
TLP 3 (6): 625–669, November 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S1471068402001588 Printed in the United Kingdom

625

Introducing dynamic behavior in amalgamated
knowledge bases

ELISA BERTINO, PAOLO PERLASCA

Dipartimento di Scienze dell’Informazione, University of Milano, Via Comelico 39/41, 20135 Milano, Italy

(e-mail: {bertino,perlasca}@dsi.unimi.it)

BARBARA CATANIA

Dipartimento di Informatica e Scienze dell’Informazione, University of Genova, Via Dodecaneso 35,

16146 Genova, Italy

(e-mail: catania@disi.unige.it)

Abstract

The problem of integrating knowledge from multiple and heterogeneous sources is a fun-

damental issue in current information systems. To cope with this problem, the concept of

mediator has been introduced as a software component providing intermediate services, linking

data resources and application programs, and making transparent the heterogeneity of the

underlying systems. In designing a mediator architecture, we believe that an important aspect

is the definition of a formal framework by which one is able to model integration according

to a declarative style. To this purpose, the use of a logical approach seems very promising.

Another important aspect is the ability to model both static integration aspects, concerning

query execution, and dynamic ones, concerning data updates and their propagation among

the various data sources. Unfortunately, as far as we know, no formal proposals for logically

modeling mediator architectures both from a static and dynamic point of view have already

been developed. In this paper, we extend the framework for amalgamated knowledge bases,

presented in Subrahmanian (1994), to deal with dynamic aspects. The language we propose is

based on the Active U-Datalog language (Bertino et al., 1998), and extends it with annotated

logic and amalgamation concepts from Kifer and Subrahmanian (1992) and Subrahmanian

(1987). We model the sources of information and the mediator (also called supervisor) as

Active U-Datalog deductive databases, thus modeling queries, transactions, and active rules,

interpreted according to the PARK semantics (Gottlob et al., 1996). By using active rules, the

system can efficiently perform update propagation among different databases. The result is

a logical environment, integrating active and deductive rules, to perform queries and update

propagation in an heterogeneous mediated framework.

KEYWORDS: deductive databases, heterogeneous databases, active rules, updates

1 Introduction

The problem of integrating knowledge from multiple and heterogeneous sources is

a crucial issue in current information system technology. Very often the knowledge

required to perform a certain task is factored in several heterogeneous systems and

specific tools are needed in order to acquire, store, manage, query and update data

and knowledge in an integrated way.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

626 E. Bertino et al.

The development of an integrated information system entails addressing different

problems, ranging from the differences in hardware/software platforms, to heterogen-

eity in the database management systems (DBMS), to semantic data heterogeneity,

to operational issues such as update propagation and consistency maintenance for

related information. Solutions to these problems are provided by efforts in different

areas (Bukhres and Elmagarmid, 1996; Schek et al., 1993; Elmagarmid, 1993; Ceri

and Widom, 1993; Do and Drew, 1995; Gupta et al., 1993; Chawathe et al., 1996;

Subrahmanian, 1994).

To cope with the management of heterogeneous systems, the concept of mediator

has been introduced (Wiederhold, 1992). A mediator can be defined as a software

system component providing intermediate services, linking data resources and

application programs. In the context of heterogeneous knowledge bases, mediators

provide users with an integrated view of multiple sources, making transparent the

underlying data heterogeneity. The central problem in mediation is the identification

of relevant resources for the client model and the retrieval of relevant data at the

time of a client inquiry. This goal is achieved by three main functions: selection of

data, translation of the user query into queries suitable for the underlying sources,

merging of the resulting data by removing redundancy and inconsistency. Through

this entire process, the user should not be aware of the underlying heterogeneity.

In designing a mediator architecture, we believe that an important aspect is the

definition of a formal framework by which it is possible to model integration among

heterogeneous systems according to a declarative style. Such a framework may

be quite useful in understanding how and when information has to be integrated

together. In general, this is a very difficult task, especially when the number of

involved systems is large. This consideration calls for a declarative approach allowing

one to fully model all aspects of integration and to provide the basis by which

properties of heterogeneous information systems can be proved. To this purpose, the

use of a logical approach seems very promising.

Among the logical approaches that have been proposed (Bowen and Kowalski,

1982; Fagin et al., 1983; Fagin et al., 1986; Grant et al., 1991; Subrahmanian,

1989; Subrahmanian, 1994; Whang et al., 1991; Zicari et al., 1991), the amalgamated

knowledge base framework proposed by Subrahmanian (1994) is one of the few

proposals providing a formal logical foundation to cooperative knowledge bases. It

also represents the formal basis of the HERMES system (Subrahmanian et al., 1996).

In this framework, generalized annotated logic (Kifer and Subrahmanian, 1992;

Subrahmanian, 1987) is used to model data sources and the notion of supervisor

is introduced as a mediator, amalgamating the knowledge coming from the local

databases. The use of annotated logic provides the right formalism for modeling

knowledge at different degrees of inconsistencies and uncertainties, typical of an

heterogeneous environment. A model theoretic and a fixpoint semantics for the

proposed framework have also been proposed, thus leading to the definition of a

fully declarative approach for modeling amalgamated knowledge bases.

Even if the amalgamated knowledge based framework is quite appealing, it lacks

the modeling of dynamic aspects. In particular, both the local databases and the

supervisor have no dynamic behavior. This is a strong limitation since it means

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 627

that the system is not able to react to events. Indeed, we believe that, in order to

provide most of the functionalities required to support heterogeneous knowledge

bases, mediators should implement two different types of integration:

• Static integration. With static integration we mean the ability to model

heterogeneous sources of data, intended as different databases storing (possibly

related) data and intensional knowledge on data, and the ability to integrate

several data management systems to collectively provide information to answer

user queries.

• Dynamic integration. With dynamic integration we mean the ability to update

data and to propagate updates among the various data sources.

Here, the main issue concerns how knowledge can be modified in an integrated

way, introducing new information inside the local databases through the use

of the mediator, and, at the same time, how consistency of the knowledge

bases can be guaranteed. These aspects can be supported through the use of

active rules.

In this paper we extend the amalgamated knowledge base framework presented

in Subrahmanian (1994) to deal with logical languages modeling updates and

active rules. The language we propose is based on the Active U-Datalog language

(Bertino et al., 1998) and extends it with annotated logic and amalgamation

concepts taken from Kifer and Subrahmanian (1992) and Subrahmanian (1987).

The result is a logical framework modeling both static and dynamic aspects in

integrating knowledge from multiple heterogeneous sources. Dynamic integration is

then provided through updates and active rules, both at the local and global level.

The Active U-Datalog language is a language for integrating active rules, deductive

rules and updates in a uniform logical context; it is based on Update Datalog (U-

Datalog for short) (Bertino et al., 1997) and extends it with support for active rules, in

the style of the PARK semantics (Gottlob et al., 1996). In Active U-Datalog, update

atoms appear in rule bodies; the execution of a goal (also called a transaction)

is based on a deferred semantics, by which several updates are generated from

predicate evaluation, but not immediately executed; rather, they are collected and

are executed only at the end of the query-answering process. In Active U-Datalog,

updates are expressed by using constraints. For example, +p(a) states that in the

new state p(a) must be true whereas −p(a) states that in the new state p(a) must be

false. Each atomic solution generates a set of updates.

Active rules allow several dynamic aspects to be represented, such as transaction

execution, reactive behavior and, more specifically, update propagation, in a uniform

logical framework. The semantics proposed for active rules is based on the PARK

semantics (Gottlob et al., 1996). The PARK semantics has been designed with the

intent of overcoming the limitations of previously defined semantics for active rules.

In particular, given a set of ECA (Event-Condition-Action) rules, that is rules of the

form “ON event IF condition THEN action”, the PARK semantics satisfies several

properties. First of all, it is non-ambiguous, that is, it always guarantees execution

confluence. Moreover, it is flexible with respect to conflict resolution.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

628 E. Bertino et al.

A conflict is a situation where two or more active rules can be fired and one of

these rules requires the insertion of an atom a in the database, whereas at least one of

the others requires the deletion of a from the database. A conflict resolution policy

is a method to determine which actions should be executed in presence of a conflict

and which others should be suppressed. Under the PARK semantics, the conflict

resolution policy can be chosen according to specific application requirements. For

example, the policy can specify that insertions must always prevail upon deletions.

A fixpoint semantics is used to determine the result of the application of a set of

active rules. The proposed semantics guarantees the termination of the evaluation

process. The use of the PARK semantics allows the system to handle updates

generated by deductive rules and updates generated by active rules in a uniform

way. It is important to note that, in the context of the paper, the term consistency

refers to a situation in which conflicts are avoided and it is therefore different

from the general concept of consistency used in the context of integrity constraint

checking.

The logical framework we introduce in this paper relies on the Active U-Datalog

logical language to model both the local knowledge bases and the mediator. More

precisely, we introduce the concept of Amalgamated Active-U-Datalog knowledge base

as a knowledge base supporting the following features:

1. Multiple sources of data (local databases). We model each deductive database as

an Active U-Datalog database, extended with annotated logic concepts. Thus,

each local database consists of an extensional database (i.e. a set of facts), an

intensional database represented by a set of deductive Active U-Datalog rules,

and a set of active Active U-Datalog rules. Atoms in deductive and active rules

are annotated with values taken from a given complete lattice of truth values.

The use of Active U-Datalog provides the ability to model, not only queries,

but also updates inside each database. Moreover, active rules allow the local

databases to react to external events (in our context, represented by updates).

The resulting language can be thought as an interface language by which

local source knowledge is represented, for example through a wrapper-based

approach, before integration.

2. Integration of local databases. Local databases can be integrated through

a supervisor. As defined in Subrahmanian (1994), a supervisor specifies a

set of rules by which the local knowledge can be integrated. The local

databases, the supervisor and a set of axioms required to gather information

from different databases form the amalgam. Differently from what has been

presented in Subrahmanian (1994), in our framework the supervisor, which

is an Amalgamated Active U-Datalog program, can execute updates against

local databases and support active rules. Such rules can propagate updates

depending on the whole status of the integrated system.

For both aspects, a fixpoint semantics is proposed, integrating those presented in

Subrahmanian (1994) and Bertiono et al. (1998).

We recall that other approaches have been proposed for update propagation in

the context of heterogeneous databases (Ceri and Widom, 1993; Do and Drew,

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 629

1995; Gupta et al., 1993). However, most of the proposed approaches suggest how

to use active rules to perform specific tasks, such as schema integration and integrity

constraint checking. On the contrary, in the proposed framework, active rules are

introduced at a general level. Moreover, the use of the PARK semantics provides a

clear integration of active and deductive rules and makes the approach much more

flexible with respect to the problem of conflict resolution. Indeed, differently from

other proposals, where conflicts are solved by assigning priority to rules (Hanson,

1996; Stonebraker et al., 1990; Widom and Finkelstein, 1990), the PARK semantics

allows the application programmer to choose the best conflict resolution policy to

apply in a particular case. In solving a conflict, information about the structure and

the current state of the system can be considered. This is particularly important in an

integration framework, where update propagation often depends upon information

distributed among various databases.

The paper is organized as follows. In section 1.1 we compare our approach with

several existing approaches for mediating heterogeneous sources. The syntax of

the proposed framework is presented in section 2. In sections 3, 4 and 5 we then

introduce the semantics of Amalgamated Active U-Datalog, together with several

examples of its application. Finally, section 6 presents some conclusions and outlines

future work.

1.1 Related work

When dealing with the integration of heterogeneous information sources, two

important issues concern semantic interoperability, intended as the capability of

representing local data, defined according to a local data model, in terms of a

common data model, and of providing an integrated view of local schemas, and data

modification capabilities, intended as the ability to update data and to propagate

updates among the various data sources.

In the literature, several approaches for mediating heterogeneous sources have

been proposed (Arens et al., 1996a; Arens et al., 1993; Arens et al., 1996b; Garcia-

Molina et al., 1997; Beeri et al., 1997; Levy et al., 1996; Subrahmanian et al., 1996;

Eiter et al., 1999) but most of them only deal with the semantic interoperability

problem and do not address data modification capabilities. Among those approaches,

we recall the SIMS approach (Arens et al., 1996a, 1993, 1996b), which is based on the

creation of a global domain model used to represent the various local information

sources. Queries are expressed in such global domain model and, in order to process

them, an optimized query plan is built by rewriting global domain queries in terms

of local sources queries, performing a semantic query optimization. The TSIMMIS

approach (Garcia-Molina et al., 1997) addresses the heterogeneous source integration

problem by considering a mediator network composed of mediators and wrappers.

In this network, each mediator is able to use local information sources through

wrappers and/or through other mediators. Wrappers are responsible for converting

global queries into local source queries. The Information Manifold system (Levy et al.,

1996) has been developed with the aim of retrieving heterogeneous information over

the Web. It provides a uniform access to information sources by using a declarative

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

630 E. Bertino et al.

description of both the content and the query capabilities of such sources. The

descriptions of information sources are stored in the so-called ‘capability records’,

that are used to build efficient local query plans. The meaning of capability records

is similar to that of ‘yellow page servers’ proposed in the context of the HERMES

system (Subrahmanian et al., 1996). The aim of such a system is that of providing an

environment for defining mediators. It is based on the Hybrid Knowledge Base theory

(Lu et al., 1996) for integrating information belonging to different data sources. It

provides a general declarative language and a specific set of tools whose purpose

is to make easier the steps involved in the creation of mediators. Global queries

submitted to one of such mediators may also trigger actions based on the analysis

of the answer produced by such queries.

Related to the general problem of rewriting queries, there is the problem of

rewriting queries using views, that is particularly relevant in data mining and data

warehouse contexts. Such problem can be stated as follows: given a query and a set

of views, find a new query, equivalent to the given one, that uses only the given set

of views. In Beeri et al. (1997), this problem has been solved by modeling rewritings

in description logics (Borgida, 1995), showing that, under particular conditions, the

considered problem is decidable in polynomial time.

Unlike the above approaches, with the exception of the HERMES one, our

approach focuses on dynamic aspects. We assume that local data sources are

expressed as Active U-Datalog databases. Thus, Active U-Datalog can be seen

as the interface language between local sources and the mediator. Local Active

U-Datalog databases are then integrated by a special mediator, called supervisor,

able to retrieve and manage local information. The main feature of our system is

that both local databases and supervisor are characterized by an active behavior

intended as the ability of automatically reacting to external events (in our context,

represented by updates) arising in the system.

Among the above approaches, only HERMES supports dynamic aspects. How-

ever, in our approach, actions can be triggered both at the local and at the global

levels, respectively by local databases and the supervisor. By contrast, in HERMES

actions can only be activated at global level and no support for local activation is

provided.

Finally, some relationships exist also between our work and agent technology. An

agent can be defined as ‘a self-contained program capable of controlling its own

decision-making and acting, based on its perception of its environment, in pursuit of

one or more objectives’ (Jennings and Woldridge, 1996). An agent should be charac-

terized by several properties such as, for example, the ability to interact with other

agents and to react to changes of its state or arising in the overall environment. The

model we have developed partly satisfies the above properties and has therefore some

similarities with agent technology. In our model, each local database is characterized

by a state and by a set of deductive and active rules. As such, our local databases

are self-contained and able to modify their own state. Moreover, communication

among local databases is indirectly supported via the supervisor since it has a global

visibility of the whole system and can use this knowledge to answer queries and to

perform modifications involving the whole system. However, differently from agent

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 631

systems, the proposed framework has been cast in a specific environment, with the

aim of providing a formal approach for analyzing heterogeneous environments, both

from a static and dynamic point of view. This is different from agent technology,

since in that case methods are provided to deal with arbitrary agents, used to

perform specific tasks in arbitrary environments.

