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Modal and non-modal stability of boundary
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Modal and non-modal perturbation growth in boundary layers subjected to time-
harmonic spanwise wall motion are examined. The superposition of the streamwise
Blasius flow and the spanwise Stokes layer can lead to strong modal amplification
during intervals of the base-flow period. Linear stability analysis of frozen phases
of the base state demonstrates that this growth is due to an inviscid instability,
which is related to the inflection points of the spanwise Stokes layer. The generation
of new inflection points at the wall and their propagation towards the free stream
leads to mode crossing when tracing the most unstable mode as a function of
phase. The fundamental mode computed in Floquet analysis has a considerably lower
growth rate than the instantaneous eigenfunctions. Furthermore, the algebraic lift-up
mechanism that causes the formation of Klebanoff streaks is examined in transient
growth analyses. The wall forcing significantly weakens the wall-normal velocity
perturbations associated with lift-up. This effect is attributed to the formation of
a pressure field which redistributes energy from the wall-normal to the spanwise
velocity perturbations. The results from linear theory explain observations from direct
numerical simulations of breakdown to turbulence in the same flow configuration by
Hack & Zaki (J. Fluid Mech., vol. 760, 2014a, pp. 63–94). When bypass mechanisms
are dominant, the flow is stabilized due to the weaker non-modal growth. However,
at high amplitudes of wall oscillation, transition is promoted due to fast growth of
the modal instability.

Key words: boundary layer stability, transition to turbulence

1. Introduction
The influence of time-harmonic spanwise wall oscillation on bounded shear flows

has been of interest due to its favourable impact on turbulent drag. Much of that
literature has focused on turbulent channel flow, with fewer efforts dedicated to
turbulent boundary layers. In the former case, higher amplitude of the wall motion
at the optimal wall-oscillation frequency generally yields enhanced drag reduction.
In transitional boundary layers, on the other hand, the influence of spanwise wall
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oscillation is more variable. As shown by Hack & Zaki (2014a), it can stabilize the
boundary layer or cause early transition to turbulence. Even at the optimal actuation
frequency, increasing the amplitude of the wall motion can cause transition to swiftly
move far upstream, ahead of the location of breakdown in the reference flow without
wall oscillation. Since the base flow includes a spanwise unsteady component added
to a streamwise boundary layer, instabilities of time-harmonic base states, cross-flow
instability and bypass transition in two-dimensional boundary layers are all relevant,
and are reviewed briefly.

1.1. Instability of time-harmonic flows
Earlier studies have established a profound effect of harmonic motions on the stability
of various flows (Davis 1976). Experimental evidence of a destabilization in purely
oscillatory pipe flow was provided by Clarion & Pelissier (1975), as well as Merkli
& Thomann (1975) and Hino, Sawamoto & Takasu (1976). The latter work reported
a sudden transition to turbulence during the deceleration phase of the flow, with
subsequent relaminarization during the acceleration phase – results that were later
confirmed by Akhavan, Kamm & Shapiro (1991). They found that in the first half of
the acceleration interval, the production of turbulent kinetic energy was substantially
reduced and the observed velocity profiles were in good agreement with laminar
theory. During the deceleration phase, a rapid production of turbulent kinetic energy,
which originated in the near-wall region, was observed.

For time-harmonic flows, stability is often defined in a global sense: a flow is
considered unstable if the amplitude of a perturbation after a full period of the
base state is larger than it was initially, and stable otherwise. Mathematically, the
global stability of a time-harmonic flow is governed by the sign of the largest
Floquet multiplier. Cowley (1987) nonetheless demonstrated that even though a base
flow is Floquet stable, it can support substantial perturbation growth during parts
of a period, followed by decay. Perturbations may therefore reach sufficiently high
amplitudes to excite nonlinear mechanisms that induce breakdown to turbulence. Von
Kerczek & Davis (1974) conducted linear stability analyses of a Stokes layer with
zero mean component and found the flow to be stable for ReStokes < 400, where
ReStokes ≡ W0

√
T/πν and W0 and T are the amplitude and the period of the wall

oscillation. Hall (1978) extended the investigation to semi-infinite domains but did
not find evidence for an instability in the investigated range of Reynolds numbers,
ReStokes < 160. Using the same computational approach, Blennerhassett & Bassom
(2002) later demonstrated the existence of a critical Reynolds number, ReStokes = 708.
Inviscid studies by Hall (2003) nonetheless indicated that the flow was stable in
the limit Re→ ∞, implying a closed neutral curve that is delimited by a second
critical Reynolds number beyond which perturbations become stable again. Thomas
et al. (2011) studied the linear stability of streamwise oscillating channel flows. The
addition of a steady mean profile was reported to change the stability characteristics
and to increase the critical Reynolds number for global instability.

A common alternative approach to the analysis of time-periodic flows considers a
series of frozen base states (Morkovin & Obremski 1969; Monkewitz & Bunster 1987).
In this case, the coefficients of the linear perturbation equations are independent of
time and therefore allow a normal-mode ansatz in that dimension. The instantaneous
approach is justified in cases where the time scale of the instability is substantially
shorter than that of the base state. A direct comparison between the growth rates
computed from the instantaneous and Floquet approaches for a Stokes layer was
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FIGURE 1. Schematic of the investigated base-flow configuration. The steady, streamwise
boundary layer profile U(y) is superimposed with an oscillatory component W(y, t) due
to the spanwise oscillatory wall forcing.

conducted by Luo & Wu (2010). It was shown that the instantaneous analysis
presents an accurate approximation to the Floquet approach at moderate Reynolds
numbers.

1.2. Cross-flow instability
In addition to being time-harmonic, the present base flow is also three-dimensional.
The superposition of the unsteady spanwise Stokes-type layer with the streamwise
Blasius profile leads to a complex flow configuration that gives rise to wall-normal
inflection points (see figure 1). Three-dimensionality of the base state can lead
to instability akin to cross-flow modes in the flow over swept wings. In that
configuration, the local pressure gradient induces a flow component near the
wall which is perpendicular to the free-stream velocity vector. The associated
velocity profile is inflectional in the wall-normal direction and thus supports the
amplification of an inviscid instability (see Bippes 1999; Saric, Reed & White 2003,
for comprehensive reviews).

The cross-flow instability can be manifest as stationary or travelling waves. The
former are characterized by wavefronts parallel to the local streamlines, while
travelling waves are oblique, i.e. their wavefronts are aligned at an angle to the
local velocity vector (Deyhle, Hoehler & Bippes 1993). The prevalence of either type
is closely related to the receptivity to external perturbations. Experimental results
by Deyhle & Bippes (1996) and Radeztsky, Reibert & Saric (1999) show that very
low levels of free-stream turbulence intensity, Tu∞ < 0.15 %, favour stationary waves,
while travelling waves are observed for higher turbulence levels. Steady cross-flow
modes can also be initiated by surface roughness (Schrader, Brandt & Henningson
2009).

During the initial linear stage of cross-flow instability, the wall-normal and
transverse velocities of the mode displace the mean momentum of the boundary layer
vertically, which leads to a perturbation that has most of its energy in the streamwise
component. Once the streamwise component of the perturbation reaches a magnitude
between 10 % and 30 % of the free-stream speed, the cross-flow perturbations begin
to saturate due to nonlinear effects (Koch et al. 2000). Breakdown to turbulence is
ultimately induced by high-frequency secondary instabilities (Wassermann & Kloker
2002; White & Saric 2005).
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1.3. Boundary layer streaks

In the absence of a spanwise velocity component in the base state, a two-dimensional
boundary layer is recovered. At moderate levels of free-stream perturbations, the
natural transition mechanism via the exponential amplification of the Tollmien–
Schlichting wave is bypassed by a more rapid process that involves the formation
of highly energetic streaks inside the boundary layer. The streaks promote the
amplification of high-frequency secondary instabilities which eventually initiate
breakdown to turbulence. The generation of streaks via the lift-up mechanism
relies on the presence of small wall-normal velocity perturbations, which vertically
displace the mean flow and therefore create high-amplitude disturbances in the
streamwise velocity component (Landahl 1975, 1980). When streaks are formed
as the boundary layer response to forcing by free-stream turbulence, a path for
the initial perturbation into the boundary layer is required. This prerequisite is
non-trivial since vortical perturbations are generally unable to enter regions of
mean shear (Hunt & Carruthers 1990). Previous studies have demonstrated that
for Blasius boundary layers, streamwise elongated perturbations are least affected by
the sheltering effect of the shear (Jacobs & Durbin 1998; Zaki & Saha 2009). For
a general three-dimensional boundary layer profile, the wavenumber vector of the
preferred disturbance is orthogonal to the mean shear (Hack & Zaki 2012).

The lift-up mechanism is independent of the modal stability of the flow, and is
overcome by viscous decay at finite time (see e.g. Brandt 2014). This transient
nature of non-modal growth means that there exists an upper bound for the resulting
amplification of perturbation energy. In Blasius boundary layers, the optimal initial
condition which yields the most energetic streaks is a pair of steady, streamwise
oriented vortices (Butler & Farrell 1992; Andersson, Berggren & Henningson 1999).
For the case of steady three-dimensional Falkner–Skan–Cooke boundary layers,
Corbett & Bottaro (2001) found that streamwise elongated streaks remain the most
energetic perturbations at subcritical conditions. Ricco (2011) examined the influence
of a steady spanwise wall forcing on the lift-up mechanism. That work predicted
that the amplification of steady streaks is reduced by the spanwise forcing. This
effect is enhanced with growing W0, until the streaks completely vanish. Duque-Daza
et al. (2012) conducted linear analyses of perturbation growth in fully turbulent
flow subject to forcing by streamwise travelling waves of spanwise wall velocity.
Their results pointed to a correlation between the reduction of viscous drag and a
weakening of turbulent streaks. A similar approach was adopted by Blesbois et al.
(2013), who considered generalized optimal disturbances in turbulent channel flow
with a spanwise oscillating wall. They found that the optimal perturbation is aligned
at an angle relative to the instantaneous velocity vector.

