotating Waleffe flow
than for non-rotating plane Couette flow.

Adequate resolution for the streamwise and spanwise directions was ensured through
a spectral analysis of velocity data. We found that for Lx/d = 2π and Lz/d = π,
Nx = 1024 and Nz = 512 points distributed uniformly were enough to accurately
represent the velocity spectra at mid-gap at both no rotation and RΩ = 0.32. An
extended dissipative regime at high wavenumbers, with energy E ∼ exp(−k), is seen
in figure 2 for both the streamwise and the spanwise directions.

We note that both homogeneous directions have the same effective grid spacing,
∆/d = 6.13 × 10−3. Non-dimensionalized by the Kolmogorov length scale, this is
approximately ∆/ηK ≈ 2.51. Using this grid spacing in the wall-normal direction
would result in a grid of Ny ≈ 163 points. For safety, we use Ny = 384, and
cluster points near the wall, such that the minimum wall-normal grid spacing is
∆/d= 3.84× 10−4 and the maximum wall-normal grid spacing is ∆/d= 3.85× 10−3,
or 0.157 .∆/ηK . 1.58 in Kolmogorov units.

2.3. Domain periodicity study
We performed a domain-size study in order to quantify the effect of the spanwise and
streamwise periodicity lengths on the flow field statistics and on the large structures
that might be present in the flow. We simulated several domain sizes, where Lx and Lz
were doubled each time to produce larger and larger domains. The spatial resolution
in both x and z directions was also doubled every time the domain was doubled, to
keep the resolution from the previous section. We refer to the domains henceforth as
‘very small’ (Lx/d=π and Lz/d=π/2), ‘small’ (Lx/d= 2π and Lz/d=π), ‘medium’
(Lx/d = 4π and Lz/d = 2π) and ‘large’ (Lx/d = 8π and Lz/d = 4π). We also note
that the run time required to obtain adequate statistics does not decrease with domain
size. The evolution of large scales takes place in long time scales (cf. § 3.4 for more
details), and this strongly affects the value obtained for the mean streamwise velocity.

The effect of the domain size on the results was checked in several ways. First,
figure 3(a,b) show the streamwise velocity autocorrelation in the streamwise and
spanwise directions. The behaviour of non-rotating Waleffe flow is quite similar to
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FIGURE 3. (a,b) The streamwise velocity autocorrelation in the streamwise (a) and
spanwise (b) directions. Solid lines are without rotation (RΩ = 0) while dashed lines are
with mild rotation (RΩ = 0.32). Symbols: black upward triangle (q), Lx/d = π, Lz/d =
π/2; blue downward triangle (s), Lx/d = 2π, Lz/d = π; green circle (u), Lx/d = 4π,
Lz/d= 2π; and yellow square (p), Lx/d= 8π, Lz/d= 4π. (c,d) The magnitude of averaged
streamwise velocity for non-rotating (c) and RΩ = 0.32 (d). The three-halves domain (red
star (F),Lx/d= 3π, Lz/d= 3

2π) is also included.

what is commonly seen for plane Couette flow in the streamwise direction, with long
decorrelation wavelengths. A strong effect of both rotation and domain size is seen
in the autocorrelations, showing that the domain size will affect the behaviour of
the structures inside the flow, and that rotation has a crucial effect on large-scale
structures. All domains are sufficiently long in both the streamwise and spanwise
dimensions for the velocity autocorrelations to change sign at least once. However,
the domains are not large enough to show full decorrelation.

Another way to check domain-size independence is done by simply comparing
the mean velocities obtained from the different computational domains. Owing to
the presence of large-scale structures which fill up the domain, the velocity profiles
could be affected by the wavelength of these structures. Doubling the domain would
not account for the changing wavelength of these structures, as the domain would
simply be filled up with twice as many structures with the same wavelength. To avoid
this, we run an additional case with periodicity lengths (Lx/d = 3π and Lz/d = 3

2π),
denoted as the ‘three-halves’ domain.

In figure 3(c,d), we show the streamwise, spanwise and temporally averaged
streamwise velocity 〈u〉 for all cases. Remarkably, for the non-rotating case, the
average streamwise velocity for all domains from the smallest domain to the largest
collapse on top of each other. For the rotating case, there is collapse between the
small and three-halves domain, while the other domains show strong variability.