2 Amalgamated Active U-Datalog: the syntax

To support a logical framework modeling cooperation and integration of knowledge

from different and heterogeneous databases, Subrahmanian proposed a framework,

based on annotated logic, for amalgamating the knowledge contained in several

heterogeneous local databases (Subrahmanian, 1994). Each local database is a Gen-

eralized Annotated Program (GAP) (Kifer and Subrahmanian, 1992; Subrahmanian,

1987), that is, a logic program whose semantics is interpreted over a complete lattice1

of truth values. Some examples of lattices are (Subrahmanian, 1994):

• the lattice TWO, containing the classical truth value true and false, with false

lower than true;

• the lattice FOUR; in such lattice, � represents the truth value inconsistent,

⊥ represents the truth value unknown, and t and f represent the usual values

true and false, respectively; by denoting with < the ordering existing between

lattice values, the following relationships hold: ⊥ < true, ⊥ < false, false <

�, true < �;

• the lattice R[0, 1], set of real numbers between 0 and 1;

• the lattice TIME1, representing the power-set of non-negative integers, ordered

under ⊆;

• the lattice TIME2, representing the set of all closed intervals of non-negative

real numbers, ordered under ⊆.

As we have already remarked, the proposed framework does not model dynamic

aspects, such as updates and active rules. In order to overcome this limitation, in

the following, we extend the amalgamation theory to cope with updates and active

rules. To do that, we apply amalgamation theory to local sources represented as

Active U-Datalog databases (Bertino et al., 1998). Since Active U-Datalog programs

support update representation and execution, the amalgamation of Active U-Datalog

programs allows us to combine not only the static knowledge of each single database

but also the dynamic one, represented by updates. The resulting language is called

Amalgamated Active U-Datalog.

In the following, we first describe how lattice values can be inserted inside Active

U-Datalog programs, modeling local databases. The resulting language is called

Annotated Active U-Datalog. Then, we show how the static and dynamic information

contained in the local databases can be amalgamated, resulting in the Amalgamated

1 A lattice is a partially ordered set where all finite subsets have a least upper bound and a greatest lower
bound. In a complete lattice, the least upper bound and a greatest lower bound also exist for infinite
subsets. Every finite lattice is complete.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

632 E. Bertino et al.

Active U-Datalog framework. In defining such new framework, we consider as source

for the truth values a complete lattice T.

2.1 Annotated Active U-Datalog

An Annotated Active U-Datalog program is a logical program modeling both

deductive rules and active rules. Both deductive and active rules are defined by

using deductive and update atoms. Such atoms can be annotated with the truth

values chosen from a given complete lattice T.

To introduce the Annotated Active U-Datalog language, we first define the concept

of annotation, then we introduce the concept of annotated atom, and finally we

describe the rules that can be represented in Annotated Active U-Datalog.

2.1.1 Annotations

Given a complete lattice T, annotations are constructed upon a specific language,

called T-language. Based on this language, an annotation can be either a syntactic

representation of the lattice elements or it is obtained by applying a computable

function to such elements. The representation domain of theT language is therefore

the structure corresponding to the T lattice.

Definition 1 (T-language)

Let T be a complete lattice of truth values. The T-language (C,F,V), used to

represent annotations over T, is composed of:

• a set C of constant symbols;

• an union F of sets Fi of total continuous2 functions (
⋃
i�1Fi), each of type

(T)i →T, called annotation functions over lattice T, such that:

— each f ∈ Fi is computable;

— each set Fi contains an i-ary function �i3 that, given µ1, . . . , µi as input,

returns the least upper bound (lub) of {µ1, . . . , µi}.

Moreover, we assume that the T-language contains an infinite set V of variable

symbols.

We now introduce the concept of annotation.

Definition 2 (Annotation)

Let T be a complete lattice of truth values. Let T = (C,F,V) be a T-language.

An annotation ψ over T is a term constructed over T (T-term). A T-term t can be

either:

• a simple annotation term, if t ∈ C or t ∈ V;

• a complex annotation term, if t = f(µ1 . . . , µi), where f ∈ Fi and µ1 . . . , µi are

annotation terms.

2 Hence monotonic.
3 For simplicity, when there is not ambiguity, we use � instead of �i.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 633

In the following, when no otherwise specified, we consider as T-language the

language in which the constants coincide with the elements of T.

Example 1

Let T be the lattice R[0, 1], T = (C,F,V) a T-language such that:

• C is a syntactic representation of the considered real numbers;

• F ≡ F2 is composed of a binary function f : (T)2 → T returning the

minimum value between its arguments and a binary function �2 : (T)2 →T
returning the least upper bound between its arguments;

• V ≡ {X1, . . . , Xn, . . .}.

Then, 0.75 and X1 are simple annotation terms whereas f(0.25, 0.75) and

�2(0.5, 0.75) are complex annotation terms. ♦

2.1.2 Atoms

The following definition introduces the language over which atoms are constructed.

Definition 3 (Base language)

Let T = (C,F,V) be a T-language. Let Σ = {Σc,Σa} be a many sorted signature,

such that Σc is a set of constant value symbols, and Σa is F∪C. Sets Σc and Σa are

disjoint. Let Π be a set of predicate symbols, partitioned into extensional predicate

symbols Πe, intensional predicate symbols Πi, and update predicate symbols Πu. We

assume that Πu = {+p,−p | p ∈ Πe}. Let V be a family of sets of variable symbols

for each sort V = {Vc, Va}, Va = V. (Π,Σ, V) is called base language. We denote

with Term t the set Σt ∪ Vt, with t ∈ {c, a}.4

The base language can be used to construct atoms as follows.

Definition 4 (Atoms, annotated atoms)

Let T = (C,F,V) be a T-language and (Π,Σ, V) a base language. We denote

with (Π,Σ, V)-atom an atom whose predicate belongs to Π and whose terms are in

Σc ∪ Vc. More precisely:

• (Πi,Σ, V)-atoms are called intensional deductive atoms.

• (Πe,Σ, V)-atoms are called extensional deductive atoms.

• (Πu,Σ, V)-atoms are called update atoms. Insertions are denoted by update

atoms prefixed by +, whereas deletions are prefixed by −.

• Atoms of the form A : ψ, where A is an (intensional, extensional, update)

atom and ψ is an annotation over T , are called annotated atoms. A : ψ is

c-annotated if ψ ∈ C, v-annotated if ψ ∈ V, t-annotated if ψ is a complex

annotation term. The meaning assigned to an annotated update atom αiAi : µi
is that of inserting/deleting the annotated atom Ai : µi.

An annotated literal is an annotated intensional or extensional atom or its negation.

An atom (literal) is ground if it does not contain variables.

4 In the following we assume that a substitution is a pair of functions θ = {θc, θa}, dealing respectively
with variables in Vc and Va.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

634 E. Bertino et al.

Example 2

Let T = (C,F,V) be theT-language of Example 1 and (Π,Σ, V) the base language

defined as follows:

• Π = {Πe,Πi,Πu} ≡ {p1, . . . , pn} ∪ {q1, . . . , qm} ∪ {+p1,−p1, . . . ,+pn,−pn} where

the arity of pi, 1 � i � n, and qj , 1 � j � m, is 2;

• Σ = {Σc,Σa} = {{a, b, c},C ∪F};
• V = {Vc, Va} ≡ {Y1, . . . , Yq, . . .} ∪ {X1, . . . , Xs, . . .}.

Then, p1(a, b) : 0.5 is an extensional c-annotated atom, +p1(a, b) :X1 is an up-

date v-annotated atom, whereas q1(b, c) : f(0.25, 0.75) and q2(Y1, Y2) : f(X1, X2) are

intensional t-annotated atoms, the first is ground, the second is not. ♦

In the following, when we do not specify otherwise, we use the term ‘annotated

atom’ to refer either a c-annotated, a v-annotated, or a t-annotated atom.

2.1.3 Rules

Deductive and active rules are defined as follows.

Definition 5 (AAU-Datalog Deductive Rule)

An AAU-Datalog Deductive Rule is a rule of the form

A0 : µ0 ← A1 : µ1, . . . , Ak : µk| αk+1Ak+1 : µk+1, . . . , αnAn : µn

with αj ∈ {+,−}, j = k + 1, . . . , n, and Ai : µi, i = 0, . . . , n, annotated atoms such

that:

• A0 : µ0 is an annotated (Πi,Σ, V)-atom;

• Al : µl , l = 1, . . . , k, is a c-annotated or v-annotated (Πi ∪Πe,Σ, V)-atom;

• Aj : µj , j = k + 1, . . . , n, is a c-annotated or v-annotated (Πe,Σ, V)-atom;

• αsAs �= αtAt for k + 1 � s, t � n, s �= t.

A0 : µ0 is the head of the rule, A1 : µ1, . . . , Ak : µk| αk+1Ak+1 : µk+1, . . . , αnAn : µn is

the body, A1 : µ1, . . . , Ak : µk is the query part whereas αk+1Ak+1 : µk+1, . . . , αnAn : µn
is the update part; the update and query part cannot be both empty. We require for

deductive rules the following safety condition: each variable appearing in the head

(or in its annotation) must also appear in a deductive atom in the body of the same

rule (or in the annotation of its body atoms).

The intuitive meaning of a deductive rule

A0 : µ0 ← A1 : µ1, . . . , Ak : µk| αk+1Ak+1 : µk+1, . . . , αnAn : µn

is: “if Ai, i = 1, . . . , k, is true with truth value µi, then A0 is true with truth value µ0

and, as side effect, the updates αk+1Ak+1 : µk+1, . . . , αnAn : µn are requested”.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 635

Definition 6 (AAU-Datalog Active Rule)

An AAU-Datalog Active Rule is a rule of the form:

α1A1 : µ1, . . . , αkAk : µk| Lk+1 : µk+1, . . . , Ln : µn→ αn+1An+1 : µn+1, . . . ,αn+mAn+m : µn+m

with αj ∈ {+,−}, j = 1, . . . , k, n + 1 . . . , n + m, Al : µl , l = 1, . . . , k, n + 1, . . . , n + m,

annotated atoms, and Lh : µh, h = k + 1, . . . , n annotated literals such that

• Ai : µi, i = 1, . . . , k, is a c-annotated or v-annotated (Πe,Σ, V)-atom;

• Ai : µi, i = n+ 1, . . . , n+ m, is an annotated (Πe,Σ, V)-atom;

• Lj : µj , j = k + 1, . . . , n, is a c-annotated or v-annotated (Πi ∪Πe,Σ, V)-literal;

• αpAp �= αqAq for 1 � p, q � k, p �= q, and αsAs �= αtAt for n+ 1 � s, t � n+ m,

s �= t.

α1A1 : µ1, . . . , αkAk : µk is the event part, Lk+1 : µk+1, . . . , Ln : µn is the condition part,

and αn+1An+1 : µn+1, . . . , αn+mAn+m : µn+m is the action part, that cannot be empty. We

require for active rules the following safety conditions: each variable occurring in a

rule head (or in its annotation) should also occur in the body of the same rule (or

in the annotation of some of its atoms); each variable occurring in a negated literal

(or in its annotation) in the rule body must also occur in some positive literal (or in

its annotation) in the rule body.

While intensional rules provide deductive power to our framework, active rules

allow the system to autonomously react to the current (possibly inconsistent) state

and to take appropriate actions to assure desired properties on the final state. The

intuitive meaning of the active rule

α1A1 : µ1, . . . , αkAk : µk| Lk+1 : µk+1, . . . , Ln : µn→ αn+1An+1 : µn+1, . . . ,αn+mAn+m : µn+m

is: “if the events α1A1 : µ1, . . . , αkAk : µk occur and Li, i = k + 1, . . . , n, is true with

truth value µi, then execute actions αn+1An+1 : µn+1, . . . , αn+mAn+m : µn+m”.

It is important to note that the previous definition prevents a rule from containing

the same update atom with two distinct annotations (fourth item of Definitions 5

and 6).

In the following, we call AAU-Datalog rule both a deductive and active AAU-

Datalog rule.

An Annotated Active U-Datalog program (or AAU-Datalog) is finally defined as

follows.

Definition 7 (AAU-Datalog program)

An Annotated Active U-Datalog (or AAU-Datalog) program or database is composed

of:

• a set of c-annotated extensional ground atoms (extensional database EDB);

• a set of AAU-Datalog deductive rules (intensional database EDB);

• a set of AAU-Datalog active rules (AR).

Given an AAU-Datalog program P , we denote with GI(P) all the ground instances

of rules in P , containing only c-annotations.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

636 E. Bertino et al.

IDBDBi: r1: danger lv(X):Y←sensor(X):Y| .
r2: danger lv(X):t←sensor(X):t| +over lv(X):t.
r3: danger lv(X):t←sensor(X):t,over lv(X):t| +critical lv(X):t.
r4: danger lv(X):f←sensor(X):f,over lv(X):t | -over lv(X):t.

ARDBi
: ar1: -over lv(X):t | critical lv(X):t→-critical lv(X):t.

EDBDB1
: sensor(s1):t,sensor(s2):⊥,sensor(s3):t,over lv(s1):t,critical lv(s1):t,

over lv(s3):t,partial block(s3):t.
EDBDB2

sensor(s1):⊥,sensor(s2):t,sensor(s3):t,over lv(s2):t,critical lv(s2):t,

over lv(s3):t,partial block(s3):t.
EDBDB3

sensor(s1):t,sensor(s2):t,sensor(s3):t,over lv(s1):t,over lv(s2):t,

over lv(s3):t,partial block(s3):t.

Fig. 1. The local databases.

Due to the dynamic properties of an AAU-Datalog program, a deductive rule

with no head and with a non-empty query part is called simple transaction. Simple

transactions are usually preceded by ‘?’, as usual in deductive databases. A complex

transaction is a sequence of simple transactions T1; . . . ;Tk , each executed in the state

obtained by the execution of the previous transactions (see Section 5).

Example 3

Suppose that three sensors monitor the air quality in three distinct places of a given

town, by considering the level of a given set of substances. Depending on whether

the level of a given substance has a presence above the danger threshold and on

how may sensors detect this situation, we want to partially or totally block car

circulation. If a sensor detects that the danger threshold for a given substance has

been exceeded twice, a critical situation is detected.

Information concerning the three local sensors can be modeled by three AAU-

Datalog databases. Partial and total block policies will then be managed by a

supervisor (see Example 6). To model local databases, we make the following

assumption: information concerning the level of a given substance is traced by

predicate sensor. In particular, the annotated atom sensor(X) : t means that

the level of substance X has a presence over the danger threshold, sensor(X) : f

means that the level of substance X has a presence under the danger threshold,

sensor(X) :⊥ means that we do not know the level of substance X. We assume

that such predicate is externally updated. We also assume that partial and total

blocks information are represented by the extensional predicates total block and

partial block, whose arguments are the substances causing the block.

Figure 1 illustrates the local databases. Predicate danger lv specifies whether the

danger threshold for a given substance has been exceeded and, at the same time,

it updates the extensional database. In particular, the first time a specific substance

exceeds the danger threshold, an over level warning is generated, by updating the

extensional database. If this happens twice, a critical situation is gained and a critical

level warning is generated, updating again the database. The extensional database is

also modified when the concentration of the considered substance decreases. In this

case, all the warnings are removed. The active rule removes critical warnings when

the over level warning is removed.

The local extensional database of DB1 specifies that substance s1 has exceeded

twice its danger threshold and a substance s3 has exceeded once its danger threshold.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 637

A partial block due to substance s3 has also been detected. No information

concerning substance s2 is known. A similar situation arises in the local database

DB2. On the other hand, in the local database DB3, the level of substances s1, s2,

and s3 has exceeded once the related danger thresholds.

