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ESTIMATION OF THE LONG-RUN
AVERAGE RELATIONSHIP IN
NONSTATIONARY PANEL
TIME SERIES

YIXIAO SUN
University of California, San Diego

This paper proposes a new class of estimators of the long-run average relation-
ship in nonstationary panel time serid$e estimators are based on the long-run
average variance estimate using bandwidth equal The new estimators include

the pooled least squares estimator and the fixed effects estimator as special cases
It is shown that the new estimators are consistent and asymptotically normal under
both the sequential limitvhereinT — oo followed byn — oo, and the joint limit
whereT,n — co simultaneouslyThe rate condition for the joint limit to hold is
relaxed ton'n/T — 0, which is less restrictive than the rate conditiofir — 0,

as imposed by Phillips and Mod®999 Econometrica7, 1057-1111 By expo-
nentiating existing kernelghis paper introduces a new approach to generating
kernels and shows that these exponentiated kernels can deliver more efficient esti-
mates of the long-run average coefficient

1. INTRODUCTION

Nonstationary panel data with large cross sectionand time series dimen-
sion(T) have attracted much attention in recent ydeig, Pedronj 1995 Kao,

1999 Phillips and Moon1999. Financial and macroeconomic panel data sets
that cover many firmsregions or countries over a relatively long time period
are familiar examplesSuch panels have been used to study growth and con-
vergencethe Feldstein—Horioka puzzlend purchasing power parjtamong
other subjectsPhillips and Moon(2000 and Baltagi and Ka@2000 provide
recent surveys of this rapidly growing research al&&en bothn and T are

large we can allow the parameters in the data generating process to be differ-
ent across different individuglerhich is not possible in traditional paneuch

a panel data structure also enables us to define an interesting long-run average
relationship for both panel spurious models and panel cointegration models
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Phillips and Moon(1999 show that both the pooled least squaiekS) regres-
sion and the fixed effectéFE) regression provide consistent estimates of this
long-run average relationship

In this paperwe propose a new class of estimators of the long-run average
relationship Our estimators are motivated from the definition of the long-run
average relationship\s shown by Phillips and Moo(1999, the long-run aver-
age relationship can be parametrized in terms of the matrix regression coeffi-
cient derived from the cross-sectional average of the long-run varidité)
matrices A natural way to estimate this coefficient is to first estimate the LRV
matrices directly and then use these matrices to construct an estimate of the
coefficient This leads to our LRV-based estimators of the long-run average rela-
tionship In this paperwe use kernel estimators of the LRV matrices)., White,
198Q Newey and West1987 Andrews 1991, Hansen1992 de Jong and David-
son 2000. The new estimator thus depends on the kernel used to construct the
LRV matrices

We show that the new estimator converges to the long-run average relation-
ship under the sequential limit which T — oo followed byn — co. To develop
a joint limit theory in which T andn go to infinity simultaneouslywe need to
exercise some control over the relative rate thandn diverge to infinity The
rate condition is required to eliminate the effect of the bk examplePhil-
lips and Moon(1999 impose the rate condition/T — 0 to establish the joint
limit of the PLS and FE estimatar$his rate condition is likely to hold whem
is moderate and is large However in many financial panelgshe number of
firms (n) is either of the same magnitude as the time series dimer3ipor
far greaterTo relax the rate conditigrwe need an LRV estimator that achieves
the greatest bias reductioh turns out that the kernel LRV estimator with the
bandwidth equal to the time series dimension fits our purpdée show that
the bias of this particular estimator is of ord®¢1/T), which is the best obtain-
able rate in the nonparametric estimation of the LRV matdix the other hand
the variance of this estimator does not vanishereforg such an estimator is
necessarily inconsistenteflecting the usual bias-variance trade-off

Using a kernel LRV estimator with full bandwidtthe bandwidth is set equal
to the time series dimensignwe show that the new estimator is consistent
and asymptotically normal asand T go to infinity simultaneously such that
\vn/T — 0. This rate condition is obviously less restrictive than the rate con-
dition n/T — 0. The so-derived joint limit theory therefore allows for a possi-
bly wide cross section relative to the time series dimension

