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We study the optimal admission of arriving customers to a Markovian finite-
capacity queue ~e+g+, M0M0c0N queue! with several customer types+ The system
managers are paid for serving customers and penalized for rejecting them+ The
rewards and penalties depend on customer types+ The penalties are modeled by a
K-dimensional cost vector, K � 1+ The goal is to maximize the average rewards per
unit time subject to the K constraints on the average costs per unit time+ Let Km

denote min$K,m � 1% , where m is the number of customer types+ For a feasible
problem, we show the existence of a Km-randomized trunk reservation optimal
policy, where the acceptance thresholds for different customer types are ordered
according to a linear combination of the service rewards and rejection costs+Addi-
tionally, we prove that any Km-randomized stationary optimal policy has this
structure+

1. INTRODUCTION AND PROBLEM FORMULATION

We consider a controlled finite-capacity Markovian queue with m types of cus-
tomer, where m � 1,2, + + + + Type i customers arrive according to a Poisson process
with the intensity li , i � 1, + + + ,m, and these m arrival Poisson processes are inde-
pendent+When a customer arrives, its type becomes known+When there are N cus-
tomers in the system, the system is full and new arrivals are lost+ If the system is not
full, upon an arrival of a new customer, a decision to accept or reject this customer
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is made+A positive reward ri is collected for serving an accepted type i customer+A
nonnegative cost vector Ci � ~C1, i ,C2, i , + + + ,CK, i !

t is incurred due to the rejection
or loss of an arriving type i customer, where K is the number of constraints in this
problem+ We assume that the service time of a customer does not depend on the
customer type+ When there are n customers in the queue, the departure rate is µn,
n � 1, + + + ,N+ The numbers µn, n � 1, + + + ,N, satisfy the condition µn�1 � µn, where
µ0 � 0 and µ1 � 0+ For example, for an M0M0c0N queue, for some µ � 0,

µi � �iµ if i � 1, + + + , c

cµ if i � c � 1, + + + ,N+

Note that, unless otherwise specified, we do not assume that r1 � r2 � {{{ � rm+
Our goal is to maximize the average rewards per unit time, subject to multiple

constraints on the average costs per unit time+ This research is motivated by the
following question:What is the structure of optimal policies for the problem when
the blocking probabilities for some of the customer types are not allowed to exceed
given numbers? The answer to this question is given in Corollary 2+4+Additionally,
Corollary 2+5 provides an answer to a more general problem when different types
of customer can be pooled into groups with common blocking probability con-
straints on each group+ Previously, Fan-Orzechowski and Feinberg @3# solved such
a problem with a single constraint on the blocking probability of one type of cus-
tomer or one group+ Feinberg and Reiman @7# solved a more particular problem
when all of the rewards are different and the constraint on the blocking probability
is applied to the most profitable type of customer+

Consider K � 0,1, + + + ,m � 1+ A K-randomized trunk reservation policy f is
defined by m numbers Mi

f , 0 � Mi
f

� N �1, i �1, + + + ,m, called the thresholds+ Of
these thresholds, at most K numbers are noninteger and at least one number equals
N � 1+ For a number M we denote the integer part of M by {M } + If the system is
controlled by the policy f, a type i arrival will be admitted with probability 1 if it
sees no more than {Mi

f} customers in the system, it will be rejected if the number
of customers it sees in the system exceeds {Mi

f}� 1, and it will be accepted with
the probability ~Mi

f� {Mi
f} ! and rejected with the probability 1 � ~Mi

f� {Mi
f} !

if it sees exactly {Mi
f}� 1 customers in the system at the arrival epoch+ In partic-

ular, if the number Mi
f is an integer, a type i arrival will be admitted if and only if

it sees no more that Mi
f customers in the system+ Thus, Mi

f� N � 1 means that a
type i arrival is admitted whenever the system is not full+ A randomized trunk res-
ervation policy f is called consistent with a function r ' defined on the set $1, + + + ,m%
if ri