The present study examines the linear instability mechanisms that are active in
pre-transitional boundary layers forced by spanwise wall oscillations. The paper
is structured as follows: § 2 concisely summarizes DNS results of the influence
of spanwise wall forcing with different amplitudes on transitional boundary layers.
Section 3 reports modal stability analyses of a zero-pressure-gradient boundary layer
when a spanwise Stokes layer is superimposed on the flow. Section 4 focuses on the
impact of the wall forcing on the non-modal lift-up effect that generates boundary
layer streaks. The relationship between modal and non-modal growth is examined in
§ 5. Section 6 summarizes the final conclusions.
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2. Observations from DNS of bypass transition with wall oscillation
The linear studies presented in this work are motivated by results from DNS of

transitional boundary layers subjected to wall oscillation (Hack & Zaki 2014a). Since
the nonlinear simulations are not the focus of the current work, they are discussed
briefly and the relevant parameters are reported. Where beneficial, results from the
DNS will be included in order to complement the linear analyses, and to ensure that
the current presentation is complete and self-contained.

Previous simulations of bypass transition in two-dimensional boundary layers
have adopted two approaches based on the location of the inflow plane relative to
the leading edge. With the inflow plane downstream of the leading edge, Jacobs
& Durbin (2001) formulated an inflow-synthesis method to prescribe free-stream
turbulence. In contrast, Nagarajan, Lele & Ferziger (2007) included the leading edge
in their computational domain. Their results showed that, for a slender leading edge,
the methodology by Jacobs & Durbin (2001) accurately captures the downstream
development of the boundary layer and bypass transition. The methodology was used
by various authors (e.g. Brandt, Schlatter & Henningson 2004; Schrader et al. 2009;
Schrader, Subir & Brandt 2010), and the results compared favourably to experiments
both qualitatively and quantitatively (e.g. Matsubara & Alfredsson 2001; Mandal,
Venkatakrishnan & Dey 2010). Downstream of the inlet, elongated boundary layer
streaks amplify, with the low-speed streaks lifting towards the edge of the boundary
layer. They undergo a secondary instability (Andersson et al. 2001; Vaughan &
Zaki 2011; Hack & Zaki 2014b), followed by the formation of turbulence spots
and full nonlinear breakdown to turbulence. The same approach for simulating
bypass transition was adopted in the computations discussed herein, without and with
spanwise wall oscillation imposed downstream of the inflow plane.

In all simulations, the inflow to the computational domain is located at distance
x̃= x̃0 from the leading edge. Lengths are normalized by the inlet 99 % boundary layer
thickness, δ0, and velocities are normalized by the free-stream value, U∞. The inlet
Reynolds number based on δ0 is Reδ0 = 800 (in terms of the Blasius length scale, L =√

x̃ν/U∞, the inlet Reynolds number is ReL0 = 162). For convenience, a streamwise
coordinate x≡ x̃− x̃0 can be defined relative to the inlet plane. The turbulence intensity
in the free stream is Tu∞ = 3 %, and the spanwise forcing at the wall is applied by
imposing the boundary condition w(y= 0, t)=W0 cos((2π/T)t) over the full extent of
the simulation domain.

Parameter studies using DNS demonstrated that suitable choice of the amplitude
and period of the wall forcing can substantially delay breakdown to turbulence (Hack
& Zaki 2014b). The stabilization of the pre-transitional flow regime was associated
with a significant weakening of the amplitude of boundary layer streaks. On the
other hand, an increase of either W0 or T beyond their respective optima resulted in
an acceleration of the transition process, with breakdown to turbulence occurring in
some of the cases significantly earlier than in an unforced reference simulation. This
behaviour is captured in the top views of the DNS flow field presented in figure 2.

The contours in figure 2 mark the stochastic fluctuations, u′, which are obtained
from a triple decomposition of the flow field,

uDNS =
〈u〉ϕ︷ ︸︸ ︷

ū+ ũϕ + u′︸ ︷︷ ︸
u′′

(2.1)

with ϕ= 1/T mod (t,T). Here, ū denotes the spanwise and time-average, and ũϕ is the
periodic component introduced by the time-harmonic wall-motion.
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FIGURE 2. Top views of transitional boundary layers from DNS at y/δ(x)= 0.45. Grey
contours give the streamwise stochastic fluctuation from u′ = −0.12 (black) to u′ = 0.12
(white). (a) Reference case, W0 = 0.00. (b) Wall forcing with amplitude W0 = 0.25 and
period T = 200. (c) Wall forcing with amplitude W0 = 0.40 and period T = 200.

In the unforced reference simulation (figure 2a), the boundary layer develops
clearly discernible streaks, represented by streamwise elongated regions of positive
and negative u′. An isolated turbulent spot is observed at x ≈ 250, and the flow
becomes fully turbulent at x ≈ 380. The forced case with parameters T = 200,
W0= 0.25 (figure 2b) shows a different behaviour that is characterized by the absence
of pronounced streak growth. The flow is laminar over the full length of the domain,
2.6 × 104 6 Rex̃ 6 5.0 × 104. This stabilization is reversed at the higher forcing
amplitude W0 = 0.40, as demonstrated in the last frame (figure 2c), where turbulent
spots are observed as early as x ≈ 120. While a significant perturbation level is
reached upstream of transition, the associated disturbances are of relatively high
frequency and thus clearly differ from elongated boundary layer streaks, which are
associated with classical bypass breakdown. Hence the parameters of the spanwise
wall forcing not only govern the downstream location of transition to turbulence,
but also the underlying mechanism. In the remainder of this work, linear analysis is
applied in order to explain this behaviour.

3. Modal instability

Modal linear stability analysis is performed in this section, and is aimed at
evaluating the potential role of exponential instabilities when spanwise wall motion
is superimposed onto the streamwise boundary layer flow. Particular interest is in
the case of relatively high ReStokes ≡ W0

√
T/πν, where breakdown to turbulence is

accelerated (figure 2c). Evidence of modal instability in the DNS is presented first,
and is followed by linear analysis of instantaneous base-state profiles in order to
explain the origin of this instability.
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FIGURE 3. Time series of a spot precursor for forcing parameters T = 200, W = 0.40 at
y/δ(x) = 0.40: (a) t = 0; (b) t = 0; (c) t = 38; (d) t = 58. Contours give the streamwise
velocity fluctuation, from u′ =−0.20 (black) to u′ = 0.20 (white).

3.1. Evidence of modal instability in DNS
When the amplitude of the wall motion is high, W0= 0.40, direct simulations predict
an early breakdown to turbulence (figure 2c). In order to determine the origin of
these breakdown events, figure 3 provides a time series of the precursors to the onset
of a turbulent spot from that simulation. The topmost frame shows the full width
of the computational domain upstream of transition to turbulence and demonstrates
the presence of a perturbation field of relatively high amplitude inside the boundary
layer. The streamwise extent of the perturbations is similar to the local boundary
layer thickness and is thus at least an order of magnitude smaller than that of typical
boundary layer streaks. The detailed views shown in the remaining frames indicate
that the perturbation takes the form of a localized wavepacket, which ultimately breaks
down into a turbulent spot.

The observed breakdown scenario differs qualitatively from the classical bypass
mechanism. In order to quantitatively elucidate the role of short-scale structures,
the spectral content of the fluctuation field is examined in a time series of 4000
snapshots of the flow field in planes parallel to the wall. A Hann window is
used for the streamwise dimension. The time difference between two consecutive
samples is two time units, and the complete time series therefore spans N = 20
wall-oscillation periods. The analysis considers the wall-normal fluctuation field, v′,
in the pre-transitional region (75< x< 130 and 0.84× 105 6 Rex̃ 6 1.30× 105). The
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FIGURE 4. Contours of ‖v̂ϕ‖ as a function of the streamwise and spanwise wavenumbers,
parametrized by the phase of the base state: (a) ϕ = 0; (b) ϕ = 0.125; (c) ϕ = 0.250;
(d) ϕ = 0.375.

dependence on the phase of the base flow is preserved by evaluating the spectral
decomposition as a function of the parameter ϕ,

v̂ϕ(α, β)= 1
N

N∑
n=1

∫ ∞
−∞

∫ ∞
−∞

v′(ϕ) exp(−2πi(αx+ βz)) dx dz. (3.1)

The magnitudes of the Fourier coefficients, ‖v̂ϕ‖, are presented in figure 4
for ϕ = {0, 0.125, 0.250, 0.375} as a function of the streamwise and spanwise
wavenumber normalized by the inlet boundary layer thickness, α0= αδ0 and β0= βδ0.
The results demonstrate that the phase of the base flow has an appreciable effect
on the perturbation magnitude as well as on the location of the peak in the
wavenumber plane. The most energetic perturbations are observed at ϕ = 0.125
and (α0, β0)≈ (0.8, 1.2).

In order to substantiate the influence of the phase of the base flow on the
perturbation field, figure 5 provides phase-averaged space–time diagrams. The contours
are the standard deviation, 〈u′〉rms, of the fluctuation field in a plane located at 30 %
of the local boundary layer thickness,

〈u′〉rms =
(

1
NLz

∑
N

∫ Lz

0
u′2 dz

)1/2

(3.2)

where Lz is the spanwise extent of the computational domain and N=20 is the number
of sampled periods of the base flow. Results for the streamwise velocity component
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FIGURE 5. Phase-averaged space–time diagrams at y/δ(x) = 0.30. Wall oscillation with
T=200, W0=0.40. (a) Streamwise component, 〈u′〉rms. (b) Wall-normal component, 〈v′〉rms.
Reproduced from Hack & Zaki (2014a).

are shown in figure 5(a). Alternating bands of high and low 〈u′〉rms are observed with
half the period of the wall oscillation. In other words, each forcing period contains two
intervals during which the fluctuations amplify, separated by intervals during which
the fluctuations decay again. The bands are aligned at an angle to the abscissa, which
corresponds to a characteristic ‘speed’ cc ≈ 0.60 with which the perturbation field
travels downstream. As the flow becomes increasingly turbulent, the bands smear out
and finally form a continuous region of high 〈u′〉rms.

The standard deviation of the wall-normal velocity fluctuation v′ shows a very
similar behaviour (see figure 5b). While the magnitude of 〈v′〉rms is initially lower than
〈u′〉rms, the observed angle of the bands is nearly identical. The agreement between
the phases of the streamwise and wall-normal fluctuations indicates a simultaneous
amplification and decay of the two components.