We show that the PLS and FE estimators are special cases of the LRV-based
estimator These two estimators implicitly use kernel LRV estimates with full
bandwidth The underlying kernels ark(s,t) = 1 — max(s,t) andK(s,t) =
min(s,t) — st respectivelyAs a consequenceur joint limit theory is also
applicable to these two estimatotdéence our work reveals that the rate con-
dition n/T — 0 is only sufficient but not necessary for the joint limit theory
and that it can be weakened t/T — 0.
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The new estimator is consistent under both the sequential limit and the joint
limit, even though the LRV estimator is inconsistefibhe reason is that the
LRV estimator is proportional to the true LRV matrix up to an additive noise
term If the noise is assumed to be independémen by averaging across inde-
pendent individualswe can recover a matrix that is proportional to the long-
run average variance matrixhe consistency of the new estimator follows from
the fact that it is not affected by the proportional factor

We find that the new estimators with exponentiated kernels are more effi-
cient than the PLS and FE estimatofie exponentiated kernels are obtained
by taking powers of the popular Bartlett and Parzen kerdelact, the asymp-
totic variance of the new estimator can be made as small as possible by choos-
ing a large exponent his is not surprising as a larger exponent leads to LRV
estimates with less variabilityariance reduction usually comes at the cost of
bias inflation We show that the bias inflation is small whe&ns large In addi-
tion, for exponentiated Parzen kernglse bias inflation occurs only to the sec-
ond dominating bias term but not to the first dominating bias térherefore
the bias inflation is likely to factor in only whef is too small

The kernel LRV estimator with full bandwidth has been used in hypothesis
testing by Kiefer and Vogelsan@002a 2002h. Our paper provides another
instance in which the kernel LRV estimator with full bandwidth is use@iher
papers that investigate the new LRV estimator include Jan§2004), Sun
(2004, and Phillips Sun and Jin(2003a 2003h. In particular the latter two
papers consider consistent LRV estimation using exponentiated kernels

The use of the LRV matrix to estimate the long-run average relationship has
been explored by Makelé2002. He follows the traditional approach to con-
struct the LVR matrix His estimator therefore depends on the truncation lag
and is not fully operationalln contrast our estimatarlike the PLS and FE
estimatorsdoes not involve the choice of any additional parameter and seems
to be appealing to empirical analysts

The rest of the paper is organized as folloB&ction 2 describes the basic
model lays out the assumptionand introduces the new estimat&ection 3
establishes the asymptotic properties of the kernel LRV estimator when the band-
width is equal to the sample siz8ection 4 considers the spurious panel model
and investigates the asymptotic properties of the LRV-based estin&dor
tion 5 extends the results to the cointegration c&setion 6 conclude$roofs
are collected in the Appendix

Throughout the papgwrec(-) is the column-by-column vectorization func-
tion, tr(-) is the trace functionrand) is the tensofor Kroneckey product The
term K,,m» denotes them?® X m? commutation matrix that transforms \g9
into ved A'), i.e, Kum= 2", 3" 66 ® g€, whereg is the unit vector
(e.g., Magnus and Neudecket979. For a matrixA = (a;), [|Al is the euclid-
ean norm(tr(A’A))Y2, and|A| is the matrix(|a;|). A < co means all the ele-
ments of matrixA are finite The symbol= signifies weak convergengce= is
definitional equivalenceand = signifies equivalence in distributiorFor
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a matrixZ,, Z, = N(0,%) means vetZ,) = N(0,X). The termM is a generic
constant

2. MIODEL AND ESTIMATOR

This section introduces notatipspecifies the data generating proceasd
defines the estimator and relates it to the existing ones

2.1. The Model

The model we consider is the same as that in Phillips and M&8A9. For
completenesswve briefly describe the data generating procddee panel data
model is based on the vector integrated process

Zi,t:Zi,tfl—‘rUi,t’ t:l,...,T; i:].,...,n (21)

with common initializationZ; o = 0 for all i. The zero initialization is main-
tained for simplicity All the results in the paper hold if we assume

Z, isi.i.d. across with E[Z; o|* < co. (2.2)

We partitioned them-vectorsZ; ; and U, ; into m, and m, componentgm =
m, + my) asZ = (Y, X{) and U/, = (U, ,Uy ). The error termy; ; is
assumed to be generated by the random coefficient linear process

Ui,t = 2 Ci,svi,tfs’ (23)
s=0

where(i) {C; ;} is a double sequence of X mrandom matrices acrossandt;
(if) the m-vectorsV, ; are independent and identically distributéd.d.) across
i andt with EV, ; = 0, EV, \V{'y = |, andEV,; , = v* for all i andt, where
V, i 1 is theath element oWV, ;. (iii) C; s andV ; are independent for ail j, s, t.