' � rj
' implies Mi

f
� Mj

f for i, j � 1, + + + ,m+ If all of the thresholds are integers,
the randomized trunk reservation policy is called a trunk reservation policy+ We
sometimes write Mi instead of Mi

f for the thresholds when there is only one policy
in the context and no confusion will occur+

In this article we allow the possibility that the number of constraints K is not
necessarily less than m and we introduce Km � min$K,m � 1%+We prove that if the
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problem is feasible, there exists a Km-randomized trunk reservation policy consis-
tent with the reward function

ri
' � ri � (

k�1

K

Suk Ck, i , i � 1, + + + ,m, (1.1)

where Suk � 0 is the Lagrange multiplier with respect to the kth constraint of the
linear programming problem formulated in this article+ Additionally, Theorem 2+2
shows that any Km-randomized stationary optimal policy is a Km-randomized trunk
reservation policy consistent with r '+

In Feinberg and Reiman @7, Sects+ 6 and 7# , several other types of optimal
policy and optimal nonrandomized strategy were constructed by transforming an
optimal randomized trunk reservation policy+ Similar results can be obtained for the
more general problem considered in this article+ In fact, these constructions hold as
long as the optimality of randomized trunk reservation policies is established+

Miller @13# studied a one-criterion problem for an M0M0c0loss queue when
r1 � r2 � {{{ � rm+ In this case, there exists an optimal nonrandomized trunk res-
ervation policy consistent with r+ In other words, all of the thresholds Mi are inte-
gers and N � 1 � M1 � M2 � {{{ � Mm+ Feinberg and Reiman @7# studied a
constrained problem with r1 � r2 � {{{ � rm, where the goal was to maximize
average rewards per unit time subject to the constraint that the blocking probability
for type 1 customers does not exceed a given level+ Feinberg and Reiman @7# proved
the existence of an optimal 1-randomized trunk reservation policy with N � 1 �
M1 � M2 � {{{ � Mm+ Fan-Orzechowski and Feinberg @3# considered a problem
with a single constraint on the average costs+ The goal was to maximize the average
rewards per unit time subject to this constraint+ They proved the existence of a
1-randomized trunk reservation policy consistent with the reward function

ri
' � ri � Su1 ci ,

where Su1 � 0 is the Lagrange multiplier with respect to the first constraint of
the linear programming problem formulated in that article+ In particular, Fan-
Orzechowski and Feinberg @3# solved the problem with one constraint on the block-
ing probability for type k customers, k � 1, + + + ,m+

In addition to Miller’s @13# classical problem formulation, various versions and
generalizations of the admission problem have been studied in the literature+ See
the references found in Fan-Orzechowski and Feinberg @3# + Recent research in this
area includes Lewis, Ayhan, and Foley @9,10# , Lewis @8# , Lin and Ross @11,12# ,
Altman, Jimenez, and Koole @1# , and Altman @2# + If the service times depend on
customer types or different types of customer require different numbers of servers,
the problem becomes NP-hard and trunk reservation might not be optimal; see Ross
@14, p+ 137# and Altman et al+ @1# +

The rest of this article is organized as follows+ Section 2 contains the problem
formulation, introduces a linear program ~LP! that identifies an optimal policy, and
states the main result—the optimality of randomized trunk reservation policies and
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its corollaries+ Section 3 introduces the Lagrangian relaxation, which reduces the
number of constraints, and provides the proofs+

2. SEMI-MARKOV DECISION MODEL AND MAIN RESULTS

Following Feinberg and Reiman @7# and Fan-Orzechowski and Feinberg @3# , we
model the problem via a semi-Markov decision process ~SMDP!+ Since the sojourn
times between actions are exponentially distributed, this problem is an exponential
semi-Markov decision process ~ESMDP!; see Feinberg @6# for details+ Notice that
this problem can also be formulated as a continuous-time Markov decision process
~CMDP!+ The extra technical difficulty in using CMDP is to prove that the con-
trolled process has no absorbing states; see Feinberg @5# + We can then reach the
same preliminary result as by using the SMDP model in this article; when the prob-
lem is feasible, there exists a randomized stationary optimal policy that uses a ran-
domization procedure in at most Km states+

