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This paper proposes a new class of estimators of the long-run average relation-
ship in nonstationary panel time series+ The estimators are based on the long-run
average variance estimate using bandwidth equal toT+ The new estimators include
the pooled least squares estimator and the fixed effects estimator as special cases+
It is shown that the new estimators are consistent and asymptotically normal under
both the sequential limit, whereinT r ` followed byn r `, and the joint limit
whereT, n r ` simultaneously+ The rate condition for the joint limit to hold is
relaxed toMn0T r 0, which is less restrictive than the rate conditionn0T r 0,
as imposed by Phillips and Moon~1999, Econometrica67, 1057–1111!+ By expo-
nentiating existing kernels, this paper introduces a new approach to generating
kernels and shows that these exponentiated kernels can deliver more efficient esti-
mates of the long-run average coefficient+

1. INTRODUCTION

Nonstationary panel data with large cross section~n! and time series dimen-
sion~T ! have attracted much attention in recent years~e+g+, Pedroni, 1995; Kao,
1999; Phillips and Moon, 1999!+ Financial and macroeconomic panel data sets
that cover many firms, regions, or countries over a relatively long time period
are familiar examples+ Such panels have been used to study growth and con-
vergence, the Feldstein–Horioka puzzle, and purchasing power parity, among
other subjects+ Phillips and Moon~2000! and Baltagi and Kao~2000! provide
recent surveys of this rapidly growing research area+ When bothn and T are
large, we can allow the parameters in the data generating process to be differ-
ent across different individuals, which is not possible in traditional panels+ Such
a panel data structure also enables us to define an interesting long-run average
relationship for both panel spurious models and panel cointegration models+
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Phillips and Moon~1999! show that both the pooled least squares~PLS! regres-
sion and the fixed effects~FE! regression provide consistent estimates of this
long-run average relationship+

In this paper, we propose a new class of estimators of the long-run average
relationship+ Our estimators are motivated from the definition of the long-run
average relationship+ As shown by Phillips and Moon~1999!, the long-run aver-
age relationship can be parametrized in terms of the matrix regression coeffi-
cient derived from the cross-sectional average of the long-run variance~LRV !
matrices+ A natural way to estimate this coefficient is to first estimate the LRV
matrices directly and then use these matrices to construct an estimate of the
coefficient+ This leads to our LRV-based estimators of the long-run average rela-
tionship+ In this paper, we use kernel estimators of the LRV matrices~e+g+,White,
1980; Newey and West, 1987;Andrews, 1991; Hansen, 1992; de Jong and David-
son, 2000!+ The new estimator thus depends on the kernel used to construct the
LRV matrices+

We show that the new estimator converges to the long-run average relation-
ship under the sequential limit, in which T r ` followed byn r `+ To develop
a joint limit theory, in which T andn go to infinity simultaneously, we need to
exercise some control over the relative rate thatT andn diverge to infinity+ The
rate condition is required to eliminate the effect of the bias+ For example, Phil-
lips and Moon~1999! impose the rate conditionn0T r 0 to establish the joint
limit of the PLS and FE estimators+ This rate condition is likely to hold whenn
is moderate andT is large+ However, in many financial panels, the number of
firms ~n! is either of the same magnitude as the time series dimension~T ! or
far greater+ To relax the rate condition, we need an LRV estimator that achieves
the greatest bias reduction+ It turns out that the kernel LRV estimator with the
bandwidth equal to the time series dimension fits our purpose+ We show that
the bias of this particular estimator is of orderO~10T !, which is the best obtain-
able rate in the nonparametric estimation of the LRV matrix+ On the other hand,
the variance of this estimator does not vanish+ Therefore, such an estimator is
necessarily inconsistent, reflecting the usual bias-variance trade-off+

Using a kernel LRV estimator with full bandwidth~the bandwidth is set equal
to the time series dimension!, we show that the new estimator is consistent
and asymptotically normal asn and T go to infinity simultaneously such that
Mn0T r 0+ This rate condition is obviously less restrictive than the rate con-
dition n0T r 0+ The so-derived joint limit theory therefore allows for a possi-
bly wide cross section relative to the time series dimension+

We show that the PLS and FE estimators are special cases of the LRV-based
estimator+ These two estimators implicitly use kernel LRV estimates with full
bandwidth+ The underlying kernels areK~s, t ! 5 1 2 max~s, t ! and K~s, t ! 5
min~s, t ! 2 st, respectively+ As a consequence, our joint limit theory is also
applicable to these two estimators+ Hence, our work reveals that the rate con-
dition n0T r 0 is only sufficient but not necessary for the joint limit theory
and that it can be weakened toMn0T r 0+
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The new estimator is consistent under both the sequential limit and the joint
limit , even though the LRV estimator is inconsistent+ The reason is that the
LRV estimator is proportional to the true LRV matrix up to an additive noise
term+ If the noise is assumed to be independent, then by averaging across inde-
pendent individuals, we can recover a matrix that is proportional to the long-
run average variance matrix+ The consistency of the new estimator follows from
the fact that it is not affected by the proportional factor+

We find that the new estimators with exponentiated kernels are more effi-
cient than the PLS and FE estimators+ The exponentiated kernels are obtained
by taking powers of the popular Bartlett and Parzen kernels+ In fact, the asymp-
totic variance of the new estimator can be made as small as possible by choos-
ing a large exponent+ This is not surprising as a larger exponent leads to LRV
estimates with less variability+ Variance reduction usually comes at the cost of
bias inflation+We show that the bias inflation is small whenT is large+ In addi-
tion, for exponentiated Parzen kernels, the bias inflation occurs only to the sec-
ond dominating bias term but not to the first dominating bias term+ Therefore,
the bias inflation is likely to factor in only whenT is too small+

The kernel LRV estimator with full bandwidth has been used in hypothesis
testing by Kiefer and Vogelsang~2002a, 2002b!+ Our paper provides another
instance in which the kernel LRV estimator with full bandwidth is useful+ Other
papers that investigate the new LRV estimator include Jansson~2004!, Sun
~2004!, and Phillips, Sun, and Jin~2003a, 2003b!+ In particular, the latter two
papers consider consistent LRV estimation using exponentiated kernels+

The use of the LRV matrix to estimate the long-run average relationship has
been explored by Makela~2002!+ He follows the traditional approach to con-
struct the LVR matrix+ His estimator therefore depends on the truncation lag
and is not fully operational+ In contrast, our estimator, like the PLS and FE
estimators, does not involve the choice of any additional parameter and seems
to be appealing to empirical analysts+

The rest of the paper is organized as follows+ Section 2 describes the basic
model, lays out the assumptions, and introduces the new estimator+ Section 3
establishes the asymptotic properties of the kernel LRV estimator when the band-
width is equal to the sample size+ Section 4 considers the spurious panel model
and investigates the asymptotic properties of the LRV-based estimator+ Sec-
tion 5 extends the results to the cointegration case+ Section 6 concludes+ Proofs
are collected in the Appendix+

Throughout the paper, vec~{! is the column-by-column vectorization func-
tion, tr~{! is the trace function, andJ is the tensor~or Kronecker! product+ The
term Kmm denotes them2 3 m2 commutation matrix that transforms vec~A!
into vec~A'!, i+e+, Kmm 5 ( i51

m ( j51
m ei ej

' J ej ei
' , whereei is the unit vector

~e+g+, Magnus and Neudecker, 1979!+ For a matrixA 5 ~aij !, 7A7 is the euclid-
ean norm~ tr~A'A!!102, and 6A6 is the matrix~6aij 6!+ A , ` means all the ele-
ments of matrixA are finite+ The symboln signifies weak convergence, :5 is
definitional equivalence, and [ signifies equivalence in distribution+ For
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a matrixZn, Zn n N~0,S! means vec~Zn! n N~0,S!+ The termM is a generic
constant+

2. MODEL AND ESTIMATOR

This section introduces notation, specifies the data generating process, and
defines the estimator and relates it to the existing ones+

2.1. The Model

The model we consider is the same as that in Phillips and Moon~1999!+ For
completeness, we briefly describe the data generating process+ The panel data
model is based on the vector integrated process

Zi, t 5 Zi, t21 1 Ui, t , t 5 1, + + + ,T; i 5 1, + + + , n (2.1)

with common initializationZi,0 5 0 for all i+ The zero initialization is main-
tained for simplicity+ All the results in the paper hold if we assume

Zi,0 is i+i+d+ acrossi with E7Zi,074 , `+ (2.2)

We partitioned them-vectorsZi, t and Ui, t into my and mx components~m 5
mx 1 my! as Zi, t

' 5 ~Yi, t
' ,Xi, t

' ! and Ui, t
' 5 ~Uyi , t

' ,Uxi , t
' !+ The error termUi, t is

assumed to be generated by the random coefficient linear process

Ui, t 5 (
s50

`

Ci,sVi, t2s, (2.3)

where~i! $Ci, t % is a double sequence ofm3 m random matrices acrossi andt;
~ii ! the m-vectorsVi, t are independent and identically distributed~i+i+d+! across
i and t with EVi, t 5 0, EVi, t Vi, t

' 5 Im, and EVa, i, t
4 5 v4 for all i and t, where

Va, i, t is theath element ofVi, t + ~iii ! Ci,s andVj, t are independent for alli, j,s, t+
Let Ca, i,s be theath element of vec~Ci,s! andskas 5 ECa, i,s

k + We make two
further assumptions on the random coefficients+

Assumption 1~Random coefficient condition!+ Ci,s is i+i+d+ acrossi for all s+

Assumption 2~Summability condition!+ (s50
` s4~s4as!

104 , `+

Assumptions 1 and 2 are the same as Assumptions 1~i! and 2~ii ! of Phillips
and Moon~1999!+ Note that their Assumptions 1~ii ! and 2~i! are both implied
by their Assumption 2~ii !, so there is no need to state their Assumptions 1~ii !
and 2~i! here+ Assumption 1 and the assumption thatVi, t is i+i+d+ imply cross
sectional independence, an assumption that may be restrictive for some eco-
nomic applications+ However, because of the lack of natural ordering, there is
no completely satisfactory and general way of modeling cross-sectional depen-
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dence, although some important progress has been made~see Conley, 1999;
Phillips and Sul, 2003; Andrews, 2003!+ In this paper, we follow the large panel
data literature and maintain the assumption of cross-sectional independence+

Let Ci ~1! 5 (s50
` Ci,s, DCi,s 5 (t5s11

` Ci, t , and EUi, t 5 (s50
` DCi,sVi, t2s+ Under

Assumptions 1 and 2, we can prove the following lemma, which ensures the
integrability of the terms that appear frequently in our development+

LEMMA 1 + Let Assumptions 1 and 2 hold; then

~a! (s50
` s2E7Ci,s7 , `,

~b! E7Ui, t72 , M for some M, ` and all t,
~c! E7Ci ~1!74 , `,
~d! E7 EUi, t74 , M for some M, ` and all t,
~e! (s50

` @E~7 DCi,s74!#104 , `.

