
RESEARCH NOTE

Using screeners to measure respondent attention on
self-administered surveys: Which items and how many?

Adam J. Berinsky1, Michele F. Margolis2* , Michael W. Sances3 and Christopher Warshaw4

1Department of Political Science, MIT, Cambridge, USA, 2Department of Political Science, University of Pennsylvania,
Philadelphia, USA, 3Department of Political Science, Temple University, Philadelphia, USA and 4Department of Political
Science, George Washington University, Washington, USA
*Corresponding author. Email: mmargo@sas.upenn.edu

(Received 15 February 2019; revised 6 August 2019; accepted 2 September 2019; first published online 12 November 2019)

Abstract
Inattentive respondents introduce noise into data sets, weakening correlations between items and increas-
ing the likelihood of null findings. “Screeners” have been proposed as a way to identify inattentive respon-
dents, but questions remain regarding their implementation. First, what is the optimal number of
Screeners for identifying inattentive respondents? Second, what types of Screener questions best capture
inattention? In this paper, we address both of these questions. Using item-response theory to aggregate
individual Screeners we find that four Screeners are sufficient to identify inattentive respondents.
Moreover, two grid and two multiple choice questions work well. Our findings have relevance for applied
survey research in political science and other disciplines. Most importantly, our recommendations enable
the standardization of Screeners on future surveys.

Keyword: Survey methodology

1. Introduction
In order to ensure that respondents pay attention on self-administered surveys, researchers fre-
quently use “Screener” questions to identify inattentive respondents (Oppenheimer et al., 2009;
Meade and Craig, 2012; Berinsky et al., 2014). By instructing respondents to select a specific,
otherwise atypical response to demonstrate their attention, these questions effectively reveal
the proportion of respondents who do not read questions carefully. Using this method,
Berinsky et al. (2014) show that as many as 40 percent of respondents will fail Screener questions,
and that attentive and inattentive individuals respond to the same stimuli in very different ways.1

While Screeners hold great potential for identifying inattentive respondents, questions remain
regarding their implementation. First, what is the optimal number of Screeners for identifying
inattentive respondents? Berinsky et al. (2014) present evidence that a single Screener measures
attention with error and ultimately argue for an “additive scale based on multiple measures”
(747). Thus,multiple questions are needed.However, it is currently unclear just howmany questions
are necessary—and thus how much survey time researchers should allocate—for a useful scale.

Second, what types of Screener questions best capture inattention? Existing work offers a
plethora of potential Screeners that vary both in content—for instance, questions about a respon-
dent’s favorite color, current mood, or interest in politics—and form—such as stand-alone ques-
tions that instruct respondents to choose a given option or perform a specific task (Oppenheimer
et al., 2009; Berinsky et al., 2016) or attention checks that appear within a grid or among a battery

© The European Political Science Association 2019.

1While others refer to these sorts of questions as Instructional Manipulation Checks, or IMCs (Oppenheimer et al., 2009;
Hauser and Schwarz 2015), we will refer to questions that measure attentiveness as Screeners.
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of questions (Kung et al., 2018). The dozens of political science articles that have been published
since 2014 that use Screeners have employed them in an ad hoc way, raising concerns about gen-
eralizability and replicability.

In this paper, we examine how to best capture survey attentiveness using a relatively small set of
survey questions. We provide general guidance for the kinds of 10–20 min self-administered
Internet surveys now common in political science research.We show it is possible to accurately cap-
ture survey attentiveness using only two stand-alone multiple choice Screener questions and two
simpler true/false questions within a grid. Moreover, our results highlight that while stand-alone
Screeners are well equipped to distinguish between respondents at the top of the attentiveness spec-
trum, grid Screeners are better able to do so among respondents with low levels of attention. Finally,
we make general recommendations for applied researchers interested in using a standard attentive-
ness scale. Though this advice is primarily aimed at scholars using a 10–20 min online survey, these
guidelines can be adapted to other surveys as well. Our purpose here is to advance a measurement
approach to gauge attentiveness reliably in as short a scale as is feasible.

