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In this paper domain decomposition methods for radiative transfer problems including

conductive heat transfer are treated. The paper focuses on semi-transparent materials, like

glass, and the associated conditions at the interface between the materials. Using asymptotic

analysis we derive conditions for the coupling of the radiative transfer equations and a diffusion

approximation. Several test casts are treated and a problem appearing in glass manufacturing

processes is computed. The results clearly show the advantages of a domain decomposition

approach. Accuracy equivalent to the solution of the global radiative transfer solution is

achieved, whereas computation time is strongly reduced.

1 Introduction

Simulations of heat transfer in semitransparent materials such as, for example, glass are

usually done on the basis of the radiative transfer equations or, using a diffusion

approximation, on the basis of a nonlinear diffusion equation. We refer elsewhere [1–6] for

a detailed description of the equations and further references.

In many applications it is not necessary to model the whole computational region by the

computationally-expensive radiative transfer equation. Only in particularly sensitive

regions, where the solution is far from equilibrium, as for example in boundary layers, do

these equations have to be employed. In the remaining regions of the domain the diffusion

approximation is valid, and will lead to sufficiently accurate results. Domain decomposition

methods are thus a natural design tool in this case leading to accurate numerical codes with

reasonable computation times.

The general aim of these methods is to approximate the global solution of the radiative

transfer equation by the solution computed with the hybrid code. In this way a considerable

amount of computing time is saved. The locations of the radiative transfer and diffusion

domains are often given a priori by the physical situation: in the present problem the

radiative transfer equations are used in a layer near the boundaries and the diffusion

equation in the interior of the domain. The layer region is chosen as small as possible

in order to save CPU time. The remaining problem is to obtain the correct coupling

https://doi.org/10.1017/S0956792598003490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003490


352 A. Klar and N. Siedow

conditions at the interface between the two regions. This will be investigated together with

the derivation of boundary conditions in the present work.

In §2 we state the equations and boundary conditions under consideration. In §3 the

asymptotic procedures to derive the diffusion equation and associated boundary conditions

are described. We concentrate on the description of the boundary layers. In §4 we state

coupling conditions for the domain decomposition problem at the interface. These

conditions are derived by an analysis of the interface layer between the two domains, using

asymptotic analysis similar to boundary layer analysis to obtain half-space problems. To

solve these problems approximately, methods as in Golse & Klar [7], Larsen et al. [1] and

Pomraning [8] can be used. Simpler but less accurate approximations are given as well. In

§5 we show some numerical results for one-dimensional model problems. As one observes

in the simulations the developed coupling conditions lead to a very accurate approximation

of the radiative transfer solution by the solution of the domain decomposition problem

even for anisotropic situations. In §6 a problem in glass manufacturing processes is

considered, namely the cooling down of a cylindrical piece of glass. This is an example for

a problem with a very sensitive layer region near the boundaries where the process has to

be computed in an accurate way using the radiative transfer equations, and an outer region,

where it is sufficient to use a diffusion approximation.

2 The equations

In a domain D `2$ we consider the radiative transfer equations including conductive heat

transfer but without photon scattering. The space variable is denoted by r `D, the direction

by the unit vector Ω `S, S the unit sphere, ν `2+ denotes the frequency, t `2+ the time and

M the number of spectral bands. For the absorption cross-section κ4 ¯ κ4 (ν) we assume κ4 (ν)
¯ κ(k)¯ const, k¯ 1,…,M for ν ` [ν

k
, ν

k+"
), where κ(k) is the absorption cross-section for

band k. This assumption is justified in many cases, for example, in the case of radiative heat

transfer in glass. The interval [ν
"
,¢) is called the transparent region and [0, ν

"
) the opaque

region of the frequency. We denote by I¯ I(r,Ω, t,k) the radiative intensities at r in the

direction Ω in band k and by T(r, t) the temperature. We consider the transport equation

for the radiative intensity

Ω[~
r
I(r,Ω, t,k)¯ κ(k) [B(T(r, t),k)®I(r,Ω, t,k)], (1)

where the spectral black body intensity for the kth band is defined by

B(T(r, t),k)¯&
ν
k+"

ν
k

B4 (T(r, t), ν)) dν

with the spectral black body intensity

B4 (T, ν)¯
2h

p
ν$

c#
(e

h
p

ν

k
B
T®1)−",

where h
p
, c,k

B
are Planck’s constant, the speed of light and the Boltzmann constant,

respectively. The total intensity is

&
¢

!

B4 (T, ν) dν¯
σ

π
T%, (2)

where σ is the Stefan–Boltzmann constant.
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This equation is considered together with the temperature equation

c
m

ρ
m

¥
t
T(r, t)¯~

r
[(k

h
~

r
T(r, t))®3

k

κ(k)&
S

[B(T(r, t),k)®I(r,Ω, t,k)] dΩ. (3)

Here c
m
, ρ

m
,k

h
are the specific heat, the density and the thermal conductivity, respectively.

Initial conditions have to be imposed on the temperature:

T(r, 0)¯T
!
(r), r `D. (4)

Boundary conditions for I can be of absorbing, reflecting or mixed type. For example, for

r# ` ¥D, whose inward-pointing normal is n, one can use the boundary condition

I(r# ,Ω, t,k)¯R(r# ,Ω,k), where Ω[n" 0, (5)

or a semitransparent boundary condition

I(r# ,Ω, t,k)¯ ρ(Ω) I(r# ,Ω«, t,k)[1®ρ(Ω)]R(r# ,Ω,k), where Ω[n" 0; (6)

here Ω« is the reflection of Ω in the tangent plane to ¥D :