The following are examples of local transactions for DB1:

1. T =? sensor(s1) : t is a simple transaction that checks whether the substance

s1 has a presence over its danger threshold;

2. T =? danger lv(X) : t; ? critical lv(Y) : t is a complex transaction determining

for which substances X the danger threshold has been exceeded and for which

substances Y it has been exceeded twice. ♦

2.2 Amalgamated Active U-Datalog

In order to amalgamate the static and dynamic knowledge deriving from the local

databases, each represented by a AAU-Datalog program, a logical mediator, called

supervisor, is used. In order to deal with the set of local databases, there is the need

of univocally identifying each of them. To this purpose, we assume that:

• each local AAU-Datalog program is univocally identified by exactly one

progressive numerical constant, starting from 1;

• the supervisor is univocally identified by letter ‘s’.

The previous constants are called NAME constants. A NAME-term over a set of

NAME-constants C is either a subset of NAME-constants, or a variable ranging

over NAME-constants (NAME-variable). In the following, in order to simplify

notation, ground NAME-terms containing just one element will be denoted directy

by the element they contain. Thus, the NAME-term {1} will be denoted by 1.

An amalgamated atom (literal) is simply an annotated atom (literal) pointing out

the identifier of the local database it belongs to. In particular, if A : ψ is an annotated

atom (literal) and D is a NAME-term, then A : [D,ψ] is an amalgamated atom

(literal). An Amalgamated Active U-Datalog (or AmAU-Datalog) program is an AAU-

Datalog program in which all the atoms are transformed into amalgamated atoms.

Definition 8 (Amalgamated atom, rule, and program)

Let ψ be an annotation over a T-language, D a NAME-term, and A an atom

(literal). Then, A : [D,ψ] is an amalgamated atom (literal). An Amalgamated Active

U-Datalog rule (program) is an AAU-Datalog rule (program) in which each atom is

replaced by an amalgamated atom. Given an AAU-Datalog atom, rule, or program

K , we denote with AT(K) the corresponding amalgamated atom, rule, or program.

In particular, if the AAU-Datalog program DBi, having i as identifier, contains

atoms like A : [ψ], AT (DBi) contains atoms like A : [i, ψ].

Based on the previous notion, the supervisor database can now be defined as a set of

rules mediating the static and dynamic knowledge deriving from the local databases,

hiding their internal structure. Thus, a supervisor is an amalgamated AAU-Datalog

program, whose deductive rules refer to all the existing local AAU-Datalog local

databases and whose active rules supply a simple and strong mechanism to exhibit a

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

638 E. Bertino et al.

reaction in case of complex events involving several local databases of the amalgam.

This is quite useful in supporting a global reaction in front of a situation that

requires checking conditions concerning more that one local database. Differently

from local databases, the supervisor is not characterized by a proper extensional

database. Thus, no updates can be executed against it.

Definition 9 (Supervisor, strong supervisor)

Let DB1, . . . , DBn be n AAU-Datalog programs. A supervisor database S is an

AmAU-Datalog program composed of

• A set of amalgamated deductive rules SIDB of the form

A : [s, µ]← A1 : [D1, µ1], . . . , Ak : [Dk, µk]|

where each Di, i = 1, . . . , k, is a NAME-term over {s, 1, . . . , n}.
• A set of amalgamated active rules SAR of the form

α1A1 : [D1, µ1], . . . , αkAk : [Dk, µk]| Lk+1 : [Dk+1, µk+1], . . . , Ln : [Dn, µn]

→ αn+1An+1 : [Dn+1, µn+1], . . . , αn+mAn+m : [Dn+m, µn+m]

where Di, i = 1, . . . , k, n+ 1, . . . , n+m is a ground NAME-term containing just

one element over {1, . . . , n} whereas Dj , j = k+ 1, . . . , n, is a NAME-term over

{s, 1, . . . , n}.

A supervisor is strong if no amalgamated deductive rule contains literals like Lj :

[s, µj] in its body.

A supervisor is strong if mediated knowledge does not depend on the supervisor

itself. This notion will be used in providing a semantics for AmAU-Datalog

programs. It is important to notice that the supervisor acts as a filter for the

transactions to be executed against the local programs, as shown by the following

example.

Example 4

Consider the case in which the supervisor does not contain any rule. All queries of

type

? A : [s, µ]

would return the unknown truth value (⊥), independently from the truth value

assigned to A in the single local AAU-Datalog programs.

If we want to assign the truth value µ to the ground atom A only if each of the n

local programs assigns to A the same value, the following amalgamated rule has to

be inserted in the supervisor:

A : [s, V]← A : [1, V], . . . , A : [N,V]|

By using rules like the previous ones, it is possible to assign a greater priority to

a given program, to a particular predicate, or to a particular fact. For example, in

order to express the fact that program i contains more significant information than

the others concerning a given atom A, it is sufficient to insert in the supervisor the

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 639

following amalgamated rule:

A[s, V]← A(X) : [i, V]|

As another significant example, consider two local AAU-Datalog programs, say

DB1 and DB2, respectively identified by 1 and 2, and FOUR as the source lattice of

truth values. Suppose that:

• rule p(X,Y) : t← q(X,Y) : t| +m(X) : t is contained in DB1, resulting in the

following amalgamated rule:

p(X,Y) : [1, t]← q(X,Y) : [1, t]| + m(X) : [1, t];

• rule p(X,Y) : f ← q(X,Y) : f| − m(X) : t is contained in DB2, resulting in

the following amalgamated rule:

p(X,Y) : [2, f]← q(X,Y) : [2, f]| − m(X) : [2, t].

If the two programs assign some incomparable truth values to a specific atom

constructed over p, the supervisor can decide to assign to this atom a particular

truth value. For example:

(1) it may assign a combination of the values assigned to the atom by the local

databases, through the amalgamated rule

p(X,Y) : [s,�{Z,W }]← p(X,Y) : [1, Z], p(X,Y) : [2,W]|
(2) or it may choose the value assigned by program 1, through the amalgamated

rule

p(X,Y) : [s, Z]← p(X,Y) : [1, Z], p(X,Y) : [2,W]|. ♦
By combining the knowledge represented by the local programs with the know-

ledge represented by the supervisor, we obtain the overall amalgam of static and

dynamic knowledge. However, in order to complete the amalgamation process, there

is the need of specifying how atoms like Ak : [Dk, µk] have to be defined, when Dk is

a ground NAME-term. Such an atom specifies that Ak is true with truth value µk
in all the databases whose identifiers are contained in Dk . The semantics for such

atoms is provided by inserting in the amalgam an additional sets of rules, called

combination axioms. Such rules specify that an atom Ak : [Dk, µk], Dk = {i1, . . . , in}, is

true if the following conditions hold:

1. A : [i1, µi1], . . . ,A : [in, µin] are true;

2. µk = �{µi1 , . . . , µin}.

Definition 10 (Combination axioms)

Let D ⊆ {1, . . . , n} be a set of NAME-constants, A a deductive atom of the base

language, and µD an annotation. Atom A : [D, µD] is defined by the following

combination axiom

A :

[
D,

⊔
i∈D

µi

]
←

∧
i∈D

A : [i, µi]

where µD =
⊔
i∈D

µi. In the following, combination axioms will be denoted by C .

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

640 E. Bertino et al.

Example 5

Let D = {1, 2}. Consider the following amalgamated rules:

C1 = A : [1, µ0]← A1 : [1, µ1], . . . , Ak : [1, µk]| αk+1Ak+1 : [1, µk+1], . . . , αnAn[1, : µn]

C2 = A : [2, µ0]← A1 : [2, µ1], . . . , Al : [2, µl]| αl+1Al+1 : [2, µl+1], . . . , αmAm[2, : µm]

The following is a combination axiom for atom A:

A : [{1, 2},�{µ0, µ0}]←A : [1, µ0], A : [2, µ0]|. ♦

We are now able to define the amalgam of the local databases and the supervisor

as a program combining the information represented by the various local databases,

the supervisor, and the combination axioms.

Definition 11 (Amalgam)

Let DB1, . . . , DBn be n AAU-Datalog program, DBi = EDBi ∪ IDBi ∪ ARi, and

S = SIDB ∪ SAR a supervisor. Let C be the set of combination axioms. The

amalgam A of (S, DB1, . . . , DBn) is the amalgamated program defined as follows:

A = ∪ni=1AT (DBi) ∪ S ∪ C.

The extensional part of the amalgam is EDBA = ∪ni=1(AT (EDBi)), the intensional

part is IDBA = ∪ni=1(AT (IDBi)) ∪ SIDB ∪ C , and the active part is ARA = ∪ni=1

(AT (ARi))∪ SAR.

It is important to remark that, given a set of AAU-Datalog programs, the set

of combination axioms that can be constructed is fixed, therefore they can be

considered as implicitly defined by the amalgam semantics.

Similarly to AAU-Datalog programs, each operation that can be executed against

an amalgam is called transaction. A transaction is a deductive rule without head

and, as such, may execute a query, may require the execution of a set of updates

against the local databases, and may trigger some active rules both at the local and

global level. A transaction can be simple or complex, as pointed out by the following

definition.

Definition 12 (Transaction)

Let DB1, . . . , DBn be n AAU-Datalog programs, S a supervisor, C a set of combi-

nation axioms and A = ∪ni=1AT (DBi) ∪ C ∪ S the amalgam of (S, DB1, . . . , DBn). A

simple transaction T against A is an AmAU-Datalog deductive rule with no head

and with a non-empty query part; a complex transaction is a sequence of simple

transactions T1; . . . ;Tk .

Example 6

Consider Example 3. In order to decide partial and total blocks of car circulation,

suppose that the following policy is applied. Car circulation must be partially

forbidden if all the sensors determine that a monitored substance has a presence

above its danger threshold. On the other hand, car circulation is totally forbidden if

one of the following conditions holds:

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 641

IDBS: pblock(X):[s,V]←danger lv(X):[1,V],danger lv(X):[2,V],danger lv(X):[3,V]|
+partial block(X):[1,V],+partial block(X):[2,V],
+partial block(X):[3,V].

pblock(X):[s,⊥]←danger lv(X):[{1,2,3},⊥]| +reread(X):[1,t],+reread(X):[2,t],
+reread(X):[3,t].

pblock(X):[s,⊥]←danger lv(X):[{1,2,3},�]| +reread(X):[1,t],+reread(X):[2,t],
+reread(X):[3,t],+partial block(X):[1,⊥],
+partial block(X):[2,⊥],+partial block(X):[3,⊥].

tblock(X,Y):[s,t]←partial block(X):[W,t],partial block(Y):[Z,t],not eq(X,Y):t|
+total block(X,Y):[1,t],+total block(X,Y):[2,t],
+total block(X,Y):[3,t].

tblock(X,Y):[s,t]←critical lv(X):[W,t],critical lv(Y):[Z,t],not eq(X,Y):t|
+total block(X,Y):[1,t],+total block(X,Y):[2,t],
+total block(X,Y):[3,t].

ARS: +partial block(X):[Y,V]| total block(W,Z):[Y,t]→-partial block(X):[Y,V].
+total block(X,Y):[Z,t]| partial block(W):[Z,V]→-partial block(W):[Z,V].
+reread(X):[Y,t]| partial block(X):[H,t]→-partial block(X):[H,t].
+reread(X):[Y,t]| total block(X,Z):[H,t]→-total block(X,Z):[H,t].
+reread(X):[Y,t] | total block(Z,X):[H,t]→-total block(Z,X):[H,t].

Fig. 2. The supervisor database.

• all the sensors determine that two different substances have a presence above

their danger threshold;

• for two different substances, a critical situation is detected by some sensors.

The detection of partial and total blocks requires a cooperation among the various

sensors, therefore this functionality can be assigned to an AmAU-Datalog supervisor

database. Based on the previous policy, such database can be designed as illustrated

in Figure 2.

Predicate pblock manages partial blocks. In particular, if all the sensors agree

in assigning the truth value to atom sensor(X), it assigns the same truth value to

the atom concerning partial block of car circulation. On the other hand, if all the

sensors agree in assigning a truth value ⊥ or � to a given substance, some facts

are asserted specifying that the level for that substance has to be read again. In the

first case, this is because local databases have no information concerning the level

of that substance, in the second case because local databases do not agree on such

level. Note that in the first case, updates are indirectly performed by the first rule.

Predicate tblock manages total blocks, as specified before. Since a total block is

always due to two substances, predicate total block specifies also their names. The

supervisory database also contains five active rules. In particular:

• the first active rule requires the deletion of a just inserted partial block

information if a total block information has already been detected. In this

case, partial block information is discarded by the evaluation process;

• the second rule deletes all partial blocks information when a total block is

detected;

• the last three rules delete all partial or total blocks information concerning a

given substance X for which the danger level has to be re-read.

Figure 3 illustrates the amalgam A of the supervisor together with the local

databases of the Example 3. In Figure 3 only some few combination axioms of

A are presented; all the others axioms are computed as described in Definition 10.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

642 E. Bertino et al.

EDBA: sensor(s1):[1,t],sensor(s2):[1,⊥],sensor(s3):[1,t],over lv(s1):[1,t],
critical lv(s1):[1,t],over lv(s3):[1,t],partial block(s3):[1,t],
sensor(s1):[2,⊥],sensor(s2):[2,t],sensor(s3):[2,t],over lv(s2):[2,t],
critical lv(s2):[2,t],over lv(s3):[2,t],partial block(s3):[2,t],
sensor(s1):[3,t],sensor(s2):[3,t],sensor(s3):[3,t],over lv(s1):[3,t],
over lv(s2):[3,t],over lv(s3):[3,t],partial block(s3):[3,t].

IDBA: danger lv(X):[i,Y]←sensor(X):[i,Y] | i=1,2,3.
danger lv(X):[i,t]←sensor(X):[i,t] | +over lv(X):[i,t], i=1,2,3.
danger lv(X):[i,t]←sensor(X):[i,t],over lv(X):[i,t]| +critical lv(X):[1,t],

i=1,2,3.
danger lv(X):[i,f]←sensor(X):[i,f],over lv(X):[i,t] | -over lv(X):[i,t],

i=1,2,3.
pblock(X):[s,V]←danger lv(X):[1,V],danger lv(X):[2,V],danger lv(X):[3,V] |

+partial block(X):[1,V],+partial block(X):[2,V],
+partial block(X):[3,V].

pblock(X):[s,⊥]←danger lv(X):[{1,2,3},⊥] | +reread(X):[1,t],+reread(X):[2,t],
+reread(X):[3,t].

pblock(X):[s,⊥]←danger lv(X):[{1,2,3},�]| +reread(X):[1,t],+reread(X):[2,t],
+reread(X):[3,t],+partial block(X):[1,⊥],
+partial block(X):[2,⊥],+partial block(X):[3,⊥].

tblock(X,Y):[s,t]←partial block(X):[W,t],partial block(Y):[Z,t],not eq(X,Y):t|
+total block(X,Y):[1,t],+total block(X,Y):[2,t],
+total block(X,Y):[3,t].

tblock(X,Y):[s,t]←critical lv(X):[W,t],critical lv(Y):[Z,t],not eq(X,Y):t|
+total block(X,Y):[1,t],+total block(X,Y):[2,t],
+total block(X,Y):[3,t].

sensor(s1):[{1,2},�{V1, V2}]←sensor(s1):[1,V1],sensor(s1):[2,V2]| .
sensor(s1):[{1,3},�{V1, V3}]←sensor(s1):[1,V1],sensor(s1):[3,V3]| .
sensor(s1):[{2,3},�{V2, V3}]←sensor(s1):[2,V2],sensor(s1):[3,V3]| .
sensor(s1):[{1,2,3},�{V1, V2 , V3}]←sensor(s1):[1,V1],sensor(s1):[2,V2],

sensor(s1):[3,V3]| .
...