Let C,; s be theath element of ve(C; 5) and oyas = EC‘,L‘,LS. We make two
further assumptions on the random coefficients

Assumption 1(Random coefficient condition C s i.i.d. across for all s.
Assumption 2(Summability condition X o os*(074a6)Y* < 0.

Assumptions 1 and 2 are the same as Assumptignsabhd Qi) of Phillips
and Moon(1999. Note that their Assumptions(il) and 2i) are both implied
by their Assumption di), so there is no need to state their Assumptiofis) 1
and 2i) here Assumption 1 and the assumption th&f is i.i.d. imply cross
sectional independencan assumption that may be restrictive for some eco-
nomic applicationsHowever because of the lack of natural orderjrigere is
no completely satisfactory and general way of modeling cross-sectional depen-
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dence although some important progress has been niade Conley1999
Phillips and Sul2003 Andrews 2003. In this paperwe follow the large panel
data literature and maintain the assumption of cross-sectional independence
Let Ci(l) = 25 0C| s CI s Et s+1C| tr and UI t— EEO:O C~:i,:svi,tfs- Under
Assumptions 1 and,2ve can prove the following lemmavhich ensures the
integrability of the terms that appear frequently in our development

LEMMA 1. Let Assumptions 1 and 2 hold; then

(@) ZZoS°E[Ci 4l < oo,

(b) E|U; ¢|?> < M for some M< oo and all t,
(© EIC(]* < oo,

(d) E|U;.(|* < M for some M< o and all t,
(e) Egio[E(HCi,s||4)]l/4 < oo.

Under Assumptions 1 and the processed; ; admit the following Beveridge-
Nelson decomposition almost surely

U|,t = Ci(l)vi,t + Lji,t—l - Lji,t- (2-4)
Using this decomposition and following Phillips and S¢1®92, we can prove
that

1 LTl
\I—EU,t=>C(1)W(r) asT— oo foralli, (2.5)
whereW (r) is a standard Brownian motion with v@ah (r)) = rl,, and = sig-
nifies the weak convergence conditional 0 = o(Ci,o,. Ct...), the

sigma field generated by the sequeRCe,},.

To give a rigorous definition of the preceding conditional weak conver-
gence we expand the probability space in such a way that the partial sum pro-
cess ;(\/—E[T”\/I . can be represented almost surely and up to a negligible
error in terms of a Brownian motioW (r) that is defined on the same proba-
bility space Such an expansion can be justified using the Hungarian construc-
tion (e.g., Shorack and Welled986. We will proceed as if the probability space
has been expanded in the rest of the paperS;(r) = 1/VT =7 U, ,; then a
formal definition of the conditional weak convergence(2b) is that

P{1lim E(h(Sp)| %) = E((CMW)I )} =1 (2.:6)

for all continuous and bounded functionals Bfi0,1].

2.2. Definition and Estimation of Long-Run Average Relationship

Let Q; be the LRV matrix ofZ; ; conditional onZ; . It is well known that(); is
proportional to the conditional spectral density mafgjx, (1) of U; ; evaluated
at the origini.e,, O; = 2#fy , (0). PartitioningQ; conformably we have
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Quyi Dy
Q = . 2.7
I <Qxyi Qxxi ( )
By Lemma Xc), (); is integrable and
Q. Q.
a=€eq,=(" "), (2.8)
Qxy Qxx

which is called the long-run average variance matriZpf. Following a clas-
sical regression approagclie can analogously define a long-run regression coef-
ficient betweeny andX by B = 0, Q5. For more discussion on this analogy
see Phillips and MooK2000.