The phase dependence of the transition process is also reflected in the phase-
averaged skin friction coefficient,

〈Cf 〉ϕ =
µ
∂〈u〉ϕ
∂y

∣∣∣∣
y=0

1
2ρU2∞

, (3.3)

which is reported in figure 6 as a function of the downstream coordinate. For each
phase, the 〈Cf 〉ϕ curve exhibits an oscillation in the transition region, which is in
contrast to the monotonic rise in the reference case without wall forcing. These
local extrema are evidence that breakdown, and potentially the flow instability, are
phase dependent. By relating the downstream positions of the peaks observed at
different phases, the characteristic speed cc = 0.60, which was observed in figure 5,
is recovered.

The observations from DNS summarized in this section relate the early breakdown
observed at W0 = 0.40 and T = 200 to a mechanism that qualitatively differs from
conventional bypass transition which takes place via the amplification and secondary
instability of low-frequency streaks. Instead, the length scale of the relevant instability
is of the order of the boundary layer thickness, and its growth depends on the phase
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FIGURE 6. (Colour online) Phase-averaged skin friction coefficient for wall oscillation
with T = 200, W0 = 0.40, evaluated at ϕ = 0.00 (yellow, lightest), ϕ = 0.125 (red), ϕ =
0.250 (blue), ϕ= 0.375 (purple, darkest). The black line represents an unforced reference
case.

of the base flow. In the following, the nature of this instability is explored using linear
stability theory.

3.2. Instantaneous stability analysis
In order to examine the role of modal growth mechanisms, the linear stability of a
base flow which is a superposition of a streamwise zero-pressure-gradient boundary
layer and a transverse Stokes layer is investigated. The presence of the streamwise
boundary layer causes a minor deviation of the spanwise velocity profile from the
analytical solution of the Stokes second problem, given by

Wanalytical(y, t)=W0 exp
(
−
√

π

νT
y
)

cos
(

2π

T
t−
√

π

νT
y
)
. (3.4)

Although the resulting difference in the stability characteristics is relatively small, the
following analyses adopt a base state which is obtained from laminar-flow simulations
of a boundary layer atop an oscillating flat plate without free-stream turbulence. This
base flow will be referred to as a ‘Blasius–Stokes’ profile. The spanwise component,
w̃, is the phase average in the triple decomposition (2.1). An instantaneous approach is
pursued, and the instability analysis is applied to frozen phases of the time-harmonic
flow. The base state of the analysis depends on the wall-normal coordinate only,
U = (U(y), 0, W(y))T. The instability is represented by its wall-normal velocity,
v′, and wall-normal vorticity, η′. The time evolution of the associated state vector,
q′ ≡ (v′, η′)T, is governed by(

∂

∂t
+U

∂

∂x
+W

∂

∂z

)
∇2v′ − ∂

2U
∂y2

∂v′

∂x
− ∂

2W
∂y2

∂v′

∂z
=− ∂

∂y
∇2p′ + 1

Re
∇4v′, (3.5)[

∂

∂t
+U

∂

∂x
+W

∂

∂z
− 1

Re
∇2

]
η′ = ∂v

′

∂x
∂W
∂y
− ∂v

′

∂z
∂U
∂y
. (3.6)

The perturbation field is assumed to be periodic in the streamwise and spanwise
dimensions with wavenumbers α and β, respectively. Unless otherwise stated, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

38
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.387


Stability of boundary layers forced by spanwise wall oscillations 399

reference length scale is the local 99 % thickness of the boundary layer, δ, and
velocities are normalized by the free-stream value, U∞. A normal-mode assumption
is introduced in time, q′(t)=q exp(iσ t). The full ansatz for the instability is, therefore,

v′(x, y, z, t)= v(y) exp(i(αx+ βz− σ t)) (3.7)
η′(x, y, z, t)= η(y) exp(i(αx+ βz− σ t)), (3.8)

and (3.5) and (3.6) become[
(−iσ + iαU + iβW)(D2 − k2)− iαD2U − iβD2W − 1

Re
(D2 − k2)2

]
v = 0, (3.9)[

−iσ + iαU + iβW − 1
Re
(D2 − k2)

]
η= i(αDW − βDU)v (3.10)

with D ≡ ∂/∂y and k2≡α2+β2. A temporal stability analysis is performed where the
unknown quantity is the complex frequency σ , while the modal wavenumbers α and
β are known, real-valued parameters. The implicit assumption is that the growth rate
of the instability is faster than the change in the base flow. The numerical solution
of (3.9) and (3.10) uses a Chebyshev expansion in the wall-normal dimension. The
generalized eigenvalue problem of the form Aq = σBq is solved through a Schur
decomposition, such that A = QSZ H and B = QT Z H , where S and T are upper
triangular. The eigenvalues are then obtained from the ratio of the diagonal elements
of the S and T operators, with σj = Sj,j/T j,j (Golub & Van Loan 1996).

The DNS results in figures 2 and 3 showed that the parameter combination T = 200
and W0 = 0.40 causes rapid breakdown to turbulence. The perturbation growth which
precedes breakdown takes place at Re ≡ U∞δ(x)/ν ≈ 1600. The following linear
analyses are therefore reported for this particular set of base-flow parameters and
Reynolds number. It is important to note that pure Blasius flow at Re= 1600 is only
slightly supercritical and therefore has a very weak Tollmien–Schlichting instability.
In addition, a pure Stokes boundary layer at ReStokes = 90.23 considered herein is
substantially below the critical condition for global instability. The three-dimensional
flow over a spanwise oscillating plate may nonetheless show a fundamentally different
stability behaviour.

The linear stability analysis is performed for the combined Blasius–Stokes base flow
and the average growth rate,

σi,avg(α, β)≡
∫ 1

0
σi(α, β, t/T) d(t/T), (3.11)

is evaluated. This quantity provides the net amplification of perturbations over a
full period of the base state, and can thus be interpreted as a global measure of
disturbance growth. Figure 7 shows σi,avg as a function of the streamwise and
spanwise wavenumbers. At the investigated Reynolds number, the global maximum
of σi,avg is nearly zero, and hence all modes are stable in an average sense. Two
distinct regions exist where σi,avg is least negative. The local maximum around
(α, β) = (0.8, 0.0) is due to the classical Tollmien–Schlichting wave that is also
found in pure Blasius boundary layers. The second region of positive growth at
(α, β) ≈ (0.8, 1.4) relates to an instability specific to the Blasius–Stokes boundary
layer. However, its very weak growth rate when averaged over a period of the base
flow does not explain the rapid breakdown observed in the simulations. One possible
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FIGURE 7. Contours of the averaged growth rate −0.12 6 σi,avg 6 0.00 at Re = 1600.
Symbols mark the local maxima.
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FIGURE 8. (a) Contours of the maximum growth rate, −0.04 6 σi,max 6 0.04. The cross
marks the maximum and the white line is the neutral curve. The symbol marks the global
maximum. (b) Contours of the most unstable phase 0.7 6 (t/T)max 6 1.1.

rationale is that the instability in the DNS is associated with modes that undergo
rapid growth during short fractions of the base-flow period, but their average growth
rate over an entire period is small. In order to examine this hypothesis, figure 8
shows the modal growth rate maximized over all phases,

σi,max(α, β)≡max
t/T

σi(α, β, t/T) (3.12)

as a function of the streamwise and spanwise modal wavenumbers at Re= 1600. The
maximum growth rate is recorded at the wavenumber pair (α, β) = (1.2, 1.4). In
terms of the inlet boundary layer thickness, the maximum growth rate is observed
at (α0, β0) = (0.6, 0.7), which is similar to the wavenumbers of the most energetic
perturbations in the DNS flow field (see figure 4b). The particular phase of the base
flow where the highest modal growth rate was recorded is presented in figure 8(b).
The contours indicate that the most unstable phase only weakly depends on α and β.
The phase of the maximum amplification is (t/T)max ∈ [0.82, 1.05] for all investigated
wavenumber pairs.

The growth rate of the most unstable discrete mode is shown in figure 9(a) as a
function of the phase of the base flow during two periods, t/T = [−0.5, 1.5]. The
figure also includes results for the pure Blasius and pure Stokes boundary layers
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FIGURE 9. Instantaneous temporal growth rate σi of the most unstable discrete
eigenfunction as a function of the base-flow phase. (a) Pure Blasius flow (dashed), pure
Stokes layer with W0 = 0.40 (dash-dotted) and combined Blasius–Stokes boundary layer
taken from DNS (solid). For comparison, the growth rate for the analytical Blasius–Stokes
profile is also included (dotted). Modes corresponding to (α, β) = (1.2, 1.4) (black) and
(α, β) = (1.2, −1.4) (grey). (b) Combined Blasius–Stokes boundary layer with forcing
parameters T = 200 and W0 = 0.15 (dash-dotted), W0 = 0.25 (dashed), W0 = 0.40 (solid)
for wavenumbers (α, β)= (1.2, 1.4).

for comparison with the combined Blasius–Stokes flow. In each of the three cases,
a complete sweep of the (α, β) plane was conducted. The presented growth rates
therefore correspond to the respective most unstable wavenumber combinations for
each base flow. For pure Blasius flow, the corresponding values are (α, β)= (0.9, 0).
The flow is known to become unstable at Re≈1500, and the present Reynolds number
of 1600 therefore yields a small positive growth rate for the Tollmien–Schlichting
wave. When considering the case of a pure Stokes flow, the Reynolds number based
on the Stokes layer is ReStokes = 90.23 and thus substantially below the critical value,
ReStokes = 708, for which the flow becomes globally unstable. In agreement with
this observation, the growth rate which was evaluated at (α, β) = (0.0, 3.0) remains
negative for the largest part of the forcing period, except for two very short intervals
during which a marginally positive σi is recorded. Finally, a superposition of the
Blasius profile and the transverse Stokes layer is examined for the wavenumber
pair (α, β) = (1.2, 1.4). A substantial variation in the growth rate is observed. The
maximum growth rate, which occurs at t/T ≈ 0, exceeds that of the TS wave by
two orders of magnitude. A significant stabilization half a period later compensates
for this growth and, as a result, the time-averaged growth rate over a full period
is approximately zero. The grey line is the maximum growth rate evaluated at
(α, β)= (1.2,−1.4). The results simply appear shifted in phase due to the symmetry
of the wall motion. The substantial change in the instability characteristics arising
from the superposition of the Stokes and Blasius layers is akin to the problem of
streamwise oscillating channel flow, which was shown by Thomas et al. (2011) to be
highly sensitive to the addition of a steady mean component. The influence of the wall-
oscillation amplitude on modal stability is visualized in figure 9(b). It is seen that both
the maximum growth rate and the extent of the unstable interval increase with W0.