Under Assumptions 1 and 2, the processesUi, t admit the following Beveridge-
Nelson decomposition almost surely:

Ui, t 5 Ci ~1!Vi, t 1 EUi, t21 2 EUi, t + (2.4)

Using this decomposition and following Phillips and Solo~1992!, we can prove
that

1

MT (
t51

@Tr#

Ui, t n
c

Ci ~1!Wi ~r !, asT r ` for all i, (2.5)

whereWi ~r ! is a standard Brownian motion with var~Wi ~r !! 5 rI m andn
c

sig-
nifies the weak convergence conditional onFci

5 s~Ci,0, + + + ,Ci, t , + + + !, the
sigma field generated by the sequence$Ci, t %t50

` +
To give a rigorous definition of the preceding conditional weak conver-

gence, we expand the probability space in such a way that the partial sum pro-
cess 1YMT(t51

@Tr# Vi, t can be represented almost surely and up to a negligible
error in terms of a Brownian motionWi ~r ! that is defined on the same proba-
bility space+ Such an expansion can be justified using the Hungarian construc-
tion ~e+g+, Shorack and Weller, 1986!+We will proceed as if the probability space
has been expanded in the rest of the paper+ Let ST~r ! 5 1YMT(t51

@Tr# Ui, t ; then a
formal definition of the conditional weak convergence in~2+5! is that

PH lim
Tr`

E~h~ST !6Fci
! 5 E~h~Ci ~1!Wi !6Fci

!J 5 1 (2.6)

for all continuous and bounded functionals onD@0,1# +

2.2. Definition and Estimation of Long-Run Average Relationship

Let Vi be the LRV matrix ofZi, t conditional onFci
+ It is well known thatVi is

proportional to the conditional spectral density matrixfUi Ui
~l! of Ui, t evaluated

at the origin, i+e+, Vi 5 2pfUi Ui
~0!+ PartitioningVi conformably, we have
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Vi 5 SVyyi Vyxi

Vxyi Vxxi
D+ (2.7)

By Lemma 1~c!, Vi is integrable and

V 5 EVi 5SVyy Vyx

Vxy Vxx
D, (2.8)

which is called the long-run average variance matrix ofZi, t + Following a clas-
sical regression approach, we can analogously define a long-run regression coef-
ficient betweenY andX by b 5 VyxVxx

21+ For more discussion on this analogy,
see Phillips and Moon~2000!+

To construct an estimate ofb, we first estimateVi as follows:

ZVi 5
1

T (
s51

T

(
t51

T

Ui,sKS s

T
,

t

T
DUi, t

' , (2.9)

whereUi, t 5 Zi, t 2 Zi, t21, K~{,{! is a kernel function+ WhenK~x, y! depends
only onx 2 y, i+e+, K~x, y! is translation invariant, we writeK~x, y! 5 k~x 2 y!+
In this case, ZVi reduces to

ZVi 5 (
j52T11

T21

kS j

T
D ZGi ~ j !, (2.10)

ZGi ~ j ! 5 5
1

T (
t51

T2j

Ui, t1j Ui, t
' for j $ 0,

1

T (
t52j11

T

Ui, t1j Ui, t
' for j , 0+

(2.11)

From the preceding formulation, it is clear that ZVi is the usual kernel LRV esti-
mator using the full bandwidth+ It should be noted that translation invariant
kernels are commonly used in the estimation of the LRV matrix+ We consider
the kernels other than the translation invariant ones to include some existing
estimators of the long-run average relationship as special cases+ This will be
made clear in Section 2+3+

Based on the previous estimate, we can estimateV by

ZV 5 S ZVyy ZVyx

ZVxy ZVxx
D5 n21 (

i51

n

ZVi + (2.12)

The long-run average relationship parameterb can then be estimated by

ZbLRV 5 ZVyx ZVxx
21, (2.13)

which is called the LRV-based estimator+
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Note that the LRV-based estimatorZbLRV depends on the observationsZi, t only
through their first-order difference+ Therefore, when the model contains indi-
vidual effects such that

Zi, t 5 Ai,0 1 Zi, t
0 , (2.14)

Zi, t
0 5 Zi, t21

0 1 Ui, t , (2.15)

whereZi,0
0 5 0 andUi, t follows the linear process defined in~2+3!, the LRV-

based estimatorZbLRV can be computed exactly the same as before+ In other
words, the LRV-based estimator is robust to the presence of the individual effects+

2.3. Relationship between New and Existing Estimators

Phillips and Moon~1999! show that both PLS and FE estimators are consistent
and asymptotically normal+ In this section, we examine the relationships between
the LRV-based estimator and the PLS and FE estimators+

The PLS estimator is

DbPLS 5 S(
i51

n

(
t51

T

Yi, t Xi, t
' DS(

i51

n

(
t51

T

Xi, t Xi, t
' D21

+ (2.16)

Some simple algebraic manipulations show that

DbPLS 5 S1

n (
i51

n 1

T (
s51

T

(
t51

T

KPLS,TS s

T
,

t

T DUyi ,sUxi , t
' D

3 S1

n (
i51

n 1

T (
s51

T

(
t51

T

KPLS,TS s

T
,

t

T DUxi ,sUxi , t
' D21

, (2.17)

where

KPLS,TS s

T
,

t

T
D 5 12

~s1 1! ∨ ~t 1 1!

T
and

~s1 1! ∨ ~t 1 1! 5 max~s1 1, t 1 1!+ (2.18)

Hence, the PLS estimator is a special case of the LRV-based estimator+ Note
that the kernel for the PLS estimator depends onT+ If we replaceKPLS,T~s, t !
by KPLS~s, t ! 5 1 2 ~s ∨ t !, then we get an asymptotically equivalent estimator
ZbPLS+ In view of ~2+9!, we see that ZbPLS is an LRV-based estimator with kernel

K~s, t ! 5 1 2 ~s ∨ t !+
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We now consider the FE estimator, namely,

DbFE 5 S(
i51

n

(
t51

T

~Yi, t 2 PYi,{ !~Xi, t 2 PXi,{ !'D
3S(

i51

n

(
t51

T

~Xi, t 2 PXi,{ !~Xi, t 2 PXi,{ !'D21

, (2.19)

where PYi,{ 5 10T (t51
T Yi, t and PXi,{ 5 10T (t51

T Xi, t + Again, some algebraic
manipulations yield

DbFE 5 S1

n (
i51

n 1

T (
s51

T

(
t51

T

KFE,TS s

T
,

t

T DUyi ,sUxi , t
' D

3 S1

n (
i51

n 1

T (
s51

T

(
t51

T

KFE,TS s

T
,

t

T DUxi ,sUxi , t
' D21

, (2.20)

where

KFE,TS s

T
,

t

T
D 5

T 2 ~s ∨ t ! 1 1

T
2 ST 2 s1 1

T
DST 2 t 1 1

T
D+ (2.21)

The kernel functionKFE,T~s, t ! depends onT+ As before, we can replace
KFE,T~s, t ! by KFE~s, t ! 5 min~s, t ! 2 st to obtain an estimatorZbFE that is asymp-
totically equivalent to DbFE + The resulting estimatorZbFE is an LRV-based esti-
mator with kernelK~s, t ! 5 min~s, t ! 2 st+

In summary, the existing estimators or their asymptotically equivalent forms
are special cases of the LRV-based estimator+ The underlying LRV estimators
use kernels that are not translation invariant+ This sharply contrasts with the
usual LRV estimators where translation invariant kernels are commonly used+

3. ASYMPTOTIC PROPERTIES OF THE NEW LRV ESTIMATOR

The properties of ZbLRV evidently depend on those of the LRV matrix estimator
ZVi + In this section, we consider the asymptotic properties ofZVi +We first exam-

ine the bias and variance ofZVi for fixed T and then establish its asymptotic
distribution+

The bias of ZVi depends on the smoothness offUi Ui
~l! at zero and the prop-

erties of the kernel function+ Following Parzen~1957!, Hannan~1970!, and
Andrews~1991!, we define

fUi Ui

~q! 5
1

2p (
j52`

`

6 j 6qGi ~ j !+ (3.1)
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The smoothness of the spectral density at zero is indexed byq, for which fUi Ui

~q!

is finite almost surely+ The larger isq such thatfUi Ui

~q! , ` a+s+, the smoother is
the spectral density at zero+

The following lemma establishes the smoothness of the spectral density at
l 5 0+

LEMMA 2 + Let Assumptions 1 and 2 hold; then

(a) E( j52`
` j 27Gi ~ j !7 5 ( j52`

` j 2E7Gi ~ j !7 , `.
(b) E~2pfUi Ui

~2! ! 5 E ( j52`
` j 2Gi ~ j ! , `+

WhenK~s, t ! 5 k~s 2 t !, the bias ofVi depends on the smoothness ofk~x!
at zero+ To define the degree of smoothness, we let

kq 5 lim
xr0

12 k~x!

6x6q
, ` for q $ 0+ (3.2)

The largestq for which kq is finite is defined to be the Parzen characteristic
exponentq*+ The smoother isk~x! at zero, the larger isq*+ The values ofq* for
various kernels can be found in Andrews~1991!+

To investigate the asymptotic properties ofZVi , we assume the kernel func-
tion K~s, t ! satisfies the following conditions+

Assumption 3~Kernel conditions!+ K~s, t ! [ K1 ø K2 where

K1 5 $K~s, t ! :K~s, t ! 5 1 2 ~s ∨ t !, or min~s, t ! 2 st%

andK2 5 $K~s, t ! :K~s, t ! 5 k~s 2 t ! with k~0! 5 1 and

~i! k~x! : @21,1# r @0,1# is symmetric, continuous, and piecewise smooth
~i+e+, k~x! has a bounded derivative that is continuous everywhere except
at a finite number of points at which left- and right-handed derivatives
exist!+

~ii ! The Parzen characteristic exponent satisfiesq* $ 1+
~iii ! k~x! is positive semidefinite, i+e+, for any square integrable functionf ~x!,

*0
1 *0

1 k~s 2 t ! f ~s! f ~t ! ds dt$ 0%+

Note that the two kernels inK1 are positive semidefinite+ When K~s, t ! 5
1 2 ~s ∨ t !,

E
0

1E
0

1

K~s, t ! f ~s! f ~t ! ds dt5E
0

1SE
0

t

f ~s! dsD2

ds$ 0+ (3.3)

WhenK~s, t ! 5 min~s, t ! 2 st,

E
0

1E
0

1

K~s, t ! f ~s! f ~t ! ds dt5E
0

1

F 2~s! ds2SE
0

1

F~s! dsD2

$ 0, (3.4)
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where F~s! 5 *0
s f ~r ! dr+ Therefore, the kernels satisfying Assumption 3 are

positive semidefinite+As shown by Newey and West~1987! and Andrews~1991!,
the positive semidefiniteness guarantees the positive semidefiniteness ofZVi +

We proceed to investigate the bias and variance ofZVi + The following two
lemmas establish the limiting behaviors of the bias and variance ofZVi asT r `+

LEMMA 3 + Let Assumptions 1–3 hold. Definem 5 *0
1 K~s,s! ds.