To construct an estimate @ we first estimat&); as follows

fz—lééu K(St> ' (2.9)
i_Ts=lt=1 i,s T,T it .

whereU; = Z;  — Z; -1, K(+,-) is a kernel functionWhenK(x, y) depends
only onx — Y, i.e, K(x,y) is translation invariantve write K(x,y) = k(x — y).
In this case(); reduces to

R T-1 J R
0= 3 k()nux (2.10)
j==7+1 \T
17 ,
A T t:1Ui,t+j Uit forj=0,
Li(j) = 1T (2.11)
? 2 Ui,H—j Ui:t forj < 0.
t=—j+1

From the preceding formulatioit is clear that(); is the usual kernel LRV esti-
mator using the full bandwidthit should be noted that translation invariant
kernels are commonly used in the estimation of the LRV matig consider
the kernels other than the translation invariant ones to include some existing
estimators of the long-run average relationship as special .cBheswill be
made clear in Section.2

Based on the previous estimatee can estimaté€) by

N

O, O n
A yy yX _ A
O=(." 7 |=n130. (2.12)
<Qxy Q><><> i=1 I

The long-run average relationship paramgtaran then be estimated by
BLRV = nyﬁ;xlv (2.13)

which is called the LRV-based estimator
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Note that the LRV-based estimatfrry depends on the observatiofis; only
through their first-order differenc& herefore when the model contains indi-
vidual effects such that

Zi =AotZ, (2.14)
2% =20 1+ Uy, (2.15)

whereZi‘?O =0 apd U, ; follows the linear process defined {&.3), the LRV-
based estimatoB gy can be computed exactly the same as beftreother
words the LRV-based estimator is robust to the presence of the individual effects

2.3. Relationship between New and Existing Estimators

Phillips and Moon(1999 show that both PLS and FE estimators are consistent
and asymptotically normaln this sectionwe examine the relationships between
the LRV-based estimator and the PLS and FE estimators

The PLS estimator is

B n T n T -1
BPLS=<§Z |1X|'t><__21t_Elxi,tXi’,t> . (2.16)

Some simple algebraic manipulations show that
- 1117 s t
BpLs = <E Z ? Z 2 KPLST(?, ?) in,st,i,t>
1451 T s t -1
x <H E T > > KPLST(?a ?) Uxi’SUX,i,l) , (2.17)

where

<s t> 1_(s+1)D(t+1)
PSTAT'T T

(s+1)0(t+1) =max(s+1,t+1). (2.18)

Hence the PLS estimator is a special case of the LRV-based estimdtbe
that the kernel for the PLS estimator dependsTotif we replaceKp s7(S t)

by KeLs(s t) =1 — (st), then we get an asymptotically equivalent estimator
BrLs. In view of (2.9), we see thaBp s is an LRV-based estimator with kernel
K(st)=1—(sOt).
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We now consider the FE estimatoramely

n T
= <2].'[21(Y|t - 7i,-)(xi,t - )_(u)’>

(2

whereY,. = /T, Y, and Xi. = /TS, X;,. Again, some algebraic
manipulations yield

IIM:

T -1
Z =X ) (X — >_<i,‘),> , (2.19)

i=1 s=1t=1
11T s t -1
X1 -> = K Uy, sUx , (2.20)
(32723 ( T> )
where
K (s t> T—(sOt)+1 (T—s+1)<T—t+1> (2.21)
FE, T T T T T T . .

The kernel functionKgg 1(s,t) depends orl. As before we can replace
Kee1(s t) by Kee(s t) = min(s, t) — stto obtain an estlmatcﬁFE that is asymp-
totically equivalent tg3re. The resulting estimatoe is an LRV-based esti-
mator with kerneK(s,t) = min(s,t) — st

In summarythe existing estimators or their asymptotically equivalent forms
are special cases of the LRV-based estimafbe underlying LRV estimators
use kernels that are not translation invaridrtis sharply contrasts with the
usual LRV estimators where translation invariant kernels are commonly used

3. ASYMPTOTIC PROPERTIES OF THE NEW LRV ESTIMATOR

The properties oB, gy evidently depend on those of the LRV matrix estimator
. In this sectionwe consider the asymptotic properties(hf We first exam-
|ne the bias and variance of; for fixed T and then establish its asymptotic
distribution
The bias of(); depends on the smoothnessfgf, (1) at zero and the prop-
erties of the kernel functianFollowing Parzen(1957), Hannan(1970, and
Andrews(1991), we define

fid = =— S 16, (3.1)

T j=—c
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The smoothness of the spectral density at zero is indexeay foy which ftﬁqﬂ,

is finite almost surelyThe larger isg such thathﬁinJi < o a.s., the smoother is

the spectral density at zero
The following lemma establishes the smoothness of the spectral density at
A=0.