2. Data and methods
We use the two-parameter item response theory (IRT) model (Clinton et al., 2004; Van der
Linden, 2005) to measure respondents’ latent attentiveness on surveys.2 This model characterizes
each Screener response yij∈ {0, 1} as a function of subject i’s latent attentiveness (θi), the difficulty
(αj), and discrimination (βj) of item j, where

Pr[yij = 1] = F(bjui − aj) (1)

where Φ is the standard normal CDF (Jackman, 2009; Fox, 2010).3 We estimate the IRT model
using the ideal function in the pscl R package (Jackman, 2010). We identify the attentiveness
estimates by post-processing them to have a standard normal distribution.

While a greater number of screener items facilitate more accurate measures of attentiveness
(Berinsky et al., 2014), researchers are rarely able to include a large number of screeners in
their surveys. In order to evaluate an optimal set of screener items to measure attentiveness,
we draw from optimal test theory (van der Linden, 1998; Tausanovitch and Warshaw, 2012;
Montgomery and Cutler, 2013). Specifically, we seek to maximize Fisher’s Information for a
given scale. Under this framework, the contribution of a given item to our level of certainty at
a particular value of attentiveness, θi, can be determined by evaluating Fisher’s Information for
the item at that value (Bimbaum, 1968; Van der Linden, 2005):

IIFj(u) = b2
j ∗ p ∗ q (2)

2A three-parameter IRT model would also be a reasonable way to fit models of attentiveness. This could account for gues-
sing behavior and confusion about the instructions for an item, as opposed to inattentiveness, on individual items. However,
we obtain similar results using a two-parameter IRT model and a three-parameter one. Due to its greater simplicity and the
fact that the results are very similar across models, we focus on the two-parameter IRT model in the remainder of our ana-
lysis. Also, following past literature, our IRT model measures attentiveness on a uni-dimensional scale. We evaluated the val-
idity of this model using exploratory factor analysis. We found that there is a clear drop-off in explanatory power between the
first principal component and higher-order ones. This suggests that it is reasonable to summarize attentiveness with a single
latent trait.

3An IRT model has a number of advantages over additive and factor-analytic models. First, unlike these approaches, an
IRT model allows users to characterize measurement error in their estimates (Treier and Hillygus, 2009). Second, conven-
tional factor analysis can produce biased estimates of latent variables with binary indicators (Kaplan, 2004). Third, IRT mod-
els can easily handle missing data if a particular respondent does not answer all the screener questions. However, a
factor-analytic model will generally yield similar estimates of attentiveness as our model for respondents with non-missing
Screener responses.
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where p =Φ(βjθ− αj) and q = 1−p. This is referred to as the Item Information Function (IIF).
The Test Information Function (TIF) for a set of items is simply the sum of the individual
IIFs (Van der Linden, 2005, 16–17). We use the IIF as means of selecting items and the TIF
as a way of comparing sets of items.

Scholars may want to maximize information across the entire range of attentiveness. Van der
Linden (2005) shows that this can be done by maximizing the TIF for a small set of uniformly
distributed points in the range of attentiveness, θ. Since the TIF is an additive function of the IIFs,
this requires only that we calculate the values of the IIF at each of these points, and choose the
items with the highest sum of these values.

Alternatively, we may also want to discriminate between low and medium/high attention
respondents—that is, between shirkers and workers (see Van der Linden, 2005, 22–22). For
example, we might want to just separate respondents in the bottom quartile of the range of atten-
tiveness from the rest of the respondents. To do this, we can maximize the TIF at a value in the
lower end of the attentiveness spectrum. This gives the optimal set of items to separate low atten-
tiveness respondents—aka, shirkers—from the rest of the respondents.

To examine how to best capture attentiveness using a small set of survey questions, we con-
ducted a nationally diverse online survey of 2,526 Americans via Survey Sampling
International (SSI) in August 2016. The survey included eight Screeners. Following Berinsky
et al. (2014), four of these items were Screeners asking about favorite colors, the most important
problems facing the country, news web sites, and newspaper sections. Each of these Screeners is
stand-alone—the Screener question is the only question to appear on the page—which has been
the traditional way of asking Screener questions to date. We show screenshots of these questions
in the online Appendix A.