Ω«¯Ω®2n(n[Ω),

and ρ is the reflectivity and R denotes the radiative intensity transmitted into the medium

from the outside. The reflectivity ρ is given by the Fresnel and Snell law. This means for

incident angle Θ
"

with cosΘ
"
¯ n[Ω we have

ρ¯
1

2 9
tan#(Θ

"
®Θ

#
)

tan#(Θ
"
Θ

#
)


sin#(Θ
"
®Θ

#
)

sin#(Θ
"
Θ

#
):

with
n
#
sinΘ

#
¯ n

"
sinΘ

"
,

if rsin(Θ
"
)r% n

#
}n

"
and ρ¯ 1 otherwise. Here n

"
is the refractive index for the material and

n
#

the coefficient for the surroundings. We assume n
"
& n

#
.

If k
h

is not equal to 0, boundary conditions for the heat transfer Eq. (3) are needed as

well. One can prescribe either the temperature or the heat flux at the boundary. The heat

flux is given by the total (convective plus radiative) heat input at the boundary. For

example, the following conditions can be imposed at r# ` ¥D (see [6]) :

T(r# , t)¯ h(r# , t), (7)

where h is a given function, or

k
h
n[~

r
T(r# , t)¯®q(T(r# , t)) (8)

with q given by

q(T(r# , t))¯ h(T
ext

(r# , t)®T(r# , t))απ&
ν
"

!

[B4 (T
ext

(r# , t), ν)®B4 (T(r# , t), ν)] dν,

where T
ext

is a fixed exterior temperature. The last equation models the heat transfer at the

boundary resulting from a convective term due to the temperature difference at the

boundary and a term due to the surface radiation of the body, h denoting the convective

heat transfer coefficient and α the emissivity. The integration is only over the opaque

frequencies, ν ` [0, ν
"
).

From the point of view of numerical simulations the full radiative transfer equations give

a very accurate description of the physical situation; however, to solve them is in general
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extremely time-consuming. If certain parameters in Eqs. (1) and (3) are small (see §3.1.), the

approximation that is usually used is a diffusion approximation, the Rosseland

approximation [1, 2] :
c
m

ρ
m

¥
t
T¯~

r
[[(k

h
k

r
(T ))~

r
T ] (9)

with

k
r
(T )¯3

k

4π

3

1

κ(k)

¥B
¥T

(T,k).

Eq. (9) has to be supplemented with suitable initial and boundary conditions. The equation

and the associated initial and boundary conditions will be derived in the next section.

To simplify the notation we do not write in the following the explicit dependence of the

functions on the number k of the frequency band. Moreover, for f¯ f(k) the notation

© fª¯3
k

f(k)

is used.

3 Asymptotic analysis and the boundary layer problem

In this section we describe the derivation of the diffusion approximation (the outer

solution) and the boundary layer equations (the inner solution). The matching of inner and

outer solution is discussed, leading to boundary conditions for the diffusion equation. For

the case k
h
¯ 0 we refer elsewhere [1, 8].

An important parameter in radiative transfer is the mean free path a photon can travel

before being absorbed; it is proportional to the inverse absorption cross section. The

general assumptions needed for the asymptotic analysis in the next sections are the

following: the physical system is large compared to the mean free path, the curvature of the

boundary is small and the boundary conditions for the radiative transfer equations are

assumed to vary slowly with respect to r# and t.

We denote by ε the dimensionless parameter given by the mean free path divided by a

characteristic length scale and assume this parameter to be small.

To obtain the dimensionless form of the above equations we introduce the notations

x¯ r}l
ref

,

τ¯ t}t
ref

,

κ«¯ κ}κ
ref

,

I «¯ I}I
ref

,

T «¯T}T
ref

,

(B(T ))«¯ (B(T ))}(B(T ))
ref

,

where l
ref

, t
ref

, κ
ref

, I
ref

,T
ref

, (B(T ))
ref

denote the reference scales and x, τ and the primed

quantities denote the nondimensional quantities.

As stated above, the quantity

ε¯
1

κ
ref

l
ref

is assumed to be small. Moreover, we have the condition (B(T ))
ref

¯ I
ref

and

t
ref

¯ c
m

ρ
m

κ
ref

l#
ref

T
ref

}I
ref

.
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This is the so-called diffusion scaling [1, 9].

If k
h

is not equal to 0 we need additionally

k
h
κ
ref

¯ I
ref

}T
ref

.

Neglecting the primed notation for the dimensionless variables one obtains from Eqs. (1)

and (3) the following equations for I(x,Ω, τ) and T(x, τ) :

εΩ[~
x
I¯ κ(B(T )®I )

ε# ¥τ T¯ ε#~
x
[(k

h
~

x
T )®©κ&

S

[B(T )®I] dΩª
(10)

with x `D, where the scaled spatial domain is again denoted by D. The parameter k
h
is, in

the dimensionless formulation, either k
h
¯ 1 or k

h
¯ 0.

Eq. (10) is considered together with the boundary conditions (5) or (6). Here we have

to replace R by R«(x# ,Ω)¯R(x# l
ref

,Ω). Neglecting the primed notation again, we get the

boundary condition
I(x# ,Ω, τ)¯R(x# ,Ω), where Ω[n" 0

and the analogous expression for (6).

In the case k
h
1 0 the additional conditions (7) or (8) are used. For condition (8) one

obtains, with q«(T «)¯ q(T «T
ref

)}q
ref

)}q
ref

and q
ref

¯k
h
T
ref

}l
ref

and neglecting again the

primes,
k
h
n[~

x
T(x# , τ)¯®q(T(x# , τ))

with x# ` ¥D.

For the initial conditions we get with T!

!
(x)¯T

!
(xl

ref
) and, neglecting the primes,

T(x, 0)¯T
!
(x).

3.1 Outer solution (diffusion approximation)

Using in Eq. (10) an ansatz of the form

I¯ I !εI "ε# I #…,

T¯T!ε#T#…

and

B(T )¯B(T!)ε#
¥B
¥T

(T!)T#O(ε$)

one obtains, collecting terms of the same order in ε :

O(1) : I !¯B(T!),

O(ε) : I "¯®
1

κ
Ω[~

x
I !

O(ε#) : I #¯®
1

κ
Ω[~

x
I "

¥B
¥T

(T!)T#,

¥τ T!¯~
x
[(k

h
~

x
T!)®-κ&

S

9¥B¥T (T!)T#®I #:dΩ. .
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F 1. Boundary layer coordinates.