For the present range of parameters, the Stokes layer alone is only weakly unstable
at certain phases, and it is the superposition with the Blasius profile that substantially
promotes modal growth (figure 9a). The instability analysis is repeated in the limit
Re→∞ to assess whether the amplification is due to an inviscid mechanism. The
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FIGURE 10. (a) Temporal growth rate σi of the instantaneously most unstable discrete
mode at Re= 1600 (solid) and in the inviscid limit Re→∞ (dashed). (b) Phase speed cr
of the instantaneously most unstable discrete mode at Re= 1600 (solid) and in the inviscid
limit (dashed). Modes corresponding to (α, β)= (1.2, 1.4) (black) and (α, β)= (1.2,−1.4)
(grey).

maximum growth rates of the inviscid modes with (α, β) = (1.2, 1.4) and (α, β) =
(1.2,−1.4) are presented by dashed lines in figure 10(a). The behaviour qualitatively
agrees with the analysis performed at Re = 1600, although higher growth rates are
observed in the absence of viscosity. The phase speeds of both the viscous and the
inviscid modes are presented in figure 10(b). The results show that the discontinuity
in σi of the viscous modes is accompanied by a jump in cr that is also present in
the inviscid limit. Overall, these findings establish that the modal instability is due to
an inviscid mechanism. As such, the present instability bears a certain resemblance to
the cross-flow instabilities that arise in the three-dimensional flow over swept wings.

3.3. Mode crossing and its origin
In this section, we examine the origin of the abrupt change in the slope of the
instability growth rate, marked by the ‘⊗’ in figure 9. Note that we are considering
only the curve for (α, β)= (1.2, 1.4) in that figure, and not the (α,−β) result. The
sudden change in the trend of σi can be attributed to a crossing of two discrete modes.
While σi may appear periodic over a period T of the base flow in that figure, the
mode crossing indicates otherwise. In particular, the mode with the highest growth
rate at t/T = 0 (labelled m1) is not the same as the dominant mode (m2) at t/T = 1.
The mode crossing is also evident in the eigenfunctions of the instantaneously most
unstable mode (figure 11). The eigenfunctions at t/T = 0.50 and t/T = 0.54 provide a
comparison immediately before and after the crossing, and show an appreciable shift
of the location of highest amplitude towards the wall.

In order to further examine the periodic behaviour of the discrete instabilities, a
series of eigenvalue problems at different phases of the base state are solved. A
particular eigenvalue can then be traced in the complex plane either to earlier or
later phases of the base flow. This process is termed the backward and forward
continuation of the eigenvalue of interest. Figure 12 shows the backward and forward
continuations of the modes which are most unstable at phases t/T = k, t/T = k + 1
and t/T = k + 2. The interval over which each of the modes remains the most
unstable is marked by a solid line. The aforementioned mode crossing is observed at
approximately t/T = k+ 0.52. It is further seen that, at each time instance, the system
contains a multiplicity of discrete modes: the most unstable eigenfunction, and the
modes that will become unstable during the following periods exist simultaneously.
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FIGURE 11. Absolute (solid), real (dashed) and imaginary (dash-dotted) components of
the instantaneously most unstable mode at different phases of the base flow.
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FIGURE 12. Continuation of discrete modes over several forcing periods. (a) Temporal
growth rate. (b) Phase speed. The interval for which the mode becomes the most unstable
eigenfunction is marked by a solid line.

The mode crossing can be attributed to the character of the Stokes layer.
Figure 13(a) shows that contours of the time-dependent spanwise base flow are
aligned at a characteristic angle in the (y, t/T)-plane. This angle represents the group
velocity cg ∼

√
νT of Stokes second problem, which also governs the wall-normal

propagation of the inflection points D2W = 0 generated by the Stokes layer. The
dashed lines in figure 13(b), which give the y-coordinate of the inflection point
closest to the wall as a function of t/T , is therefore aligned at the same angle as the
contours in figure 13(a).

The propagation of the inflection points is related to the instability modes from
figure 12 by including the height of their critical layers in figure 13(b). The mode
crossing at t/T = k + 0.52 coincides with the emergence of a new inflection point
at the wall. As the inflection point travels away from the wall, it draws along the
mode, which in the process becomes more unstable. When the next inflection point
is generated one period later, the previously most unstable mode is at the edge of the
boundary layer. The new inflection point thus attracts a different eigenfunction situated
closer to the wall.
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FIGURE 13. (a) Contours of the spanwise velocity component computed in DNS as a
function of base-flow phase t/T and wall distance y. (b) Wall distance of the first inflection
point of the spanwise velocity profile (dash-dotted). Wall distance of the critical layer of
the most unstable eigenfunctions for (α, β)= (1.2, 1.4) (solid).

It is important to note that thus far the focus was on the wavenumber pair (α, β)
that is most unstable due to one inflection point of the base flow, and which repeats
once every period. However, the Stokes layer also generates a second inflection point
within the period, or more precisely half a period out of phase. This second inflection
point induces a similar trend, but at the wavenumber pair (α,−β) – the grey curve
in figure 9(a).

The discussion has to this point relied on stability analyses of instantaneous phases
of the base state. A Floquet analysis, on the other hand, would take into account the
time-harmonic nature of the base flow and identify the eigenmodes with maximum
amplification over the entire period. A comparison of the two approaches is provided
in appendix A. The most unstable Floquet mode is fundamental, i.e. its period matches
the base flow. Its growth rate is, however, significantly lower than the average growth
rate, σi,avg, of the instantaneous mode at the wavenumber pair (α, β)= (1.2,1.4) where
σi,avg is maximum.

The analysis of the instantaneously most unstable phases highlights the propensity
of these inflection points of the spanwise profile to cause significant energy
amplification during parts of the base-flow cycle. This behaviour is compared to
the perturbation field in the DNS of transition to turbulence in the next section.

3.4. Comparison to DNS
In the following, we examine whether results from instantaneous stability analysis
can explain the strongly phase-dependent perturbation field observed in direct
numerical simulations of transition. The focus is again on the wavenumber pair
(α0, β0) = (0.6, 0.7), which is subject to the highest instantaneous growth for the
examined range of Reynolds numbers. The modal growth rate as a function of the
phase of the base flow and the downstream location is provided in figure 14(a). The
growth rate increases throughout the forcing period with x, while the most unstable
phase is shifted by approximately one quarter of a period from (t/T)max ≈ 0.90 at
x≈ 50 to (t/T)max ≈ 0.15 at x≈ 200.

An attempt is made to relate the disturbance field from direct numerical simulations
and the results from the linear stability analyses by integrating the modal growth rate
in time. While an instability mode in the DNS is convected downstream as it
amplifies, the instability analysis only provides a purely temporal growth rate for
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FIGURE 14. (a) Contours of the instantaneous temporal growth rate of the most unstable
discrete mode −0.12 6 σi 6 0.05. (b) Contours of the integrated growth rate of the most
unstable discrete mode 0.0 6Σi 6 2.5.

a given Reynolds number and as such a particular downstream position. In order
to incorporate this simultaneous change of both time and space, the integration is
performed along rays of constant characteristic speed cc= 0.60, taken from the angle
in the phase-averaged space–time diagram (figure 5). The integrated growth rate is
therefore defined as

Σi(t, x)≡
∫ t

t−x/cc

σi(x− cct, t) dt. (3.13)

Evaluation of Σi for all possible phases as well as for a range of downstream
positions yields the two-dimensional data field presented in figure 14(b). Localized
regions in which Σi is larger and smaller than zero are identified, corresponding to
locations where the integral effect of exponential amplification is growth and decay,
respectively.

A comparison of the integrated growth rate with the perturbation level observed
in DNS is provided in figure 15 at three different downstream positions. The dashed
and dash-dotted lines correspond to normalized streamwise and wall-normal velocity
fluctuations in the simulations at y/δ(x)= 0.30. Different wall distances yield similar
results. The integrated growth rate Σi is reported at three downstream positions,
normalized to a unit peak value (solid lines). Black and grey curves correspond to
modes with wavenumbers (α0, β0)= (0.6, 0.7) and (α0, β0)= (0.6,−0.7), respectively.
The occurrence of two peaks per period in the DNS fluctuation level is explained by
the presence of both (α,±β) perturbations in the broadband disturbance field inside
the boundary layer.

3.5. Influence of Re and ReStokes

The streamwise Blasius boundary layer and the spanwise Stokes layer introduce
two independent Reynolds numbers, Re = U∞δ/ν and ReStokes = W0

√
T/πν. In

order to establish their respective significance for perturbation growth in the present
three-dimensional base state, figure 16 provides the maximum instantaneous modal
growth rate as a function of the period and the amplitude of the wall forcing,

σi,peak(T,W0)≡max
t/T

max
α

max
β
σi(α, β, t/T, T;W0). (3.14)

Dotted black lines are isolevels of the growth rate, and solid white lines mark
contour lines of the Reynolds number of the Stokes layer. The curves are locally not
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FIGURE 15. Integrated growth rate Σi for modes (α0, β0) = (0.6, 0.7) (solid black)
and (0.6, −0.7) (solid grey) and the velocity fluctuations 〈|u|〉ϕ (dashed) and 〈|v|〉ϕ
(dash-dotted) observed in DNS. From (a–c): Re= 1400, Re= 1600 and Re= 1800.
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FIGURE 16. Grey contours and dotted black lines: maximum modal growth rate from
σi,peak = 0 (black) to σi,peak = 0.04 (white) in increments of 4 × 10−3. Solid white lines
mark levels of constant ReStokes from 0 to 175 in increments of 25.

parallel and, therefore, the growth rate is not determined solely by ReStokes. While
higher forcing amplitudes W0 induce higher growth rates, there exists a specific
period Tmax for which modal growth is highest. The dependence of this period on the
downstream Reynolds number, Re = Uδ(x)/ν, is shown in figure 17(a). The period
remains independent of W0 but increases with Re. Figure 17(b) depicts the ratio of
the thickness of the Stokes layer corresponding to Tmax and the Blasius boundary
layer thickness, δStokes,max/δ(x). This ratio remains nearly constant as the Reynolds
number increases from 800 to 2800.