To understand this variation between the domains, which only appears for the
rotating case, we analyse the domain-size effects on the strength of large-scale
pinned structures. In figure 4, we show visualizations of the temporally and
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FIGURE 4. Pseudo-colour plot of Ωx for the five domain sizes simulated, at RΩ = 0.32.
Contours levels for vorticity are shown at zero to highlight the large-scale structures.

streamwise-averaged streamwise vorticity Ωx. Why this definition of Ωx captures
the large-scale structures is discussed more elaborately in § 3.3, but for now we
note that it highlights streamwise-invariant structures that are pinned in the spanwise
direction. A strong pinned structure is prominent for the very small domain, due
to the constrained periodicity. The structure is somewhat weakened for the small
domain, and the colours are less intense on figure 4. The three-halves domain shows
an organized pinned structure at three-halves the wavelength of the small domain,
which remarkably does not affect the mean flow statistics of figure 3. The medium
domain and large domains present a larger number of organized structures, consistent
with what is seen in the autocorrelations. Even if the medium and small domains
have structures with the same wavenumber, the number of structures is different.
This indicates that what is causing the differences in velocities must not be within
the structures themselves, but in their interactions with each other and the near-wall
regions.

We will not be able to completely remove domain-size effects, as this study shows.
From here, we proceed with the ‘small’ domain with a single structure, as it allows
us to explore a large parameter space while running the simulations for long times to
gather enough statistics. We acknowledge that domain-size effects are unavoidable.

3. Results
3.1. The nature of shear transport

First, we show that the shear force in large-Reynolds-number Waleffe flow is
transported almost exclusively by Reynolds stresses. In the statistically stationary
regime, the mean velocities do not depend on time. We can write down an average
of the total shear τ transported across a wall-normal plane, which is

〈τ 〉 =µ
d〈u〉
dy
+ ρ〈uv〉, (3.1)
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FIGURE 5. (a) Averaged transport for different RΩ values. The theoretical value for fully
turbulent shear transport is shown with hollow circles. (b) Normalized integrated transport
Tuv for different RΩ values.

where ρ is the fluid density and µ is the dynamic viscosity. Equation (3.1) just states
that, in the statistically stationary regime, shear is transported either through viscosity
or through Reynolds stresses.

In high-Reynolds-number Waleffe flow, we may assume that the viscous shear
transport (µ d〈u〉/dy) is negligible. This is because, as Re increases, the velocity
gradients remain approximately constant. No viscous boundary layer where the
average velocity has a sharp gradient is formed, because there is no wall with a
no-slip condition. Hence, in the turbulent regime, the magnitude of the viscous
term in (3.1) is O(Re−1) smaller than that of the Reynolds stress term. With this,
equation (3.1) becomes

〈τ 〉 ≈ ρ〈uv〉. (3.2)

By differentiating (3.1) with respect to the wall-normal direction, and comparing it
to the Navier–Stokes equations, we have that the shear transported must be balanced
by the body force,

d〈τ 〉
dy
≈

d(ρ〈uv〉)
dy

≈ ρf , (3.3)

and solving the above equations gives an analytic expression for the Reynolds stress,

〈uv〉 =
F
β

sin(βy). (3.4)

This is valid in the statistically stationary regime only if our assumption that shear
transport is fully due to Reynolds stresses. We check this in figure 5(a), where we
show the 〈uv〉 Reynolds stress components for different rotation numbers, as well
as the theoretical value for 〈uv〉 from (3.4). We find that 〈uv〉 is almost equal to
the theoretical value for full shear transport due to Reynolds stresses for all rotation
numbers shown, even if some deviations exist for RΩ =−0.16, i.e. cyclonic rotation.