LEMMA 2. Let Assumptions 1 and 2 hold; then

(@) EZZ %G = ZZ L i*EIG(j)] < co.
(b) EQaf{3) =EZZ Li?T(j) < co.

WhenK(s,t) = k(s — t), the bias of(); depends on the smoothnesskgk)
at zero To define the degree of smoothnge let

i 1-Kk(x)
= lm
x—0 |X|q

k

q <o forg=0. (3.2)

The largestq for which k; is finite is defined to be the Parzen characteristic
exponeng*. The smoother i&(x) at zerg the larger isg*. The values ofy* for
various kernels can be found in Andrewi91).

To investigate the asymptotic properties(@f we assume the kernel func-
tion K(s, t) satisfies the following conditions

Assumption 3(Kernel conditions K(s,t) € K£; U K, where
Ki={K(st):K(st)=1— (sOt), ormin(s, t) — st}
and/C, = {K(s,1):K(s,t) = k(s — t) with k(0) =1 and

(i) k(x):[—-1,1] — [0,1] is symmetri¢ continuous and piecewise smooth
(i.e.,, k(x) has a bounded derivative that is continuous everywhere except
at a finite number of points at which left- and right-handed derivatives
exisy.

(i) The Parzen characteristic exponent satisfjes= 1.

(iii) k(x) is positive semidefinitd.e., for any square integrable functidix),
Jo fik(s = t)f(s)f(t) dsdt= 0}

Note that the two kernels i#C; are positive semidefiniteNVhenK(s,t) =
1—-(s0Ot),

folfolK(St)f(s)f(t)dsdt: Jol<fotf(s) ds)zdsz 0. (3.3)

WhenK(s,t) = min(s,t) — st,

1 1 1 1 2
f f K(s,t)f(s)f(t)dsdt=f F2(s)ds— (f F(s) ds) =0, (3.4)
0 Yo 0 0
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where F(s) = [;f(r)dr. Therefore the kernels satisfying Assumption 3 are
positive semidefiniteAs shown by Newey and We&t987) and Andrews1991),
the positive semidefiniteness guarantees the positive semidefinitenfss of
We proceed to investigate the bias and varianc&,ofThe following two
lemmas establish the limiting behaviors of the bias and varianfe a§T — oo.

LEMMA 3. Let Assumptions 1-3 hold. Defipe= folK(s, s) ds.

(a) If K(s 1) is translation invariant with § = 1, then

lim TE[E(, [ 7,) — ] = —2m (ky + DERSY,. (3.5)
(b) If K(s,t) is translation invariant with ¢ = 2, then

lim TE[E([7,) — ] = —2mERY,. (3.6)
(€) IfK(s't) € Ky, then HE(; | F,) — u) = O(1/T).
Remarks

(i) WhenK(s, t) is translation invariant (s,s) = 1, sou = 1. In this case
Lemma 3a) and (b) show that(); is centered around a matrix that is
equal to the true LRV matrix up to a small additive erfbine error has
a finite expectation and is independent acrosss a consequencéhe
average LRV matrix can be estimated by averagingveri =1,2,...,n.
WhenK(s t) € K4, {;, scaled byfol K(s,s) ds is equal to the true vari-
ance matrix plus a noise territhe average LRV matrix can be esti-
mated by averaging/s K(s,s) ds)™1(); overi =1,2,...,n.

(ii) For the conventional LRV estimator with a truncation param8tethe
bias is of orderO(1/S{) under the assumption th& /T + SF/T +
1/Sr — 0 (e.g., Hannan 197Q Andrews 1991). The bias of the conven-
tional estimator is thus of a larger order than the estimator without trun-
cation This is not surprising as truncation is used in the conventional
estimator to reduce the variance at the cost of the bias inflation

(iiil) WhenK(s, t) is translation invarianthe dominating bias term depends
on the kernel throughk; if g* = 1. In contrasfwhenqg* = 2, the dom-
inating bias term does not depend on the kerfk@bm the proof of
the lemmawe see that wheq* = 2, the next dominating bias term is
—27T %k, Efol)Ji. Therefore whenq* = 2, the kernels exert their bias
effects only through high-order term$his has profound implications
for the asymptotic bias Q@LRV considered in Section.Z
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LEMMA 4. Let Assumptions 1-3 hold. Then we have