Due to the above asymptotics an approximation of the intensity accurate to O(ε) is given

by

I(x,Ω, τ)CB(T!(x, τ))®ε
1

κ
Ω[~

x
B(T!(x, τ))O(ε#). (11)

The O(ε#) terms give

¥τ T!¯~
x
[[(k

h
k

r
(T!))~

x
T!],

k
r
(T )¯-4π

3

1

κ

¥B
¥T

(T ). .

(12)

Eq. (12) is the nonlinear diffusion Eq. (9) for the temperature with the new time and space

variables x and τ. Suitable initial and boundary conditions have to be imposed on Eq. (12).

The initial conditions for the diffusion equation is given by T!(x, 0)¯T
!
(x). An initial layer

does not exist, since we are considering a stationary transport equation. We concentrate in

the following on the boundary conditions. Moreover, in this section the radiative transfer

Eq. (10) is considered with fixed boundary condition (5), (7). For the treatment of

reflecting boundary conditions in the linear case, see, for example, Benssousan et al. [10].

In the following we do not write explicitly the dependence of the functions on the time

variable τ.

3.2 Inner problem (boundary layer problem)

The boundary conditions for Eq. (12) can be found by reconsidering Eqs. (10) and using

an additional rescaling of the normal component of the space variable in the boundary

layer. Using the standard multiple-scales approach, the new boundary layer coordinate y

is given by the following (see, for example, [1, 10, 11]) : We consider points x `D in a layer

near the boundary. Let x# ` ¥D be the point on the boundary closest to x `D and let n(x# )
denote the inward normal at x# . The new coordinate y along the normal to the boundary

is given by

y¯
1

ε
(x®x# )[n(x# ).

y and x# give a set of coordinates in the boundary layer (see Fig. 1). For the sake of a simpler

notation we use the coordinates y and x and treat them as independent variables.
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The boundary layer functions I
b
(y,x,Ω) and T

b
(y,x) are defined in a layer of the

thickness of the order of a mean free path near the boundaries.

Introducing I
b
and T

b
into Eqs. (10) leads up to O(ε#) to

µ¥
y
I
b
εΩ[~

x
I
b
¯ κ(B(T

b
)®I

b
)

¥
y
(k

h
¥
y
T
b
)ε¥

y
(k

h
[n[~

x
T
b
~

x
[(nT

b
)])¯-κ&

S

[B(T
b
)®I

b
] dΩ. .

(13)

Here x is a point in D near the boundary, y `2+ and µ is defined by µ¯ n[Ω. The boundary

conditions for I
b
and T

b
at y¯ 0, x¯x# are chosen such that they match those for I and T

at x¯x# :
I
b
(0,x# ,Ω)¯R(x# ,Ω), µ" 0 (14)

and additionally, if k
h
1 0

T
b
(0,x# )¯ h(x# ). (15)

Moreover, a condition at y¯¢ is needed:

lim
yU¢

¥
y
T
b
(y,x)¯ 0,x `D.

3.3 Asymptotic expansion of the inner solution

We consider an O(ε#) approximation of the boundary layer functions :

I
b
(y,x,Ω)¯ I!

b
(y,x,Ω)εI"

b
(y,x,Ω)O(ε#) (16)

and

T
b
(y,x)¯T!

b
(y,x)εT"

b
(y,x)O(ε#) (17)

with x `D, y `2+.

Lower-order boundary conditions are obtained using only an O(ε) approximation. This

would yield sufficiently accurate results for small ε.

Substituting Eqs. (16) and (17) into (13) shows that I!
b
(y,x,Ω) and T!

b
(y,x) solve the

following half-space problem:

µ¥
y
I!
b
¯ κ(B(T!

b
)®I!

b
)

¥
y
(k

h
¥
y
T!

b
)¯-κ&

S

[B(T!
b
)®I!

b
] dΩ.

(18)

with y ` [0,¢). The boundary conditions are given by the following: The ingoing function

at y¯ 0 is given by

I!
b
(0,x# ,Ω)¯R(x# ,Ω), µ" 0 (19)

due to Eq. (14). This is the only condition for k
h
¯ 0. For k

h
1 0, additional conditions for

the temperature T!
b

at 0 and ¢ are required: using Eq. (15) one obtains

T!
b
(0,x# )¯ h(x# ). (20)

Moreover,

lim
yU¢

¥
y
T!

b
(y,x)¯ 0.
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Using

B(T
b
)¯B(T!

b
)ε

¥B
¥T

(T!
b
)T"

b
O(ε#)

one observes that I"
b
(y,x,Ω) and T"

b
(y,x) solve

µ¥
y
I"
b
Ω[~

x
I!
b
¯ κ 9¥B¥T (T!

b
)T"

b
®I"

b:
¥
y
(k

h
¥
y
T"

b
)¥

y
(k

h
[n[~

x
T!

b
~

x
[(nT!

b
)])¯-κ&

S

9¥B¥T (T!
b
)T"

b
®I"

b:dΩ. .

(21)

The ingoing function at 0 is due to Eqs. (14) and (19) given by

I"
b
(0,x# ,Ω)¯ 0, µ" 0. (22)

In case k
h
1 0 the additional conditions for the temperature T!

b
at 0 and ¢ are according

to Eqs. (15) and (20)
T"

b
(0,x# )¯ 0.

Moreover, again

lim
yU¢

¥
y
T"

b
(y,x)¯ 0.

3.4 Solution of the inner problem

We assume that Eqs. (18) can be solved yielding I!
b
(y,x,Ω) and T!

b
(y,x). In particular, it

is assumed that the asymptotic values are

I!
b
(¢,x,Ω)¯B(T!

b
(¢,x)).