This section has focused on the modal instability which can promote disturbance
growth when spanwise wall oscillation is superimposed on a streamwise Blasius
boundary layer. However, for a judicious choice of parameters, wall actuation can
also effectively delay bypass transition (see figure 2b) – an effect which is examined
in detail in § 4.

4. Non-modal growth
In this section, the effect of spanwise wall forcing on the non-modal lift-up

mechanism that causes the formation of boundary layer streaks is evaluated. The
main objective is to explain the weaker perturbation field which is observed in
figure 2(b). After a summary of DNS results, linear optimal growth analysis is
employed in order to explain the observed behaviour.
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FIGURE 17. (a) Most unstable forcing period Tmax for amplitudes W0= 0.25 (grey dashed)
and W0 = 0.40 (solid black) as a function of the downstream Reynolds number, Re =
Uδ(x)/ν. (b) Ratio δStokes,max/δ of the thickness of the Stokes layer corresponding to the
locally most unstable period Tmax and the local boundary layer thickness as a function of
the downstream Reynolds number, Re=Uδ(x)/ν.

4.1. Streaks in DNS
It is instructive to start with an analysis of conditionally sampled DNS flow fields.
During the simulations, a sequence of instantaneous three-dimensional flow fields
uDNS(x, y, z, t)= (u(x, y, z, t), v(x, y, z, t),w(x, y, z, t))TDNS was stored. Laminar–turbulent
discrimination is applied to each of the flow fields. Within the laminar regime,
the streaks are identified and their properties are extracted using the procedure
described by Nolan & Zaki (2013). The outcome is a database that contains the
three-dimensional coordinates and the amplitudes for all the detected streaks at each
time step. The conditionally averaged fluctuation field at a given downstream position
x and phase ϕ is then defined as

{u′}±(x, y, z̃, ϕ)≡ 1
N±

N±∑
n=1

G(zn±)u′(x, y, zn±, ϕ), (4.1)

where indices ‘+’ and ‘−’ denote high- and low-speed streaks, respectively. The linear
operator G(zn±) translates the averaging window in the span in order to align the
spanwise location of the maximum streak amplitude at z̃= 0.

For a reference simulation in the absence of wall forcing, figure 18 shows
conditionally sampled high-speed and low-speed streaks. The downstream position
is x = 170, and the average is computed from a total of 7672 (9114) individual
high-speed (low-speed) streaks. The respective peak magnitudes of the conditional
averages of both types of streaks are max(|{u′}+|)= 0.1064 and max(|{u′}−|)= 0.0937.

The conditional averaging was also applied to flow fields computed in the presence
of the wall oscillation with optimal forcing parameters (W0 = 0.25, T = 200).
Figure 19 depicts the averages of positive and negative boundary layer streaks at
four phases, which are equally distributed over half a period of the wall-oscillation
cycle. At the first phase, the appearance of the conditionally averaged streaks
is similar to the unforced reference case (figure 18). The peak magnitudes of
high-speed (max(|{u′}+|) = 0.0456) and low-speed streaks (max(|{u′}−|) = 0.0424)
are nevertheless substantially smaller. Moreover, the peak magnitude is located at a
higher wall distance than in the absence of the spanwise base-flow component. In
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FIGURE 18. Conditionally averaged streaks from an unforced reference simulation at
downstream position x= 140. Grey contours and solid lines show {u′}±, vectors indicate
{v′}± and {w′}±. High-speed streaks (a) and low-speed streaks (b).

figure 19(c,d) (ϕ = 0.125), both types of streaks reach their highest amplitudes. In
addition, the spanwise base flow causes a substantial deformation of the portion of the
streaks closest to the wall. Immediately afterwards, the streaks weaken considerably
(figure 19e,f ). The last row shows a further reduction of the streak amplitudes.

In order to explain this substantial reduction of streak amplitudes in the presence
of the spanwise wall motion, the non-modal mechanism that causes their formation is
examined using optimal disturbance analysis.

4.2. Optimal disturbance analysis
The methodology for computing the optimally amplified initial condition for the
present time-dependent flow is based on the iteration of the forward and adjoint
governing equations (Schmid 2007). Similar to the modal analyses presented in
§ 3, here too the base state is computed from laminar-flow simulations without any
free-stream turbulence. The triple decomposition of the instantaneous flow field (2.1)
hence reduces to u = u and w = w̃ϕ , which is again referred to as a Blasius–Stokes
flow.

The time evolution of small perturbations in v′ and η′= (∂u′/∂z)− (∂w′/∂x) can be
expressed in terms of a linear initial value problem. A normal-mode ansatz is applied
for the streamwise and spanwise dimensions,

v′ = v(y, t) exp(i(αx+ βz)) (4.2)
η′ = η(y, t) exp(i(αx+ βz)). (4.3)

Furthermore, let q= (v, η)T, then the governing equations for small perturbations can
be written in operator form, (

L−M
∂

∂t

)
q= 0, (4.4)

with the definitions of L and M provided in § B.1. The fundamental solution operator
A describes the time integration of (4.4) from the initial time, t0, to the final time, t1,
so that

q1 = Aq0. (4.5)
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FIGURE 19. Conditionally averaged streaks from simulations with T = 200, W0 = 0.25 at
downstream position x= 140 and phases ϕ = {0, 0.125, 0.250, 0.375} in (a,b), (c,d), (e,f ),
(g,h) respectively. The background colour and solid lines show {u′}±. Vectors represent
{v′}± and {w′}±. High-speed streaks (a,c,e,g) and low-speed streaks (b,d,f,h).

For an arbitrary state vector q, the kinetic energy within the domain Ωy is given by
the norm

(q, q)E ≡
∫
Ωy

qHQq dy, (4.6)
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where

Q=
[

k2 −D2 0
0 1

]
. (4.7)

Finding an optimally amplified initial condition q0 is then equivalent to maximizing
the functional

J(q)= (q1, q1)E

(q0, q0)E
= (Aq0, Aq0)E

(q0, q0)E
= (q0, A†Aq0)E

(q0, q0)E
. (4.8)

The adjoint fundamental solution operator A† introduced in the last line formally
describes the time integration of the adjoint governing equations,(

L† −M† ∂

∂t

)
q† = 0, (4.9)

from t1 to t0 with the definitions of L† and M† given in § B.2. The last term in
(4.8) is a Rayleigh quotient, and the optimal energy-amplification ratio, G, is therefore
given by the primary eigenvalue, λmax, of the product A†A, i.e. G≡maxq0

J(q)= λmax.
Computation of λmax via simple power iteration involves the repeated application of
A†A to a random initial guess. The matching conditions between q and q† are

Forward→ Adjoint: v
†
1 =−v1 η

†
1 = η1 (4.10)

Adjoint→ Forward: v0 =− v
†
0

(q1, q1)E
η0 = η

†
0

(q1, q1)E
. (4.11)

In addition, the initial condition is normalized to unit energy, i.e. E0 ≡ (q0, q0)E ≡ 1.
The efficiency of the computation of λmax is improved by replacing the power

iteration with an Arnoldi scheme. In this case, the solutions q†
0 obtained at the end

of each cycle are orthogonalized and used to construct a Krylov subspace, see e.g.
Golub & Van Loan (1996). A spectral discretization using Chebyshev polynomials
is employed in the wall-normal dimension. The mapping between the computational
and physical domain is chosen such that half of the 320 Gauss–Lobatto points of
the spectral grid are located within the boundary layer. The domain height is ten
local boundary layer thicknesses, y ∈ [0, 10δ], and homogeneous boundary conditions
are adopted at the wall as well as at the top of the numerical domain. An implicit
second-order backward discretization is used for the time integration of the both the
forward and the adjoint problems. The state vector at time step k + 1 is therefore
obtained from solving the linear system

(3M − 21tLk+1)qk+1 =M(4qk − qk−1). (4.12)

Since the reference Blasius case has a steady base state, the maximum amplification
only depends on the duration between the initial and final times t1− t0. For unsteady
base states, the initial time, t0, and the final time, t1, of the optimization are
independent parameters. As such, the optimization procedure can be applied in
one of two perspectives: the first is to consider the initial phase, ϕ0, as a parameter.
The final time, t1, is then varied in order to identify the most highly amplified
disturbances for each ϕ0. The second perspective is that the flow can only be at
one of a set of final phases (Blesbois et al. 2013). For each of these final phases,
ϕ1, the optimization is performed for all possible initial times (figure 20). While the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

38
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.387


Stability of boundary layers forced by spanwise wall oscillations 411

G

FIGURE 20. Schematic of the optimization of perturbation kinetic energy for a prescribed
target phase ϕ1 over all possible initial times t0.

two approaches explore the same parameter space, the interpretation is different. In
particular, the second approach, which is adopted here, yields the most amplified, or
most likely observed disturbance at any (final) phase of the flow and identifies its
starting point earlier in time,

〈G〉n ≡max
t0

G(t0, ϕ1,n). (4.13)

With this in mind, one can also evaluate the average energy-amplification ratio over
these possible final phases,

GAVG ≡ 1
N

N∑
n=1

〈G〉n, (4.14)

and the global optimum,
GMAX ≡max

n
〈G〉n. (4.15)

4.3. Results
This section presents a set of key results of algebraic energy growth in the presence
of the spanwise wall forcing. The focus is on streamwise elongated perturbations with
α = 0. The influence of a number of parameters such as the period and amplitude
of the wall forcing, the Reynolds number and the spanwise length scale of the
disturbance is investigated.

A comparison of algebraic energy growth without and with application of the
spanwise wall motion is presented in figure 21. Panel 21(a) provides GAVG = GMAX
for a pure Blasius boundary layer. In agreement with the literature, the highest
amplification occurs for spanwise wavenumber β ≈ 2. The value of GAVG in the
forced case with parameters W0 = 0.25 and T = 200 is presented in figure 21(b),
where GAVG is substantially smaller than for the pure Blasius flow.