ARA: -over lv(X):[i,t]| critical lv(X):[i,t]→-critical lv(X):[i,t], i=1,2,3.
+partial block(X):[Y,V]| total block(W,Z):[Y,t]→-partial block(X):[Y,V].
+total block(X,Y):[Z,t]| partial block(W):[Z,V]→-partial block(W):[Z,V].
+reread(X):[Y,t]| partial block(X):[H,t]→-partial block(X):[H,t].
+reread(X):[Y,t]| total block(X,Z):[H,t]→-total block(X,Z):[H,t].
+reread(X):[Y,t]| total block(Z,X):[H,t]→-total block(Z,X):[H,t].

Fig. 3. The amalgam of DB1, DB2, DB3 and S .

The following are examples of transactions for A:

1. T =? pblock(X) : [s, t] is a simple transaction checking which substances

generate a partial block;

2. T =? pblock(X) : [s, V]; ? tblock(Y ,Z)[s, t] is a complex transaction determin-

ing the substances generating partial and total blocks. ♦

3 Amalgamated Active-U-Datalog: the deductive semantics

In defining the semantics of an AmAU-Datalog program, we consider as observable

properties of the transaction execution: the set of bindings (the answer), the new

database state, and the indication of success (commit/abort) of the transaction itself.

The semantics of AmAU-Datalog programs, with respect to a simple transaction,

can be defined in three steps:

• In the first step, the semantics of the amalgam is computed, collecting the set

of bindings that satisfy the query and the requested updates. In this step, no

update is executed and only deductive reasoning is performed. All the updates

generated during this phase are gathered together but not executed.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 643

• In the second step, the semantics of the active part of the program is computed,

according to the model and the updates collected in the first step. The result

of this step is the set of updates generated either by the deductive and/or

the active part of the amalgam. In this step, conflicting updates have to be

removed. This is possible by applying a parametric conflict resolution policy.

• In the third step, the updates obtained from the second step are executed

against the extensional database.

The previous three steps are repeated for each simple transaction contained in

a complex transaction. Hence, the state of the database evolves after each simple

transaction execution.

In the following, we describe in details the first semantic step. The other steps will

be formally introduced in sections 4 and 5.

To compute the semantics of the deductive part of the amalgam, we first specify

how the deductive semantics of the local databases is computed and then we

describe how the local semantics are combined together to form the semantics of

the amalgam. In the following, the term ‘rule’ refers to a deductive rule.

3.1 Deductive semantics of an AAU-Datalog program

In the following we assume thatT is a complete lattice containing the least element

⊥. To define the semantics of the deductive part of an AAU-Datalog program, we

consider an Extended Herbrand Base defined as follows.

Definition 13 (Extended Herbrand base)

The Extended Herbrand Base CBL of a base language L = (Σ,Π, V) is composed

of constrained ground atoms of the form A ← α1D1, . . . , αkDk , where A is a ground

(Πi ∪Πe,Σ, V)-atom and αjDj , j = 1, . . . , k, are ground (Πu,Σ, V)-atoms.

Since the language does not contain function symbols, the Extended Herbrand

Base is a finite set. Similarly to standard logic programming, the Extended Herbrand

Base is then used to define interpretations. However, differently from the standard

framework, an interpretation must assign to each constrained atom, belonging to

the Extended Herbrand Base, a truth value, constructed starting from the considered

lattice. Such truth values can be formalized by introducing the concept of ideal and

of principal.

Definition 14 (Ideal (Kifer and Subrahmanian, 1992))

An ideal of an upper semilattice5 T is any subset K of T such that:

1. K is downward closed, that is s ∈ K, t � s⇒ t ∈ K;

2. K is closed with respect to the finite least upper bound operation, that is

s, t ∈ K ⇒ s � t ∈ K .

5 A set R is an upper semilattice, with respect to a given ordering, if any pair of elements of R has a
least upper bound in R.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

644 E. Bertino et al.

An ideal K is principal if for some p ∈ T, K = {s | s � p}. In this case, we use p

to denote K . An ideal I is null if I = {}. A principal P is null if P = ⊥. We let

�{} = ⊥.

Now suppose to define an interpretation as a function assigning an ideal (principal)

to each constrained atom. This means that the truth value is assigned to the

constrained atom as a whole and not to the various atoms composing the constrained

atom, as we would like to do.

To overcome the previous limitation, the interpretation is defined as a function

that, given a constrained atom, assigns a truth value to each atom appearing in

it. Thus, if the constrained atom contains n − 1 update atoms in its body, the

interpretation function must assign to the constrained atom n truth values, one for

the head of the constrained atom and n − 1 for the update atoms in the body. To

formalize this concept, it is useful to introduce the concept of n-ideal and n-principal.

Definition 15 (n-ideal, n-principal)

Let T be an upper semilattice. An n-ideal of an upper semilattice T is a tuple

composed of n ideals of T; with n-I we denote the set of all the n-ideals of T. An

n-principal of an upper semilattice T is a tuple composed of n principals of T;

with n-P we denote the set of all the n-principals of T. An n-ideal is null (denoted

by δ) if all components represent the null ideal. An n-principal is null (denoted by

δr) if all components represent the null principal. Moreover, the following sets are

introduced: N-I =
⋃
n n-I and N-P =

⋃
n n-P . We let �δ = δr .

Note that, since a principal is also an ideal, an n-principal is an n-ideal. The

main difference is that each single element of an n-principal is an ideal that can be

identified by a single value whereas each single element of an n-ideal is a generic

ideal.

It is also important to note that n-ideals (n-principals) of a complete semilattice

T can be seen as ideals (principals) of the complete latticeTn, in which the order �
is defined component by component, in the obvious way (Subrahmanian, 1994).

Intepretations can now be defined as follows.

Definition 16 (Interpretations)

Let L be the base language and T a complete lattice. An Herbrand interpretation

(restricted Herbrand interpretation – r-interpretation) I of L is any total map from

the extended Herbrand Base CBL to N-I (N-P). Thus, each constrained atom

is mapped into an n-ideal (n-principal). We assume that the first ideal of the n-

ideal is assigned to the head of the constrained atom whereas all the other ideals

are assigned to update atoms in the body, following the ordering by which they

appear.

Based on the previous definition, an interpretation can always be seen as a set

of ground and c-annotated constrained atoms and in the following we often use

this notation. Suppose I(A ← α1D1, . . . , αkDk) = 〈µ0, µ1, . . . , µk〉. In the following

we denote µ0 with I0(A ← α1D1, . . . , αkDk) and µj with Ij(A ← α1D1, . . . , αkDk),

j = 1, . . . , k. Moreover, to simplify the notation, we assume that all constrained

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 645

atoms mapped to the null n-ideal are not specified when describing the interpretation

and all constrained atoms mapped to the null n-principal are not specified when

describing the r-interpretation.

When T is a complete lattice (according to the order �), the order � can be

extended point to point to the r-interpretations as follows: let I, Ī be r-interpretations,

then I � I if and only if, for each A← α1D1, . . . , αkDk ∈ CBL, the following condition

holds:

Ij(A← α1D1, . . . , αkDk) � Ij(A← α1D1, . . . , αkDk), j = 0, . . . , k.

Starting from the notion of r-interpretation, it is possible to define when a

constrained ground atom is true in an interpretation.

Definition 17 (R-satisfaction)

Let I be an interpretation, 〈µ0, µ1, . . . , µk〉 a list of c-annotations on a lattice T,

L ≡ A← α1D1, . . . , αkDk ∈ CBL. I satisfies the ground constrained annotated atom

M ≡ A : µ0 ← α1D1 : µ1, . . . , αkDk : µk (I |=M) if and only if I(L) ⊆ 〈µ0, µ1, . . . , µk〉.
Let I be an r-interpretation, 〈µ0, µ1, . . . , µk〉 a list of c-annotations on a lattice T,

L ≡ A ← α1D1, . . . , αkDk ∈ CBL. I r-satisfies the ground constrained annotated

atom M ≡ A : µ0 ← α1D1 : µ1, . . . , αkDk : µk (I |=r M) if and only if µ0 � I0(C) and

µj � Ij(L), j = 1, . . . , k.

Example 7

Let T be R[0, 1], A← +D1,+D2 ∈ CBL. Let I be an r-interpretation such that

• I(A← +D1,+D2) = (0.22, 0.5, 0.6).

• for any other constrained ground atom K ∈ CBL, I(K) = δr.

I satisfies the ground constrained annotated atom A : 0.2 ← +D1 : 0.3,+D2 : 0.5

since 0.2 < 0.22, 0.3 < 0.5, and 0.5 < 0.6. ♦

Based on the previous concepts, we can now define a fixpoint operator TP ,

computing the semantics of the deductive part. Intuitively, given an interpretation

I , operator TP (I) applied to a constrained ground atom A returns the least n-ideal

for A, containing all the n-ideals for A that can be computed starting from rules in

GI(IDBP ∪ EDBP),6 whose body is satisfied by I . The operator introduced in the

following definition extends the one presented in Kifer and Subrahmanian (1992)

to deal with constrained atoms and n-ideals. In particular, the computation gathers

updates generated from atoms in the body of a rule and assign them to the atom in

the head.

Definition 18 (Operator TP)

Let T be a complete lattice, I an interpretation and P = IDBP ∪ EDBP ∪ ARP
an AAU-Datalog program. For any constrained ground atom A ∈ CBL, A ≡ H ←
α′D′1, . . . , α

′
kD
′
k , TP (I)(A) is defined as the least n-ideal of T containing the following

6 We recall that GI(P) represents all the c-annotated, ground instances of P .

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

646 E. Bertino et al.

set: 〈µ′0, µ′1, . . . , µ′k〉 |
∃H : µ0 ← B1 : µ1, . . . , Bn : µn| αn+1Dn+1 : µn+1, . . . ,

αn+pDn+p : µn+p ∈ GI(IDBP ∪ EDBP)

∃r1, . . . , rn ru = Bu : µu ← α1
uD

1
u :, . . . , αnuu D

nu
u , u = 1, . . . , n

I |= ru, u = 1, . . . , n

{α′1D′1 : µ′1, . . . , α
′
kD
′
k : µ′k}

= {αn+1Dn+1 : µn+1, . . . , αn+pDn+p : µn+p}
+⋃ +⋃

u = 1, . . . , n
t = 1, . . . , nu

{αtuDtu : µtu}

The set A
+
∪B is defined as the usual set union with the following exception: if A

contains αD : µ1 and B contains αD : µ2, then A
+
∪ B contains αD : �{µ1, µ2} and

does not contain αD : µ1 and αD : µ2.

Example 8

Let T = (C,F,V) and (Π,Σ, V) be respectively the T-language and the base

language of Example 2 and P the AAU-Datalog program defined as follows:

IDBP: r1: q1(a,b):0.5← p1(a,b):0.5| +p2(a,b):0.75.

r2: q1(Y1,Y2):X1← p1(Y1,Y2):X1,q2(Y1,Y2):X1| +p2(Y1,Y2):X1.

r3: q2(Y3,Y4):X2← p3(Y3,Y4):X2,p3(Y4,Y5):X3| +p2(Y3,Y4):X3,

+p3(Y3,Y4):X3.

AR1: ar1: +p2(a,b):0.75 | p1(a,b):0.5→+p1(a,b):0.75

EDBP: p1(a,b):0.5,p3(a,b):0.5,p3(b,c):0.75.

Let A ∈ CBL, A ≡ q1(a, b)← +p2(a, b),+p3(a, b), and I be the following interpreta-

tion (which is also an r-interpretation):

I(p1(a, b)) = 0.5

I(p3(a, b)) = 0.5

I(p3(b, c)) = 0.75

I(q1(a, b)← +p2(a, b)) = (0.5,0.75)

I(q2(a, b)← +p2(a, b),+p3(a, b)) = (0.5,0.75,0.75)

I(K) = δr for any other constrained

ground atom K ∈ CBL
TP (I)(A) is the n-principal (0.5, 0.75, 0.75). Indeed:

• q1(a, b) : 0.5← p1(a, b) : 0.5, q2(a, b) : 0.5| +p2(a, b) : 0.5 ∈ GI(IDBP ∪EDBP);

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 647

• p1(a, b) : 0.5 ∈ I, p3(a, b) : 0.5 ∈ I, p3(b, c) : 0.75 ∈ I, q2(a, b) : 0.5 ← +p2(a, b) :

0.75 ∈ I,+p3(a, b) : 0.75 ∈ I;

• {+p2(a, b) : 0.5)}
+⋃
{+p2(a, b) : 0.75,+p3(a, b) : 0.75)} = {+p2(a, b) : �2{0.5,

0.75},+p3(a, b) : 0.75}, thus obtaining the set {+p2(a, b) : 0.75,+p3(a, b) : 0.75}.
♦

Given a constrained atom A and an interpretation I , TP (I)(A) is an n-ideal, thus

it is a set of tuples of lattice values.7 However, n-principals more clearly characterize

the semantics value of a given constrained atom, since they can be represented by

using just one tuple of lattice value. Thus, they are good candidates for defining a

bottom-up semantics for AAU-Datalog databases.

To use n-principals in defining the semantics of a AAU-Datalog program, a new

fixpoint operator has to be defined dealing with n-principals. Similarly to what has

been done in Kifer and Subrahmanian (1992), such an operator can be easily defined

starting from operator TP , by combining together all the tuples of ideals generated

for a given atom. More formally, the operator, denoted by RP , can be defined as

follows.

Definition 19 (Operator RP)

Let I be an r-interpretation and P an AAU-Datalog program. The operator RP (I),

for any A∈CBL, is such that RP (I)(A) = �TP (I)(A), where �TP (I)(A) is a shorthand

for �t̃∈TP (I)(A) t̃.

TP and RP satisfy several important properties, as pointed out by the following

theorem.

Theorem 1

Let P be an AAU-Datalog program, I an r-interpretation. Then:

1. TP is monotonic and continuous;

2. RP is monotonic;

3. TP ↑ ω = lfp(TP);8

4. lfp(TP) is a model for P .

Proof

It follows from Kifer and Subrahmanian (1992), by considering Tn as a complete

lattice. �

Since we would like to use RP to compute the semantics of a AAU-Datalog

program, thus assigning a single n-principal to each constrained atom, we must be

able to compute the fixed point of RP . The main difference between TP and RP
is that the first is continuous while the second is not, as shown by the following

example, taken from Kifer and Subrahmanian (1992). This implies that RP ↑ ω is

not a fixed point for RP .

7 Note that in the previous example we deal with n-principals, but in general the TP operator generates
an n-ideal.

8 As usual, T 1
P (I) = TP (I), T i+1

P = TP (T i
P (I)), and TP ↑ ω =

⋃
i T

i
P ({}) and TP ↑ ω(A) =

⋃
i T

i
P ({})(A).

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

648 E. Bertino et al.

Example 9

(Kifer and Subrahmanian, 1992) Suppose T is the interval of real numbers [0, 1]

with the usual ordering and consider the following program:

p : 0←|
p : 1+x

2
← p : x|

q : 1← p : 1| .
It is quite easy to prove that TP ↑ i, 0 � i � ω, always assigns the empty

ideal {} to q. Therefore, TP ↑ ω(q) = {}. According to the restricted semantics

RP ↑ ω(p) = {a|a � 1}. On the other hand, according to the general semantics,

TP ↑ ω(p) = {a|a < 1}. This means that from the r-semantics we obtain RP (RP ↑
ω)(q) = T while from the general semantics we obtain TP (TP ↑ ω)(q) = {}. Thus,

RP ↑ ω is not a fixpoint of RP in the r-semantics but, in the general semantics

TP ↑ ω is a fixpoint of TP . ♦

To make valid the equation RP ↑ ω = lfp(RP) and using RP for computing the

deductive semantics of an AAU-Datalog program, some sufficient conditions have

to be proposed. To this purpose, in Kifer and Subrahmanian (1992) the notion of

acceptable program has been introduced. In the following, the notion of acceptable

program is revised to deal with constrained atoms. As we will see, for any accept-

able program P , RP ↑ ω = lfp(RP). Informally, an acceptable program P is a

program in which any c-annotated literal appearing in the body of a rule in P is

reachable by TP in at most ω step.