In the framework of an SMDP model, we define the state space I � $0,1, + + + ,
N �1%� ~$0,1, + + + ,N %� $1, + + + ,m%!,which represents the system state at the depar-
ture and arrival epochs+ If the state of the system is n � 0, + + + ,N �1, this means that
a departing customer leaves n customers in the system+ The state ~n, i ! means that
an arrival of type i sees n customers in the system+

The action set A � $0,1%+ For n � 0, + + + ,N �1 and i �1, + + + ,m, we set A~n, i !�
A � $0,1% and A~N, i !� $0% , where the action 0 means that the type i arrival should
be rejected or is lost and the action 1 means that it should be accepted+ In any state
n � 0+ + + ,N � 1, we set A~n!� $0%+

Let t~s,a! denote the average time that the system spends in a state s � I if
action a � A~s! is chosen in this state+ Let p~s, s ',a! be the transition probability
from the state s to s ' if action a � A~s! is chosen+ Note that p~s, s ',a! does not
depend on the sojourn time in state s under action a and this sojourn time has an
exponential distribution with the average t~s, a! + For notational convenience,
we write t~n! and p~n, s ' ! instead of t~n,0! and p~n, s ',0!, respectively, for
n � 0, + + + ,N � 1, s ' � I+ Denote L�(i�1

m li +
We have t~n!� ~µn � L!�1 , where n � 0, + + + ,N � 1+ Also, for i � 1, + + + ,m,

t~~n, i !,a! � �t~n! if a � 0, n � 0, + + + ,N

t~n � 1! if a � 1, n � 0, + + + ,N � 1+

For n � 0, + + + ,N � 1 and i � 1, + + + ,m,

p~n, s ' ! � �
µnt~n! if s ' � n � 1

li t~n! if s ' � ~n, i !

0 otherwise

and

p~~n, i !, s ',a! � �p~n, s ' ! if a � 0

p~n � 1, s ' ! if a � 1+
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Suppose that the reward is accrued upon acceptance of a customer and costs
are incurred upon rejection+ The reward function is

r~~n, i !,a! � �ri if a � 1

0 otherwise,

and for k � 1, + + + ,K, the kth cost function is

ck~s,a! � �Ck, i if a � 0

0 otherwise+

In addition, r~n,0!� ck~n,0!� 0 for all n � 0, + + + ,N � 1 and for all k � 1, + + + ,K+
We define the long-run average rewards earned by the system under strategy

p as

W0~z,p! � lim inf
tr`

t�1
Ez
p (

n�0

N~t !�1

r~xn ,an !

and the long-run average costs of the system under strategy p as

Wk~z,p! � lim sup
tr`

t�1
Ez
p (

n�0

N~t !�1

ck~xn ,an !, k � 1, + + + ,K,

where z is the initial state, xn is the state at epoch tn, Ez
p is the expectation operator

for the initial state z and strategy p, and N~t ! � max$n : tn � t % is the number of
jumps by time t+

A strategy is called a randomized stationary policy if assigned actions an depend
only on the current state xn+Additionally, if an is a deterministic function of xn, the
corresponding strategy is called a stationary policy+ Since the action sets are non-
singletons only at the arrival epochs, a randomized stationary policy f for our prob-
lem is defined by f~n, i !, n � 0, + + + ,N �1, i �1, + + + ,m, the probability of accepting
an arrival of type i when the arrival sees n customers in the system+ A randomized
stationary policy f is called k-randomized stationary, k � 0,1, + + + , if the number of
states ~n, i ! such that 0 � f~n, i ! � 1 is less than or equal to k+ The notions of
stationary and 0-randomized stationary policies coincide+