The influence of the Reynolds number on non-modal growth is presented in
figure 22. At each Re, the particular β that yields the highest growth is considered.
For Blasius flow, the energy gain shows the established quadratic dependence on Re
(Butler & Farrell 1992). In the presence of the wall motion, the increase of G with
Re is less pronounced, and the relative difference between the unforced and forced
cases grows with Re.
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FIGURE 21. Averaged energy-amplification ratio, 0 6 GAVG 6 1500. (a) Pure Blasius.
(b) Forcing with T = 200, W0 = 0.25.
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FIGURE 22. Energy amplification for Blasius (solid), sinusoidal forcing with T = 200,
W0 = 0.25 (dashed) for the highest amplified spanwise wavenumber β over Reynolds
number. (a) Averaged energy-amplification ratio GAVG. (b) Maximum energy-amplification
ratio GMAX .

The phase dependence of the non-modal growth process is visualized in figure 23.
Panel 23(a) shows the optimization of the energy gain over all initial times
for the target ending phase ϕ1 = 0.125. This particular ending phase is host to
the global maximum, GMAX . An appreciable influence of the initial time of the
optimization procedure is observed. Perturbations which start to grow at approximately
t0/T = −0.4 ± k/2, k ∈ N are higher amplified than those starting to grow at other
times. This bias towards certain initial times is even more evident in figure 23(b).
For a range of equidistant ending phases ϕ1 ∈ [0, 1], the time evolution of the energy
E= (q, q)E of the initial disturbance that yields the highest G is shown. In agreement
with the above observation, all curves start at t0/T =−0.4± k/2, k ∈N.

The initial and final conditions yielding the highest G are presented in figure 24.
Figure 24(a) shows the unforced reference case at initial time. The streamwise
velocity component is virtually zero everywhere, while the wall-normal and spanwise
components form counter-rotating streamwise vortices. The wall-normal transport
of mean momentum induced by these vortices leads to the strong streamwise
perturbations observed at the final time. When considering the forced case, the
initial condition which yields GMAX consists of streamwise vortices that are tilted in
the spanwise direction. As pointed out by Blesbois et al. (2013), this characteristic
configuration yields an additional non-modal energy gain as the spanwise base-flow
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FIGURE 23. Phase dependence of non-modal energy growth for β = 2.00, Re= 1800. (a)
Energy norm E for a range of initial times t0/T and ending phase ϕ1= 0.125. (b) Energy
norm E for the particular initial times t0/T that yield the highest energy-amplification ratio
G for a set of equidistant ending phases ϕ1.
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FIGURE 24. Perturbation fields yielding the maximum energy gain GMAX . Flood and line
contours give the streamwise velocity component, vectors represent the wall-normal and
spanwise velocity components. (a,c) Initial condition q0 with E(t0)≡ 1, (b,d) solution q(t)
at final time with E(t)≡GMAX: (a,b) pure Blasius, (c,d) optimal forcing.

component realigns the perturbation field. The configuration of v′ and w′ at the final
phase is very similar to that of the reference case, although the resulting streaks are
substantially weaker.

Finally, figure 25 establishes the influence of the period and amplitude of the wall
motion on streak growth. For this extensive parameter study, which spans a wide
range of T and W0, the analysis adopts an analytic base-flow profile (a comparison
of the analytic and simulated Blasius–Stokes profiles was performed by Hack & Zaki
(2014a)). Perturbation growth is weakened most effectively at T ≈ 200. This value
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FIGURE 25. Phase-averaged energy-amplification ratio, 0 6 GAVG 6 550. (a) Variation of
the forcing period T at W0 = 0.25. (b) Variation of the forcing amplitude W0 at T = 200.

coincides with the optimal forcing period established in terms of delaying bypass
transition according to the DNS by Hack & Zaki (2014a). The influence of the forcing
amplitude on the other hand is monotonic, so that higher W0 increasingly weakens the
streak mechanism. This result is further evidence that the early breakdown in the DNS
at high W0 is unrelated to the non-modal growth of boundary layer streaks at α = 0.

4.4. Mechanism of streak weakening

The optimal growth computations presented above demonstrated a weakening in the
maximum possible amplification of streaks in the presence of the wall forcing. In this
section, the physical mechanism underlying this behaviour is examined. The optimal
initial condition q0 for the pure Blasius boundary layer is advanced in time with the
linearized governing equations (4.4). The computed energy norm E = (q, q)E as a
function of time is reported in figure 26(a). The solid line corresponds to the pure
Blasius flow, and the dashed line indicates the evolution of the same initial condition
when spanwise wall oscillation is introduced. A significantly reduced amplification
of perturbation energy is recorded. A qualitatively similar trend is obtained when
the optimal initial condition of the Blasius–Stokes flow is used (figure 26b). In the
subsequent analysis, the focus is on the optimal initial condition for the pure Blasius
flow, and the change in the flow response due to the addition of wall oscillation.

At the respective peaks of the energy curves in figure 26, the contribution of
the streamwise velocity perturbation, Eu, makes up over 99 % of the total kinetic
energy. The origin of the streaks which dominate Eu nevertheless lies in the
wall-normal displacement of the mean momentum, and thus in the wall-normal
velocity perturbation, v′. The time evolution of the energy in the v′ and w′ components,
Ev and Ew, is presented in figure 27. For pure Blasius flow, Ev decays exponentially.
The addition of the spanwise wall oscillation causes a higher decay rate of Ev which
is particularly evident in the interval t ∈ [0, 20]. The energy in w′ on the other hand
increases during this interval in the presence of the wall motion (figure 27b).

In order to examine the cause of the rapid decay of v′, the perturbation energy
equation is considered. For the present base flow U= (U(y), 0,W(y, t))T, the kinetic
energy in each of the three components of the velocity perturbation with α = 0 is
governed by
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FIGURE 26. Solution of the initial value problem for a base flow described by pure
Blasius (solid), and Blasius with wall forcing at W0= 0.25, T = 200 (dashed). (a) Optimal
initial condition from pure Blasius. (b) Optimal initial condition from Blasius with wall
forcing.
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FIGURE 27. Solution of the initial value problem for the optimal perturbation of a Blasius
boundary layer for a base flow described by pure Blasius (solid), and Blasius with wall
forcing at parameters W0= 0.25, T = 200 (dashed). (a) Contribution Ev of the wall-normal
perturbation component to the total kinetic energy. (b) Contribution Ew of the transverse
perturbation component to the total kinetic energy.

∂Eu

∂t
≡
∫
Ωy

u′
∂u′

∂t
dy=−

∫
Ωy

u′v′
∂U
∂y

dy︸ ︷︷ ︸
Pu

+ 1
Re

∫
Ωy

u′
∂2u′

∂y2
+ u′

∂2u′

∂z2
dy︸ ︷︷ ︸

Du

, (4.16)

∂Ev
∂t
≡
∫
Ωy

v′
∂v′

∂t
dy=−

∫
Ωy

v′
∂p′

∂y
dy︸ ︷︷ ︸

Rv

+ 1
Re

∫
Ωy

v′
∂2v′

∂y2
+ v′ ∂

2v′

∂z2
dy︸ ︷︷ ︸

Dv

, (4.17)

∂Ew

∂t
≡
∫
Ωy

w′
∂w′

∂t
dy

= −
∫
Ωy

w′v′
∂W
∂y

dy︸ ︷︷ ︸
Pw

−
∫
Ωy

w′
∂p′

∂z
dy︸ ︷︷ ︸

Rw

+ 1
Re

∫
Ωy

w′
∂2w′

∂y2
+w′

∂2w′

∂z2
dy︸ ︷︷ ︸

Dw

. (4.18)
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In the presence of the spanwise Stokes layer, the equation for Ew includes a production
term analogous to that in the Eu equation. The pressure-redistribution term is,

u′j
∂p′

∂xj
=−p′

∂u′j
∂xj
+ ∂u′jp

′

∂xj
, (4.19)

where the repeated index does not imply summation. The first term on the
right-hand side of this identity describes redistribution of energy between the velocity
components. The second term, referred to as pressure diffusion, is several orders of
magnitude smaller than the redistribution term, and is hence ignored.

The energy balance for all three velocity components is presented in figure 28.
Starting with the streamwise component, for Blasius flow Eu is driven by a continuous
growth of the production term which levels off at t≈60. The magnitude of the viscous
decay term grows as well until it matches the production term at t = 155, and the
perturbation begins to decay. In the presence of the wall motion, the observed decrease
of perturbation energy growth is primarily caused by a significant weakening of the
production term, which ceases to increase around t= 10. As noted earlier, the cause
of the weakening of the streaks is the swift decline of the wall-normal perturbation
v′ (figure 28c,d). Without wall oscillation, Ev is weakened due to the combined effect
of viscosity and pressure redistribution. The kinetic energy extracted from v′ due to
the latter term is transferred to the spanwise component, w′. In the presence of the
wall forcing, the magnitude of the redistribution term, Rv, increases significantly. The
kinetic energy is thus shifted from Ev to Ew, where it is counteracted by a combination
of negative production and moderately increased dissipation. The precise balance of Ew
is nonetheless immaterial to the streak mechanism: the production term of streamwise
perturbations, Pu, is independent of w′ and only contains v′ – the latter is weakened
by the pressure redistribution.

The appreciable increase in the pressure redistribution is explained by considering
the Poisson equation which governs the perturbation pressure p′,

1p′ =−2
(

DU
∂v′

∂x︸ ︷︷ ︸
P1

+ DW
∂v′

∂z

)
︸ ︷︷ ︸

P2

. (4.20)

While P1 vanishes in the limit α → 0, the finite spanwise wavenumber of the
disturbance yields a non-zero P2. The spanwise base-flow component W thus supports
a pressure perturbation field via P2, which is absent in a two-dimensional boundary
layer.

In summary, the optimal growth study predicts the weakening of the streaks when
spanwise wall motion is added to the Blasius boundary layer. The analysis also
explains the origin of this stabilizing influence. The spanwise base flow generates
a pressure field that redistributes kinetic energy from the wall-normal perturbations,
which play a principal role in streak amplification, into the less critical spanwise
perturbation field.