Definition 20 (Acceptable program)

An AAU-Datalog program P is said to be acceptable if and only if for any c-

annotated literal A : µ appearing in the body of a rule r of P , for any constrained

annotated atom M ∈CBL with the same head, if �(TP ↑ ω) |= M ′, for some ground

instance M ′ of M, then TP ↑ ω |= M ′. In the previous formula, �(TP ↑ ω) is a

shorthand for
⋃
A �TP ↑ ω(A).

The following proposition presents a syntactic characterization of acceptable

programs.

Proposition 1

Let P be an AAU-Datalog program such that one of the following conditions

holds:

1. all rules contain only c-annotated atoms in their bodies;

2. all rules contain only v-annotated atoms in their bodies.

Then P is acceptable.

Proof Sketch

1. Under the hypothesis, TP ↑ ω(A) is a finitely generated ideal for every A and

it is also an n-principal. Thus, �(TP ↑ ω) = TP ↑ ω and therefore the thesis

follows.

2. The thesis trivially follows because, under the hypothesis, no condition has to

be checked. �

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 649

If a program P is acceptable then RP ↑ ω = lfp(RP) holds and is possible to

establish a relationship between RP and TP .

Theorem 2

Let P be an acceptable AAU-Datalog program, T a complete lattice. Suppose that

T is endowed with the least element ⊥, then RP ↑ ω = lfp(RP) = �(lfp(TP)). The

fixpoint semantics F of P is defined as F(P) = lfp(RP).

To prove the previous theorem, we need a lemma.

Lemma 1

Let P be an acceptable AAU-Datalog program over a complete upper semilattice

T with the least element ⊥. Then:

1. RP ↑ ω = �TP ↑ ω.

2. RP (RP ↑ ω) = RP ↑ ω.

Proof

1. In order to prove the first statement we prove that RP ↑ ω ⊇ �(TP ↑ ω), and

vice versa.

(a) RP ↑ ω ⊇ �(TP ↑ ω): The proof of this case follows from the proof

presented in Kifer and Subrahmanian (1992), by considering Tn as

complete lattice. The proof does not use the notion of acceptability (which

has been changed with respect to Kifer and Subrahmanian (1992)), but

only the properties of TP and RP , presented in Theorem 1.

(b) RP ↑ ω ⊆ �(TP ↑ ω): We show that, for all i and A ∈ CBL

�(TP ↑ ω)(A) ⊇ (RP ↑ i)(A).

From the previous statement, it follows that:

�(TP ↑ ω)(A) ⊇ {(RP ↑ i)(A)|i = 1, 2, . . .} = RP ↑ ω
which is the thesis. We prove (1b) by induction on i.

The base case is trivial since δr = �δ, by definition. For the inductive

step, we assume that �(TP ↑ ω)(A) ⊇ (RP ↑ k)(A) and we prove that it

holds also for k + 1.

By definition of RP ,

RP (RP ↑ k)(A) = �
{
〈µ′0, µ′1, . . . , µ′k〉|H : µ0 ← B1 : µ1, . . . , Bn : µn|

αn+1Dn+1 : µn+1, . . . , αn+pDn+p : µn+p ∈ GI(IDBP ∪ EDBP),

∃r1, . . . , rn, ru ≡ Bu : µu ← α1
uD

1
u : µ1

u, . . . , α
nu
u D

nu
u : µnuu , u = 1, . . . , n

RP ↑ k |=r ri, i = 1, . . . , n

A ≡ H ← α′1D
′
1, . . . , α

′
kD
′
k

{α′1D′1 : µ′1, . . . , α
′
kD
′
k : µ′k}

= {αn+1Dn+1 : µn+1, . . . , αn+pDn+p : µn+p}
+⋃

+⋃

u = 1, . . . , n
t = 1, . . . , nu

{
αtuD

t
u:µ

t
u

}

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

650 E. Bertino et al.

By the inductive assumption, we have �(TP ↑ ω)(A) ⊇ (RP ↑ k)(A) and

therefore

�(TP ↑ ω) |= Bu : µu ← α1
uD

1
u : µ1

u, . . . , α
nu
u D

nu
u : µnuu , u = 1 . . . , n

Because of the acceptability of P , this also means that

TP ↑ ω |= Bu : µu ← α1
uD

1
u : µ1

u, . . . , α
nu
u D

nu
u : µnuu , u = 1 . . . , n

and therefore 〈µ′0, µ′1, ..., µ′k〉 ∈ TP ↑ ω. From this, the thesis follows.

2. The proof of the second statement follows from the monotonicity of RP and

since

RP ↑ ω ⊇ RP ↑ i, for all i. The other inclusion is proved similarly to the

proof of the first statement, case 1b. �

From the proof of Lemma 1 it is now easy to prove Theorem 2.

Proof of Theorem 2 By statement (1) of Lemma 1 and by Theorem 1, it follows that

RP ↑ ω = �(lfp(TP)). By (2) of Lemma 1, RP ↑ ω is a fixpoint of RP , and, due to

the monotonicity of RP , it is the least fixpoint. �

3.2 Deductive semantics of the amalgam

Starting from the deductive semantics of the local databases, it is quite easy to

compute the deductive semantics of an AmAU-Datalog program. Indeed, all the

presented definitions and results still hold when applied to amalgamated atoms,

since such atoms only differ from the annotated ones due to the presence of a

label indicating the database to which they refer. Thus, the semantics presented for

AAU-Datalog programs can also be applied to AmAU-Datalog programs.

In the following, to emphasize the fact that we are considering the fixpoint

operator associated with an amalgam, an r-interpretation for an amalgam is called

AM-interpretation and operator RP is renamed as AMP .

It is now interesting to establish some connections between the semantics of

the amalgam and the semantics of the local databases. To this purpose, similarly

to what has been done in Subrahmanian (1994), we introduce two notions that

allow one to relate r-interpretations and AM-interpretations. In particular, given

an r-interpretation, we call locale the set of AM-interpretations that agree with that

r-interpretation as far as a particular local database is concerned. On the other

hand, given an AM-interpretation I, the projection of I on a given local database

DB is the (unique) r-interpretation obtained by restricting I to DB. In the following,

given an AM-interpretation I , we denote with I(B)(i) the n-principal assigned to B

in DBi.

Definition 21 (Locale)

Let I loc be an r-interpretation for an AAU-Datalog program DBi. The locale of I loc

is the set {Iaml | Iaml is an AM-interpretation and ∀ constrained ground atom B,

Iaml(B)(i) = (B)}.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 651

Definition 22 (Projection)

Let A be the amalgam of (S, DB1, . . . , DBn) and Iaml an AM-interpretation. The

projection of Iaml on DBi, with 1 � i � n, is the r-interpretation Iloc defined as

Iloc(A) = Iaml(A)(i).

Example 10

Let DB1, DB2 be two local AAU-Datalog databases. Suppose that the base language

contains only the extensional unary predicates p and q. Let FOUR be the lattice of

truth values, and Iaml the following A-interpretation:

Iaml(p(a))(1) = t. Iaml(p(a))(2) = f.

Iaml(q(a))(1) = �. Iaml(q(a))(2) = t.

The projection Iloc of Iaml on DB1 is the following r-interpretation I:

Iloc(p(a)) = t. Iloc(q(a)) = �. ♦

Starting from the previous notions, the following results can be stated, pointing

out the relationships between the fixed point semantics of the amalgam and that of

the local databases.

Theorem 3

Let DB1, . . . , DBn be n AAU-Datalog programs, S a supervisor, andA the amalgam

of (S, DB1, . . . , DBn). Let Iaml be the fixed point of AMA and Ilocj the projection of

Iaml on DBj , j = 1, . . . , n. Then Ilocj is the fixed point of RDBj .

Proof Sketch

It follows from Subrahmanian (1994), since AmAU-Datalog programs can be seen

as positive GAPs, where update atoms are never evaluated. �

Intuitively, Ij is the r-interpretation obtained by extracting information about DBj
from Iaml. The theorem says that every fixed point of the amalgam is an expansion

of a corresponding fixed point of a local database, but it does not say that every

fixed point of the operator associated with a local database can be expanded in a

corresponding fixed point of the amalgam. This result is valid if the supervisor is

‘strong’ (see Definition 9).

When the supervisor is strong, every fixed point of a local database can be

expanded to a fixed point of the amalgam, as stated by the following theorem.

Theorem 4

Let DB1, . . . , DBn be n AAU-Datalog programs, S a strong supervisor, A the

amalgam of (S, DB1, . . . , DBn), and Ilocj be an r-interpretation. If Ilocj is the fixed

point of RDBj , an A-interpretation Iaml in the locale of Ilocj exists such that Iaml is

the fixed point of AMA.

Proof Sketch

It follows from Subrahmanian (1994), since AmAU-Datalog programs can be seen

as positive GAPs, where update atoms are never evaluated. �

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

652 E. Bertino et al.

The deductive semantics of a simple transaction T with respect to the amalgam

A = ∪ni=1AT (DBi) ∪ C ∪ S is defined by using the fixpoint operator AMP . As

usual in database systems, we give a default set-oriented semantics, that is, the

query-answering process computes a set of answers. Before formally introducing the

semantics, we need two auxiliary definitions.

Definition 23

Given a set of bindings b, a transaction T , and a substitution θ =

{V1 ← t1, . . . , Vn ← tn}, we define

• b|T = {(X = t) ∈ b | X occurs in T };
• eqn(θ) = {V1 = t1, . . . , Vn = tn}.

In the following, we denote with Set(T ,A) the set of pairs 〈bindings, updates〉
computed as answers to the simple transaction T (as we will see in section 5, in a

complex transaction, the answers are computed for each transaction in the sequence,

therefore the definition has not to be changed).

Definition 24 (Query answers)

Let

• A = ∪ni=1AT (DBi)∪S ∪C be the amalgam of n acceptable AAU-Datalog pro-

grams over a complete lattice T, with a strong supervisor S = SIDB ∪ SAR;

• IDBA = ∪ni=1(AT (IDBDBi)) ∪ SIDB ∪ C;

• T =B1 : [C1, µ1], . . . , Bn : [Cn, µn]|αn+1Dn+1 : [En+1, µn+1], . . . ,

αn+kDn+k : [En+k, µn+k], a simple transaction such that Ci is a NAME-term

over {s, 1, . . . , n}, i = 1, . . . , n, Ej is a ground NAME-term containing only one

element over {1, . . . , n}, αj ∈ {+,−}, j = n+ 1, . . . , n+ k.

We define the operator Set as follows:

Set(T , P) =

〈bU〉 |
Ai : [Ci, µi]← αi1D

i
1 :

[
Ci

1, µ
i
1

]
, . . . , αikiD

i
ki

:
[
Ci
ki
, µiki

]
∈ F(A),

i = 1, . . . , n,

θ = mgu((B1 : [C1, µ1], . . . , Bn : [Cn, µn]), (A1 : [C1, µ1], . . . ,

An : [Cn, µn]))

b = eqn(θ)|T

U = {(αn+1Dn+1 : [En+1, µn+1])θ, . . . , (αn+kDn+k : [En+k,

µn+k])θ}
+⋃

+⋃

i = 1, . . . , n
u = 1 . . . , ki

{
αiuD

i
u :

[
Ci
u, µ

i
u

]}
θ

where
+
∪ is defined in Definition 18.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 653

AM1
A(∅) = { sensor(s1) : [1, t], sensor(s2) : [1,⊥], sensor(s3) : [1, t], over lv(s1)[1, t],

critical lv(s1) : [1, t], over lv(s3)[1, t], partial block(s3)[1, t], sensor(s1) : [2,⊥],

sensor(s2) : [2, t], sensor(s3) : [2, t], over lv(s2)[2, t], critical lv(s2) : [2, t],

over lv(s3)[2, t], partial block(s3)[2, t], sensor(s1) : [3, t], sensor(s2) : [3, t],

sensor(s3) : [3, t], over lv(s1)[3, t], over lv(s2)[3, t], over lv(s3)[3, t],

partial block(s3)[3, t]. }
AM2

A(∅) = AM1
A(∅) ∪ { danger lv(s1) : [1, t]← +over lv(s1) : [1, t],+critical lv(s1) : [1, t],

danger lv(s2) : [1,⊥], danger lv(s3) : [1, t]← +over lv(s3) : [1, t],

+critical lv(s3) : [1, t],

danger lv(s1) : [2,⊥], danger lv(s2) : [2, t]← +over lv(s2) : [2, t],

+critical lv(s2) : [2, t],

danger lv(s3) : [2, t]← +over lv(s3) : [2, t],+critical lv(s3) : [2, t],

danger lv(s1) : [3, t]← +over lv(s1) : [3, t],+critical lv(s1) : [3, t],

danger lv(s2) : [3, t]← +over lv(s2) : [3, t],+critical lv(s2) : [3, t],

danger lv(s3) : [3, t]← +over lv(s3) : [3, t],+critical lv(s3) : [3, t],

danger lv(s1) : [{1, 2}, t]← +over lv(s1) : [1, t],+critical lv(s1) : [1, t],

danger lv(s1) : [{1, 3}, t]← +over lv(s1) : [1, t],+critical lv(s1) : [1, t],

+over lv(s1) : [3, t],+critical lv(s1) : [3, t],

danger lv(s1) : [{2, 3}, t]← +over lv(s1) : [3, t],+critical lv(s1) : [3, t],

danger lv(s2) : [{1, 2}, t]← +over lv(s2) : [2, t],+critical lv(s2) : [2, t],

danger lv(s2) : [{1, 3}, t]← +over lv(s2) : [3, t],+critical lv(s2) : [3, t],

danger lv(s2) : [{2, 3}, t]← +over lv(s2) : [2, t],+critical lv(s2) : [2, t],

+over lv(s2) : [3, t],+critical lv(s2) : [3, t],

danger lv(s3) : [{1, 2}, t]← +over lv(s3) : [1, t],+critical lv(s3) : [1, t],

+over lv(s3) : [2, t],+critical lv(s3) : [2, t],

danger lv(s3) : [{1, 3}, t]← +over lv(s3) : [1, t],+critical lv(s3) : [1, t],

+over lv(s3) : [3, t],+critical lv(s3) : [3, t],

danger lv(s3) : [{2, 3}, t]← +over lv(s3) : [2, t],+critical lv(s3) : [2, t],

+over lv(s3) : [3, t],+critical lv(s3) : [3, t],

danger lv(s1) : [{1, 2, 3}, t]← +over lv(s1) : [1, t],+critical lv(s1) : [1, t],

+over lv(s1) : [3, t],+critical lv(s1) : [3, t],

danger lv(s2) : [{1, 2, 3}, t]← +over lv(s2) : [2, t],+critical lv(s2) : [2, t],

+over lv(s2) : [3, t],+critical lv(s2) : [3, t],

danger lv(s3) : [{1, 2, 3}, t]← +over lv(s3) : [1, t],+critical lv(s3) : [1, t],

+over lv(s3) : [2, t],+critical lv(s3) : [2, t],

+over lv(s3) : [3, t],+critical lv(s3) : [3, t],

tblock(s1, s2) : [s, t]← +total block(s1, s2) : [1, t],+total block(s1, s2) : [2, t],

+total block(s1, s2) : [3, t],

. }
AM3

A(∅) = AM2
A(∅) ∪ { pblock(s3) : [s, t]← +over lv(s3) : [1, t],+over lv(s3) : [2, t],

+over lv(s3) : [3, t],+critical lv(s3) : [1, t],

+critical lv(s3) : [2, t],+critical lv(s3) : [3, t],

+partial block(s3) : [1, t],+partial block(s3) : [2, t],

+partial block(s3) : [3, t]. }
AM4

A(∅) = AM3
A(∅) =F(A)

Fig. 4. The fixpoint computation.