Notice that the unichain condition ~any stationary policy defines a Markov chain
with one recurrent class! holds for this model+ If an SMDP satisfies the unichain
condition, then, according to Feinberg @4, Thm+ 9+2# , for a feasible problem under
the average rewards per unit time criterion with K constraints, there exists an opti-
mal K-randomized stationary policy+ Therefore, similar to Fan-Orzechowski and
Feinberg @3# , we model our problem as follows:

maximize W0~f!

subject to Wk~f! � Gk , k � 1, + + + ,K,
(2.1)
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where a randomized stationary policy f is the variable and Gk are real numbers+
Consider the following LP with variables ~x,P !, where x � $x ~n, i ! : n �

0, + + + ,N � 1, i � 1, + + + ,m% and P � ~P0, + + + ,PN !+

maximizex,P (
i�1

m

li ri (
n�0

N�1

x~n, i ! (2.2)

subject to (
i�1

m

li Ck, i�1 � (
n�0

N�1

x~n, i !� � Gk , k � 1, + + + ,K, (2.3)

(
i�1

m

li x~n, i ! � µn�1 Pn�1, n � 0,1, + + + ,N � 1, (2.4)

(
n�0

N

Pn � 1, (2.5)

0 � x~n, i !� Pn , n � 0, + + + ,N � 1, i � 1, + + + ,m+ (2.6)

The variables x and P have the following meaning: x~n, i ! is the joint proba-
bility that a type i arrival sees n customers in the system and this arrival is accepted;
Pn is the limiting probability that there are n customers in the system+ For the queue
controlled by any randomized stationary policy, its associated quantities ~x,P ! sat-
isfy Pn �(i�1

m x~n, i !, since Poisson arrivals see time averages ~PASTA!+
Constraints ~2+4! and ~2+5! correspond to the birth-and-death balance equations

and constraints ~2+3! correspond to K cost constraints+ Constraints ~2+5! and ~2+6!
imply that the set of feasible solutions of the LP ~2+2!–~2+6! is bounded and, there-
fore, if a feasible solution exists, the LP has an optimal solution+

For a vector ~x,P ! satisfying ~2+4!–~2+6!, consider a randomized stationary pol-
icy f such that

f~n, i ! � �x~n, i !0Pn if Pn � 0, n � 0,1, + + + ,N � 1, i � 1,2, + + + ,m

arbitrary otherwise+
(2.7)

The following theorem links problem ~2+1! and LP ~2+2!–~2+6!+We recall that
Km � min$K,m � 1%+

Theorem 2.1:

(i) A randomized stationary policy f is feasible for problem (2.1) if and only
if (2.7) holds for a feasible vector ~x,P ! of LP (2.2)–(2.6).

(ii) If ~x,P ! is an optimal solution of LP (2.2)–(2.6), then Pn � 0 for all
n � 0,1, + + + ,N.
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(iii) A randomized stationary policy f is optimal for problem (2.1) if and only
if the equation

f~n, i ! � x~n, i !0Pn , n � 0,1, + + + ,N � 1, i � 1,2, + + + ,m, (2.8)

holds for an optimal solution ~x,P ! of LP (2.2)–(2.6). Additionally, if ~x,P !
is a basic optimal solution of LP (2.2)–(2.6), then the policy f defined by
(2.8) is Km-randomized stationary optimal.

The proof of Theorem 2+1 is presented in Section 3+ In particular, Theo-
rem 2+1~iii! implies that if problem ~2+1! is feasible, then there exists an optimal
Km-randomized stationary policy+ Let ~ Su, Sv!,where Su � ~ Su1, + + + , SuK , SuK�1, + + + , SuK�2Nm!
and Sv � ~ Sv0, + + + , SvN !, be an optimal solution of the LP dual to ~2+2!–~2+6!+ The
dual vector SuK � ~ Su1, + + + , SuK ! corresponds to constraints ~2+3!, the dual vector
~ SuK�1, + + + , SuK�2Nm! corresponds to the inequality constraints ~2+6!, the dual vector
~ Sv0, + + + , SvN�1! corresponds to constraints ~2+4!, and the dual variable SvN corre-
sponds to the constraint ~2+5!+ We call Su and Sv the Lagrange multipliers for LP
~2+2!–~2+6! and note that Suk � 0, k � 1, + + + ,K; see @3, Appendix B# for additional
details+