We embedded the four remaining Screeners in question grids alongside other questions. The
purpose of these grid Screeners was to explore the feasibility of increasing the total number of
Screeners asked while taking up less space. We presented subjects with two grids of questions
over the course of the survey. For each row in the grid, a respondent was presented with a (ran-
domly ordered) statement with which they could agree strongly, agree, neither agree nor disagree,
disagree, or disagree strongly. Along with sincere attitudinal questions such as whether the federal
government should guarantee health insurance and whether gays and lesbians should have the
right to marry, the first grid included two Screener statements that have a single right answer:
that World War I came after World War II; and an instruction to “Please check ‘neither agree
nor disagree”’. The second grid similarly contained two Screener statements—“Obama was the
first president” and “Two is greater than one”—amid the sincere attitudinal statements.

3. Results
As a benchmark, we first measure attentiveness using all eight items. Table 1 shows the results.
First, it shows the percentage of people that got each item right. It also shows the “discrimination”
parameter for each item, βj, which captures the degree to which respondents’ latent attentiveness
affects the probability of a correct answer on each question. If βj is 0, then questionj tells us noth-
ing about attentiveness. In addition, it shows the difficulty parameter for each item, αj, which
indicates how hard an item is to get right. Finally, it shows how much information each individ-
ual Screener item provides about the full attentiveness scale, as well as for high and low attentive-
ness respondents.4

The top four survey items in Table 1 are traditional, stand-alone Screeners. These items have
relatively low passage rates, ranging from 25 to 58 percent, and the high difficulty parameter

4We use Equation (2) to estimate the level of information for low-attention respondents (one standard deviation below the
mean), and high-attention respondents (one standard deviation above the mean). Online Appendix D graphically displays the
IIFs for each item.
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values for these questions suggest even relatively attentive respondents failed some of these
Screeners. That said, these questions all discriminate well on the latent scale, and they each con-
tribute a good deal of information to the full scale. The high difficulty of stand-alone Screeners
means they do a good job of discriminating between those with moderate and high levels of atten-
tion but are unable to distinguish among respondents at the bottom range of attentiveness (see
online Appendix D).

In contrast, the four grid items all have relatively high passage rates—ranging from 61 to 90
percent. The low difficulty parameters confirm that only inattentive people failed many of
these Screeners. While these items do not contribute as much information to the full attentive-
ness scale (or at the top end of the range of attentiveness) as the stand-alone Screeners, they do
discriminate very well between people at the low end of the scale (since these are the people that
tend to fail the grid items). Examining the IIF for the low-attentiveness respondents in the last
column, we see that all four grid Screeners contribute more information at the low end of the
scale than the website, most important problem, and section of the newspaper stand-alone
Screeners.5

Next we evaluate the validity of various scales that combine multiple screener items. First, we
evaluate the full scale with all eight Screener items. Next, we evaluate scales that use the four trad-
itional Screeners or the four grid Screeners. The scale with only the four stand-alone Screeners is
likely to do a good job discriminating among high attention respondents, but a poor job at dis-
criminating among low attention respondents. Conversely, the scale with only the four grid
Screeners is likely to do a good job discriminating among low attention respondents, but a
poor job at discriminating among high attention respondents. Finally, we evaluate a mixed atten-
tion scale that combines two grid Screeners that provide information about the attentiveness of
low attention respondents and two stand-alone Screeners that provide information about the
attentiveness of high attention respondents.6

In Figure 1, we follow the model of Berinsky et al. (2014) and evaluate how each of four atten-
tiveness scales fares at predicting respondents’ performance on Tversky and Kahneman’s (1981)
unusual disease framing experiment (see online Appendix B). The y-axis represents the framing
treatment effect and the x-axis is the attentiveness scale with larger numbers indicating greater
levels of attention. Each figure includes points that represent quintiles along the attentiveness
scale as well as a loess line and 95 percent confidence bands, which use 40 binned groups.

Table 1. Item parameters

Type Item
Pass Difficulty Discrim. IIF IIF IIF
rate Param. Param. (Full Dist.) (High Atten.) (Low Atten.)