Since the boundary conditions are imposed at x¯x# , I!
b
(y,x,Ω) and T!

b
(y,x) are assumed

to be uniquely determined for x¯x# .
Eq. (21) is further treated in the following way. To obtain an equation with forcing terms

vanishing at infinity one introduces (see [1]), a function G¯G(y,x,Ω,k) by

I"
b
¯®

1

κ
[Ω

T
(1®ζ )µn][~

x
B(Tb

!
(¢,x))n[~

x
B(Tb

!
(¢,x))G(y,x,Ω), (23)

where Ω
T

is the component of Ω tangential to the boundary. Here ζ¯ ζ(y,µ,k) is defined

by

ζ(y,µ,k)¯ exp 0®κ(k) y

µ 1
for µ" 0 and 0 otherwise. Using this representation of I"

b
in Eq. (21), one obtains

µn[~
x
B(Tb

!
(¢,x)) ¥

y
GΩ[~

x
[I!

b
®B(Tb

!
(¢,x))]

¯ κ 9¥B¥T (T!
b
)T"

b
®n[~

x
B(Tb

!
(¢,x))G:, (24)

¥
y
(k

h
¥
y
T"

b
)¥

y
(k

h
[n[~

x
T!

b
~

x
[(nT!

b
)])¯-κ&

S

9¥B¥T (T!
b
)T"

b
®n[~

x
B(Tb

!
(¢,x))G:dΩ. .
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The boundary conditions for G are due to Eqs. (22) and (23) given by

G(0,x# ,Ω)¯
1

κ
µ, µ" 0, (25)

since ζ(0,µ,k)¯ 1. We mention that the forcing terms Ω[~
x
[I!

b
®B(Tb

!
(¢,x))] and

¥
y
(k

h
[n[~

x
T!

b
~

x
[(nT!

b
)]) in Eq. (24) tend to 0 as y tends to infinity. Eq. (24) is assumed

to be solvable, such that G approaches a constant α¯α(x, τ) independent of k and Ω as

yU¢. Again uniqueness for x¯x# is assumed. We refer elsewhere [10] for a detailed

investigation of kinetic half-space problems including forcing terms in the linear case.

3.5 Matching of inner and outer expansion

Matching the inner and outer asymptotic expansions one obtains the matching conditions

lim
yU¢

I
b
(y,x,Ω)¯ I(x,Ω).

Due to Eq. (11), one has up to O(ε#)

I!
b
(¢,x,Ω)εI"

b
(¢,x,Ω)¯B(T!(x))®ε

1

κ
Ω[~

x
B(T!(x))O(ε#).

Moreover

lim
yU¢

T
b
(y,x)¯T(x)

or to O(ε#)

T!
b
(¢,x)εT"

b
(¢,x)¯T!(x)O(ε#). (26)

Determining the asymptotic values for I
b

and T
b

at y¯¢ and applying the matching

conditions will give the correct boundary conditions for the outer solution.

3.6 Boundary conditions for the diffusion approximation

From the above inner solution one obtains

lim
yU¢

I
b
(y,x,Ω)

¯ I!
b
(¢,x,Ω)εI"

b
(¢,x,Ω)O(ε#)

¯B(T!
b
(¢,x))®

ε

κ
Ω[~

x
B(T!

b
(¢,x))εα(x) n[~

x
B(T!

b
(¢,x))O(ε#)

¯B[T!
b
(¢,x)εα(x) n[~

x
T!

b
(¢,x)]®

ε

κ
Ω[~

x
B[T!

b
(¢,x)εα(x) n[~

x
T!

b
(¢,x)]O(ε#).

Using the second equation in (21) and the conditions ¥
y
T!

b
(¢,x)¯ 0¯ ¥

y
T"

b
(¢,x) one

obtains

-κ&
S

9¥B¥T (T!
b
(¢,x))T"

b
(¢,x)®I"

b
(¢,x,Ω):dΩ.¯ 0.
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Evaluating this at y¯¢ and using Eq. (23) leads to

-κ
¥B
¥T

(T!
b
(¢,x))T"

b
(¢,x).¯©κn[~

x
B(Tb

!
(¢,x))α(x)ª.

This gives

T"
b
(¢,x)¯α(x) n[~

x
T!

b
(¢,x).

Finally, we have

lim
yU¢

T
b
(y,x)¯T!

b
(¢,x)εT"

b
(¢,x)O(ε#)

¯T!
b
(¢,x)εα(x) n[~

x
T!

b
(¢,x)O(ε#).

Using the matching conditions (26), one obtains

T!(x)¯T!
b
(¢,x)εα(x) n[~

x
T!

b
(¢,x)O(ε#)

or

T!
b
(¢,x)¯T!(x)®εα(x) n[~

x
T!(x)O(ε#) (27)

for x `D. This gives a boundary condition for T! at x# :

T!(x# )®εα(x# ) n[~
x
T!(x# )¯T!

b
(¢,x# )O(ε#). (28)

To obtain explicit conditions from (28) one has to solve the above half-space problems in

order to determine α and T!
b
(¢,x# ). This can be achieved using methods as in Pomraning

[8], Golse & Klar [7] and Klar [12]. A simpler ad hoc approximation is shown in the next

section.

3.7 Approximate boundary conditions near equilibrium

Here we explain a simple approach to obtain boundary conditions for the diffusion

equation based on the assumption of the equality of half-range fluxes.

One uses the boundary condition given by Eq. (28). We have to approximate T!
b
(¢,x# )

and α(x# ) : For k
h
¯ 0 an approximation of To

b
(¢,x# ) can be obtained by equating the half-

range fluxes

-&
µ"

!

µI!
b
(y,x# ,Ω) dΩ.

at y¯ 0 and y¯¢ :

-&
µ"

!

µR(x# ,Ω) dΩ.¯-&
µ"

!

µB(T!
b
(¢,x# ) dΩ. . (29)

This approximation has been used in the kinetic theory of gases already by Maxwell and

was later transfered to the radiative transfer case by Marshak (see Case & Zweifel [13]). It

is obviously not correct in general ; however, it is thought to be a good approximation near

equilibrium. For k
h
1 0 one can use the value for T!

b
(0,x# ) instead of T!

b
(¢,x# ) obtaining

T!
b
(¢,x# )¯ h(x# ).
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Proceeding by a similar procedure one determines the value of α by equating the half-range

fluxes

-&
µ"

!