To further quantify transport, we define Tuv as the integrated momentum transport
in the wall-normal direction,

Tuv =

∫ d

0
〈uv〉 dy, (3.5)

and calculate its deviation from the analytical value for purely turbulent transport
To

uv = 2F/β2
≈ 0.202Fd2. We show this quantity in figure 5(b). The numerical values
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FIGURE 6. (a) Averaged streamwise velocity 〈u〉 for different values of RΩ . (b) Average
kinetic energy of the mean streamwise flow Eu for different values of RΩ .

of Tuv are within approximately 3 % of the theoretical value for different rotation
numbers, except for RΩ = −0.16, corresponding to the case with cyclonic rotation.
This tells us two things. First, that, as seen in plane Couette and Taylor–Couette flow,
cyclonic rotation hampers turbulence and, in this case, the viscous transport accounts
for ∼5 % of the total transport. Second, that, for no rotation or anticyclonic rotation,
the shear transport is fully turbulent and Tuv instead gives us an estimate for the
temporal convergence errors in the simulations, as Tuv/To

uv is close to unity. From
figure 5(b), these can be estimated at approximately 2 %–3 %.

Unlike previous studies of rotating plane Couette flow (Brauckmann et al. 2016),
where the transported shear was a response of the system, an optimum momentum
transport cannot be deduced from Tuv, because this is an input of the simulation,
and Tuv ≈ To

uv in all cases. To define an optimum momentum transport, we must turn
towards other diagnostics. This is further investigated in §§ 3.2 and 3.3.

3.2. Velocity magnitudes and optimum shear transport
We now analyse the effect of rotation on the velocity profiles. In figure 6(a), we
show the averaged streamwise velocity profiles between the free-slip walls for various
rotation numbers RΩ . First, it can be seen that the velocity profiles are symmetric
around the mid-gap (y/d= 0.5), and that the slip velocity at the walls is maximum for
RΩ =−0.16. As the rotation number increases, the velocity profiles show a decrease
in the slip velocity until a minimum is reached at approximately RΩ = 0.63.

To quantify this, we define Eu, the average streamwise kinetic energy of the flow,
as

Eu =
1

2d

∫ d

0
〈u〉2 dy=

1
2

U∗2, (3.6)

with U∗ a characteristic streamwise mean velocity. This U∗ is a response of the
system. The dependence of Eu on RΩ is shown in figure 6(b). As anticyclonic
rotation is introduced, a prominent decrease of Eu is seen, with a flat plateau
around RΩ = 0.4–1.5, after which Eu increases again. This means that the same
amount of momentum Tuv (response) is transferred with a smaller velocity (input).
We can use this to define the optimum shear transport as the value of RΩ for
which Eu is minimum. With this interpretation, we can say that, for our simulations
of rotating Waleffe flow, optimal transport appears as a broad ‘peak’ (which is
actually a minimum) in a large range of RΩ , similar to what was observed in
low-Reynolds-number plane Couette flow by Brauckmann et al. (2016). The minimum
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FIGURE 7. Root-mean-square velocity fluctuations at RΩ =−0.16 (a),
RΩ = 0 (b), RΩ = 0.63 (c) and RΩ = 2.21 (d).

Eu is located at approximately RΩ ≈0.63, but that minimum lies on a relatively smooth
valley in the range RΩ ∈ (0.4, 1.0).

To understand the mechanisms behind the optimal transport, we turn to the velocity
root-mean-square velocity fluctuation profiles, shown in figure 7 for some selected
values of RΩ . The first thing we notice is the absence of a near-wall peak in the
streamwise velocity fluctuation profiles. Instead, a local minimum is seen in some,
but not all, cases. This suggests the absence of ordinary boundary layers due to the
stress-free boundary condition. We expect that the high-Reynolds-number boundary
layer instability behind the narrow peak optimum transport in plane Couette flow
(Brauckmann & Eckhardt 2017) will be absent.

The second thing we notice is that, for cyclonic and no rotation, the streamwise
velocity fluctuations 〈u′〉 are largest of the three components at the mid-gap, but, as RΩ
increases, the largest fluctuations become the ones in the wall-normal direction (〈v′〉).
The largest streamwise velocity fluctuations 〈u′〉 appear when RΩ =−0.16, i.e. RΩ is
minimum. As RΩ is increased, the values of 〈u′〉 monotonically decrease. The smallest
value of fluctuations corresponds to the largest value of RΩ = 2.21. However, for the
wall-normal velocity fluctuations, the opposite pattern is seen, and the values of 〈v′〉
increase with increasing RΩ up to RΩ = 2.21. The spanwise fluctuations show no
discernible pattern in their variation with RΩ . This gives a hint to the mechanism
behind optimum transport: the Coriolis forces due to spanwise rotation appear with
different signs in the streamwise (x) and wall-normal (y) components of the Navier–
Stokes equations, in one case increasing the fluctuations, in the other decreasing them.