Example 11

Consider the amalgam presented in Example 6. Figure 4 presents the computation

of the fixed point for the considered AmAU-Datalog program. Let T =? pblock(X) :

[s, t], tblock(Y ,Z) : [s, t] be a simple transaction checking if there is a partial block

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

654 E. Bertino et al.

due to any substance and a total block due to any pair of substances between s1, s2

and s3. It is easy to verify that

Set(T ,A) = {〈{X← s3, Y ← s1, Z← s3}{+over lv(s3) : [1, t],+over lv(s3) : [2, t],

+over lv(s3) : [3, t],+critical lv(s3) : [1, t],+critical lv(s3) : [2, t],

+critical lv(s3) : [3, t],+partial block(s3) : [1, t],+partial block(s3) : [2, t],

+partial block(s3) : [3, t],+total block(s1, s2) : [1, t],

+total block(s1, s2) : [2, t],+total block(s1, s2) : [3, t].}〉} ♦

4 Active part semantics

After computing the deductive semantics of amalgam, active rules have to be

considered in order to determine which additional updates they generate. The active

part semantics is directly defined for the amalgam and is given following the line of

the PARK semantics proposed in Gottlob et al. (1996).

In order to introduce such semantics, three main aspects have to be considered:

• First of all, we have to determine which active rules are fired. An active rule

is fired if all update atoms contained in its body have already been generated

either by a deductive rule or by another active rule and all the deductive atoms

can be deduced from the deductive rules.

• After deciding which rules are fired, a mechanism has to be proposed to

deal with conflicts, i.e. insertion and deletion of the same information. In

particular, conflicts have to be detected and removed by using a conflict

resolution function.

• Finally, we have to specify how the overall triggering process takes place, since

updates generated by an active rule can trigger a different active rule and this

process can be iterated. Conditions to guarantee termination have also to be

presented.

In the following, all the previous aspects are discussed in details.

4.1 Validity conditions

An active rule is fired if the following conditions hold:

• each update atom in the event part of the active rule has already been

generated either by the deductive part or by firing another active rule;

• each positive atom in the condition part of the active rule is satisfied by the

deductive part semantics;

• each negative atom in the condition part of the active rule is not satisfied by

the deductive part semantics.

The previous conditions point out that validity of event-condition atoms has to

be checked with respect to something different than r-interpretations, since also

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 655

update atoms have to be considered. To this purpose, the concept of restricted-

intermediate interpretation (ri-interpretation) is provided.

Definition 25 (ri-interpretation)

Let B± be the set of ground, non-annotated atoms that can be constructed over a

base language L. Let T be a complete lattice. An ri-interpretation is a function

associating with each element of B± a principal of T. We denote with RI(T) the

set of all ri-interpretations over T.

Similarly to r-interpretation, also ri-interpretations can be seen as a set of

amalgamated (but not constrained) atoms. In the following, for the sake of simplicity,

we use this set-based notation.

To establish when an active rule can be triggered, we introduce a validity predicate.

Given an amalgamated atom and an ri-interpretation, the validity predicate returns

true if the atom is valid in the considered ri-interpretation.

Definition 26 (Validity)

Let a be a ground amalgamated literal. a is valid in an ri-interpretation I (denoted

by valid(a, I)) if one of the following conditions holds:

(I ∩ {A : [D, µ],+A : [D, µ]}) �= ∅, µ � µ and a = A : [D, µ]

(I ∩ {A : [D, µ],+A : [D, µ]}) = ∅ or − A : [D, µ] ∈ I, µ � µ and a = ¬A : [D, µ]

+A : [D, µ] ∈ I, µ � µ and a = +A : [D, µ]

−A : [D, µ] ∈ I, µ � µ and a = −A : [D, µ]

According to the previous definition, a positive amalgamated (Πe ∪ Πi,Σ, V)-

atom is valid in I if I contains the same atom with a greater annotation or

if an atom with a greater annotation has to be inserted. A negative amalgamated

(Πe∪Πi,Σ, V)-atom is valid in I if I contains an update deleting the same atom with a

greater annotation or if the corresponding positive atom is not valid. An amalga-

mated (Πu,Σ, V)-atom is valid in I if I contains the same atom with a greater

annotation. Notice that both A : [D, µ] and ¬A : [D, µ] can be valid according to

this definition. The intuition behind the above definition is that since a positive or

negative atom belongs to the condition part of the active rule, its validity must

be checked with respect to the derived atoms and also to the inserted and deleted

atoms. Otherwise, to represent the occurrence of an event, we require that just the

update modeling such an event belongs to the ri-interpretation.

An active rule is therefore triggered by an ri-interpretation I if all its event-

condition atoms are true with respect to I .

Definition 27

Let I be an ri-interpretation and r an AmAU-Datalog active rule. r is triggered by

I if all the event-condition update atoms and literals in r are valid in I .

Example 12

Let I be an ri-interpretation such that +p2(a, b) : [1, 0.75] ∈ I, p1(a, b) : [1, 0.75] ∈ I .
Let r, s be the following AmAU-Datalog active rules:

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

656 E. Bertino et al.

r : +p2(a, b) : [1, 0.75]| p1(a, b) : [1, 0.5]→ +p1(a, b) : [1, 0.75];

s : +p2(a, b) : [1, 1]| p1(a, b) : [1, 0.5]→ −p1(a, b) : [1, 1].

r is triggered by I since all the event-condition atoms in r are valid in I . More

precisely, p1(a, b) : [1, 0.5] is valid since p1(a, b) : [1, 0.75] ∈ I and 0.5 < 0.75 whereas

+p2(a, b) : [1, 0.75] is valid since it belongs to I . On the other hand, s is not triggered

by I since 1 > 0.75. ♦

4.2 Blocked rule instances

Suppose that, given an ri-interpretation, more than one rule is fireable. It could

happen that the actions (i.e. the updates) to be executed are conflicting. This

happens when some active rules add a certain atom and some others remove it. The

concept of conflicting updates can be formally defined as follows.

Definition 28 (Annotated conflicting update atoms)

Let U1 = α1D : [i, µ1] and U2 = α2D
′: [i, µ2] be two annotated update atoms. U1

and U2 are conflicting if there exists a substitution σ such that (D)σ = (D′)σ and

αi ∈ {+,−}, i = 1, 2, α1 �= α2.

Note that two update atoms are conflicting if they require the insertion and the

deletion of the same information, independently from the associated annotations.

An ri-interpretation is consistent if it does not contain any pair of conflicting

updates. For what we will do in the following, it is important not only to identify

conflicting updates but also the rule instances (also called rule grounding) generating

them. To this purpose, we introduce the concept of conflict.

Definition 29 (Conflicts)

A pair (r, θ), where r is a rule and θ is a ground substitution for r is called a rule

grounding.

Let P be a set of AmAU-Datalog active rules and I an ri-interpretation for P .

Then conflicts(P , I) is a set of maximal tuples of the form (i, A, ins, del) such that i

is a database identifier, A is a ground atom, and ins and del are sets of active rule

groundings. For each such triple the following conditions must hold:

1. there exists r,r′ ∈P

r = A1 : [D1, µ1], . . . , An[Dn, µn]→ B1 : [E1, ψ1], . . . , Bm : [Em, ψm]

r′ = A′1 : [D′1, µ
′
1], . . . , A

′
n′ [D

′
n′ , µ

′
n′]→ B′1 : [E ′1, ψ

′
1], . . . , B

′
m′ : [E ′m′ , ψ

′
m′]

where Ah, h = 1, . . . , n, A′h′ , h
′ = 1, . . . , n′ are either amalgamated update atoms

or deductive amalgamated literals, Bk, k = 1, . . . , m, Bk′ , k
′ = 1, . . . , m′ are update

atoms, and θ, θ′ ground substitutions such that

• ∀h 1 � h � n, valid(Ah : [Dh , µh]θ, I),

• ∀k 1 � k � n′, valid(A′k : [D′k, µ
′
k]θ
′, I),

• ∃ p, q. 1 � p � m. 1 � q � m′. Bp : [Ep, ψp] = +C : [Ep, ψp], B
′
q : [E ′q, ψ

′
q] =

−F : [D′q, ψ
′
q] and A = Cθ = Fθ′.

2. For all r, r′ and θ, θ′, satisfying condition 1 above, (r, θ) ∈ ins and (r′, θ′) ∈ del.

A tuple (i, A, ins, del) ∈ conflicts(P, I) is called a conflict.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 657

To solve conflicts, a parametric conflict resolution policy is introduced. Such a

policy specifies, for each conflict, which update must prevail.

Definition 30 (Conflict resolution policy)

Given an AmAU-Datalog extensional database EDB, a set of rules P , an ri-

interpretation I and a conflict c, we define sel(EDB, P , I, c) as a total function with

range {insert, delete}.

The intended meaning of sel(EDB, P , I, (i, A, ins, del)) is to choose whether atom

A, object of the conflict, should be inserted in or deleted from I , thus effectively

choosing which of the conflicting update requests should prevail. Note that the

selection function cannot require the insertion and the deletion of the same atom,

since for each ground atom only one conflict can exist.

Gottlob et al. (1996) present a number of commonly adopted policies, and discuss

their advantages and disadvantages. We briefly recall here some of them. The

principle of inertia states that both the conflicting updates should be discarded, thus

leaving EDB in the same state as before with respect to db :a (in our framework, this

can be obtained by returning insert if db :a was already in EDB, delete otherwise).

The source priority policy determines which update should prevail according to

which database the rules requesting such updates come from (in our framework,

this can be obtained by using the mapping f which establishes the relation between

rules and databases of our system). The rule priority policy, found in systems such

as Ariel (Hanson, 1996), Postgres (Stonebraker et al., 1990) and Starburst (Widom

and Finkelstein, 1990), assumes that each rule has a (static or dynamic) priority

associated with it; sel returns insert or delete as needed to preserve the update

requested by the highest-priority rule. Other policies, like voting schemes or user

queries, are also reasonable, but the final choice is left to the particular application.

Based on the result of the sel policy, we prevent the rule instances in one of

the two sets of a conflict from firing, by blocking them according to the following

definition. Blocked rule instances will then be used in the next subsection to specify

how active rule computation takes place.

Definition 31 (Blocked rule instances)

Given an AmAU-Datalog extensional database EDB, a set of rules P , a conflict

resolution policy sel, and an ri-interpretation I , let

X = {del | (i, A, ins, del) ∈ conflicts(P , I) and

sel(EDB, P , I, (i, A, ins, del)) = insert}
Y = {ins | (i, A, ins, del) ∈ conflicts(P , I) and

sel(EDB, P , I, (i, A, ins, del)) = delete}.

We define

blocked(EDB, P , I, sel) =
(⋃

x∈X x
) ⋃ (⋃

y∈Y y
)
.

We block an entire rule instance, rather than a single update, so that the set of

updates requested by the same rule instance exhibits an atomic behavior: either all

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

658 E. Bertino et al.

the updates in the set are executed, or no update at all. This avoids the risk of

making the database inconsistent due to partially-executed actions.

Example 13

Consider the AmAU-Datalog active rules presented in Example 12 and let I be an

ri-interpretation such that: +p2(a, b) : [1, 1] ∈ I, p1(a, b) : [1, 0.75] ∈ I .
In this situation, both r and s are triggered by I since all their event-condition

atoms are valid in I and a conflict C = (1, p1(a, b), {(r, ∅)}, {(s, ∅)}) arises. If we assume

that the conflict resolution function privileges deletions, we block the rule instance r,

obtaining blocked(EDB, P , I, sel) = {r}. ♦

4.3 Computation

Using the above concepts, given a set of AmAU-Datalog rules P , a set of blocked rule

instances B, and an ri-interpretation I , we define an immediate consequence operator

over ri-interpretations ΓP ,B(I), similarly to other bottom-up operators defined in the

logic programming context. However, differently from them, some rules may not be

fired during the computation, even if their body is valid, due to the blocked set of

rules.

In performing such a computation, we have to consider not only active rules

but also deductive rules, since we have to check validity of both the event and the

condition part of active rules. In particular, the following aspects should be taken

into account:

• conditions should be checked by taking into account the requested updates;

• the resolution of a condition should not affect the state of the system.

While the first condition is assured by the considered notion of validity (see

Definition 26), to fulfil the second condition we remove the update part from

the rules of the intensional databases by using the purification operation defined

below.

Definition 32 (Purification)

Given the intensional database IDB of an AmAU-Datalog program, we define its

purified version ÎDB as the set of rules

B1, . . . , Bm → H.

such that there exists in IDB a rule

H ← U1, . . . , Un, B1, . . . , Bm.

It is worth noting that a query is provable in ÎDBA ∪ EDBA if and only if it

is provable in IDBA ∪ EDBA, with the same computed answers. The purification

only avoids the side effects of the query evaluation. Also notice that we reversed the

direction of the arrow to have a uniform notation with active rules.

In the sequel, we generically use the term ‘rules’ to refer to both active and purified

amalgamated rules.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 659

Definition 33 (Immediate consequence operator)

Given a set of AmAU-Datalog rules P , a set of blocked rule instances B, and an

ri-interpretation I , we define ΓP ,B(I) as �U,9 where U is the smallest set satisfying

the following conditions:

1. I ⊆ U;

2. If r = A1 : [D1, µ1], . . . , An[Dn, : µn]→ B1 : [E1, ψ1], . . . , Bm : [Em, ψm], r ∈ P and

θ is a ground substitution such that

• (r, θ) �∈ B;

• valid(Ak : [Dk, µk]θ, I), k = 1, . . . , n, then {(B1 : [E1, ψ1])θ, . . . , (Bm :

[Em, ψm])θ} ⊆ U.

The main difference of the above operator with respect to the traditional immediate

consequence operator of logic programming is that it may happen that some of the

rules are not fired even if their body is valid, due to the blocked set of rules.

Moreover, such operator is monotonic but it is not continuous.10 Indeed, if we

consider an AmAU-Datalog program P without update atoms and active rules

and we let B = {}, then ΓP ,B coincides with RP . Thus, from Theorem 1, it follows

that ΓP ,B is not continuous. However, the following proposition shows that if P

is c-annotated, or the lattice is finite, ΓP ,B admits a fixpoint, reachable in a finite

number of steps.

Proposition 2

Let P be an AmAU-Datalog database and B a set of blocked rule instances. If T
is finite or P is c-annotated, operator ΓP ,B admits a fixpoint lfp(ΓP ,B) = ΓP ,B ↑ ω
and there exists k such that ΓP ,B ↑ ω = ΓP ,B ↑ k.

Proof

IfT is finite, the number of ri-interpretations is finite. Therefore ΓP ,B is a monotonic

operator over the finite lattice of ri-interpretations, ordered by ⊆+, where ⊆+ is the

usual containment between sets with the following exception: if I contains A : [D, µ],

then {A : [D, µ′]} ⊆+ I , for all µ′ � µ. Thus, it is also continuous and the thesis

follows. If P is c-annotated, it is also acceptable and lfp(ΓP ,B) = ΓP ,B ↑ ω follows

from a reasoning similar to that presented in the proof of Lemma 1. Moreover,

since annotations are fixed, the number of terms that can be constructed over the

base language is finite, and rules are range restricted, thus there exists k such that

ΓP ,B ↑ ω = ΓP ,B ↑ k. �

In general, the application of the function ΓP ,B to a consistent ri-interpretation

does not return a consistent ri-interpretation, as shown in Bertino et al. (1998).