(a) If K~s, t ! is translation invariant with q* 5 1, then

lim
Tr`

TE@E~ ZVi 6Fci
! 2 mVi # 5 22p~k1 1 1!EfUi Ui

~1! + (3.5)

(b) If K~s, t ! is translation invariant with q* $ 2, then

lim
Tr`

TE@E~ ZVi 6Fci
! 2 mVi # 5 22pEfUi Ui

~1! + (3.6)

(c) If K~s, t ! [ K1, then E~E~ ZVi 6Fci
! 2 mVi ! 5 O~10T !.

Remarks+

~i! WhenK~s, t ! is translation invariant, K~s,s! 5 1, som 5 1+ In this case,
Lemma 3~a! and ~b! show that ZVi is centered around a matrix that is
equal to the true LRV matrix up to a small additive error+ The error has
a finite expectation and is independent acrossi+ As a consequence, the
average LRV matrix can be estimated by averagingZVi over i 51,2, + + + ,n+
WhenK~s, t ! [ K1, ZVi , scaled by*0

1 K~s,s! ds, is equal to the true vari-
ance matrix plus a noise term+ The average LRV matrix can be esti-
mated by averaging~*0

1 K~s,s! ds!21 ZVi over i 5 1,2, + + + , n+
~ii ! For the conventional LRV estimator with a truncation parameterST , the

bias is of orderO~10ST
q*! under the assumption thatST0T 1 ST

q*0T 1
10ST r 0 ~e+g+, Hannan, 1970; Andrews, 1991!+ The bias of the conven-
tional estimator is thus of a larger order than the estimator without trun-
cation+ This is not surprising as truncation is used in the conventional
estimator to reduce the variance at the cost of the bias inflation+

~iii ! WhenK~s, t ! is translation invariant, the dominating bias term depends
on the kernel throughk1 if q* 5 1+ In contrast, whenq* $ 2, the dom-
inating bias term does not depend on the kernel+ From the proof of
the lemma, we see that whenq* 5 2, the next dominating bias term is
22pT22k2 EfUi Ui

~2! + Therefore, whenq* $ 2, the kernels exert their bias
effects only through high-order terms+ This has profound implications
for the asymptotic bias ofZbLRV considered in Section 4+2+
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LEMMA 4 + Let Assumptions 1–3 hold. Then we have

(a) limTr`var~vec~ ZVi 2 EVi !! 5 0, where

EVi 5 T21 (
t51

T

(
t51

T

~Ci ~1!Vi, t !KS t

T
,

t

T
D~Ci ~1!Vi,t !' ; (3.7)

(b) limTr`var~vec~ ZVi !! 5 m2var~vec~Vi !! 1 d2~Im2 1 Kmm!E~Vi J Vi !,
where

d2 5E
0

1E
0

1

K 2~r,s! dr ds+ (3.8)

Remarks+

~i! Lemma 4~b! gives the expression for the unconditional variance+ It is
easy to see from the proof in the Appendix that the conditional variance
has a limit given by limTr` var~vec~ ZVi !6Fci

! 5 d2~Im2 1 Kmm! 3
~Vi J Vi ! almost surely+ Therefore, the magnitude of the asymptotic
variance depends ond2+ This suggests using the kernel that has the small-
estd2 value when the variance ofZVi is the main concern+

~ii ! Lemma 4~b! calculates the limit of the finite-sample variance ofZfUi Ui
~l!

whenl 5 0+ Following the same procedure and using a frequency domain
BN decomposition, we can calculate the limit of the finite-sample vari-
ance of ZfUi Ui

~l! for other values ofl when the full bandwidth is used in
smoothing+ This extension may be needed to investigate seasonally inte-
grated processes+ This extension is straightforward but tedious and is
beyond the scope of this paper+

LEMMA 5 + Let Assumptions 1–3 hold. Then

(a) Conditional onFci
, ZVi n Ci ~1!Ji Ci

'~1!;
(b) E~Ci ~1!Ji Ci ~1!' 6Fci

! 5 mVi almost surely, where

Ji 5E
0

1E
0

1

K~r,s! dWi ~r ! dWi
'~s!+ (3.9)

Remarks+

~i! WhenK~s, t ! is translation invariant, m 51+ In this case, Lemma 5 shows
that ZVi is asymptotically unbiased, even though it is inconsistent+ For
other kernels, ZVi is asymptotically proportional to the true LRV matrix+
We will show that the consistency ofZbLRV inherits from this asymptotic
proportionality+

~ii ! Kiefer and Vogelsang~2002a, 2002b! establish asymptotic results simi-
lar to Lemma 5~a! under different assumptions+ Specifically, they assume
the kernels are continuously differentiable to the second order+ As a con-
sequence, they have to treat the Bartlett kernel separately+ They obtain
different representations of the asymptotic distributions for these two
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cases+ The unified representation in Lemma 5 is very valuable+ It helps
us shorten the proof and enables us to prove the asymptotic properties
of ZbLRV in a coherent way+

~iii ! WhenK~r,s! [ K1, the limiting distribution in Lemma 5~a! is the same
as that obtained by using~2+5! and the continuous mapping theorem+

4. PANEL SPURIOUS REGRESSION

This section considers the case where the two component random vectorsYi, t

andXi, t of Zi, t have no cointegrating relation for anyi+ This case is character-
ized by the following assumption+

Assumption 4~Rank condition!+ rank~Vi ! 5 m almost surely for alli 5
1, + + + , n+

Define bi 5 Vyxi~Vxxi!
21+ Assumption 4 implies that

Yi, t 5
a+s+

bi Xi, t 1 Wi, t , (4.1)

whereWi, t is a unit root process and the long-run covariance betweenXi, t and
Wi, t is zero, i+e+, ( j52`

` EDWi, t2j DXi, t
' 5 0+ Our interest lies in the long-run

average coefficientb 5 EVyxi~EVxxi!
21, which is in general different from the

“average long-run coefficient” defined byEbi + For more discussion on this,
see Phillips and Moon~1999!+

Before investigating the asymptotic properties of the LRV-based estimate,
we first define some notation+ The sequential approach adopted in the paper is
to fix n and allowT to pass to infinity, giving an intermediate limit, then by
letting n pass to infinity subsequently to obtain the sequential limit+ As in Phil-
lips and Moon~1999!, we write the sequential limit of this type as~T,n r `!seq+
The joint approach adopted in the paper allows both indexes, n andT, to pass
to infinity simultaneously+ We write the joint limit of this type as~T, n r `!+

4.1. Sequential Limit Theory and Joint Limit Theory

The following theorem establishes the consistency ofZbLRV as either~T,nr`!seq

or ~T, n r `!+

THEOREM 6+ Let Assumptions 1–4 hold; then

(a) ZVxx rp mVxx,
(b) ZVyx rp mVyx,
(c) ZbLRV rp b,

as either~T, n r `!seq or ~T, n r `!.

Remark+ ZbLRV is consistent even thoughZVi is inconsistent+ This is not sur-
prising as ZVi equalsmVi plus a noise term+ Although the noise in the time series
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estimation is strong, we can weaken the strong effect of noise by averaging
across independent individuals+ This is reflected in Theorem 6~a! and~b!, which
show that ZVxx and ZVyx are respective consistent estimates ofVxx andVyx up to a
multiplicative scalar+

Now we proceed to investigate the asymptotic distribution ofZbLRV+ We con-
sider the sequential asymptotics first and then extend the result to the joint
asymptotics+ To get a definite joint limit, we need to control the relative rate of
expansion of the two indexes+ Write Mn~ ZbLRV 2 b! 5 Mn~ ZVyx 2 b ZVxx! ZVxx

21+
Theorem 6 describes the asymptotic behavior ofZVxx under the sequential and
joint limits+ Under Assumption 4, Vxx has full rank, which implies that ZVxx

21

converge tom21Vxx
21+ Therefore, it suffices to consider the limiting distribution

of Mn~ ZVyx 2 b ZVxx!+
Under the sequential limit, we first let T r ` for fixed n+ The intermediate

limit is

Mn~ ZVyx 2 b ZVxx! n
1

Mn (
i51

n

Qi , (4.2)

where

Qi 5 Cyi ~1!Ji Cxi
' ~1! 2 bCxi ~1!Ji Cxi

' ~1!, (4.3)

Cyi~1! is themy 3 m matrix consisting of the firstmy rows ofCi ~1!, andCxi~1!
is themx 3 mmatrix consisting of the lastmx rows ofCi ~1!+ In view of Lemma 5,
the mean of the summand is

E~Qi ! 5 m~EVyxi 2 bEVxxi ! 5 m~Vyx 2 VyxVxx
21Vxx! 5 0,

and the covariance matrixQ is E vec~Qi !vec~Qi !
'+ An explicit expression forQ

is established in the following lemma+

LEMMA 7 + Let Assumptions 1–4 hold. ThenQ is equal to

m2E vec~Vyxi 2 bVxxi !vec~Vyxi 2 bVxxi !
'

1 d2E~Vxxi J ~Vyyi 2 bVxyi 2 Vyxi b
' 1 bVxxi b

' !!

1 d2~E~Vxyi 2 Vxxi b
' ! J ~Vyxi 2 bVxxi !!Kmymx

,

where Kmymx
is the mymx 3 mymx commutation matrix.

The sequence of random matricesCyi ~1!Ji Cxi
' ~1! 2 bCxi ~1!Ji Cxi

' ~1! is i+i+d+
~0,Q! acrossi+ From the multivariate Linderberg–Levy theorem, we then get,
asn r `,

1

Mn (
i51

n

~Cyi ~1!Ji Cxi
' ~1! 2 bCxi ~1!Ji Cxi

' ~1!! n N~0,Q!+ (4.4)
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Combining~4+4! with the limit lim ZVxx
21 5 m21Vxx

21, we establish the sequential
limit in the following theorem+

THEOREM 8+ Let Assumptions 1–4 hold. Then, as~T, nr `!seq,

Mn~ ZbLRV 2 b! n N~0, ~Vxx
21 J Imy

!QLRV~Vxx
21 J Imy

!!, (4.5)

whereQLRV is

E vec~Vyxi 2 bVxxi !vec~Vyxi 2 bVxxi !
'

1 m22d2E~Vxxi J ~Vyyi 2 bVxyi 2 Vyxi b
' 1 bVxxi b

' !!