µG(y,x# ,Ω) dΩ.
at 0 and ¢ :

-1

κ&µ"
!

µ#dΩ.¯-&
µ"

!

µα(x# ) dΩ. . (30)

Remarks. For the case k
h
¯ 0, i.e. a material without conductive heat transfer a detailed

asymptotic analysis has been performed elsewhere [1, 8]. In particular, an analysis of the

boundary layer has been worked out there. For other approaches to obtain approximate

equations, see elsewhere [14, 15].

4 Domain decomposition approaches

By solving radiative transfer and diffusion equations simultaneously in different domains,

a very good approximation of the full radiative transfer solution may be obtained.

Moreover, the computational complexity is in general considerably below the one needed

for the full radiative transfer solution. An important point in obtaining such a coupled

solution is the derivation of coupling conditions at the interface between diffusion and

radiative transfer equations. This will be discussed in the following.

We assume, as mentioned in the introduction, that the computational domain is

separated into a subdomain where the radiative transfer equation is solved and another

subdomain where the diffusion approximation is used. That means we consider the domain

D divided into two non-overlapping subdomains D
A

and D
B
, D

A
eD

B
¯D with smooth

boundaries ¥D, ¥D
A
, ¥D

B
and the interface F¯ ¥D

A
f¥D

B
. It has to be remarked that for

a fast solution of the coupling problem it is desirable to extend the diffusion domain as

much as possible.

The aim is now to approximate the global radiative transfer solution by the solution of

the following coupling problem: in D
A

the radiative transfer Eq. (10) is solved and in D
B

the diffusion Eq. (12). Providing these equations with coupling conditions at the interface

F will lead to a properly-stated problem. However, the solution depends strongly on the

type of coupling conditions employed. In the next sections we discuss an approach based

on an interface layer analysis and its approximations. In the following I
A
,T

A
and I

B
,T

B

denote the solution of (10) in D
A

and D
B
, respectively. T!

B
denotes the solution of the

diffusion Eq. (12) in D
B
. We concentrate on the interface region between the two domains

and proceed similarly as in the above boundary layer treatment.

4.1 Interface layer problem

The interface layer near F with a thickness of the order of a mean free path is introduced

in the same way as the boundary layer in §3 with D
B

playing the role of D. y is now the

rescaled coordinate normal to the interface F ; n¯ n(x# ) is the normal at x# at F pointing into

D
B
.
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The interface layer terms I
b
(y,x,Ω) and T

b
(y,x), x `D

B
near the interface, y `2+, are

defined analogously to §3. Introducing I
b
,T

b
into Eq. (10) leads up to O(ε#) to the half-space

problem (13) with µ¯ n[Ω, where n is the above normal at F. Assuming continuity of

the intensity at the interface to O(ε#), i.e.

I
A
(x# ,Ω)¯ I

b
(0,x# ,Ω) (31)

for Ω `S and x# `F one obtains the ingoing function at y¯ 0 for the half-space problem:

I
b
(0,x# ,Ω)¯ I

A
(x# ,Ω), µ" 0 (32)

with µ¯ n[Ω as before.

Moreover, for k
h
1 0 continuity of the temperature yields

T
b
(0,x# )¯T

A
(x# ). (33)

At y¯¢ we use

lim
yU¢

¥
y
T
b
(y,x)¯ 0.

4.2 Asymptotic expansion of the interface layer functions

The interface layer terms I
b
,T

b
are written as

I
b
(y,x,Ω)¯ I!

b
(y,x,Ω)εI"

b
(y,x,Ω)O(ε#),

T
b
(y,x)¯T!

b
(y,x)εT"

b
(y,x)O(ε#),

(34)

where x `D
B

near the interface.

We mention that a zeroth-order approximation neglecting the O(ε) term does not yield

very accurate results even for small ε ; see Fig. 2 in §5.

Substituting (34) into (13) shows that I!
b
(y,x,Ω) and T!

b
(y,x) solve the half-space

problem (18) as in §3. The boundary conditions for the half-space problem are given

by the following: The ingoing function at y¯ 0 is

I!
b
(0,x# ,Ω)¯ I

A
(x# ,Ω), µ" 0. (35)

due to Eq. (32). This is the only condition for k
h
¯ 0. To solve the half-space problem in

the case k
h
1 0 uniquely, additional conditions for the temperature T!

b
at 0 and ¢ are

required. Using Eq. (33) one obtains

T!
b
(0,x# )¯T

A
(x# ), lim

yU¢

¥
y
T!

b
(y,x)¯ 0. (36)

The first-order terms I"
b
(y,x,Ω) and T"

b
(y,x) solve Eq. (21). The ingoing function at

y¯ 0 is due to (32), (35) given by

I"
b
(0,x# ,Ω)¯ 0, µ" 0. (37)

In case k
h
1 0 the additional conditions for the temperature T!

b
at 0 and ¢ are according

to Eqs. (33), (36)

T"
b
(0,x# )¯ 0, lim

yU¢

¥
y
T"

b
(y,x)¯ 0.
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4.3 Solution of the interface layer problem

Again it is assumed that Eq. (18) can be solved yielding I!
b
(y,x,Ω) and T!

b
(y,x). One obtains

I!
b
(¢,x,Ω)¯B(T!

b
(¢,x)) and the outgoing distribution I

b
(0,x# ,Ω), µ! 0 of the half-space

problem at the interface. Due to the boundary conditions I!
b
(y,x,Ω) and T!

b
(y,x) are

assumed to be uniquely determined for x¯x# .
Eq. (21) is further treated in the same way as in §3: The function G(y,x,Ω,k) is

introduced by

I"
b
¯®

1

κ
[Ω

T
(1®ζ)µn][~

x
B(Tb

!
(¢,x))n[~

x
B(Tb

!
(¢,x))G(y,x,Ω). (38)

It satisfies Eq. (24) with boundary conditions (25). It is assumed that G approaches a

constant α(x, τ) as yU¢. Since ζ¯ 0 for µ! 0, Eq. (38) yields the following outgoing

function I"
b
(0,x,Ω) for µ! 0:

I"
b
(0,x,Ω)¯®

1

κ
Ω[~

x
B(Tb

!
(¢,x))n[~

x
B(Tb

!
(¢,x))G(0,x,Ω). (39)

4.4 Matching of radiative transfer, interface layer and diffusion problem

Matching the interface layer and diffusion expansions one obtains

lim
yU¢

I
b
(y,x,Ω)¯ I

B
(x,Ω),

or

I!
b
(¢,x,Ω)εI"

b
(¢,x,Ω)¯B(T!