3.3. The effect of rotation on large-scale structures
We now turn to the effect of rotation on large-scale structures. A visualization
of the instantaneous streamwise velocity is shown in figure 8, with instantaneous

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

84
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.840


884 A26-12 S. Farooq, M. Huarte-Espinosa and R. Ostilla-Mónico

(a) (b)

FIGURE 8. Contour of instantaneous streamwise velocity u at RΩ = 0.0 (a), contour at u=
0.15, and RΩ =0.63 (b), contour at u=−0.1. The view is projected onto a x–z plane, with
the y coordinate represented through colour. Flow is from left to right. The instantaneous
streamlines are added, and coloured according to y coordinate.

streamlines superimposed. We first observe the presence of large-scale structures in
the flow for both the rotating and non-rotating cases. This could be expected from
the autocorrelations in figure 3.

Large-scale flows can be considered secondary flows if their velocity components
are perpendicular to the main flow direction. This is not always the case. In the
absence of rotation, the streamwise velocity contour in figure 8 is largely invariant in
the streamwise direction. The secondary flow, i.e. the cross-flow in the wall-normal
and spanwise directions, is very weak. This can be deduced from the relatively
straight path of the streamlines. From this, we do not expect it to play a role in
transporting shear.

As anticyclonic rotation is introduced, the flow is heavily modified. The streamwise
velocity contour now has a completely different shape. More importantly, the
secondary flow is strengthened, as can be seen from the visualized streamlines,
which move more in the wall-normal and spanwise direction. This secondary flow is
of crucial importance, as it helps with the transport of shear.

To analyse these structures more quantitatively, we proceed in an analogous manner
to Sacco et al. (2019). Secondary flows are captured through the streamwise vorticity,
as they are perpendicular to the main flow direction. By looking at the streamwise
and temporal average of this quantity (Ωx), we capture only the spanwise-pinned
streamwise-invariant structures, which are known to be the most relevant for shear
transport. If large-scale structures are moving around the computational domain, they
would not be captured by Ωx, as the averages would vanish.

Figure 9 shows Ωx for different values of RΩ . As hinted at by figure 8,
spanwise-pinned and streamwise-invariant secondary flows, with a vorticity core,
appear as anticyclonic rotation is introduced. The strength of the roll-like structures
appears to increase with increasing anticyclonic rotation. At approximately RΩ ≈ 1.5,
the trend changes, and further increasing the rotation makes the structures unorganized,
as shown in figure 9(d) at RΩ = 2.21.

To quantify the strength of the rolls, we define the mean-squared circulation of the
rolls as the volume integral

Γ2 =
1

dLz

∫ d

0

∫ Lz

0
Ω2

x dy dz, (3.7)

and show this as a function of RΩ in figure 9(e). We can see how the strength of the
pinned rolls increases with increasing RΩ until the maximum is reached. However,
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FIGURE 9. Panels (a–d) represent the streamwise and temporally averaged streamwise
vorticity Ωx for RΩ =−0.16, 0.0, 0.63 and 2.21 (left to right). A black contour at zero
has been added to delineate negative vorticity from positive vorticity regions. Panel (e)
shows the averaged circulation energy Γ2 for the large-scale structures in the range of
RΩ ∈ [−0.16, 2.21], and panel ( f ) depicts the effective averaged circulation energy Γ ∗2 in
the same RΩ range.

using RΩ to compare roll strength is not totally fair. As shown in § 3.2, the underlying
magnitudes of velocity change. Therefore, we define Γ ∗2 = Γ2Ũ2/U∗2, where U∗, a
characteristic streamwise velocity, was defined in (3.6). We show Γ ∗2 as a function
of RΩ in figure 9( f ), and observe that the strongest and most ordered structures
correspond to the range RΩ = 0.47–1. This coincides with the range of RΩ for which
optimal shear transport takes place, and highlights the link between optimal transport
and strongest large-scale structures as was seen in plane Couette flow by Brauckmann
& Eckhardt (2013, 2017).