1 m22d2~E~Vxyi 2 Vxxi b
' ! J ~Vyxi 2 bVxxi !!Kmymx

+ (4.6)

We now show that the limiting distribution continues to hold in the joint
asymptotics as~T, n r `!+ Write Mn~ ZVyx 2 b ZVxx! as

Mn~ ZVyx 2 b ZVxx! 5
1

Mn (
i51

n

~ ZVyxi 2 b ZVxxi !

5
1

Mn (
i51

n

Qi,T 1 bnT, (4.7)

where

Qi,T 5 ZVyxi 2 b ZVxxi 2 E~ ZVyxi 2 b ZVxxi ! (4.8)

and

bnT 5
1

Mn (
i51

n

E~ ZVyxi 2 b ZVxxi !+ (4.9)

Because of Lemma 3, the termbnT vanishes under the sequential limit+ How-
ever, under the joint limit, we need to exercise some control over the relative
expansion rate of~T, n! so thatbnT vanishes as~T, n r `!+ When this occurs,
the term 10Mn( i51

n Qi,T will deliver the asymptotic distribution as~T, n r `!+
Using Lemma 3, we have

bnT 5
1

Mn (
i51

n

E~E~~ ZVyxi 2 b ZVxxi !6Fci
!!

5
1

Mn (
i51

n

@E~Vyxi 2 bVxxi ! 1 O~10T !# 5 O~Mn0T !, (4.10)

because theO~{! terms in the summand are independent acrossi+ Therefore, to
eliminate the asymptotic bias, we need to assume the two indexes pass to infin-
ity in such a way thatMn0T r 0+ Under this condition, we can prove the fol-
lowing theorem, which provides the asymptotic distribution under the joint limit+
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THEOREM 9+ Let Assumptions 1–4 hold. Then, as~T, n r `! such that
Mn0T r 0,

Mn~ ZbLRV 2 b! n N~0, ~Vxx
21 J Imy

!QLRV~Vxx
21 J Imy

!!+ (4.11)

Remarks+

~i! For the PLS estimator, K ~r , s! 5 1 2 ~r ∨ s!+ Therefore, m2 5
~*0

1~1 2 s! ds!2 5 1
4
_ , d2 5 *0

1 *0
1 K 2~r,s! dr ds 5 1

6
_ , and m22d2 5 2

3
_ +

Hence, the PLS estimator satisfies, under both the sequential and joint
limits,

Mn~ ZbPLS2 b! n N~0, ~Vxx
21 J Imy

!QPLS~Vxx
21 J Imy

!! (4.12)

with

QPLS 5 E vec~Vyxi 2 bVxxi !vec~Vyxi 2 bVxxi !
'

1 203E~Vxxi J ~Vyyi 2 bVxyi 2 Vyxi b
' 1 bVxxi b

' !!

1 203E~Vxyi 2 Vxxi b
' ! J ~Vyxi 2 bVxxi !Kmymx

+ (4.13)

The preceding limiting distribution is identical to that obtained by Phil-
lips and Moon~1999!+

~ii ! For the FE estimator, K~s, t ! 5 min~s, t ! 2 st+ In this case, it is easy to
see thatm2 5 1

36
_ andd2 5 1

90
_+ So m22d2 5 2

5
_ + Hence ZbFE has the limit-

ing distribution given in~4+12! and ~4+13! but with 2
3
_ replaced by2

5
_ +

Once again, the asymptotic result is consistent with Phillips and Moon
~1999!+

~iii ! The efficiency of ZbLRV depends only onm22d2+ The smallerm22d2 is,
the more efficient the estimator is+ This is because the sum of the last
two terms in~4+6! is

E~Cxi
~1! J ~Cyi

~1! 2 bCxi
~1!!!

3 ~Im2 1 Kmm!~Cxi
~1! J ~Cyi

~1! 2 bCxi
~1!!!',

which is positive semidefinite+ Therefore, ZbFE is more efficient than
ZbPLS+ But ZbFE is less efficient than ZbLRV if k 5 ~*0

1 K~s,s! ds!22 3
*0

1 *0
1 K 2~r,s! dr ds , 2

5
_ + In Section 4+2, we consider a class of new

kernels that have smallerk values+

If we assume thatCi, t are the same across individuals, thenVi 5 V andbi 5 b
for someb and all i+ In this case, Vyxi 2 bVxxi 5 0+ As a consequence, QLRV

reduces to

m22d2~Vxx J ~Vyy 2 VyxVxx
21Vxy!!,

and we obtain the following corollary+
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COROLLARY 10+ Let Assumptions 1–4 hold. If Ci, t 5a+s Ct where Ct is an
m 3 m nonrandom matrix for all t, then, as~T, n r `!seq, or as ~T, n r `!
with Mn0T r 0,

Mn~ ZbLRV 2 b! n N~0,m22d2~Vxx
21 J ~Vyy 2 VyxVxx

21Vxy!!!+ (4.14)

Remarks+

~i! The corollary generalizes a result of Kao~1999!+ He considers the homo-
geneous spurious regression and shows that under the sequential limit,
the FE estimator satisfies~4+14! with m22d2 5 2

5
_ +

~ii ! Note that the matrixVxx
21 J ~Vyy 2 VyxVxx

21Vxy! is positive semidefi-
nite+ Therefore, the efficiency of ZbLRV depends only onm22d2 regard-
less of whetherCi, t is heterogeneous or not+

4.2. LRV-Based Estimator with Exponentiated Kernels

In this section, we exponentiate some commonly used kernels and investigate
the asymptotic properties of the LRV-based estimators that these exponentiated
kernels deliver+

We first consider the sharp kernels defined byk~x! 5 kBart
r ~x!, wherekBart~{!

is the Bartlett kernel andr [ Z1+ These kernels, as so defined, exhibit a sharp
peak at the origin+ Sharp kernels are positive semidefinite, as they are equal to
the products of the positive semidefinite kernels+ To see this, we may use equa-
tion ~A+11! in the Appendix and represent the Bartlett kernel by

kBart~r 2 s! 5 (
m51

` 1

lm

fm~r ! fm~s!, for ~r,s! [ @0,1# 2+ (4.15)

Then

kBart
2 ~r 2 s! 5 (

n51

`

(
m51

` 1

lnlm

fn~r ! fm~r ! fn~s! fm~s!+ (4.16)

So, for any functiong~x! [ L2@0,1# , we have

E
0

1E
0

1

g~r !kBart
2 ~r 2 s!g~s! dr ds

5 (
n51

`

(
m51

` 1

lnlm
SE

0

1

g~r ! fn~r ! fm~r ! drD2

$ 0,

which implies thatkBart
2 ~r 2 s! is indeed positive semidefinite+ Iterating the

previous procedure leads to the positive semidefiniteness ofkBart
r ~r 2 s! for

any r [ Z1+
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For sharp kernels, the Parzen characteristic exponent isq* 5 1 andk1 5 r+
The value ofk is k 5 10~r 1 1!+ Therefore, k is a decreasing function of the
exponentr+ In principle, we can chooser to makek as small as possible+ How-
ever, the finite-sample performance can be hurt whenr is too large for a mod-
erate time series dimension+ This is because the bias ofZVi increases asr
increases, as shown by Lemma 3+ In fact, whenMn0T r a, the asymptotic
distribution ofMn~ ZbLRV 2 b! under the joint limit is

N~b, ~Vxx
21 J Imy

!QPLS~Vxx
21 J Imy

!!, (4.17)

whereb 5 22pa~r 1 1!~Vxx
21 J Imy

!vec~EfUyi Uxi

~1! 2 bEfUxi Uxi

~1! !+ Therefore, the
squared asymptotic biasb'b is increasing inr while the asymptotic variance is
decreasing inr+ This observation implies that there exists an optimalr that
minimizes the mean squared errors+ The optimalr depends on the ratioa and
the average spectral density ofUi + We can estimate the optimalr along the
lines of Andrews~1991!, but we do not pursue this analysis in the present paper+

Next, we consider the steep kernels defined byk~x! 5 ~kPR~x!!r wherekPR~x!
is the Parzen kernel+ These kernels decay to zero asx approaches one+ The
speed of decay depends onr+ The largerr is, the faster the decay and the
steeper the kernel+ Steep kernels are positive semidefinite because the Parzen
kernel is positive semidefinite+ The difference between the sharp kernels and
the steep kernels is that the former are not differentiable at the origin whereas
the latter are+ For steep kernels, the Parzen characteristic exponent isq* 5 2
and k2 5 6r+ The value ofk can be calculated using numerical integration+
They are given in Table 1 forr 51, + + + ,6+ Obviously, k decreases asr increases+
This is expected because~kPR~x!!r1 # ~kPR~x!!r2 if r1 $ r2+ Therefore, the
steep kernel can deliver an LRV-based estimatorZbLRV that is more efficient
than ZbFE , as long as the exponent is greater than 1~see Table 1!+

When the steep kernel is employed, the dominating bias ofZVi is independent
of the exponent+ If ~n,T r `! such thatMn0T r a, then the asymptotic dis-
tribution ofMn~ ZbLRV 2 b! is

N~b, ~Vxx
21 J Imy

!QLRV~Vxx
21 J Imy

!!, (4.18)

Table 1. The values ofk for some kernels

r 5 1 r 5 2 r 5 3 r 5 4 r 5 5 r 5 6

kBartlett
r 0+5000 0+3333 0+2500 0+2000 0+1666 0+1429

kParzen
r 0+4473 0+3359 0+2806 0+2459 0+2216 0+2033

~1 2 r ∨ s!r 0+6666 0+6000 0+5714 0+5556 0+5455 0+5385
~min~r,s! 2 rs!r 0+4000 0+2857 0+2331 0+2016 0+1800 0+1642

Note: k 5 ~*0
1 K~s,s! ds!22~*0

1 *0
1 K 2~r,s! dr ds!+
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whereb 5 22pa~Vxx
21 J Imy

!vec~EfUyi Uxi

~1! 2 bEfUxi Uxi

~1! !+ This limiting distribu-
tion seems to imply that we can chooser to makek as small as possible with-
out inflating the asymptotic bias+ This is true in large samples+ But in finite
samples, a largek may lead to a poor performance+ The reason is that the sec-
ond dominating bias term inZVi is T222pk2 EfUi Ui

~2! , which depends onk2+ As a
consequence, the asymptotic bias ofZbLRV under the joint limit is

2 2pMn0T~Vxx
21 J Imy

!vec~EfUyi Uxi

~1! 2 bEfUxi Uxi

~1! ! 1 O~k2Mn0T 2!+

The O~{! term vanishes when~n,T r `! such thatMn0T r a+ But in finite
samples, theO~{! term may have an adverse effect on the performance ofZbLRV+
Nevertheless, the effect is expected to be small, especially whenT is large+

Finally, we may take powers of the kernels inK1 and obtain more efficient
estimates+ Although Assumption 3 does not cover exponentiated kernels of this
sort+ Theorems 8 and 9 go through without modification+

Table 1 summarizes the values ofk for different exponentiated kernels+ The
table clearly shows that for a given “mother” kernel, the value ofk decreases
as the exponent increases+ Recall that the smallerk is, the more efficient the
LRV-based estimator is+We can thus conclude that a larger exponent~r! gives
rise to a more efficient estimator+

5. HETEROGENEOUS PANEL COINTEGRATION

This section assumes that the variables inZi, t are cointegrated+ As discussed in
Engle and Granger~1987!, the long-run covariance matrix is singular in this
case+ We consider the case where the cointegration relationships are different
for different individuals+

Following Phillips and Moon~1999!, we strengthen the summability condi-
tion and impose additional conditions+

Assumption 5~Summability conditions9!+

~i! (s50
` s4~s4as!