Stand-alone Websites 0.39 0.65 1.76 3.93 0.36 0.02
Stand-alone Most important problem 0.32 0.84 1.28 2.65 0.36 0.03
Stand-alone Favorite color 0.58 − 0.33 1.23 2.68 0.08 0.23
Stand-alone Section of newspaper 0.25 1.65 1.89 4.03 0.86 0.00
Grid World War I came after World War II 0.61 − 0.37 0.77 1.37 0.07 0.13
Grid Please check “neither agree nor disagree” 0.90 − 1.96 0.98 0.76 0.00 0.13
Grid Obama was the first president 0.72 − 0.81 0.90 1.54 0.03 0.20
Grid Two is greater than one 0.76 − 0.88 0.63 0.77 0.02 0.09

5A concern could be that these grid Screeners are capturing cognitive ability rather than engagement with a survey. Indeed,
both Berinsky et al. (2014) and Alvarez et al. (2019) find Screeners sometimes correlate with education. However, we show in
online Appendix E that none of our attentiveness scales are strongly predicted by demographics such as education or age.
While political knowledge is a robust and strong predictor, it explains a relatively small portion of the variance in attentive-
ness. Moreover, exploratory factor analysis indicates that a single latent factor (attentiveness) characterizes the bulk of the
variation in the individual Screeners.

6There is a 0.94 correlation between these attentiveness estimates using four items and the estimates using all eight items.
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Following Berinsky et al. (2014), we expect the treatment effects will be larger among more atten-
tive respondents.

In the top-left panel of Figure 1, we find the full scale with eight items clearly discriminates the
most inattentive from everyone else. Indeed, there is essentially no treatment effect among
respondents in the lowest quintile of attentiveness (treatment effect = 0.09, SE = 0.04). In contrast,
there are clear effects among the remaining 80 percent of the attentiveness scale. To put these
results in context, the magnitude of the experimental treatment effect among those who fall in
the 20–40th percentile is the same as it is for those who passed any stand-alone Screener.7 In
other words, the traditional, stand-alone Screeners not only require researchers to drop substan-
tial portions of the sample, but the results look virtually identical to those with only moderate
levels of attentiveness.

Figure 1. Attentiveness plays a role in detecting experimental treatmenteffects.

7The treatment effect among the second quintile is 0.35 and ranges between 0.34 and 0.35 among passers of each of the
stand-alone Screeners.
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In contrast, scales that use all traditional Screeners (top-right panel) or all grid Screeners
(bottom-left panel) do much worse at discriminating shirkers from workers in this experiment.
For the scale that employs only traditional Screeners, there are smaller, but non-null treatment
effects in the lowest two quintiles. This result occurs because the stand-alone Screeners do not
do a good job distinguishing between those with low and moderate levels of attention. As a result,
moderately attentive respondents, who responded to the framing treatment, end up in the bottom
quintile of attention. Moreover, only in the top 40 percent of attentiveness on this scale do the
treatment effects reach the same strength as using the top 80 percent of attentiveness on the
full scale. For the scale with all grid Screeners, the top three quintiles have similar average scores
of attentiveness because many respondents answered almost or all the grid screeners correctly.
While the grid screener scale can certainly identify true shirkers, it has a more difficult time sep-
arating individuals at the higher end of attentiveness. Crucially, however, on both of these scales
analysts would have to drop at least 40 percent of the sample in order to clearly separate shirkers
from workers, whereas the full eight-item scale can distinguish between shirkers and workers by
dropping only the bottom quintile of attentiveness.

While the eight-item scale performs better than using four stand-alone Screeners or four grid
Screeners, implementing a survey with eight Screeners is costly. A mixed attention scale with two
grid and two stand-alone Screeners performs nearly as well as the full scale (bottom-right panel).
The experiment yields small treatment effects among respondents in the lowest quintile of atten-
tiveness (0.11). Once again, however, there is a clear jump in the size of the treatment effects
between the bottom and second quintiles, with relatively modest differences across quintiles.8

Similar to the full eight-item scale, the four-item mixed scale improves upon the strategy of
using a single stand-alone Screener by showing that researchers can improve data quality while
maintaining a larger proportion of the sample.