3.4. Large-scale structures and the self-sustained process
First, we visually compare the rolls in rotating Waleffe flow to those in rotating
plane Couette flow in figure 10 using Ωx. One thing we notice is that these structures
are more clearly defined in plane Couette flow than in Waleffe flow. Furthermore,
the streamwise vorticity of the rolls is localized in the core of the structures in
Waleffe flow. The streamwise vorticity in plane Couette flow is localized mainly
in the boundaries of the structure, with additional vorticity being generated by the
boundary layers. Nevertheless, these results show that pinned large-scale structures
arise only with a generic shear and anticyclonic rotation.

We can probe the temporal behaviour of the large-scale structure. In Sacco et al.
(2019), a link between the large-scale fixed structures in Taylor–Couette flow, i.e. the
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FIGURE 10. Pseudo-colour plot of temporally averaged streamwise vorticity Ωx for plane
Couette flow at RΩ = 0.1 (a) and rotating Waleffe flow at RΩ = 0.63 (b). Contour levels
for vorticity are shown at zero to highlight the large-scale structures.

turbulent Taylor rolls, and the SSP was found by analysing the rolls in Fourier space
following Hamilton et al. (1995). While the analogy was far from perfect, the mean
flow energy was found to oscillate in antiphase with the spanwise fundamental mode,
which represented the large-scale structure through its rolls and streaks.

We proceed in the same manner, and we begin by defining the modal root-mean-
square velocity as

M(kx = αm, kz = βn)=
[∫ d

0
(û2(mα, y, nβ)+ v̂2(mα, y, nβ)+ ŵ2(mα, y, nβ)) dy

]1/2

,

(3.8)
where α = 2π/Lx and β = 2π/Lz are the fundamental streamwise and spanwise
wavenumbers, and φ̂ represents the Fourier transform of φ in the spanwise and
streamwise directions. We focus on two modes: M(0, 0), the spanwise- and
streamwise-invariant mode, which represents the mean flow; and M(0, β), the
streamwise-independent fundamental in z, corresponding to the large-scale structure.

In figure 11 we see that the energies of these two modes oscillate on time scales
of O(50d/Ũ), and the period of the two quantities is almost anticorrelated, consistent
with the breakdown–regeneration structure of shear flows described in Hamilton et al.
(1995), and the behaviour of the turbulent Taylor rolls in Sacco et al. (2019). Energy
is constantly being redistributed from the mean flow into the streaks and rolls of
the large-scale structure. Remarkably, there are some ‘dead’ times (tŨ/d = 200–300)
where the cycle is temporarily broken and there is no significant exchange of energy.

We can probe the origin of the structures following the procedure set out in
Pirozzoli et al. (2018). Secondary flows are perpendicular to the main flow, and
as such will have vorticity mainly in the main flow direction, i.e. the streamwise
direction. Starting off with a Reynolds-averaged (in the streamwise and time
coordinates) equation for Ωx (Einstein & Li 1958), we have

v
∂Ωx

∂y
+w

∂Ωx

∂z
=

(
∂2

∂y2
−
∂2

∂z2

)
(−〈v′w′〉)+

∂2

∂y∂z
(v′2 −w′2)+ ν

(
∂2Ωx

∂z2
+
∂2Ωx

∂z2

)
,

(3.9)
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FIGURE 11. Temporal evolution of the normalized modal root-mean-square velocity in the
Fourier space associated with the M(0, β) mode (orange) and the M(0, 0) mode (blue) for
RΩ = 0.63.

where φ denotes a temporal and streamwise average, φ′ are fluctuations around that
mean and ωx is simply Ωx. The various terms in this equation are associated with
the effect of mean cross-stream convection (left-hand side), secondary turbulent shear
stress (first term on right-hand side), normal stress anisotropy (second term) and
viscous diffusion (third term). If the convective terms vanish, the convective transport
of average streamwise vorticity is zero. If this holds, it should be possible to write
a streamfunction for the cross-flow secondary motions which has a strict functional
relationship to the vorticity (Pirozzoli et al. 2018).