104 , `+
~ii ! (s50

` s2~s8as!
108 , `+

~iii ! (s50
` ~s16as!

1016 , `+

Assumption 6 ~Rank conditions9!+ rank~Vi ! 5 rank~Vxxi! 5 mx and
rank~Vyyi! 5 my almost surely for alli 5 1, + + + , n+

Assumption 7~Tail conditions!+ The random matrixVxxi has continuous den-
sity function f with

~i! f ~V! 5 O~exp$tr~2cV!%! for somec . 0 when tr~V! r `+
~ii ! f ~V! 5 O~~det~V!g!! from someg . 7 when det~V! r `+
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Note that Assumption 5 is stronger than Assumption 2+ Therefore, under
Assumptions 1, 3, and 5, all results in Section 3 continue to hold+ Let ai 5
~Imy
,2bi !, wherebi 5 Vyxi Vxxi

21+ Assumption 6 implies thatai Ci ~1!Cyi

' ~1! 5 0+
As a consequence, ai Ci ~1! 5 0, i+e+, Cyi~1! 5 bi Cxi~1!+ Define Ei, t 5 ai Zi, t 5
Yi, t 2 bi Xi, t + Then, usingai Ci ~1! 5 0, we have

Ei, t 5 ai (
s51

t

~Ci ~1!Vi,s 1 EUi,s21 2 EUi,s! 5 ai EUi,0 2 ai EUi, t +

Therefore, Assumption 6 implies the existence of the following panel cointe-
gration relationship with probability one:

Yi, t 5
a+s+

bi Xi, t 1 Ei, t , (5.1)

Xi, t 5 Xi, t21 1 Uxi t ,

where

Fi, t 5 SEi, t

Uxi t
D5 (

s50

`

Gi,sVi, t2s, Gi,s 5S2ai EDi,s

Cxi,s
D (5.2)

and

EDi,s 5 H2ai DCi,s if s , t,

2ai ~ DCi,s 2 DCi,s2t ! if s$ t+
(5.3)

Let Gi ~1! 5 (s50
` Gi,s, EGi,s 5 (t5s11

` Gi, t , and EFi, t 5 (s50
` EGi,sVi, t2s+ As shown

by Phillips and Moon~1999!, Assumptions 5 and 7 ensure that quantities
analogous to those in Lemma 1 are bounded+ Specifically, E (s50

` s27Gi,s72,
E7Fi, t72, E7Gi ~1!74, E7 EFi, t74, and(s50

` ~E7 EGi,s74!104 are all bounded+
Using the long-run covariance matrix, we can estimate the individual cointe-

gration relationship by Zbi 5 ZVyxi ZVxxi
21+ It follows from Lemma 5 that

ZVyxi n bi Cxi
~1!Ji Cxi

' ~1!, ZVxxi n Cxi
~1!Ji Cxi

' ~1!+ (5.4)

As a consequence, Zbi n bi , which implies that Zbi rp bi + This is becausebi is
a constant conditional onFci

+
The following theorem establishes the rate of convergence ofZbi + Before stat-

ing the theorem, we define Lipschitz continuity+ A function f ~{!: G r R is Lip-
schitz continuous if there exists a constantM . 0 such that7 f ~x! 2 f ~ y!7 #
M7x2 y7 for all x andy in G+ It is easy to see that the kernels satisfying Assump-
tion 3 are Lipschitz continuous+

LEMMA 11+ Let Assumptions 5–7 hold. Assume that the kernel function
K~{,{! is symmetric and Lipschitz continuous. Then
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(a) T~ Zbi 2 bi ! 5 Op~1! if K ~1, r ! 5 0 for almost all r.
(b) MT ~ Zbi 2 bi ! 5 Op~1! if K ~1, r ! Þ 0 for some r in a set with positive

Lesbegue measure.

Remarks+

~i! The lemma shows thatZbi is not only consistent but also converges to
the true value at the rate ofMT or T+ This result is particularly interest-
ing+ Although both ZVyxi and ZVxxi are inconsistent, the linear combina-
tion ZVyxi 2 bi ZVyxi is consistent, reflecting the singularity of the long-
run covariance matrixVi + In fact, the proof of the lemma shows that
ZVyxi 2 bi ZVyxi 5 Op~1YMT ! or Op~10T !, depending on the kernel used+

~ii ! The kernelK~{,{! may be called a “tied down” kernel ifK~1, s! 5
K~r,1! 5 0 for any r ands+ Because both kernels inK1 are tied down
kernels, Zbi converges tob at the rate ofT if K [ K1+ This is of course
a well-known result+ Lemma 11~a! has more implications+ Given any
kernel functionK ~r , s!, we can construct a new kernelK *~r , s! 5
K~r,s! 2 K~1,s! 2 K~r,1! 1 K~1,1! such thatK *~1,s! 5 K *~r,1! 5 0
for any r ands+ The new kernel is then able to deliver an estimator that
is superconsistent+

~iii ! For translation invariance kernels, K~1, r ! 5 k~12 r ! Þ 0 in general+ So
the estimator that they deliver is onlyMT -consistent+ The difference in
the rate of convergence arises because the dominated terms are differ-
ent for different types of kernels+

We now investigate the asymptotic distribution ofZbLRV in the heteroge-
neous panel cointegration model+ We first consider the sequential limit of
Mn~ ZVyx 2 b ZVxx!+ The intermediate limit for largeT is the same as that given
by ~4+2!+ More explicitly,

Mn~ ZVyx 2 b ZVxx! n
1

Mn (
i51

n

~Cyi ~1!Ji Cxi
' ~1! 2 bCxi ~1!Ji Cxi

' ~1!!+

Following exactly the same arguments, we can show that the summands are
i+i+d+ ~0,Q!+ Invoking the multivariate Linderberg–Levy theorem and using the
consistency of ZVxx, we have, as~T, n r `!seq,

Mn~ ZbLRV 2 b! n N~0, ~Vxx
21 J Imy

!QLRV~Vxx
21 J Imy

!!+ (5.5)

The next theorem shows that the asymptotic distribution is applicable to the
case of joint limit+ The proof of the theorem follows steps similar to that of
Theorem 9 and is omitted+

THEOREM 12+ Suppose Assumptions 1–3 and 6 hold. Then, as~T,nr`!seq,
or as ~T, n r `! with Mn0T r 0,

Mn~ ZbLRV 2 b! n N~0, ~Vxx
21 J Imy

!QLRV~Vxx
21 J Imy

!!+ (5.6)
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Remarks+

~i! Note that Assumption 7 is not needed for the theorem to hold+ The strong
summability conditions in Assumption 5 are also not necessary+ The
asymptotic distribution not only has precisely the same form as in the
spurious regression case but also holds under the same conditions+ How-
ever, Assumptions 5 and 7 are required for Lemma 11, as it relies on
the panel BN decomposition of the error termEi, t +

~ii ! Because the limiting distribution is the same as that in Theorem 9, the
remarks given there and the efficiency analyses presented in Section 4+2
remain valid+ Therefore, in the presence of heterogeneity, the LRV-
based estimator is more efficient than the PLS and FE estimators if expo-
nentiated kernels are used+

~iii ! The asymptotic theory developed previously allows us to test hypoth-
eses about the long-run average coefficientb+ To test the null hypoth-
esisH0 :c~b! 5 0, wherec~{! is a p-vector of smooth function on a
subsetRmy3mx such that]c0]b ' has full rankp ~# mymx!, we construct
the Wald statistic: Wc 5 nc~ ZbLRV! ZVc

21c~ ZbLRV!, where

ZVc 5 ]c~ ZbLRV!0]b ' ZVb
21]c~ ZbLRV!0]b, (5.7)

ZVb 5 ~ ZVxx
21 J Imy

! ZQLRV~ ZVxx
21 J Imy

!, (5.8)

and ZQLRV is the sample analogue of~4+6!+ Some simple manipulations
show that this test statistic converges to axp

2 random variable under
both the sequential and joint limits+

6. CONCLUSION

In this paper, we have proposed an LRV-based estimator of the long-run aver-
age relationship+ Our estimator includes the pooled least squares and fixed effects
estimators as special cases+We show that the LRV-based estimator is consistent
and asymptotically normal under both the sequential limit and the joint limit+
The joint limit is derived under the rate conditionMn0T r 0, which is less
restrictive than the rate conditionn0T r 0, as required by Phillips and Moon
~1999!+ A central result is that, using exponentiated kernels introduced in this
paper, the LRV-based estimator is asymptotically more efficient than the exist-
ing ones+

It should be pointed out that we have not considered the homogeneous panel
cointegration model+ When the long-run relations are the same across indi-
viduals, the LRV-based estimator may have a slower rate of convergence than
the PLS and FE estimators+ We have shown that, when translation invariant
kernels are used, Zbi is only MT -consistent+ Because of the slower rate of con-
vergence, we expect that the LRV-based estimator converges at the rate of
MnT in homogeneous panel cointegration models+ TheMnT rate is slower than
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theMnT rate that is attained by the PLS and FE estimators+ However, theMnT
rate can be restored if “tied down” kernels are used+ The efficiency of the LRV-
based estimator with other tied down kernels is an open question+