B
(x))®ε

1

κ
Ω[~

x
B(T!

B
(x))O(ε#),

and

lim
yU¢

T
b
(y,x)¯T

B
(x),

or

T!
b
(¢,x)εT"

b
(¢,x)¯T!

B
(x)O(ε#). (40)

Determining the asymptotic values for I
b

and T
b

at y¯¢ and applying the matching

conditions will give coupling conditions for the solution of the diffusion equation T!
B
(x# ).

Matching of radiative transfer and the interface layer problem yields another coupling

condition. Due to Eq. (31), the ingoing function for the radiative transfer domain D
A

is

I
A
(x# ,Ω)¯ I

b
(0,x# ,Ω) (41)

for µ! 0. Up to O(ε#) this is

I
A
(x# ,Ω)¯ I!

b
(0,x# ,Ω)εI"

b
(0,x# ,Ω)O(ε#), µ! 0. (42)

https://doi.org/10.1017/S0956792598003490 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003490


364 A. Klar and N. Siedow

4.5 Coupling conditions for radiative transfer and diffusion equations

From the solution of the interface problems one obtains as in §3

lim
yU¢

I
b
(y,x,Ω)¯B(T!

b
(¢,x))®

ε

κ
Ω[~

x
B(T!

b
(¢,x))εn[~

x
B(T!

b
(¢,x)α(x)O(ε#)

and
lim
yU¢

T
b
(y,x)¯T!

b
(¢,x)εα(x) n[~

x
T!

b
(¢,x)O(ε#).

Using the matching conditions (40) for the interface and diffusion problem one obtains,

for x# `F,
T!

B
(x# )®εα(x# ) n[~

x
T!

B
(x# )¯T!

b
(¢,x# )O(ε#), (43)

as in §3. Moreover, the matching condition (42) for the radiative transfer and interface

problem yields, for µ! 0, according to (39),

I
A
(x# ,Ω)¯ I!

b
(0,x# ,Ω)®ε

1

κ
Ω[~

x
B(T!

b
(¢,x# ))εn[~

x
B(T!

b
(¢,x# ))G(0,x# ,Ω)O(ε#),

or

I
A
(x# ,Ω)¯ I!

b
(0,x# ,Ω)®ε

1

κ
Ω[~

x
B(T!

B
(x# ))

εn[~
x
B(T!

B
(x# ))G(0,x# ,Ω)O(ε#), where µ! 0. (44)

These conditions are sufficient, if k
h
¯ 0. For k

h
1 0 an additional condition is needed to

determine uniquely a coupled solution:

Looking at Eqs. (10), one observes that the total flux (radiative transfer and heat flux)

in the direction of the normal to the interface is given by

ε#k
h
n[~

x
T(x)®ε-&

S

n[ΩI(x,Ω) dΩ. .

We obtain the additional coupling condition by requiring, for k
h
1 0, the continuity of the

fluxes at the interface, i.e.

εk
h
n[~

x
T
A
(x# )®-&

S

n[ΩI
A
(x# ,Ω) dΩ.¯εk

h
n[~

x
T
b
(0,x# )®-&

S

n[ΩI
b
(0,x# ,Ω) dΩ. .(45)

Due to Eq. (31), this reduces to the continuity of the heat fluxes:

n[~
x
T
A
(x# )¯ n[~

x
T
b
(0,x# ). (46)

It is now most important to have a fast, however, accurate-enough solution procedure

for the half-space problem in order to obtain explicit conditions from Eqs. (43) and (44).

We note that solving the full half-space problem, for example, by a standard discretization

procedure would need a lot of computing time, in particular, since it has to be solved at

each point of the interface. Instead, one uses an approximation procedure [7, 8, 12], leading

to easy to evaluate, however, accurate explicit coupling conditions. See §5, where the results

of such a procedure are presented. One obtains in this way higher order accuracy than using

the following simple conditions.
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4.6 Approximate coupling conditions

In the following simple versions of coupling conditions are stated. To get the first condition

one uses (43). We approximate T!
b
(¢,x# ) and α. For k

h
¯ 0 an approximation of T!

b
(¢,x# )

can be obtained by equalizing the half-range fluxes

-&
µ"

!

µI!
b
(y,x# ,Ω) dΩ.

at y¯ 0 and y¯¢ :

-&
µ"

!

µI
A
(x# ,Ω) dΩ.¯-&

µ"
!

µB(T!
b
(¢,x# ) dΩ. . (47)

For k
h
1 0 one uses the value of T!

b
(0,x# ) for T!

b
(¢,x# ) obtaining due to Eq. (33)

T!
b
(¢,x# )¯T

A
(x# ). (48)

One proceeds as in §3 to determine α :

-1

κ&µ"
!

µ#dΩ.¯-&
µ"

!

µα(x# ) dΩ. . (49)

Using Eq. (46) with T
b
(¢,x# )¯T!

B
(x# )O(ε#) instead of T

b
(0,x# ), one would obtain

n[~
x
T
A
(x# )¯ n[~

x
T!

B
(x# ).

However, to guarantee equality of the total flux, we consider Eq. (45) directly and

approximate this condition by substituting I
b
(¢,x# ,Ω)¯ I

B
(x# ,Ω) instead of I

b
(0,x# ,Ω) and

T
b
(¢,x# )¯T

B
(x# ) instead of T

b
(0,x# ). Due to Eq. (11), we have

I
B
(x# ,Ω)¯B(T!