These results further show that the framing experiment is not one that requires extreme levels
of attentiveness. Respondents need to pay some attention to the treatment—choosing response
options randomly will not suffice. But even those individuals who may have only skimmed the
experimental stimulus responded to the difference in language between the conditions.

Next, we examine how well the different attentiveness scales do at reducing noise in a non-
experimental setting when question wordings require close reading, again following Berinsky
et al. (2014). For the last four decades, the ANES has asked a series of three questions on eco-
nomic liberalism (see online Appendix C). For two of the questions, a low response (1) represents
a liberal position while a high response indicates a conservative position (7). On the third ques-
tion, the scale is reversed.

In Figure 2, we examine the difference in (a) the correlation between the reverse-item scale and
the one of the two like-coded scales (which should be negative) and (b) the correlation between
the two like-coded scales (which should be positive). If respondents are paying attention, the cor-
relation between the same-coded scales should be around 0.5 and the correlation between the
reversed scale should be around − 0.5, producing a difference of − 1. This is exactly what we
observe when using the attentiveness scale with all eight items (upper-left panel). Here, we
find virtually no difference in the correlations of flipped and non-flipped ANES scales among
respondents in the lowest quintile of attentiveness. After a large difference between the bottom
and second quintiles of attentiveness (− 0.03 versus − 0.47), the middle 60 percent of the atten-
tiveness range (second, third, and fourth points) looks similar to one another, whereas those in
the top 20 percent in the attentiveness range has a difference correlation of − 0.92. Unlike the
framing experiment in which respondents in the top 80 percent of the sample all responded simi-
larly to the experimental stimulus, the most attentive people in sample were the most responsive
to the relatively long survey questions and subtle change in response options. In other words, for
the ANES questions, attentiveness matters at both the top and the bottom of the scale.

8The magnitude of the treatment effects varies between 0.29 (second quintile) and 0.37 (fourth quintile).
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Again, the four-item scale made up of only stand-alone Screeners (top right) does a better job
distinguishing among people at the top end of the attentiveness range rather than the bottom,
while the four-item scale made up of only grid items (bottom left) does a good job identifying
the least attentive respondents but has a more difficult time distinguishing respondents at the
top end of the attentiveness spectrum.9 Again, the four-item mixed attention scale looks quite
similar to the eight-item scale, successfully distinguishing between inattentive respondents in
the bottom quintile and the rest of the sample. These results indicate that the mixed scale
with only four items performs nearly as well as the full scale at detecting inattentive respondents
on the ANES scales.

Figure 2. Attentiveness plays a role in non-experimental data collection.

9The difference in correlations among those in the bottom quintile of the traditional, stand-alone scale is − 0.25. While still
substantially lower than the correlation in the top quintile, it is larger than the full attentiveness scale (which has a correlation
of − 0.03), indicating that there are people with moderate levels of attention in the bottom quintile. Similarly, the difference in
correlations among those in the top two quintiles of the grid scale is − 0.87 and − 0.71, indicating that there are people with
moderate levels of attention in the top quintiles.
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4. Discussion and conclusion
Previous research has already shown that using a single Screener question is problematic. In this
paper, we show that researchers should use multiple Screeners that vary in difficulty in order to
accurately place respondents on an attentiveness scale.

As a general rule, we recommend using a multi-item scale that includes Screeners with both high
and low passage rates, similar to our four-item mixed scale. We recommend that researchers use an
IRT model to construct this scale. But a simpler factor-analytic model will often suffice. This scaling
strategy allows researchers to classify respondents at both the top and bottom ends of the attentiveness
spectrum. Figures 1 and 2 make it clear to readers how respondents with different levels of attentive-
ness behave in the survey. That said, researchers may want to tailor a set of attention checks specific to
their research needs. For example, grid Screeners will suffice if researchers want to identify the least
attentive respondents. Alternatively, if one has a particularly subtle treatment or complicated experi-
mental design that requires respondents to pay careful attention, stand-alone Screeners would be the
best way to distinguish among people at the top end of the attentiveness spectrum.

Supplementary Material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2019.53
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