This paper can be extended in several directions+ First, the power parameter
r for the sharp and steep kernels is fixed in the paper+ We may extend the
results to the case thatr grows to infinity at a suitable rate withN andT along
the lines of Phillips et al+ ~2003a, 2003b!+ Second, the LRV-based estimator can
be employed in implementing residual-based tests for cointegration in panel
data+ Following the lines of Kao~1999!, we can use the LRV-based estimator
to construct the residuals and test for unit roots in the residuals+ Because the
LRV-based estimator is more efficient than the FE estimator employed by Kao
~1999!, the test using the LRV-based residuals may have better power proper-
ties+ Finally, we generate the new kernels by exponentiating existing ones+ An
alternative approach to generating kernels is to start from a mother kernelk
and consider the class$kb~s, t !% 5 $k~b21r,b21s! : b [ ~0,1#% ~Kiefer and Vogel-
sang, 2003!+ For this approach, Theorems 8, 9, and 12 go through but withm
andd2 defined by

m 5E
0

1

k~b21r,b21r ! dr and d2 5E
0

1E
0

1

k2~b21r,b21s! dr ds+ (6.1)

With the preceding extension, we may analyze the efficiency of the LRV-based
estimators for different values ofb+
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APPENDIX: PROOFS

Proof of Lemma 1. Parts~a!–~d! are the same as Lemma 1 of Phillips and Moon
~1999!+ It remains to prove part~e!+ From Lemma 9~a! of Phillips and Moon~1999!, for
any r $ 1 and anyp 3 q matrix A 5 ~aij !, we have

7A7r # M (
i51

p

(
j51

q

6aij 6r (A.1)

for some constantM+ Therefore, to evaluate the order of(s50
` @E~7 DCi,s74!#104, it suffices

to consider(p50
` @E~ DCa, i, p

4 !#104+ By the generalized Minkowski inequality and the
Cauchy inequality, we have, for some constantM,
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(
p50

`

@E~ DCa, i, p
4 !#104

5 (
p50

` FES (
t5p11

`

Ca, i, tD4G104

# (
p50

`

(
t5p11

`

@E~Ca, i, t
4 !#104

5 (
p50

`

(
t5p11

`

~s4it
108 t 2!~s4it

108 t22! # (
p50

` S (
t5p11

`

s4it
104 t 4D102S (

t5p11

`

s4it
104 t24D102

# M (
p50

` S (
t5p11

`

s4it
104 t 4DS 1

~ p 1 1!302D # MS(
t50

`

s4it
104 t 4DS(

p51

` 1

p302D
, `, (A.2)

where the last line follows from Assumption 2+ This completes the proof of the lemma+
n

Proof of Lemma 2. Because part~b! follows from part~a!, it suffices to prove part~a!+
Write E (j50

` j 27Gi ~ j !7 as

E (
j50

`

j 27E~Ui, t1j Ui, t
' 6Fci

!7 5 E (
j50

`

j 2**ES (
p,q50

`

Ci,qVi, t1j2qVi, t2p
' Ci, p

' 6FciD**
5 E (

j50

`

j 2**ES(
p50

`

(
k52j

`

Ci, j1kVi, t2kVi, t2p
' Ci, p

' 6FciD**5 E (
j50

`

j 2** (
p50

`

Ci, j1pCi, p
' **

# E (
j50

`

j 2 (
p50

`

7Ci, j1p77Ci, p
' 75 E (

p50

`

(
j50

`

j 27Ci, j1p77Ci, p
' 7

# E (
p50

` S(
j50

`

~ j 1 p!27Ci, j1p7D7Ci, p
' 7# E (

p50

` S(
j50

`

j 27Ci, j 7D7Ci, p
' 7+

Therefore, E (j50
` j 27Gi ~ j !7 is bounded by

(
p50

`

(
j50

`

j 2E7Ci, j 77Ci, p
' 7

# (
p50

`

(
j50

`

j 2~E7Ci, j 72!102E~7Ci, p
' 72!102

5 (
j50

`

j 2~E7Ci, j 72!102 (
p50

`

E~7Ci, p72!102 , `,

where the last line follows from~A+1! and Assumption 2+ This completes the proof of
part ~a!+ n

Proof of Lemma 3. We first consider the case thatK~s, t ! is translation invariant,
i+e+, K~s, t ! 5 k~s 2 t !+ The proof follows closely those of Parzen~1957! and Hannan
~1970!+ We decomposeE~ ZVi 6Fci

! 2 Vi into three terms as follows:
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E~ ZVi 6Fci
! 2 Vi 5 (

j52T11

T21

kS j

T
DE~ ZGi ~ j !6Fci

! 2 Vi

5 (
j52T11

T21

kS j

T
DS12

6 j 6

T
DGi ~ j ! 2 (

j52`

`

Gi ~ j !

5 (
j52T11

T21 SkS j

T
D2 1DGi ~ j ! 2 (

j52T11

T21

kS j

T
D 6 j 6

T
Gi ~ j ! 2 (

6 j 6$T

Gi ~ j !

5 Vi1
e 1 Vi 2

e 1 Vi 3
e , say+

We consider the expectations of the three terms in turn+ First, for q 5 min~q*,2!,
EVi1

e is

T2qE (
j52T11

T21 S k~ j0T ! 2 1

6 j0T 6q D6 j 6qGi ~ j ! 5 T2q (
j52T11

T21 S k~ j0T ! 2 1

6 j0T 6q D6 j 6qEGi ~ j !

5 T2q (
j52`

`

1$2T 1 1 # j # T 2 1%S* k~ j0T ! 2 1

6 j0T 6q *D6 j 6qEGi ~ j !

5 2T2qkqS (
j52`

`

6 j 6qEGi ~ j !D~11 o~1!!+

The last inequality follows because~k~ j0T ! 2 1!6 j0T 62q converges boundedly tokq for
each fixedj+

Second, EVi 2
e is

2 (
j52T11

T21

kS j

T
D 6 j 6

T
EGi ~ j ! 5 2T21 (

j52`

`

6 j 6EGi ~ j !~11 o~1!!

using Lemma 2+
Finally, 7EVi 3

e 7 is bounded by

** (
6 j 6$T

EGi ~ j !** # T22 (
6 j 6$T

6 j 62E7Gi ~ j !75 o~T22!+ (A.3)

Let Vi
e 5 ~Vi1

e 1 Vi 2
e 1 Vi 3

e !; then we have shown that, whenq*5 1, limTr` TEVi
e 5

22p~k1 1 1!EfUi Ui

~1! , and whenq* $ 2, limTr` TEVi
e 5 22pEfUi Ui

~1! +
Next, we consider the case thatK [ K1+ Some algebraic manipulations show that

E~ ZVi 6Fci
! 5

1

T (
s51

T

(
t51

T

KS s

T
,

t

T
DGi ~s2 t !

5
1

T (
s51

T

KS s

T
,

s

T
DGi ~0! 1

1

T (
s51

T

(
t51

s21

KS s

T
,

t

T
D @Gi ~s2 t ! 1 Gi ~t 2 s!#

5
1

T (
s51

T

KS s

T
,

s

T
DGi ~0! 1

1

T (
j51

T

(
s5j11

T

KS s

T
,
s2 j

T
D @Gi ~ j ! 1 Gi ~2j !# +
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WhenK~s, t ! 5 1 2 ~s ∨ t !,

1

T (
s51

T

KS s

T
,

s

T
D 5

1

2

T 2 1

T
,

1

T (
s5j11

T

KS s

T
,
s2 j

T
D 5

1

2

T 2 2 2jT 1 j 2 1 j 2 T

T 2 +

Combining the preceding calculation with the steps for the translation invariant case,
we can getE~E~ ZVi 6Fci

! 2 102Vi ! 5 O~10T !+ Similarly, we can show that when
K~s, t ! 5 min~s, t ! 2 st,

1

T (
s51

T

KS s

T
,

s

T
D 5

1

T (
s51

T S s

T
2

s2

T 2D5
1

6

~T 2 2 1!

T 2 ,

1

T (
s5j11

T

KS s

T
,
s2 j

T
D 5

1

6

j 2 T 2 3jT 2 1 T 3 2 j 3 1 3j 2T

T 3 ,

andE~E~ ZVi 6Fci
! 2 106Vi ! 5 O~10T !+

The proof of the theorem is completed by noting that*0
1 k~0! ds 5 1, *0

1~1 2
~s ∨ s!! ds5 1

2
_ , and*0

1~min~s,s! 2 s2! ds5 1
6
_ + n

Proof of Lemma 4.

Part (a). Plugging the BN decomposition+

Ui, t 5 Ci ~1!Vi, t 1 EUi, t21 2 EUi, t (A.4)

into

ZVi 5
1

T (
t51

T

(
t51

T

Ui, t KS t

T
,

t

T
DUi,t

' , (A.5)

we get

ZVi 5 EVi 1 Ri , (A.6)

whereRi 5 Ri1 1 Ri 2 1 Ri 3 with

Ri1 5
1

T
Ci ~1! (

t51

T

(
t51

T

Vi, t KS t

T
,

t

T
D~ EUi,t21 2 EUi,t !',

Ri 2 5
1

T (
t51

T

(
t51

T

~ EUi, t21 2 EUi, t !KS t

T
,

t

T
DVi,t

' Ci
'~1! 5 Ri1

' ,

Ri 3 5
1

T (
t51

T

(
t51

T

~ EUi, t21 2 EUi, t !KS t

T
,

t

T
D~ EUi,t21 2 EUi,t !'+
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We proceed to show thatE tr~vec~Ri1!vec~Ri1!'! 5 o~1!+ It is easy to see thatRi1 is

1

T (
t51

T

Ci ~1!Vi, t KS t

T
,

1

T
D EUi,0

' 2
1

T (
t51

T

Ci ~1!Vi, t KS t

T
,

T

T
D EUiT

'

1
1

T (
t51

T

Ci ~1!Vi, t (
t51

T21SKS t

T
,
t 1 1

T
D2 KS t

T
,

t

T
DD EUi,t

'

: [ Ri1
~1! 1 Ri1

~2! 1 Ri1
~3! , say+ (A.7)

But E tr~vec~Ri1
~1!!vec~Ri1

~1!!' ! is

1

T 2 (
t51

T

(
s51

T

KS t

T
,

1

T
DKS s

T
,

1

T
DE tr~vec~Ci ~1!Vi, t EUi,0

' !vec~Ci ~1!Vi,s EUi,0
' !' !

5
1

T 2 (
t51

T

(
s51

T

KS t

T
,

1

T
DKS s

T
,

1

T
DE tr~~ EUi,0 J Ci ~1!Vi, t !~ EUi,0 J Ci ~1!Vi,s!

' !

5
1

T 2 (
t51

T

(
s51

T

KS t

T
,

1

T
DKS s

T
,

1

T
DE tr~~ EUi,0 J Ci ~1!Vi, t !~ EUi,0

' J Vi,s
' Ci

'~1!!!