Therefore, even under the conditions presented in Proposition 2, we cannot compute

the semantics of P as the least fixpoint of ΓP ,B . We must instead appropriately select

rules, that is, we must build a set of blocked rules B such that the least fixpoint

of ΓP ,B is consistent. Thus, instead of dealing with ri-interpretations, the notion of

9 �U = {A : [D, µ]|A : [D, µ1], . . . , A : [D, µn] ∈ U and �iµi = µ}.
10 In Active U-Datalog, a similar operator has been defined which is continuous (Bertino et al., 1998).

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

660 E. Bertino et al.

bi-structures is introduced, as in Gottlob et al. (1996), to take blocked rules into

account during the computation.

Definition 34 (Bi-structures)

A bi-structure 〈B, I〉 consists of a set B of rule groundings and of an ri-interpretation

I . We define an order relation on bi-structures as follows:

〈B, I〉 ≺ 〈B′, I ′〉 def⇔
{
B ⊂ B′ or

B = B′ and I ⊂+ I ′

Given A and B bi-structures, A � B ≡ (A = B∨A ≺ B).

On this domain, we can define an operator having a fixpoint, that is used to

compute the semantics of the active part.

Definition 35 (∆ operator)

Given a set of AmAU-Datalog rules P , a bi-structure 〈B, I〉 and a conflict resolution

policy sel, we define

∆P ,sel(〈B, I〉) =

{
〈B,ΓP ,B(I)〉 if ΓP ,B(I) is consistent;

〈B ∪ blocked(Ie, P , I, sel), Ie〉 otherwise.

where Ie is the set of the extensional amalgamated atoms contained in I , that is:

Ie = {A : [D, µ] ∈ I | pred(A) ∈ Πe}.

The definition of ∆ we give here differs from the original in Gottlob et al. (1996)

because the set of rules P contains not only rules with updates in the right hand

side (properly active rules), but also purified rules that allow us to derive intensional

knowledge rather than new updates. Notice that this extension does not affect the

consistency of ri-interpretations, since the purified rules can only add amalgamated

(Πi,Σ, V)-atoms to the ri-interpretation.

The intuitive idea of the ∆ operator is that, if no conflict arises, ∆ does not

change the blocked rule set B, and only the ri-interpretation of the bi-structure is

changed by adding the immediate consequences of the non blocked rules. On the

other hand, as soon as a conflict arises, the conflict is solved via the resolution

policy sel and all blocked rule instances are collected. Then, the computation of ∆ is

started again from the ri-interpretation Ie with the augmented set of blocked rules.

The ri-interpretation Ie represents the set of the extensional atoms of the database,

and we have to resort to it to be sure that the starting point of the new computation

does not contain atoms whose validity depends on actions of rule instances that are

now blocked.

In order to define a semantics based on the ∆ operator, we must be sure that a

fixed point of ∆ exists. However, as shown in Bertino et al. (1998), ∆ in general is

not continuous, due to the non-continuity of ΓP ,B and to function blocked, which

in turns depends on an arbitrary function sel and is not monotonic. Therefore, we

cannot prove that ∆ has a fixpoint by using the fixpoint theorem. However, if the

program is c-annotated or if the lattice is finite, it is possible to prove the following

result.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 661

Proposition 3

Let P be a set of AmAU-Datalog rules, sel a conflict resolution policy, D = 〈B, I〉 a

bi-structure, I a set of ground amalgamated extensional atoms. Suppose that either

P is c-annotated or the lattice is finite. The following statements hold:

1. D � ∆P ,sel(D),

2. ∆ωP ,sel(D) is a fixpoint of ∆P ,sel and there exists k such that ∆ωP ,sel(D) =

∆kP ,sel(D).

Proof

1. Let ∆P ,sel(D) = 〈B′, I ′〉. If I ′ is consistent, then B′ = B and I ′ = ΓP ,B(I) ⊇+ I

by definition of Γ; hence 〈B, I〉 � 〈B′, I ′〉. If instead I ′ is not consistent, then

B′ = B ∪ blocked(EDB, P , I, sel) ⊇ B and so we have again 〈B, I〉 � 〈B′, I ′〉.
2. By statement 1, for all natural numbers n, we have

∆nP ,sel(D) � ∆P ,sel

(
∆nP ,sel(D)

)
.

Now suppose that the lattice is finite. Under this hypothesis, bi-structures are

finite and form a complete lattice. Hence, {∆iP ,sel(D)}i∈� is a chain in the cpo

of the bi-structures. Since such a cpo is finite, every chain consists of a finite

number of elements. Therefore

∃k . ∀n � k .∆nP ,sel(D) = ∆n+1
P ,sel(D).

We can conclude that ∆kP ,sel(D) is a fixpoint of ∆P ,sel. If the lattice is not finite

but P is c-annotated, it follows that: (i) the number of possible sets of blocked

instances is finite, since annotations are fixed, the number of terms that can be

constructed over the base language is finite, and rules are range restricted; (ii)

due to Proposition 2, ΓP ,B admits a fixpoint lpf(ΓP ,B) = ΓP ,B ↑ ω = ΓP ,B ↑ k1.

From fact (i), it follows that there exists k2 such that for all h � k2 ∆k2

P ,sel(D) =

〈B, I〉, ∆hP ,sel(D) = 〈B, I ′〉 and I ′ ⊆+ I . From (ii) and the definition of ∆, we

obtain the thesis. �

The next theorem shows that we can find a set of blocked rules B such that the

least fixpoint of ΓP ,B is a consistent ri-interpretation.

Theorem 5

Let P be a set of AmAU-Datalog rules, sel a conflict resolution policy, D = 〈B, I〉 a

bi-structure, I a set of ground amalgamated extensional atoms. Suppose that either

P is c-annotated or the lattice is finite. Then, there exists k such that ∆kP ,sel(D) is a

fixpoint of ∆P ,sel and if ∆kP ,sel(D) = 〈B′, I ′〉, then I ′ = lfpI (ΓP ,B′)
11 and I ′ is

consistent. Moreover, it contains a minimal set of blocked rule groundings.

Proof

First we notice that if ∆P ,sel(〈B1, I1〉) = 〈B2, I2〉 then I1
⊥ = I2

⊥, that is the set of

ground extensional atoms is not modified by ∆. This follows from the definition of

∆P ,sel and from the fact that ΓP ,B can add only intensional and update atoms to an

11 lfpI (f) denotes the least fixpoint of f which is greater than or equal to I .

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

662 E. Bertino et al.

ri-interpretation. As a consequence, for all natural numbers n, if ∆nP ,sel(〈B1, I1〉) =

〈Bn+1, In+1〉 then I1
⊥ = In+1

⊥.

Since the ri-interpretation of A only consists of extensional atoms, then I⊥ = I .

By Lemma 3, ∆kP ,sel(A) is a fixpoint of ∆P ,sel. By definition of ∆ and by the above

remark, there exists i � k such that ∆i
P ,sel(D) = 〈B′, I〉. Then for all j such that

i � j � k, we have ∆jP ,sel(D) = 〈B′,Γj−iP ,B′(I)〉, because B′ does not increase. Since

∆kP ,sel(D) = 〈B′, I ′〉 = 〈B′,Γk−iP ,B′(I)〉 is a fixpoint, then 〈B′,Γk−iP ,B′(I)〉 = 〈B′,Γk−i+1
P ,B′ (I)〉.

Therefore I ′ = lfpI (ΓP ,B′) and by definition of ∆, the set I ′ is consistent (otherwise

the set of blocked rules would be augmented).

To show that the computed set of blocked rules is minimal, suppose, by contra-

diction, that the computed set of blocked rule instances – say B – is not minimal.

This means that there exists a set of rule groundings R1 = {r1, . . . , rn} ∈ B and a set

of rule groundings R2 = {r′1, . . . , r′m}, m < n, R1 ∩R2 = ∅, such that lfpI (ΓP ,(B−R1)∪R2
)

is consistent. Two cases may arise:

• Suppose that R2 ⊆ B. This means that rule groundings in R1 does not lead to

any conflict. But this not possible, since they have been selected by using the

selection function.

• Suppose that R2 �⊆ B. This means that by blocking rule groundings in R1,

rule groundings in R2 cannot be generated. Now suppose not to block rule

groundings in R1. These rules have been selected by the selection function

and therefore they generate conflicts. Moreover, their generation does not

depend upon the generation of rule groundings in R2, therefore by blocking

rule groundings in R2, rule groundings in R1 are not blocked. This also means

that lfpI (ΓP ,(B−R1)∪R2
) cannot be consistent.

In both cases, we arrive to a contradiction, therefore the computed set of blocked

rule groundings in minimal. �

5 Integrating deductive and active semantics

In this section we show how the deductive and active semantics presented above fit

together and how the result of a transaction is computed.

We are interested in modeling as observable property of a transaction the following

information: the set of answers, the database state, and the result of the transaction

itself (i.e. Commit or Abort).

Definition 36 (Observables)

An observable is a triple 〈Ans,EDB ,Res〉 where Ans is a set of bindings, EDB is an

extensional database and Res ∈{Commit, Abort}. The set of observables is Oss.

The semantics presented in sections 3 and 4 does not include the execution of

the collected updates, neither considers the transactional behavior. We now define a

function which, given an i-interpretation and the current state of the system, returns

the next state obtained by executing the updates in the i-interpretation.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 663

Definition 37 (Updates incorporation)

Given an ri-interpretation I and a AmAU-Datalog extensional database EDB =

EDB1 ∪ · · · ∪ EDBn, we define

incorp(I,EDB) =
⋃
i

(EDBi\inc{A : [i, µ] | −A : [i, µ] ∈ I})
+⋃

{A : [i, µ] | +A : [i, µ] ∈ I}.

where A\incB is defined as in Definition 18. A\incB is defined as the usual set

difference with the following exception: if A contains D : [i, µ1] and B contains

D : [i, µ2], then:

• if µ1 < µ2, A\incB does not contain D : [i, µ1];

• if µ1 > µ2, A\incB contains D : [i, µ1].

Informally, update incorporation is based on the following rules. Suppose that an

annotated atom A1: [i, µ1] has to be inserted/deleted and EDBi already contains an

annotated atom A1: [i, µ2]. The following cases may arise:

• µ1 = µ2: the insertion of an already present fact is required, then the extensional

database does not change;

• µ1 > µ2: since the truth value of µ1 is stronger, the fact A : [i, µ1] prevails and

the new extensional database contains A : [i, µ1] in place of A : [i, µ2];

• µ1 < µ2: A : [i, µ2] is maintained since the truth value µ2 already includes

the truth value µ1, in other words the insertion of an already present fact is

required;

• µ1 and µ2 non comparable: A : [i, µ2] is replaced by A : [i,�{µ1, µ2}].

Now consider deletion:

• µ1 = µ2: the new extensional database does not contain the fact A : [i, µ2];

• µ1 > µ2: since the truth value of µ1 is stronger, the request of deletion prevails

and the new extensional database does not contain fact A : [i, µ2];

• µ1 < µ2: A : [i, µ2] is maintained since the truth value µ1 is not sufficiently

strong to delete such fact;

• µ1 and µ2 non comparable: since it is not possible to establish which of the

two values is the strongest, the extensional database is left unchanged.

The semantics of an AmAU-Datalog program can now be defined as follows.

Definition 38 (AmAUDatalog semantics)

Given an AmAU-Datalog program P, P = (S, DB1, . . . , DBn), a transaction T and a

conflict resolution policy sel, if P is c-annotated or the lattice is finite, the semantics

of a transaction T in P is denoted by the function Sem defined as

SemP,sel(T) =SIDB,AR,sel(T)(〈∅,EDB,Commit〉)

where the function SIDB,AR,sel(T) : Oss→ Oss is defined as follows:

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

664 E. Bertino et al.

If T is a simple transaction, then

SIDB,AR,sel(T)(〈α, ε, ρ〉) =

〈∅, ε,Abort〉 if ρ = Abort

〈Ans, incorp(I, ε),Commit〉 if ρ �= Abort

and U is ground

〈∅, ε,Commit〉 otherwise

where

Ans = α ◦ {bj | 〈bj , uj〉 ∈ Set(T , P)}, whereas ◦ is the concatenation operator

U =
⋃
{uj | 〈bj , uj〉 ∈ Set(T , P)}

〈B, I〉 = ∆ωΞ,sel(〈∅, ε〉)

Ξ = AR ∪ ÎDBP ∪ { → +A : [i, µ] | +A : [i, µ] ∈ U} ∪
{→ −A : [i, µ] | −A : [i, µ] ∈ U}.

If T is a complex transaction T1; . . . ;Tk (k � 2), then

SIDB,AR,sel(T1; . . . ;Tk)(Oss) = SIDB,AR,sel(T2; . . . ;Tk)(SIDB,AR,sel(T1)(Oss))

where T1, . . . , Tk are simple transactions.

To compute the semantics of a simple transaction, first we build the set of answers

in the marking phase (Definition 24). This step returns a set of bindings for the

variables (both in V and in V) of the transaction (Ans) and a set of amalgamated

updates (U) which are requested but which will not necessarily be executed. Then,

we gather rules in order to apply the ∆ operator (Definition 35).

Such a set of rules (Ξ) contains the rules in AR and the amalgamated updates

requested from the deductive part (U), represented as rules with neither event nor

condition. The updates in U become the initial events to which the active rules in

AR have to react.

To obtain the set of updates to be executed, we apply the ∆ operator starting

from an empty set of blocked rule instances and from the extensional database as

initial ri-interpretation. Theorem 5 assures that a fixpoint of ∆Ξ,sel is reached in a

finite number of steps by computing the approximations ∆iΞ,sel(〈∅, ε〉) and that the

ri-interpretation, I , in the resulting bi-structure is consistent. Finally, the new state of

the database is computed by incorporating the updates belonging to I in the current

state of the database, following Definition 37.

The semantics of a complex transaction is simply given by the sequential

composition of the semantics of its components. The state of the system is updated

after each simple transaction. Besides, we return a list of sets of answers, one for

each transaction composing the complex one.12

It is important to note that the proposed semantics generates abort only due to

media failures. As already noted, the answer set Set and the ∆ fixpoint are computed

in a finite number of steps, hence SemP,sel is computed in a finite number of steps.

12 We recall that in Active U-Datalog, only the answers of the last simple transaction are returned
(Bertino et al., 1998).

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 665

Example 14

Consider Example 3. To show how the semantics of AmAU-Datalog programs

works, consider the transaction T =? pblock(X) : [s, t], tblock(Y ,Z)[s, t], executed

against the amalgam presented in Example 6, whose fixpoint has been presented

in Figure 4. To make clearer the computation, we use a set-based representation

of ri-interpretations. In order to compute S emP,selA(T), suppose that our selection

function privileges deletions. Now, let Ξ = ÎDBA ∪ ARA ∪ USet(T ,A), where

USet(T ,A) represents the set of rules generated from the updates contained in

Set(T ,A), presented in Example 11, i.e.