5. Relationship between non-modal and modal growth
So far, two distinct linear mechanisms of primary-perturbation growth have been

investigated: the non-modal mechanism that leads to the generation of streaks was
demonstrated to be weakened in the presence of the spanwise wall oscillation. At
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FIGURE 28. Energetic balance for the kinetic energy of the streamwise, wall-normal and
spanwise velocity components. Pressure redistribution, R, (dashed), dissipation, D, (dotted),
production, P, (dash-dotted), and the sum of the three terms (solid). Left column: (a,c,e)
Pure Blasius. Right column: (b,d,f ) Forcing with T = 200, W0 = 0.25.

the same time, the wall oscillation introduces an inviscid cross-flow-type instability,
which for high ReStokes undermines the stabilizing influence and accelerates breakdown
to turbulence. As such, the wall-oscillation amplitude and period dictate whether
transition to turbulence is initiated by non-modal or modal primary growth. The
relationship between the two mechanisms is explored here.

Previous studies explored the connection between non-modal and exponential
instabilities in three-dimensional Falkner–Skan–Cooke boundary layers. Corbett &
Bottaro (2001) conducted temporal optimal growth and modal stability analyses. They
reported a complementary behaviour of the two mechanisms based on the observed
similarity in the shape functions of the perturbations from both approaches. Building
on these findings, Tempelmann, Hanifi & Henningson (2010) investigated the spatial
optimal growth of three-dimensional boundary layers. Detailed studies around the
neutral point of modal instability showed that the optimal disturbances smoothly
approach the most unstable eigenmodes as the conditions change from subcritical to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

38
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.387


418 M. J. P. Hack and T. A. Zaki

0 0.2 0.4 0.6 0.8 1.0

0

0.05

1b

1a

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.5

0.6

0.7

0.8

0.9

1.0

–0.05

–0.10

(a)  (b)

FIGURE 29. (a) Temporal growth rate of the instantaneously most unstable discrete mode
for Re= 1800. (b) Energy projection SDI of the solution of optimal growth onto the most
unstable discrete mode.

supercritical. Since the present time-dependent base flow can sustain both non-modal
and modal growth, it is natural to examine whether the two classes of instabilities
coexist and whether one can give rise to the other.

The optimal growth computations presented in § 4 considered the limit of zero
streamwise wavenumber, α = 0. While this restriction was in line with the objective
of explaining the drastic reduction in streak amplitudes in direct numerical simulations,
it is no longer meaningful in the context of oblique modal instabilities. The following
analysis therefore considers the particular wavenumber pair (α, β) ≈ (1.2, 1.4), for
which the highest growth rates of discrete instabilities were observed (see § 3.2). The
modal growth rate σi of the most unstable discrete mode as a function of the phase
of the base flow is presented in figure 29(a). Similar to Tempelmann et al. (2010),
focus is directed to the variation of the optimal perturbation around the critical point
at which discrete modes become unstable.

In order to compare the optimal solution at the final time with the most unstable
discrete mode at the same phase, the energy projection

SDI =
∥∥∥∥∥
∫
Ωy

qH
1

‖q1‖
QeDI

m dy

∥∥∥∥∥ (5.1)

is considered. In this expression, ek
m are the instantaneous eigenfunctions normalized

to unit energy, (ek
m, ek

m)E = 1, and k = DI identifies the discrete instability mode. An
evaluation of SDI is provided in figure 29(b) for a range of target phases, 0.656 ϕ1 6
0.98 near the critical value, ϕcritical≈ 0.71. In all cases, the initial time is t0/T = 0.60.
The energy of the optimal disturbance at the target phase is increasingly due to the
most unstable discrete mode as the target phase traverses ϕcritical. This outcome is
qualitatively confirmed in figure 30, which compares the magnitudes of the v′ and
η′ components of the optimal disturbance at target phases ϕ1a = 0.68 and ϕ1b = 0.74
with the most unstable mode at the respective phases.

The results presented in figures 29 and 30 focused on the make-up of the optimal
disturbance at the target phase. The substantial energy contribution by the discrete
mode can have two potential implications: first, the disturbance optimal disturbance
at the initial phase is a superposition of eigenfunctions which features the most
unstable discrete mode more prominently as the target phase approaches ϕcritical. A
second conjecture is that, during the time evolution of the optimal disturbance from
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FIGURE 30. Absolute value of the wall-normal velocity (solid) and vorticity (dashed).
Optimal disturbance (black) and most unstable discrete mode (grey) at target phase. (a)
Subcritical target phase, ϕ1a. (b) Supercritical target phase, ϕ1b.
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FIGURE 31. Schematic illustrating linear energy transfer between modes in a time-variant
base flow. At phase ϕn, the solution vector q is parallel to e1

n. At ϕm the eigenspectrum
has changed, and as a consequence the solution q is now a linear combination of e1

m and
e2

m.

its initial condition, the transient growth mechanism transfers energy into the most
unstable mode, in particular when the target phase is near or beyond ϕcritical. For the
current linear system, this energy transfer is only possible via linear diffraction by
virtue of the time-dependent base flow (Monkewitz & Bunster 1987). A graphical
representation of this mechanism is provided in figure 31. At ϕn, the solution q
is parallel to eigenvector e1

n, and orthogonal to e2
n. The time dependence of the

underlying base state nonetheless alters the spectrum, so that at ϕm, the solution
comprises both e1

m and e2
m. Effectively, this process describes an energy transfer from

e1 to e2.
In order to evaluate the energy input into the instability mode due to linear

diffraction, each of the eigenfunctions ej
n, which comprise the spectrum at t0, is

normalized to unit energy and separately evolved in time until the final phase
ϕ1 = 0.98 is reached. These evolved modes ej

n,0⇒1 are then expressed in terms of the
eigenspectrum at the final time, ek

m,

ej
n,0⇒1 =

∑
k

aj
ke

k
m. (5.2)

The coefficients aj
k are computed by exploiting the bi-orthogonality properties of

the forward and adjoint eigenfunctions, aj
k = (e†k

m , ej
n,0⇒1)E, where dagger denotes
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FIGURE 32. (a) Norm Ej
DI representing intermodal energy transfer into the most unstable

discrete mode at (t/T)1 = 0.98. (b) Time evolution of the total energy in the optimal
disturbance, E, (solid) and of the energy in the discrete mode, EDI , (dashed).

the adjoint. The adjoint eigenfunctions are normalized such that (e†l
m, ek

m)E = δlk
for (ek

m, ek
m)E = 1. Let k = DI designate the index of the discrete instability mode

at the final phase. The energy input into DI due to the time evolution of the jth
eigenfunction from the initial time is given by

Ej
DI ≡ (aj

DI)
2. (5.3)

An evaluation of Ej
DI is provided in figure 32(a). It is seen that only one initial

mode (j = 56) generates an appreciable energy input into the discrete mode at final
time. This particular mode is the discrete instability mode at initial time. The extent
of intermodal energy transfer by linear diffraction is therefore negligible.

Since the energy is not transferred to the cross-flow instability from other
eigenfunctions, it must be present in the initial condition. Figure 32(b) demonstrates
that this is indeed the case. The solid black line is the time evolution of the energy
of the optimal disturbance, E = (q, q)E. An initial peak around the critical phase,
ϕcritical = 0.71, is followed by a second region of growth at supercritical phases. The
energy contained in the discrete mode is computed by projecting the state vector q
onto the instantaneous set of eigenfunctions ek(t/T), such that

q(t/T)=
∑

k

bk(t/T)ek(t/T). (5.4)

The coefficients bk(t/T) are again computed using the bi-orthogonality properties of
the adjoint. The energy in the discrete instability mode,

EDI(t/T)= b2
DI, (5.5)

is provided by the dashed line in figure 32. A substantial amount of energy is included
in the discrete mode within the optimal initial condition at t0, but it is masked by the
initial cancellation of modes so that the total energy is unity. As time evolves, many
of the modes decay, and the total energy approaches that of the discrete mode. The
latter is initially decaying, but becomes unstable at the critical phase.

In summary, the observed behaviour ostensibly resembles that reported by Corbett
& Bottaro (2001) and Tempelmann et al. (2010). The current analysis provides
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an accurate interpretation: there is no evidence that the exponential instability is
initiated by means of intermodal energy transfer. The convergence towards the
unstable discrete eigenfunction around the critical point is rather an outcome of the
optimization procedure, which preferentially allocates more energy to the instability
mode. For this reason, the results presented in this paper have treated the discrete
instability separately and optimal growth analysis was only performed for streamwise
elongated streaks where the methodology is appropriate.

6. Conclusions

Spanwise wall oscillation can either suppress or promote disturbance growth in
pre-transitional boundary layers. DNS results demonstrate that there exists an optimum
frequency and amplitude of the spanwise flow for which transition to turbulence is
most effectively delayed. Higher wall-oscillation amplitudes can, however, accelerate
breakdown compared to an unforced reference case. This behaviour was herein
explained in terms of the competition between two amplification mechanisms: the
non-modal growth of boundary layer streaks and the exponential amplification of
instability modes introduced by the spanwise flow.

Instantaneous instability analyses showed that the superposition of a Blasius
boundary layer with a spanwise Stokes layer may lead to exponential perturbation
growth, which significantly exceeds that observed for either flow alone. Modal
growth strongly depends on the phase of the base state, and intervals of substantial
instability are followed by significant decay. As a consequence, the average of the
growth rate over a full forcing period is close to zero. Comparison with DNS flow
fields demonstrated that, for the current parameter range, instantaneous instability
analysis accurately captures the phase-dependent amplification of the disturbances.
The instability is inviscid in nature, akin to a cross-flow mode, and its amplification is
closely related to the inflection points in the spanwise velocity profile. The generation
of new inflection points by the wall motion and their monotonic propagation in the
wall-normal dimension leads to mode crossing when tracing the most unstable mode
computed in the quasisteady analysis. Continuation of the instability modes showed
that at each time instance, the base state encompasses a multiplicity of discrete
modes: the presently most unstable eigensolution, as well as the precursors of the
most unstable modes of later oscillation cycles coexist.