The following theorem, which is the main result of this work, implies the exis-
tence of optimal Km-randomized trunk reservation policies stated in its Corollary 2+3+

Theorem 2.2: Any Km-randomized stationary optimal policy for problem (2.1) is a
Km-randomized trunk reservation policy, which is consistent with the reward func-
tion ri

' � ri � SuKCi , i � 1, + + + ,m, where SuK � ~ Su1, Su2, + + + , SuK ! � 0 is a vector of
Lagrange multipliers with respect to constraints (2.3) in LP (2.2)–(2.6).

Corollary 2.3: If problem (2.1) is feasible, then there exists an optimal
Km-randomized trunk reservation policy consistent with the reward function r '

defined in Theorem 2.2.

To conclude this section, consider two important corollaries of Theorem 2+2+
Corollary 2+4 deals with the situation when there are constraints on the blocking
probabilities of certain customer types+ Corollary 2+5 deals with the more general
situation when there are blocking probability constraints on several customer types
pooled together+

According to @7, p+ 471# , for the costs vector Ci , i � 1, + + + ,m, with the coordi-
nates Ck, i , k � 1, + + + ,K,

Ck, i � �lk
�1 if i � k

0 otherwise,
(2.9)

the average cost Wk~z,p! is the blocking probability for type k customers+

Corollary 2.4: Consider a special case of problem (2.1) when there is a fixed
subset J � $i1, + + + , iK % of customer types and the goal is to maximize the average
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rewards per unit time subject to K constraints on the blocking probabilities for each
of these customer types. For this problem, introduce the costs Ck, i defined by (2.9)
when i � ik and Ck, i � 0 when i � J, k � 1, + + + ,K, i � 1, + + + ,m+ If this problem is
feasible, then any Km-randomized stationary optimal policy is Km-randomized trunk
reservation policy consistent with the reward function r ' defined as

ri
' � �ri � Suk 0li if i � ik , k � 1, + + + ,K

ri if i � J,

where SuK � ~ Su1, Su2, + + + , SuK ! � 0 is the vector of Lagrange multipliers with respect
to constraints (2.3) of LP (2.2)–(2.6). Therefore, there exists a Km-randomized trunk
reservation optimal policy consistent with the reward r ' if the problem is feasible.

Consider a more general problem when there are K subsets of the customer
types J1, + + + , JK and the goal is to maximize the average rewards per unit time sub-
ject to the constraints on the blocking probabilities for the customer types from the
class Jk pooled together, k �1, + + + ,K+ For K �1, this problem was solved in @3, Cor+
2+5# +When each subset Jk, k � 1, + + + ,K is a singleton, the solution is described in
Corollary 2+4+

Let Lk �(i�Jk
li + Consider the cost functions Ck, k � 1, + + + ,K, defined as

Ck, i � �Lk
�1 if i � Jk

0 if i � Jk +
(2.10)

Corollary 2.5: Consider a special case of problem (2.1) when there are K fixed
groups J1, + + + , JK of customer types and the goal is to maximize the average rewards
per unit time subject to K constraints on the blocking probabilities for the cus-
tomers from each of these customer groups pooled together within a group. If
this problem is feasible, then any Km-randomized stationary optimal policy is a
Km-randomized trunk reservation policy consistent with the rewards ri

' � ri �

(k�1
K 1$i�Jk %

SukLk
�1 , where i � 1, + + + ,m, and SuK � ~ Su1, Su2, + + + , SuK ! � 0 is the vector

of Lagrange multipliers with respect to constraints (2.3) of LP (2.2)–(2.6) with the
costs CK, i defined in (2.10). Therefore, there exists a Km-randomized trunk reser-
vation optimal policy consistent with the reward r ' if the problem is feasible.