5
1

T 2 (
t51

T

(
s51

T

KS t

T
,

1

T
DKS s

T
,

1

T
DE tr~ EUi,0 EUi,0

' J Ci ~1!Vi, t Vi,s
' Ci

'~1!!, (A.8)

where the first equality follows from the fact that form3 1 vectorsA andB, vec~AB'! 5
B J A, and the third equality follows from the rule that~A J B!~C J D! 5 AC J BD+
In view of the fact that tr~C J D! 5 tr~C!tr~D!, we writeE tr~vec~Ri1

~1!!vec~Ri1
~1!!' ! as

1

T 2 (
t51

T

K 2S t

T
,

1

T
DE tr~ EUi,0 EUi,0

' J Ci ~1!Ci
'~1!!

5
1

T 2 (
t51

T

K 2S t

T
,

1

T
DE tr~ EUi,0 EUi,0

' !tr~Ci ~1!Ci
'~1!!

5
1

T 2 (
t51

T

K 2S t

T
,

1

T
DE7 EUi,0727Ci ~1!72

#
1

T 2 (
t51

T

K 2S t

T
,

1

T
D~E7 EUi,074!102E~7Ci ~1!74!102

5
1

T 2 (
t51

T

K 2S t

T
,

1

T
DO~1! 5 OS 1

T
D, (A.9)

where the last two equalities follow from Lemma 1~c! and ~d! and the boundedness of
K~{,{!+

The proofs of E tr~vec~Ri1
~2!!vec~Ri1

~2!!' ! 5 op~1! and E tr~vec~Ri1
~3!!vec~Ri1

~3!!' ! 5
op~1! are rather lengthy+ They are given in Sun~2003!+ The details are omitted here+
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Given thatE tr~vec~Ri1
~k!!vec~Ri1

~k!!!', k 5 1,2,3, we haveE tr~vec~Ri1!vec~Ri1!'! 5
o~1!+ As a consequence, we also haveE tr~vec~Ri 2!vec~Ri 2!'! 5 o~1!+ Similarly, we can
proveE tr~vec~Ri 3!vec~Ri 3!'! 5 o~1!+ Again, details are omitted+

Part (b). From part~a!, we deduce immediately that

var~vec~ ZVi !! 5 E vec~ ZVi 2 E ZVi !vec~ ZVi 2 E ZVi !
'

5 E vec~ EVi 2 E EVi !vec~ EVi 2 E EVi !
' 1 o~1!+

Note thatE vec~ EVi !vec~ EVi !
' equals

E
1

T 2 (
t,t, p,q51

T

KS t

T
,

t

T
DKS p

T
,

q

T
D~Ci ~1! J Ci ~1!!~Vi,tVi,q

' J Vi, t Vi, p
' !~Ci

'~1! J Ci
'~1!!

5 S 1

T 2 (
t51

T

(
t51

T

K 2S t

T
,

t

T DDE~Ci ~1! J Ci ~1!!~Ci
'~1! J Ci

'~1!!

1 S 1

T (
t51

T

KS t

T
,

t

T DD2

E vec~Ci ~1!Ci
'~1!!vec~Ci ~1!Ci

'~1!!

1 S 1

T 2 (
t51

T

(
t51

T

K 2S t

T
,

t

T DDE~Ci ~1! J Ci ~1!!Kmm~Ci
'~1! J Ci

'~1!!

1 S 1

T 2 (
t51

T

K 2S t

T
,

t

T DDzE~Ci ~1! J Ci ~1!!S(
l51

m

ell J ellD~Ci
'~1! J Ci

'~1!!

(A.10)

and

~E vec~ EVi !!~E vec~ EVi !!
'

5 S 1

T (
t51

T

KS t

T
,

t

T DD2

E vec~Ci ~1!Ci
'~1!!E vec~Ci ~1!Ci

'~1!!',

so E vec~ ZVi 2 E ZVi !vec~ ZVi 2 E ZVi !
' is

S 1

T (
t51

T

KS t

T
,

t

T DD2

var~vec~Ci ~1!Ci
'~1!!!

1 S 1

T 2 (
t51

T

(
t51

T

K 2S t

T
,

t

T DDE~Ci ~1! J Ci ~1!!

3 ~Im2 1 Kmm!~Ci
'~1! J Ci

'~1!! 1 o~1!+

Letting T r ` completes the proof+ n
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Proof Lemma 5.

Part (a). Lemma 3 has shown thatZVi 5 EVi 1 op~1!+ To establish the asymptotic
distribution of ZVi , we only need to considerEVi + Because the kernels are assumed to be
continuous and positive semidefinite, it follows from Mercer’s theorem thatK~r,s! can
be represented as

K~r,s! 5 (
m51

` 1

lm

fm~r ! fm~s!, (A.11)

wherelm . 0 are the eigenvalues of the kernel andfm~x! are the corresponding eigen-
functions, i+e+, fm~s! 5 lm*0

1 K~r,s! fm~r ! dr, and the right-hand side converges uni-
formly over ~r,s! [ @0,1# 3 @0,1# + In fact, for the two kernels inK1, we have

min~r,s! 2 rs 5 (
m51

` 2

p2m2 sinpmr sinpms, (A.12)

12 max~r,s! 5 (
m51

` 8

p2~2m2 1!2 cos
p~2m2 1!r

2
cos

p~2m2 1!s

2
+ (A.13)

For kernels inK2, we have the Fourier series representation:

k~x! 5
a0

2
1 (

m51

`

am cosmpx, (A.14)

wheream 5 *21
1 k~x!exp~2impx! dx, (m50

` 6am6 , `, and the right side of~A+14! con-
verges uniformly overx [ @21,1# + It follows from the preceding representation that for
any r,s [ @0,1# ,

k~r 2 s! 5
a0

2
1 (

m51

`

am cosmpr cosmps1 (
m51

`

am sinmpr sinmps+ (A.15)

Hence, under Assumption 3, the kernels can be represented by~A+11! with smooth
eigenfunctions+

Using ~A+11!, we have, for any T,

KS t

T
,

t

T
D 5 (

m51

` 1

lm

fmS t

T
D fmS t

T
D

5 (
m51

M0 1

lm

fmS t

T
D fmS t

T
D1 (

m5M011

` 1

lm

fmS t

T
D fmS t

T
D+ (A.16)

Therefore, EVi 5 Ci ~1!~ EVi,1 1 EVi,2!Ci
'~1! where

EVi,1 5
1

T (
t51

T

(
t51

T

Vi, t (
m51

M0 1

lm

fmS t

T
D fmS t

T
DVi,t

' , (A.17)

EVi,2 5
1

T (
t51

T

(
t51

T

Vi, t (
m5M011

` 1

lm

fmS t

T
D fmS t

T
DVi,t

' + (A.18)
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It is easy to see that, for a fixed M0,

EVi,1 5 (
m51

M0 1

lm
S 1

MT (
t51

T

Vi, t fmS t

T DDS 1

MT (
t51

T

fmS t

T DVi,t
' D

n (
m51

M0 1

lm
E

0

1

fm~r ! dWi ~r !E
0

1

fm~s! dWi
'~s!

5E
0

1E
0

1S (
m51

M0 1

lm

fm~r ! fm~s!D dWi ~r ! dWi
'~s!+ (A.19)

The preceding weak convergence result follows from integration and summation by parts
and the continuous mapping theorem+ Note that the integral*0

1 fm~r ! dWi ~r ! is well
defined becausefm~{! is of bounded variation+

Following the same argument as in~A+10!, we have, asM0 r `,

E~vec~ EVi 2!vec~ EVi 2!' ! 5 oS 1

T 2D(
t51

T

(
t51

T

E vec~Vi, t Vi,t
' !vec~Vi, t Vi,t

' !' 5 o~1!, (A.20)

which implies that EVi 2 5 op~1! for any T asM0 r `+ Combining the previous results
~e+g+, Nabeya and Tanaka, 1988!, we obtain

ZVi n Ci ~1!E
0

1E
0

1

K~r,s! dWi ~r ! dWi
'~s!Ci

'~1!

5 Ci ~1!Ji Ci
'~1!+ (A.21)

Part (b). The mean of any off-diagonal element ofJi is obviously zero+ It suffices
to consider the means of the diagonal elements+ They are*0

1 K~s,s! ds+ So EJi 5
*0

1 K~s,s! dsIm+ As a consequenceECi ~1!Ji Ci
'~1! 5 Ci ~1!Ci

'~1!*0
1 K~s,s! ds 5

Vi *0
1 K~s,s! ds+ n

Proof of Theorem 6. By Assumption 3, Vxxi is positive definite almost surely, and
c'Vxxi c . 0 for anyc Þ 0 in Rmx+ ThusEc'Vxxi c 5 c'Vxxc . 0, which implies thatVxx

is positive definite+ HenceVxx
21 exists, and part~c! follows from parts~a! and ~b!+ It

remains to prove parts~a! and~b!+We first consider the joint probability limits+ To prove
ZVxx rp mVxx and ZVyx rp mVyx as ~T, n r `!, it is sufficient to show that

plim~T,nr`! n21 (i51
n lim ZVi 5 mV+ Note thatE~ ZVi 6Fci

! 5 mVi 1 Vi
e whereVi

e 5 Vi1
e 1

Vi 2
e 1 Vi 3

e andVik
e , k 5 1,2,3 are defined in the proof of Lemma 3+ We can write ZVi as

ZVi 5 mVi 1 Vi
e 1 Vi

« , whereVi
e is i+i+d+ acrossi with EVi

e 5 O~10T ! andVi
« is i+i+d+

acrossi with EVi
« 5 0+ Therefore,

plim~T,nr`!

1

n (
i51

n

ZVi 5 plim~T,nr`!

1

n (
i51

n

~mVi 1 Vi
« 1 Vi

e!

5 plim~T,nr`! Sm

n (
i51

n

ViD1 plim~T,nr`! S1

n (
i51

n

Vi
«D

1 plim~T,nr`! S1

n (
i51

n

Vi
eD

5 mV 1 plim~T,nr`! S1

n (
i51

n

Vi
eD, (A.22)

1256 YIXIAO SUN

https://doi.org/10.1017/S0266466604206077 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206077


by the law of large numbers+ The last line holds becauseVi and Vi
« do not depend

on T+ In this case, the joint limits as~T, n r `! reduce to the limits asn r `+
It remains to show that plim~T,nr`! n21 (i51

n
Vi

e 5 0+ To save space, we only pre-
sent the proof for plim~T,nr`! n21 (i51

n
Vi1

e 5 0+ A sufficient condition is that
lim ~T,nr`! E7n21 (i51

n
Vi1

e 7 5 0+ Using Lemma 2, we have

E* 1

n (
i51

n

Vi1
e * 5 E* 1

n (
i51

n

(
j52T11

T21 SkS j

T D2 1DGi ~ j !*
#

1

n (
i51

n

(
j52T11

T21

j 21*kS j

T
D2 1* jE7Gi ~ j !7

#
1

n (
i51

n S (
j52T11

T21

j 22*kS j

T D2 1*
2D102S (

j52`

`

j 2E7Gi ~ j !72D102

#
M

nMT S 1

T (
j52T11

T21 S j

T D22

*kS j

T D2 1*
2D102

5 OpS 1

nMT D (A.23)

as ~T, n r `!+ By the Markov inequality, we get plim~T,nr`! n21 (i51
n

Vi1
e 5 0, which

completes the proof of the joint limits+
Next, we consider the sequential probability limits+ By Lemma 5~a! of Phillips

and Moon ~1999!, it suffices to show that, for fixed n, the probability limit
plimTr`~10n!(i51

n ZVi exists+ But the latter is true by Lemma 4~b!+ n

Proof of Lemma 7. Note that

E vec~Cyi ~1!Ji Cxi
' ~1! 2 bCxi ~1!Ji Cxi

' ~1!!vec~Cyi ~1!Ji Cxi
' ~1! 2 bCxi ~1!Ji Cxi

' ~1!!'