Optimal growth analyses of boundary layer streaks demonstrated a substantial
reduction of the energy gain due to non-modal mechanisms in the presence of the
spanwise oscillatory flow. Over a range of downstream Reynolds numbers, the energy
amplification is less than half that computed for a pure Blasius boundary layer. In
agreement with the direct simulations, the linear analysis predicted an optimum value
for the period of the wall forcing for which streak growth is weakest. Unlike the
DNS, however, an increase in the amplitude of the wall oscillation is stabilizing
in the linear non-modal analysis since the lift-up mechanism is monotonically
weakened. The optimal initial condition in the Blasius–Stokes flow consists of
a pair of streamwise vortices which are tilted in the spanwise dimension. This
configuration enhances the non-modal energy gain by activating the Orr mechanism,
which does not contribute to streak formation in two-dimensional boundary layers.
The overall weakening of non-modal growth was explained in terms of a rapid
decay of wall-normal disturbances, which generate streaks by vertically displacing
the mean momentum of the boundary layer. Consideration of the energy balance
of the perturbations attributes this decay to a redistribution of kinetic energy from
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wall-normal to spanwise perturbations due to a pressure field induced by the spanwise
base flow.

The relationship between non-modal and modal growth was investigated. Earlier
studies had demonstrated that for steady flow over swept wings, the solution of
optimal growth calculations smoothly approaches the discrete mode as the Reynolds
number is varied around the critical point. This behaviour was reproduced for the
Blasius–Stokes base flow. Detailed analyses showed that the discrete mode is already
present in the initial condition, although concealed by the simultaneous presence of
other modes from the eigenspectrum.
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Appendix A. Floquet stability
The instantaneous results presented in § 3 explained the phase-dependent perturbation

growth observed in the direct numerical simulations. A rigorous approach to the
stability analysis of periodic base states, however, requires a global, or Floquet
analysis. In the following, results obtained from a Floquet ansatz will be directly
compared to the outcome of instantaneous analyses.

For a periodic base flow, U = (U(y), 0, W(y, t))T, where U(t = kT + a) = U(t =
a)∀ k ∈N, a Floquet expansion of the perturbation variables has the form

v′(x, y, z, t)= exp(σ Ft)
∞∑

n=−∞
vn(y) exp(i(nF t+ αx+ βz)), (A 1)

η′(x, y, z, t)= exp(σ Ft)
∞∑

n=−∞
ηn(y) exp(i(nF t+ αx+ βz)). (A 2)

Using this ansatz in the governing equations (3.5) and (3.6) yields

∞∑
n=−∞

[
(−iσ F + nF+ αU + βW)(D2 − κ2)− αD2U − βD2W + i

1
Re
(D2 − κ2)2

]
× vn exp(i(−σ F + nF)t)= 0, (A 3)
∞∑

n=−∞

([
−iσ F + nF+ αU + βW + i

1
Re
(D2 − k2)

]
ηn − [αDW − βDU]vn

)
× exp(i(−σ F + nF)t)= 0, (A 4)

which defines an eigenvalue problem in the complex Floquet multiplier, σ F. The real
part of σ F is a shift from the frequency of the base state. The imaginary part describes
the amplification of the associated eigenfunction over a full period of the base state,
and may thus be seen as an integral measure for perturbation growth.

Before comparing the results from the instantaneous and Floquet approaches, it
is helpful to recall characteristic properties of both methodologies. One evident
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difference between the two approaches is periodicity of the individual eigensolutions,
which is enforced in the Floquet framework. The earlier instantaneous results, on
the other hand, captured a mode crossing and an associated sudden change in the
eigenfunction as the phase of the base flow was changed. The mode crossing was
attributed to the generation of new inflection points and their propagation in the
wall-normal direction. Furthermore, only the Floquet approach incorporates linear
energy diffraction (Monkewitz & Bunster 1987): in an unsteady base state, the time
evolution of a perturbation describes a continuous reprojection of the solution onto the
current eigenbasis (see § 5). Since the change in the continuation of an eigenfunction
of the instantaneous base flow between t and t + 1t is generally not identical to
its time evolution from t to t + 1t, the difference in energy must be absorbed by
the remaining modes. This effectively describes a linear mechanism for intermodal
energy transfer and explains why, even in cases where the instantaneous solution is
periodic, the time-averaged instantaneous growth rate may differ from the Floquet
multiplier. It should be noted, however, that Luo & Wu (2010) found this deviation
to be negligible for pure Stokes layers in the present parameter range.

The quantity gained from an instantaneous instability analysis that is most suitable
for comparison with the Floquet multiplier is the averaged temporal growth rate
σi,avg. For the particular wavenumber pair (α, β) = (1.2, 1.4) which yields the
highest instantaneous growth rate, σi,avg = −0.0012 was obtained using the analysis
in § 3.2. The Floquet analysis predicts a growth rate, σ F =−0.0364. Both approaches
therefore predict global stability, with the Floquet mode decaying at a higher rate.
The difference in the decay rate is examined further.

While σ F itself only describes ‘global’ growth over full periods, the Floquet
analysis also provides an eigenfunction, which is valid for all t ∈ [0, T]. A norm
which describes the kinetic energy in the state vector q is given by

E≡
∥∥∥∥∥
∫
Ωy

qHQq dy

∥∥∥∥∥ , (A 5)

where

Q=
[

k2 −D2 0
0 1

]
. (A 6)

In terms of this norm, the temporal growth rate of the instantaneous analysis is
recovered from the relation

σi(t)= 1
2 δt

ln
E(t+ δt)

E(t)
. (A 7)

Evaluation of this expression for the Floquet mode provides a momentary energy-
amplification rate σm

i , which may be compared to the modal growth rates obtained
from instantaneous analyses. Both quantities are presented in figure 33(a). The
maximum value of the instantaneous growth rates, σi = 0.043, matches that of the
Floquet result, σm

i . Between t/T = 0.2 and t/T = 0.85, the Floquet growth rate
smoothly decays and remains unaffected by the mode crossing associated with the
newly formed inflection point. Instead, the Floquet mode gradually departs from the
instantaneous growth rate in order to form a periodic solution.

A quantitative measure for the congruence between the instantaneous and Floquet
modes is given by the projection

SFX ≡
∥∥∥∥∥
∫
Ωy

eH
F QeX dy

∥∥∥∥∥ . (A 8)
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FIGURE 33. (a) Momentary energy-amplification rate σm
i of the Floquet mode (solid),

temporal growth rate σi of the instantaneously most unstable discrete mode (dash-dotted),
and continuation of the most unstable instantaneous mode at t/T = 0 (dashed). (b) Energy
projections SFI of Floquet mode and instantaneously most unstable mode (solid), and SFC
of Floquet mode and continuation of the most unstable instantaneous mode at t/T = 0
(dashed).
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FIGURE 34. Eigenfunctions at selected phases. Floquet mode (solid) and instantaneously
most unstable mode (dash-dotted). Absolute value of the wall-normal velocity component,
|v′|, normalized to unit magnitude: (a) t/T = 0.13; (b) t/T = 0.63.

Here, eF is the Floquet eigenfunction normalized to unit energy and eX is either the
instantaneously most unstable mode (index I) or the continuation of the mode which
is most unstable at t/T = 0 (index C). Figure 33(b) shows that, at the mode crossing,
the projected kinetic energy SFI between the instantaneously most unstable mode and
the Floquet mode sharply decreases.

The absolute values of the eigenfunctions of the two modes, normalized to unit
magnitude, are presented in figure 34 for two phases of the base state. Ahead of the
mode crossing, at t/T = 0.13, the dependence of the two modes on y is virtually
identical. At the second considered phase, t/T = 0.63, the instantaneous mode has
moved towards the wall while the maximum of the shape function of the Floquet
mode remains at the same position.

In summary, the recurring generation and propagation of the inflection points in
the wall-normal direction leads to a crossing of the instantaneously most unstable
modes. A mode is associated with an inflection point and, as it traces its path towards
the edge of the boundary layer, its growth rate decreases. Another mode emerges
as the most unstable with the generation of a new inflection point. In the Floquet
analysis, on the other hand, the most unstable global eigenmode is fundamental and
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does not capture this behaviour. Instead, the Floquet analysis predicts a periodic mode
that persists over many cycles. In a realistic flow with background noise, instabilities
can repeatedly emerge due to the new inflection points. As such, the analysis of the
instantaneous flow provides a good measure of momentary amplification rates, whereas
the Floquet analysis provides a measure of the average growth rate including periods
of decay.

Appendix B. Optimal disturbances
B.1. Governing equations

Let q = (v, η)T, then the time evolution of small perturbations of the wall-normal
velocity v and the wall-normal vorticity η is described by the initial value problem(

L−M
∂

∂t

)
︸ ︷︷ ︸

B

q= 0 (B 1)

with

M =
[
D2 − k2 0

0 1

]
and L=

[
LOS 0
C LSQ

]
, (B 2a,b)

where

LOS = (−iαU − iβW)(D2 − k2)+ iαD2U + iβD2W + 1
Re
(D2 − k2)2, (B 3)

LSQ =−iαU − iβW + 1
Re
(D2 − k2) and C= i(αDW − βDU). (B 4a,b)

The associated boundary conditions for the spatial domain Ωy are

v = 0, Dv = 0, η= 0 on ∂Ωy. (B 5a−c)

B.2. Adjoint problem

Under the norm 〈qA, qB〉 ≡
∫
Ωt

∫
Ωy

qH
A qB dy dt, the adjoint of the operator B is defined

as,
〈q†, Bq〉 = 〈B†q†, q〉 + boundary terms. (B 6)

Integration by parts of the left-hand side of (B 6) gives〈
q†,

(
L−M

∂

∂t

)
︸ ︷︷ ︸

B

q

〉
=
〈(

L†+M† ∂

∂t

)
︸ ︷︷ ︸

B†

q†, q

〉
−
∫
Ωy

[q†H
Mq]t1t0 dy+boundary terms in y.

(B 7)
Comparison of the coefficients yields

M† =−
[
D2 − k2 0

0 1

]
and L† =

[
L†

OS C†

0 L†
SQ

]
. (B 8a,b)
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The second term on the right-hand side is zero under the matching conditions (4.10)
and (4.11). Furthermore, choice of

v† = 0, Dv† = 0, η† = 0 on ∂Ωy (B 9a−c)

together with (B 5) causes the boundary terms in y to vanish.
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