B
(x))®ε

1

κ
Ω[~

x
B(T!

B
(x))O(ε#), (50)

and finally, one obtains

εk
h
n[~

x
T
A
(x# )®-&

S

n[ΩI
A
(x# ,Ω) dΩ. (51)

¯ εk
h
n[~

x
T!

B
(x# )ε-1

κ&
S

n[ΩΩ[~
x
B(T!

B
(x# )) dΩ.

¯ εk
h
n[~

x
T!

B
(x# )ε-1

κ

4π

3

¥B
¥T

(T!
B
(x# )). n[~

x
T!

B
(x# )

¯ ε[k
h
k

r
(T!

B
(x# ))] n[~

x
T!

B
(x# ).

Eq. (51) gives a second straightforward coupling condition.

The ingoing function for the radiative transfer region I
A
(x# ,Ω), µ! 0 is given in this

approximation by substituting I
b
(¢,x# ,Ω)¯ I

B
(x# ,Ω) instead of I

b
(0,x# ,Ω) in Eq. (41) and

using Eq. (50) :

I
A
(x# ,Ω)¯ I

B
(x# ,Ω)¯B(T!

B
(x# ))®ε

1

κ
Ω[~

x
B(T!

B
(x# ))O(ε#), µ! 0. (52)
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5 Numerical results for one-dimensional test cases

We consider the case of a slab with space variables (x, y, z),x ` [0,L], y, z `2 and use model

equations with the one-band approximation M¯ 1 and k
h
¯ 0. The component of the

angular variable Ω along the x-coordinate is denoted by ξ. We consider

εξ ¥
x
I¯B(T )®I,

ε# ¥τ T¯®02B(T )®&"

−"

Idξ1.
We use the boundary conditions (6). In the 1D case these conditions are given by

ρ(ξ )¯
1

2 90
S®ξ

Sξ1
#

0Nξ®S

NξS1
#: ,

if rξ r"o(1®N ) and ρ¯ 1 otherwise. Here S¯o(N®1ξ #), N¯ (n
#
}n

"
)#, n

"
& n

#
. The

refractive coefficients for glass and surrounding air are used: n
"
¯ 1±46 and n

#
¯ 1.

We consider a separation of D¯ [0,L] into domains D
A
¯ [0,x#

"
]e[x#

#
,L] and D

B
¯ [x#

"
,

x#
#
]. x#

"
!x#

#
. We concentrate on the interface point x# ¯x#

"
. The boundary conditions at 0

and L are chosen in a symmetric way.

The approximate conditions, i.e. (43) combined with (47), (49) and the associated ingoing

intensity (52) for the radiative transfer region are easily implemented. To implement the

conditions found by the layer analysis we approximate them by the following conditions

[12]. Condition (43) is given by

T!
B
(x# )®εα(x# ) ¥

x
T!

B
(x# )¯T!

b
(¢,x# ) (53)

with

B(T!
b
(¢,x# ))¯ I!

b
(¢,x# , ξ ),

where I!
b
(y,x# , ξ ) is the solution of Eqs. (18), (35) with k

h
¯ 0. I!

b
(¢,x# , ξ ) is approximated

by

I!
b
(¢,x# , ξ )C

!ξ"
!
ξI

A
(x# , ξ ) dξ

!ξ"
!
ξdξ


3

2&ξ «"
!

(ξ «)# 9IA(x# , ξ «)®
!ξ"

!
ξI

A
(x# , ξ ) dξ

!ξ"
!
ξdξ :dξ «, (54)

as in Klar [12]. Also, α is approximated in the same way by

α¯
!ξ"

!
ξξdξ

!ξ"
!
ξdξ


3

2&ξ «"
!

(ξ «)# 9ξ «®
!ξ"

!
ξξdξ

!ξ"
!
ξdξ :dξ «, (55)

since G(0,x# , ξ )¯ ξ, ξ" 0. The first terms in formulas (54), (55) would have been obtained

by the approximate conditions (47), (49), respectively. The second one is a correction

to this term.

The equation for the ingoing function for the radiative transfer region D
A
is approximated

for ξ! 0 due to Eq. (44) by

I
A
(x# , ξ )¯ I!

b
(0,x# , ξ )®ε[ξ®G(0,x# , ξ )][¥

x
B(T!

B
(x# )). (56)
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x

1

F 2. ε¯ 0±01, t¯ 0±4, isotropic boundary conditions.

I!
b
(0,x# , ξ ), ξ! 0 is determined by

I!
b
(0,x# , ξ )C I!

b
(¢,x# , ξ )

1

2&ξ «"
!

ξ «
ξ «®ξ

[1®3(ξ «)#] [I
A
(x# , ξ «)®I!

b
(¢,x# , ξ )] dξ «. (57)

with I!
b
(¢,x# , ξ ) determined by Eq. (54). See Klar [12] for a derivation of this formula.

G(0,x# , ξ ), ξ! 0 is determined by

G(0,x# , ξ )Cα
1

2&ξ «"
!

ξ «
ξ «®ξ

[1®3(ξ «)#] [ξ «®α] dξ « (58)

with α from Eq. (55). Again, using only the first terms in these approximations one obtains

exactly the approximate condition (52) in §4.6.

In the following figures results for different situations are plotted. We implement the

solutions with different interface conditions. We use the conditions based on (53) combined

with (54), (55) and (56) with (57), (58).

In the first three figures, the coupled problem is shown with the approximate conditions

obtained by using in each of the above formulas only the first term. As mentioned these

conditions are the approximate conditions developed in §4.6. They are labelled by ‘fluxes’.

Results obtained with the more accurate conditions derived by the full formulae presented

above are shown as well. They are labelled by ‘halfspace’. Moreover, we plot the global

radiative transfer solution as reference solution, which is labelled by ‘radiative ’. We

compute the radiative transfer equations in two small domains of size 0±005[L near the

boundary. The mean free path is ε¯ 0±01, L¯ 1.