The streamfunction is evaluated by solving

∇
2ψ =−Ωx, (3.10)

with a constant Dirichlet boundary conditions at the walls, because the stress-free
walls behave like a streamline. We take this free constant to be zero.

In figure 12(a,b), we superimpose contours of constant ψ onto a pseudo-colour
plot of Ωx. No clear relationship can be seen for RΩ = 0, but the circular contours
of ψ at RΩ = 0.63 overlap onto the large-scale structures of Ωx, making evident
the relationship between ψ and Ωx. The functional relationship between ψ and Ωx
is shown more prominently in figure 12(d), where a scatterplot of ψ and Ωx for
0.1 < y/d < 0.9 is shown. A quasi-linear relationship between them can be seen in
the regions far away from the wall.

This can be understood following Pirozzoli et al. (2018), who decomposed Ωx as
eigenfunctions of the Laplace operator:

(∇2
+ k2)ψ = 0. (3.11)

The admissible values of k give us the different eigenfunctions of the Laplacian.
A linear regression, fitted to data at y/d ∈ [0.1, 0.9], shows the best-fitting line
coefficient (k2) at 6.96× 10−2, giving the value of Ωx = k2ψ . This indicates that the
fixed secondary motions in Waleffe flow correspond very well to a single eigenmode
of the Laplacian operator. Overall, these results differ little from those obtained in
plane Couette flow, showing that the behaviour of the large scales is barely affected
by the no-slip condition.
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FIGURE 12. (a,c) Pseudo-colour plot showing Ωx at RΩ = 0 (a,b) and RΩ = 0.63 (c,d)
with contours of constant ψ superimposed. The contours on the plot in (a) are spaced
0.012 units of ψ , while on the plot in (b) they are spaced 0.04 units of ψ , with dashed
contours indicating negative values of ψ . (b,d) Scatterplots of ψ against Ωx corresponding
to the plots on the left. The best linear fit is plotted in red.

4. Summary and conclusions

We performed DNS of rotating Waleffe flow at a fixed Re = 3.61 × 103. Once
adequate resolution was determined, a study of the effect of domain size was
performed. The decorrelation lengths in the spanwise and streamwise directions were
shown to have a strong dependence on the domain size. They further revealed that
rotation does not substantially affect the velocity autocorrelations in the streamwise
direction, but that it has a strong effect on the spanwise direction, as it modifies the
large-scale structures.

Anticyclonic spanwise rotation modifies the shear transport, and an ‘optimal’ shear
transport appears at approximately RΩ ≈ 0.63, inasmuch as the mean streamwise
energy is reduced to a minimum for a fixed shear transport. This is because the
transported shear has to equal the underlying forcing. Anticyclonic rotation also
modifies the underlying velocity fluctuation profiles, heavily decreasing streamwise
fluctuations and enhancing wall-normal fluctuations.

Owing to the absence of boundary layers, we linked optimal transport in rotating
Waleffe flow to the broad peak of optimal shear transport in plane Couette flow found
by Brauckmann et al. (2016). In a similar manner as discussed in Brauckmann &
Eckhardt (2013) and Brauckmann et al. (2016), this ‘peak’ is linked to the appearance
and strengthening of pinned large-scale structures. Once the energy was corrected to
account for the varying strength of the mean flow, these structures were found to be
strongest at approximately the same values of RΩ ∈ (0.4, 1), which corresponds to the
value of RΩ that achieves optimal transport. The structures were found to periodically
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take energy from the mean flow to energize, and were also linked to eigenvalues of
a streamfunction for secondary flows, following Pirozzoli et al. (2018).

With these simulations we have shown that the appearance of streamwise-invariant,
spanwise-pinned structures that increase transport are a generic characteristic of
anticyclonic shear flows, appearing in both rotating Waleffe and rotating plane
Couette flows. We note that these structures appear to be invariant in a direction
normal to rotation, unlike those which could be expected from the Taylor–Proudman
problem. An avenue for further research, aside from increasing the Reynolds number,
is probing homogeneous shear turbulence to search for these structures. This system
removes the last confinement on the structures, the no-penetration top and bottom
walls.
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