5 E~vec~Cyi ~1! 2 bCxi ~1!!Ji Cxi
' ~1!!vec~~Cyi ~1! 2 bCxi ~1!!Ji Cxi

' ~1!!'

5 E~Cxi ~1! J ~Cyi ~1! 2 bCxi ~1!!vec~Ji !!~vec~Ji !
'Cxi
' ~1! J ~Cyi ~1! 2 bCxi ~1!!' !

5 ECxi ~1! J ~Cyi ~1! 2 bCxi ~1!!E~vec~Ji !vec~Ji !
' !Cxi

' ~1! J ~Cyi ~1! 2 bCxi ~1!!',

andE~vec~Ji !vec~Ji !
'! can be written as

ESE
0

1E
0

1E
0

1E
0

1

k~r,s!k~ p,q!vec~dWm~r ! dWm
' ~s!!vec~dWm~ p! dWm

' ~q!!'D+
Some calculations show thatE~vec~dWm~r ! dWm

' ~s!!vec~dWm~ p! dWm
' ~q!!! is

5
vec~Im!vec~Im!' dr dp, if r 5 sÞ p 5 q,

Im2 dr ds, if r 5 p Þ s5 q,

Kmmdr ds, if r 5 q Þ s5 p,

0, otherwise+

(A.24)

Using the preceding result, we have

E~vec~Ji !vec~Ji !
' ! 5 m2vec~Im!vec~Im!' 1 d2~Im2 1 Kmm!+
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Consequently,

ECxi ~1! J ~Cyi ~1! 2 bCxi ~1!!E~vec~Ji !vec~Ji !
' !Cxi

' ~1! J ~Cyi ~1! 2 bCxi ~1!!'

5 m2Cxi ~1! J ~Cyi ~1! 2 bCxi ~1!!vec~Im!vec~Im!'Cxi
' ~1! J ~Cyi ~1! 2 bCxi ~1!!'

1 d2E~Cxi ~1! J ~Cyi ~1! 2 bCxi ~1!!!~Cxi
' ~1! J ~Cyi ~1! 2 bCxi ~1!!' !

1 d2E~Cxi ~1! J ~Cyi ~1! 2 bCxi ~1!!!~~Cyi ~1! 2 bCxi ~1!!' J Cxi
' ~1!!Kmymx

5 m2E vec~~Cyi ~1! 2 bCxi ~1!! ImCxi
' ~1!!vec~~Cyi ~1! 2 bCxi ~1!! ImCxi

' ~1!!'

1 d2E~Vxxi J ~Vyyi 2 bVxyi 2 Vyxi b
' 1 bVxxi b

' !!

1 d2~E~Vxyi 2 Vxxi b
' ! J ~Vyxi 2 bVxxi !!Kmymx

5 m2E vec~Vyxi 2 bVxxi !vec~Vyxi 2 bVxxi !
'

1 d2E~Vxxi J ~Vyyi 2 bVxyi 2 Vyxi b
' 1 bVxxi b

' !!

1 d2~E~Vxyi 2 Vxxi b
' ! J ~Vyxi 2 bVxxi !!Kmymx

+

Here we have used the identity that

Kmm~Cxi
' ~1! J ~Cyi ~1! 2 bCxi ~1!!' ! 5 ~~Cyi ~1! 2 bCxi ~1!!' J Cxi

' ~1!!Kmymx

~see Magnus and Neudecker, 1979, Theorem 3+1, part ~viii !!+ n

Proof of Theorem 9. Under the joint limit, we have shown ZVxx rp mVxx and
bnT rp 0 as~n,T r `! andMn0T r 0+ To prove the theorem, it suffices to show that

1

Mn (
i51

n

Qi,T n N~0,Q!

under the joint limit+ Note thatQi,T are i+i+d+ random matrices acrossi with zero mean
and covariance matrixQT 5 E vec~Qi,T!vec~Qi,T!'+ To calculateQT , let

Gm 5 S0 0

0 Imx

D and

mT 5
1

T (
t51

T

KS t

T
,

t

T
D, dT

2 5
1

T 2 (
t51

T

(
t51

T

K 2S t

T
,

t

T
D+
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Then, by Lemma 4~b!, QT is

E vec~ ZVyxi 2 b ZVxxi 2 E~ ZVyxi 2 b ZVxxi !!vec~ ZVyxi 2 b ZVyxi 2 E~ ZVyxi 2 b ZVyxi !!
'

5 E vec@~Imy
,2b!~ ZVi 2 E ZVi !Gm# vec@~Imy

,2b!~ ZVi 2 E ZVi !Gm# '

5 @Gm
' J ~Imy

,2b!#E vec~ ZVi 2 E ZVi !vec~ ZVi 2 E ZVi !
' @Gm

' J ~Imy
,2b!# '

5 mT
2 @Gm

' J ~Imy
,2b!#E vec~Ci ~1!Ci

'~1!!vec~Ci ~1!Ci
'~1!!@Gm

' J ~Imy
,2b!# '

2 mT
2 @Gm

' J ~Imy
,2b!#E vec~Ci ~1!Ci

'~1!!E vec~Ci ~1!Ci
'~1!!' @Gm

' J ~Imy
,2b!# '

1 dT
2@Gm

' J ~Imy
,2b!# ~Ci ~1! J Ci ~1!!~Ci

'~1! J Ci
'~1!!@Gm

' J ~Imy
,2b!# '

1 dT
2@Gm

' J ~Imy
,2b!# ~Ci ~1! J Ci ~1!!Kmm~Ci

'~1! J Ci
'~1!!@Gm

' J ~Imy
,2b!# '

1 o~1!+

A few more calculations give us

QT 5 mT
2 E vec~Vyxi 2 bVxxi !~vec~Vyxi 2 bVxxi !!

'

1 dT
2EVxxi J ~Vyyi 2 bVxyi 2 Vyxi b

' 1 bVxxi b
' !

1 dT
2E~Vxyi 2 Vxxi b

' ! J ~Vyxi 2 bVxxi !Kmymx
1 o~1!+

So $Qi,T%i is an i+i+d+ sequence with mean zero and covariance matrixQT +
Next we apply Theorem 3 of Phillips and Moon~1999! with Ci 5 Imymx

to establish
10Mn(i51

n
Qi,T n N~0,Q!+ Conditions~i!, ~ii !, and ~iv! of the theorem are obviously

satisfied in view of the facts thatCi 5 Imymx
and QT r Q as T r `+ To prove the

uniform integrability of7Qi,T7, we use Theorem 3+6 of Billingsley ~1999!+ Put in our
context, the theorem states that if7Qi,T7 n 7Qi 7 andE7Qi,T7 r E7Qi 7, then7Qi,T7 is
uniformly integrable+ Note that, using the continuous mapping theorem, we have, as
T r `,

7Qi,T72 n 7Qi 72 5 7Cyi ~1!Ji Cxi
' ~1! 2 bCxi ~1!Ji Cxi

' ~1!72

5 ** ~Cyi ~1! 2 bCxi ~1!!E
0

1E
0

1

K~r,s! dWi ~r ! dWi ~s!Cxi
' ~1!**

2

and

E7Qi,T72 5 E tr~vec~Qi,T !vec~Qi,T !' ! 5 tr~QT !

r tr~Q! 5 E7Qi 72+

Therefore, 7Qi,T7 is uniformly integrable+ We invoke Theorem 3 of Phillips and Moon
~1999! to complete the proof+ n
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Proof of Lemma 11. Note that Zbi 2 bi 5 ~ ZVyxi 2 bi ZVxxi ! ZVxxi
21+ We first consider the

stochastic order ofZVyxi 2 bi ZVxxi+ By definition,

ZVyxi 5
1

T (
t51

T

(
t51

T

bi Uxi , t KS t

T
,

t

T
DUxi t

' 1
1

T (
t51

T

(
t51

T

~Ei, t 2 Ei, t21!KS t

T
,

t

T
DUxi t

'

5 bi ZVxxi 1
1

T (
t51

T

(
t51

T

~Ei, t 2 Ei, t21!KS t

T
,

t

T
DUxi t

'

5
1

T (
t51

T

(
t51

T21

Ei, tSKS t

T
,

t

T
D2 KS t 1 1

T
,

t

T
DDUxi t

'

1 bi ZVxxi 1
1

T
EiT (

t51

T

KS1,
t

T
DUxi t

' , (A.25)

where the last equality follows from summation by parts+
Therefore, whenK~1, r ! 5 K~s,1! 5 0 for anyr ands,

T~ ZVyxi 2 bi ZVxxi ! 5 (
t51

T

(
t51

T21

Ei, tSKS t

T
,

t

T
D2 KS t 1 1

T
,

t

T
DDUxi t

' + (A.26)

Following the same steps as the proof of Lemma 4~a!, we can prove that

(
t51

T

(
t51

T21

Ei, tSKS t

T
,

t

T
D2 KS t 1 1

T
,

t

T
DDUxi t

' 5 Op~1!, (A.27)

provided thatK~{,{! is Lipschitz continuous+ As a consequence, we getT~ Zbi 2 bi ! 5
Op~1!+

WhenK~1,s! Þ 0, MT ~ ZVyxi 2 bi ZVxxi! equals

1

MT (
t51

T

(
t51

T21

Ei, tSKS t

T
,

t

T
D2 KS t 1 1

T
,

t

T
DDUxi t

' 1
1

MT
EiT (

t51

T

KS1,
t

T
DUxi t

' +

(A.28)

In view of ~A+27!, the first term isop~1!+ The second term isOp~1! because

1YMT (
t51

T

KS1,
t

T
DUxi t

' n E
0

1

K~1, r ! dWi
'~r !Cxi

' ~1!+ (A.29)

HenceMT ~ ZVyxi 2 bi ZVxxi! 5 Op~1!, which implies thatMT ~ Zbi 2 bi ! 5 Op~1!+ n
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