3. PROOFS

In view of ~2+5! and ~2+6!, the feasible region of LP ~2+2!–~2+6! is bounded+ There-
fore, this LP has an optimal solution if it is feasible+ If LP ~2+2!–~2+6! is feasible,
consider the vector of Lagrange multipliers SuK � ~ Su1, + + + , SuK ! with respect to con-
straints ~2+3! in LP ~2+2!–~2+6!+ If LP ~2+2!–~2+6! is feasible, we introduce the fol-
lowing LP:
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maximizex,P (
i�1

m

li�ri � (
k�1

K

Suk Ck, i�(
n�0

N�1

x~n, i !� (
k�1

K

Suk�(
i�1

m

li Ck, i � Gk�
subject to ~2+4!–~2+6!+

(3.1)

Lemma B+1 in @3# implies the following result+

Lemma 3.1: If LP (2.2)–(2.6) is feasible, then (i) any optimal solution of LP (2.2)–
(2.6) is an optimal solution of LP (3.1) and (ii) the optimal values of objective func-
tions for these two LPs are equal.

This lemma plays an important role in the proof of the main result of this arti-
cle: Theorem 2+2+ We refer to this technique as the Lagrangian relaxation in this
article+ In general, the Lagrangian relaxation refers to using a weak duality theorem
to obtain lower bounds for a nonlinear programming problem+ We use the term
“relaxation” here in the sense that, although the optimal set is enlarged after the
transformation, the optimal value remains the same+

Consider the unconstrained problem

maximize W0~f!+ (3.2)

Similar to @3# , we are interested in this problem when the rewards for served cus-
tomers are equal to ri

' , i � 1, + + + ,m, where the function r ' was defined in Theo-
rem 2+2+ Since the second term in the objection function of LP ~3+1! is constant, in
view of Theorem 2+1 an optimal solution ~x,P ! of LP ~3+1! defines via ~2+8! an
optimal randomized stationary policy f for problem ~3+2! with the reward func-
tions r ' +

To prove Theorem 2+2, we first formulate certain generic properties of optimal
solutions of problem ~3+2! with the rewards r and then apply them to the specific
case of the rewards r '+ Note that we do not assume distinct rewards among different
customer types+ This extension might not seem significant at first glance, but it is
important+ In fact, even if we assume that all of the rewards ri are distinct, after the
Lagrangian relaxation it is possible that ri

' � rj
' for some i, j � 1, + + + ,m in a new

unconstrained problem+

Lemma 3.2 @3, Cor+ 2+1#:

(i) If ~x,P ! is an optimal solution of LP (2.2), (2.4)–(2.6), then Pn � 0 for all
n � 0,1, + + + ,N.

(ii) A randomized stationary policy f is optimal for problem (3.2) if and only
if (2.8) holds for an optimal solution ~x,P ! of LP (2.2), (2.4)–(2.6). In
addition, if ~x,P ! is a basic optimal solution of LP (2.2), (2.4)–(2.6), then
the policy f defined in (2.8) is (nonrandomized) stationary optimal.

The following lemma is used in the proof of Theorems 2+1 and 2+2+

Lemma 3.3 @3, Lemma 3+3# : Consider any randomized stationary optimal policy f
for the unconstrained problem (3.2).

RANDOMIZED TRUNK RESERVATION 197

https://doi.org/10.1017/S026996480707012X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480707012X


(i) For any i and j, such that ri � rj ,

f~n, i ! � f~n, j !, n � 0, + + + ,N � 1, i, j � 1, + + + ,m+ (3.3)

(ii) For each n � 0, + + + ,N �1, if there exist two customer types j1 and j2 such
that 0 � f~n, j ! � 1, j � j1, j2, then rj1 � rj2

. In particular, if all of the
rewards r1, + + + , rm are different, then for each n � 0, + + + ,N � 1, all of
the probabilities f~n, j ! , j � 1, + + + ,m, except at most one, are equal to
either zero or one.