For the case of isotropic boundary conditions, i.e. R in Eq. (6) not depending on ξ, we

get Fig. 2. Here R(0, ξ )¯ 1 and the initial condition is B(T
!
)¯ 1±5. Additionally to the
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F 3. ε¯ 0±01, t¯ 0±4, anisotropic boundary conditions.
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F 4. ε¯ 0±01, t¯ 0±4, anisotropic boundary conditions.

conditions described above we plot another approximate condition derived from a zeroth-

order approximation, i.e. an approximation where the O(ε) terms in Eqs. (53) and (56) are

neglected. The results show that a zeroth-order approximation is not suitable. However, all

other types of boundary conditions yield the same results. Using the equality of fluxes is

sufficient in this situation.

Figures 3 and 4 show anisotropic situations. In Fig. 3 we use R(0, ξ )¯ ξ, ξ" 0 in Eq. (6)
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with the initial condition B(T
!
)¯ 0±8. Figure 4 shows a situation with boundary conditions

R(0, ξ )¯ δ(ξ®ξ
!
), ξ" 0 with 0! ξ

!
! 1. The initial condition is B(T

!
)¯ 5. We observe

that for anisotropic situations a more accurate layer analysis yields a clear advantage.

Remarks. In the isotropic case the distribution function is well approximated by Eq. (11)

in the whole domain. A more detailed boundary layer analysis is not necessary. The

approximate conditions which are essentially based on this assumption are in this case

sufficient.

6 A 3D domain decomposition problem in glass cooling processes

In this section we consider a typical example appearing in glass manufacturing processes.

A cylindrical solid with radius 1 cm and height 2 cm is considered. The material is glass.

Consider Eqs. (1) and (3). Here, the number of frequency bands is M¯ 18. The

coefficients are of the order ρ
m

c
m

¯ 3[10' JK−" m−$, k
h
¯ 1±6 Wm−" K−". The absorption

coefficients κ(k) are in a range from 1 m−" to 10& m−". The boundary conditions are

isotropic with outside temperature T
ext

¯ 293 K, i.e. they are given by Eq. (6) with R¯
αB(T

ext
). The refractive coefficients n

"
and n

#
are chosen for glass with surrounding air, i.e.

we set n
"
¯ 1±46, n

#
¯ 1 as in §5. The boundary conditions for the heat transfer equation

are for x ` ¥D given by Eq. (8). The initial temperature of the glass is T
!
¯ 873K.

In case the boundary condition (8) is used for the radiative transfer problem with

k
h
1 0, the boundary conditions for the diffusion approximation can be determined in the

following way: We equalize fluxes at the boundary similar to the procedure in §4.5 and 4.6:

εk
h
n[~

x
T!(x# )®-&

S

n[Ω[B(T !(x# ))®ε
1

κ
Ω[~

x
B(T!(x# ))] dΩ.

¯®εq(T!(x# ))®-&
S

n[ΩI(x# ,Ω) dΩ. .

Here Eq. (11) has been used. Using Eq. (11) again for I(x# ,Ω), µ! 0 and using the boundary

condition for I, µ" 0 we get :

ε[k
h
k

r
(T!(x# ))] n[~

x
T!(x# )

¯®εq(T!(x# ))®-&
µ"

!

n[ΩI(x# ,Ω) dΩ.
®-&

µ!
!

n[Ω[B(T !(x))®ε
1

κ
Ω[~

x
B(T! (x))] dΩ. . (59)

This gives a boundary condition for T!.

The solution is computed using the domain decomposition approach, the full radiative

transfer equations and the diffusion approximation. The radiative transfer equations are

solved using a method based on ray tracing and the diffusion equation by a finite element

method.
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F 5. Heat transfer in glass.

The natural way to decompose the domains is to solve the diffusion equation in the

interior of the cylinder and the radiative transfer equation in a domain near the boundary.

We investigate solutions with larger and smaller radiative transfer regions. The interface is

located 0±3 cm and 0±1 cm, respectively, away from the boundary. Here the boundary

conditions are isotropic. Therefore, we use the approximate coupling conditions (43), (48)

together with (51) and (52).

Figures 5 and 6 show the temperature distribution in the glass after 2 seconds. The results

computed with the domain decomposition method are, as in the last section, in good

agreement with the solution of the radiative transfer equation in the whole domain as in

Fig. 2. In the situation with smaller radiative transfer region (0±1 cm), the CPU time for the

solution of the coupled problem is about four times smaller than the time for the solution

of the global radiative transfer equation. For the larger radiative transfer domain (0±3 cm)

the gain in CPU time is still roughly a factor 2.

Figure 5 shows a comparison of the domain decomposition approach, the global

radiative transfer solution and the diffusion approximation with boundary conditions given

by Eq. (59). The temperature is plotted after two seconds considering a horizontal section

in the middle of the cylinder. The radiative transfer solution and the coupled solution show

a very good agreement. The solutions with radiative transfer regions of size 0±1 cm and

0±3 cm, respectively, are plotted in Fig. 5. The solution with the larger radiative transfer

region is coincident with the radiative transfer solution. One observes that using the

diffusion approximation with the above boundary condition does not yield very accurate

results. Here a more detailed investigation of situations, where boundary conditions like (6)

and (8) for the radiative transfer equations are involved, could give better results.

Figure 6 shows the full distribution of the temperature in the cylinder after two seconds.
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Z
X

Y

X

854.051
855.93
857.81
859.689

861.569
863.448
865.328
867.207

869.086
870.966

F 6. Heat transfer in glass.

7 Conclusions

E Detailed coupling conditions can be derived for radiative transfer equations with

conductive heat transfer by asymptotic analysis.

E Approximations of these conditions are given. These can be used for a variety of

problems with good success.

E For anisotropic situations more accurate approximations are necessary.

E Further work is required to clarify in detail the connection between the situations

with k
h
¯ 0 and k

h
1 0.
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E Rigorous work, concerning special cases of the equations presented here, can be

found elsewhere [16, 17]. However, for the full equations a rigorous analysis is still

missing.
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