USet(T ,A) = {→+over lv(s3):[1,t],→+over lv(s3):[2,t],→+over lv(s3):[3,t],

→+critical lv(s3):[1,t],→+critical lv(s3):[2,t],→+critical lv(s3):[3,t],

→+partial block(s3):[1,t],→+partial block(s3):[2,t],

→+partial block(s3):[3,t],→+total block(s1,s2):[1,t],

→+total block(s1,s2):[2,t],→+total block(s1,s2):[3,t] }
To compute the active semantics, we have to compute the fixpoint of

∆Ξ,selA(〈∅,EDBA〉). We let Ie = EDBA and we start by computing ΓΞ,∅(I
e):

ΓΞ,∅(I
e) = I1 = Ie ∪ { danger lv(s1):[1,t],danger lv(s2):[1,⊥],danger lv(s3):[1,t],

danger lv(s1):[2,⊥],danger lv(s2):[2,t],danger lv(s3):[2,t],

danger lv(s1):[3,t],danger lv(s2):[3,t],danger lv(s3):[3,t],

danger lv(s1):[{1,2},t],danger lv(s1):[{1,3},t],
danger lv(s1):[{2,3},t],danger lv(s2):[{1,2},t],
danger lv(s2):[{1,3},t],danger lv(s2):[{2,3},t],
danger lv(s3):[{1,2},t],danger lv(s3):[{1,3},t],
danger lv(s3):[{2,3},t],danger lv(s1):[{1,2,3},t],
danger lv(s2):[{1,2,3},t],danger lv(s3):[{1,2,3},t],
tblock(s1,s2):[s,t],

.

+over lv(s3):[1,t],+over lv(s3):[2,t],+over lv(s3):[3,t],

+critical lv(s3):[1,t],+critical lv(s3):[2,t],+critical lv(s3):[3,t],

+partial block(s3):[1,t],+partial block(s3):[2,t],

+partial block(s3):[3,t],+total block(s1,s2):[1,t],

+total block(s1,s2):[2,t],+total block(s1,s2):[3,t] }

Since I1 is consistent, we let ∆Ξ,selA(〈∅,EDBA〉) = 〈{}, I1〉. The computation con-

tinues by computing ΓΞ,∅(I1), obtaining the following set:

ΓΞ,∅(I1) = I2 = I1 ∪ { block(s3):[s,t],

-partial block(s3):[1,t],-partial block(s3):[2,t],

-partial block(s3):[3,t] }

At this step, a conflict has been generated, since there is the request of both in-

serting and deleting atoms partial block(s3):[1,t], partial block(s3):[2,t],

and partial block(s3):[3,t]. The conflicts related to these updates are the

following:

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

666 E. Bertino et al.

• C1 = (1, partial block(s3), {(r1, ∅)}, {(r2, {X ← s1, Y ← s2, Z ← 1,W ← s3,

V ← t})})
where r1 is the rule → +partial block(s3):[1,t] and r2 is the rule

+total block(X,Y):[Z,t],

partial block(W):[Z,V]→-partial block(W):[Z,V].

• C2 = (2, partial block(s3), {(r3, ∅)}, {(r4, {X ← s1, Y ← s2, Z ← 2,W ← s3,

V ← t})})
where r3 is the rule → +partial block(s3):[2,t] and r4 is the rule

+total block(X,Y):[Z,t],

partial block(W):[Z,V]→-partial block(W):[Z,V].

• C3 = (3, partial block(s3), {(r5, ∅)}, {(r6, {X ← s1, Y ← s2, Z ← 3,W ← s3,

V ← t})})
where r5 is the rule → +partial block(s3):[3,t] and r6 is the rule

+total block(X,Y):[Z,t],

partial block(W):[Z,V]→-partial block(W):[Z,V].

Since we assume that the conflict resolution functions privileges deletions, we set

B′ = blocked(Ie,Ξ, I2, selA) = {(r1, ∅), (r3, ∅), (r5, ∅)} and we obtain ∆Ξ,selA(〈{}, I1〉) =

〈B′, Ie〉. We have now to compute ΓΞ,B′(I
e), obtaining the following set:

ΓΞ,B′(I
e) = I ′1 = Ie∪{ danger lv(s1):[1,t],danger lv(s2):[1,⊥],danger lv(s3):[1,t],

danger lv(s1):[2,⊥],danger lv(s2):[2,t],danger lv(s3):[2,t],

danger lv(s1):[3,t],danger lv(s2):[3,t],danger lv(s3):[3,t],

danger lv(s1):[{1,2},t],danger lv(s1):[{1,3},t],
danger lv(s1):[{2,3},t],danger lv(s2):[{1,2},t],
danger lv(s2):[{1,3},t],danger lv(s2):[{2,3},t],
danger lv(s3):[{1,2},t],danger lv(s3):[{1,3},t],
danger lv(s3):[{2,3},t],danger lv(s1):[{1,2,3},t],
danger lv(s2):[{1,2,3},t],danger lv(s3):[{1,2,3},t],
tblock(s1,s2):[s,t],

.

+over lv(s3):[1,t],+over lv(s3):[2,t],+over lv(s3):[3,t],

+critical lv(s3):[1,t],+critical lv(s3):[2,t],+critical lv(s3):[3,t],

+total block(s1,s2):[1,t],

+total block(s1,s2):[2,t],+total block(s1,s2):[3,t] }

Since I ′1 is consistent, we let ∆Ξ,selA(〈B′, Ie〉) = 〈B′, I ′1〉. The computation continues

by computing ΓΞ,B′(I
′
1), obtaining the following set:

ΓΞ,B′(I
′
1) = I ′2 = I ′1 ∪ { pblock(s3):[s,t],

-partial block(s3):[1,t],-partial block(s3):[2,t],

-partial block(s3):[3,t] }

Since I ′2 is consistent, we let ∆Ξ,selA(〈B′, I ′1〉) = 〈B′, I ′2〉. It is possible to prove

that additional iterations do not generate any new constrained atom, therefore

∆ωΞ,selA(〈{},EDBA〉) = 〈B′, I ′2〉. From this, we obtain

SemP ,selA(T) = 〈X ← s3, Y ← s1, Z ← s3,EDB′A,Commit〉

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 667

where EDB′A = incorp(I ′2,EDBA) and:

incorp(I ′2,EDBA) = { sensor

(s1):[1,t],sensor(s2):[1,⊥],sensor(s3):[1,t],over lv(s1)[1,t],

critical lv(s1):[1,t],sensor(s1):[2,⊥],sensor(s2):[2,t],

sensor(s3):[2,t],over lv(s2)[2,t],critical lv(s2):[2,t],

sensor(s1):[3,t],sensor(s2):[3,t],sensor(s3):[3,t],

over lv(s3):[1,t],over lv(s3):[2,t],over lv(s3):[3,t],

critical lv(s3):[1,t],critical lv(s3):[2,t],critical lv(s3):[3,t],

total block(s1,s2):[1,t],total block(s1,s2):[2,t],

total block(s1,s2):[3,t] } ♦

6 Conclusions and future work

In this paper, we defined a logical framework for modeling queries, updates and

update propagation against a set of heterogeneous knowledge bases. The framework

has been obtained by extending the amalgamated knowledge base framework

proposed in Subrahmanian (1994) to deal with updates and updates propagation. To

this purpose, the local databases and the mediator have been modeled as Annotated

Active U-Datalog databases. In this way, each local source and the mediator are

composed of a set of ground facts, a set of deductive rules and a set of active

rules, whose semantics has been defined according to the PARK semantics proposed

in Gottlob et al. (1996). A fixpoint semantics for the proposed language has also

been proposed, extending those presented in Subrahmanian (1994) and Bertino

et al. (1998).

This work can be extended in several ways. A first important question concerns

the definition and analysis of properties concerning the execution of distributed

queries, transactions and active rules. Another important issue is the extension

of AmAU-Datalog with negation in deductive rules and the definition of proper

semantics. Finally, an additional important direction concerns the extension of the

proposed language to model not only integration but also cooperation among

the various sources. To this purpose, we plan to integrate the capabilities of the

proposed framework with those of Heterogeneous U-Datalog Bertino et al. (2000),

by providing each local sources with the ability to communicate and exchange

information with other sources. The result would be a framework for integrating

knowledge bases in a fully static, dynamic, and cooperative way.

References

Arens, Y., Chee, C. Y., Hsu, C. N. and Knoblock, C. A. (1993) Retrieving and integrating

data from multiple information sources. International Journal on Intelligent and Cooperative

Information Systems , 2(2), 127–158.

Arens, Y., Knoblock, C. A. and Shen, W. (1996) Query reformulation for dynamic information

integration. Journal of Intelligent Information Systems, Special Issue on Intelligent Informa-

tion Integration, 6(2&3), 99–130.

Arens, Y., Hsu, C. N. and Knoblock, C. A. (1996) Query processing in the SIMS information

mediator. In: Tate, A. (editor), Advanced Planning Technology , pp. 61–69. AAAI Press.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

668 E. Bertino et al.

Beeri, C., Levy, A. Y. and Rousset, M. C. (1997) Rewriting queries using views in description

logics. In: Yuan, L. (editor), Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems , pp. 99–108. ACM Press.

Bertino, E., Martelli, M. and Montesi, D. (1997) Transactions and updates in deductive

databases. IEEE Transactions on Knowledge and Data Engineering , 9(5), 784–797.

Bertino, E., Catania, B., Gervasi, V. and Raffaetà, A. (1998) Active-U-Datalog: Integrating

active rules in logical update languages. In: Decker, H., Freitag, B., Kifer, M. and Voronkov,

A. (editors), Transactions and Change in Logic Databases, Lecture Notes in Computer Science

1472 , pp. 107–133. Springer-Verlag.

Bertino, E., Catania, B., Gervasi, V. and Raffaetà, A. (2000) A logical approach to cooperative

information systems. Journal of Logic Programming , 43(1), 15–48.

Borgida, A. (1995) Description logics in data management. IEEE Transactions on Data and

Knowledge Engineering , 7(5), 671–682.

Bowen, K. and Kowalski, R. (1982) Amalgamating language and metalanguage in logic

programming. In: Clark, K. L. and Tarnlund, S. A. (editors), Logic Programming , pp. 153–

172. Academic Press.

Bukhres, O. A. and Elmagarmid, A. (1996) Object-Oriented Multidatabase Systems: A Solution

for Advanced Applications . Prentice-Hall.

Chawathe, S. S., Garcia-Molina, H. and Widom, J. (1996) A toolkit for constraint management

in heterogeneous information systems. In: Su, S. Y. W. (editor), Proceedings of the 12th

International Conference on Data Engineering , pp. 56–65. IEEE Press.

Ceri, S. and Widom, J. (1993) Managing semantic heterogeneity with production rules and

persistent queues. In: Agrawal, R., Baker, S. and Bell, D. A. (editors), Proceedings of the

International Conference on Very Large Data Bases , pp. 108–119. Morgan Kaufmann.

Do, L. and Drew, P. (1995) Active database management of global data integrity constraints in

heterogeneous database environments. In: Yu, P. S. and Chen, A. L. P. (editors), Proceedings

of the International Conference on Data Engineering , pp. 99–108. IEEE Press.

Eiter, T., Subrahmanian, V. S. and Pick, G. (1999) Heterogeneous Active Agents, I: Semantics.

Artificial Intelligence, 108(1–2), 179–255.

Elmagarmid, A. (1993) Database Transaction Models for Advanced Applications. Morgan

Kaufmann.

Fagin, R., Kuper, G., Ullman, J. D. and Vardi, M. Y. (1986) Updating logical databases.

Advances in Computing Research , 3, 1–18.

Fagin, R., Ullman, J. D. and Vardi, M. Y. (1983) On the Semantics of Updates in Databases.

Proceedings of the ACM SIGACT-SIGMOD-SIGART International Symposium on Principles

of Database Systems , pp. 352–365. ACM Press.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J. D.,

Vassalos, V. and Widom J. (1997) The TSIMMIS approach to mediation: data models and

languages. Journal of Intelligent Information Systems , 8(2), 117–132.

Gottlob, G., Moerkotte, G. and Subrahmanian, V. S. (1996) The PARK semantics for active

rules. Proceedings of the Fifth International Conference on Extending Database Technology,

Lecture Notes in Computer Science 1057 , pp. 35–55. Springer Verlag.

Grant, J., Litwin, W., Roussopoulos, N. and Sellis, T. (1991) An algebra and a calculus

for relational multidatabase systems. Proceedings of the First International Workshop on

Interoperability in Multidatabase Systems , pp. 118–124. IEEE Press.

Gupta, A., Reddy, M. P. and Siegel, M. (1993) Towards an active schema integration

architecture for heterogeneous database systems. In: Schek, H. J., Sheth, A. P. and Czejdo,

B. D. (editors), Proceedings of the IEEE International Workshop on Research Issues in Data

Engineering: Interoperability in Multidatabase Systems (RIDE-IMS93), pp. 178–183.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

Introducing dynamic behavior in amalgamated knowledge bases 669

Hanson, E. (1996) The design and implementation of the Ariel active database rule system.

IEEE Transactions on Knowledge and Data Engineering , 8(1), 157–172.

Kifer, M. and Subrahmanian, V. S. (1992) Theory of generalized annotated logic programming

and its applications. Journal of Logic Programming , 12(4), 335–368.

Jennings, N. R. and Woldridge, M. (1996) Software agents. IEEE Review , 17–20.

Levy, A. Y., Rajaraman, A. and Ordille, J. J. (1996) Querying heterogeneous information

sources using source descriptions. In: Vijayaraman, T., Buchmann, A., Mohan, C. and Sarda,

N. (editors), Proceedings of the Twenty-second International Conference on Very Large Data

Bases , pp. 251–262, Morgan Kaufmann.

Lu, J., Nerode, A. and Subrahmanian, V. S. (1996) Hybrid knowledge bases. IEEE Transactions

on Knowledge and Data Engineering , 8(5), 773–785.

Schek, H. J., Sheth, A. and Czejdo, B. (editors) (1993) Proceedings IEEE International

Workshop on Research Issues in Data Engineering: Interoperability in Multidatabase Systems

(RIDE-IMS93). IEEE Computer Society.

Stonebraker, M., Jhingran, A., Goh, J. and Potamianos, S. (1990) On rules, procedures, caching

and views in data base systems. In: Molina, H. G. and Jagadish, H. V. (editors), Proceedings

of the ACM SIGMOD Conference on Management of Data , pp. 281–290. ACM Press.

Subrahmanian, V. S. (1987) On the semantics of quantitative logic programs. Proceedings of

the 4th IEEE Symposium on Logic Programming , pp. 173–182. Computer Society Press.

Subrahmanian, V. S. (1989) A simple formulation of the theory of metalogic programming.

In: Abramson, H. and Rogers, M. (editors), Meta-Programming in Logic Programming ,

pp. 65–101. MIT Press.

Subrahmanian, V. S. (1994) Amalgamating knowledge bases. ACM Transactions on Database

Systems , 19(2), 291–331.

Subrahmanian, V. S. et al. (1996) HERMES: A Heterogeneous Reasoning and Mediator

System. Available from: http://www.cs.umd.edu/projects/hermes/overview/paper.

Whang, W. K., Navathe, S. B. and Chakravarthy, S. (1991) Logic-based approach for

realizing a federated information system. In: Proceedings First International Workshop on

Interoperability in Multidatabase Systems , pp. 92–100. IEEE Press.

Widom, J. and Finkelstein, S. (1990) Set-oriented production rules in relational databases. In:

Molina, H. G. and Jagadish, H. V. (editors), Proceedings of the ACM SIGMOD Conference

on Management of Data , pp. 259–270. ACM Press.

Wiederhold, G. (1992) Mediators in the architecture of future information systems. IEEE

Computer , 25, 38–49.

Zicari, R., Ceri, S. and Tanca, L. (1991) Interoperability between a rule-based database

language and an object-oriented language. In: Kambayashi, Y. and Rusinkiewicz, M.

(editors), Proceedings First International Workshop on Interoperability in Multidatabase

Systems, pp. 125–135. IEEE Press.

https://doi.org/10.1017/S1471068402001588 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001588