(iii) There exists at least one customer type, say type �, such that

f~n,�! � 1, n � 0, + + + ,N � 1+ (3.4)

In particular, if rj � max$ri 6 i � 1, + + + ,m%, then (3.4) holds with � � j.

(iv)

f~n, j ! � f~n � 1, j !, n � 0, + + + ,N � 2, j � 1, + + + ,m, (3.5)

and for each j � 1, + + + ,m, all of the probabilities f~n, j ! , n � 0, + + + ,N � 1, except
at most one, are equal to either zero or one.

Corollary 3.4: Any randomized stationary optimal policy f for the unconstrained
problem (3.2) is an ~m � 1!-randomized trunk reservation policy consistent with
the rewards ri . Additionally, if all of the rewards ri are distinct, such a policy is
s-randomized, where s � min$m � 1,N %.

Corollary 3.5: Any stationary optimal policy f for the unconstrained problem
(3.2) is a trunk reservation policy consistent with the rewards ri .

Proof of Theorem 2.1: The proof of ~i! and ~ii! and the first statement of ~iii! are
identical to the proof of Theorem 2+1 in @3# + We will prove the second statement
of ~iii!+ First, consider the case when K � m+ We represent LP ~2+2!–~2+6! in a
standard LP form, where nonnegative variables Sk, k � 1, + + + ,K, are introduced to
replace ~2+3! with (i�1

m li Ck, i ~1 �(n�0
N�1 x~n, i !!� Sk � Gk and nonnegative vari-

ables y~n, i !, n � 0, + + + ,N � 1, i � 1, + + + ,m, are introduced to replace ~2+6! with
x~n, i !� y~n, i !� Pn+ There are K � N � 1 � N � m constraints and K � 1 � N �
2~N � m! variables for this new LP+ Therefore, any basic optimal solution of this
new LP has at most K � N �1 � N � m basic variables+ Since Pn, n � 0, + + + ,N, are
positive, there are at most K � N � m basic variables among x~n, i ! and y~n, i !+
Because x~n, i !� y~n, i !� Pn � 0, x~n, i ! and y~n, i ! cannot be equal to zero simul-
taneously+ Therefore, for each pair ~n, i !, either x~n, i !� 0 or y~n, i !� 0, except at
most K pairs where both x~n, i ! and y~n, i ! are not equal to zero+ Since f~n, i ! �
x~n, i !0Pn, we have that for all pairs ~n, i !, except at most K, f~n, i ! equals either
zero or one+ Therefore, the policy f is K-randomized stationary optimal+ For K � m,
we note that the matrix C � ~Ck, i ! is K � m for constraints in ~2+3! and, thus, its rank
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is at most m+After removing redundant constraints in ~2+3!, if there are l constraints
left in ~2+3! and l � m, we are back to the previous case and the proof is complete+
If l � m, the only extra piece we need to add is to show that the policy f is ~m �1!-
randomized+ Lemmas 3+1 and 3+2 imply that f is optimal for an unconstrained prob-
lem+ The rest follows from Lemma 3+3~iii!+ �

We remark that, in the case of K � m, it is also intuitive that the randomized
trunk reservation policy actually has at most m � 1 randomized entries+ Indeed, for
the most profitable customer type, who has the highest reward r ', the system will
always accept it when it is not full+ Otherwise the system idles and waits to serve
the next potentially less profitable customer+ Thus, such a policy is suboptimal+
This is also consistent with the definition of a K-randomized trunk reservation, in
which at least one threshold equals N � 1+

Proof of Theorem 2.2: Consider any Km-randomized stationary optimal policy
f for problem ~2+1!+ Lemma 3+2~ii!, Theorem 2+1~iii!, and Lemma 3+1 imply that f
is optimal for an unconstrained problem with the rewards ri

' � ri � (k�1
K Suk Ck, i +

Lemma 3+3 implies that f is a randomized trunk reservation policy consistent with
ri
'� ri �(k�1

K Suk Ck, i + �
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