(@) limy_ var(vec( ), — &;)) = 0, where

6-TI3 Y (ci(1>vi,t>r<(i,1)(ci<1>vi,,>'; 3.7)
t=17-1 TT
(b) lim+_,,var(ved{y)) = u?var(ved)) + 82(Iz + KnmE(Q ® @),
where
2 2
é —fo fo K=(r,s)drds (3.8)
Remarks

(i) Lemma 4b) gives the expression for the unconditional variantes
easy to see from the proof in the Appendix that the conditional variance
has a limit given by Iimﬁmvar(veo(ﬁiﬂ}"ci) = 6%(Ipz + Kpm) X
(Q; ® ;) almost surely Therefore the magnitude of the asymptotic
variance depends @it. This suggests using the kernel that has the small-
est52 value when the variance ¢f; is the main concetn

(i) Lemma 4b) calculates the limit of the finite-sample varianceﬂg)ltJi (A)
whenAi = 0. Following the same procedure and using a frequency domain
BN decompositionwe can calculate the limit of the finite-sample vari-
ance offAUi u,(A) for other values oft when the full bandwidth is used in
smoothing This extension may be needed to investigate seasonally inte-
grated processe§his extension is straightforward but tedious and is
beyond the scope of this paper

LEMMA 5. Let Assumptions 1-3 hold. Then

(a) Conditional on%,, & = C;(1)E;C/(1);
(b) E(C(DE;C(1)'| F,) = n€ almost surely, where

1 1
=2 =fo fo K(r,s) dW (r) dW'(s). (3.9)
Remarks

(i) WhenK(s,t) is translation invarianiu = 1. In this caseLemma 5 shows
that (); is asymptotically unbiasedven though it is inconsistenfor
other kernels(); is asymptotically proportional to the true LRV matrix
We will show that the consistency @ v inherits from this asymptotic
proportionality

(i) Kiefer and Vogelsang2002a 2002h establish asymptotic results simi-
lar to Lemma %a) under different assumptionSpecifically they assume
the kernels are continuously differentiable to the second ofdea con-
sequencgethey have to treat the Bartlett kernel separatéhey obtain
different representations of the asymptotic distributions for these two
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casesThe unified representation in Lemma 5 is very valuakidelps
us shorten the proof and enables us to prove the asymptotic properties
of BLrv in @ coherent way
(i) WhenK(r,s) € K4, the limiting distribution in Lemma &) is the same
as that obtained by usin@.5) and the continuous mapping theorem

4. PANEL SPURIOUS REGRESSION

This section considers the case where the two component random v¥ctors
andX; ; of Z; ; have no cointegrating relation for amyThis case is character-
ized by the following assumption

Assumption 4(Rank condition. rank(Q;) = m almost surely for alli =
1...,n
Define B; = Qyi(Qyi)*. Assumption 4 implies that

Yo Z B X+ W (4.1)

whereW, , is a unit root process and the long-run covariance betwgemand
W is zerq i.e, 272 EAW _;AX/, = 0. Our interest lies in the long-run
average coefficieng = Enyi(Eﬂxxi)’l, which is in general different from the
“average long-run coefficient” defined bg;. For more discussion on this
see Phillips and MooK1999.

Before investigating the asymptotic properties of the LRV-based estimate
we first define some notatioMhe sequential approach adopted in the paper is
to fix n and allowT to pass to infinity giving an intermediate limjtthen by
letting n pass to infinity subsequently to obtain the sequential ligktin Phil-
lips and Moon(1999, we write the sequential limit of this type &5 n — 00)seq
The joint approach adopted in the paper allows both indexesd T, to pass
to infinity simultaneouslyWe write the joint limit of this type a$T,n — o).

4.1. Sequential Limit Theory and Joint Limit Theory
The following theorem establishes the consistenqg}L@t, as eithelT,n — c0)geq
or (T,n — co).

THEOREM @ Let Assumptions 1-4 hold; then

@ Qxx —p A0
(b) ()yx —p Mny:
(€) BLrv —p B,

as either(T,n — 00)seq0r (T,n — o0).

Remark B, gy is consistent even thougf; is inconsistentThis is not sur-
prising as); equalsu(); plus a noise termAlthough the noise in the time series
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estimation is strongwe can weaken the strong effect of noise by averaging
across independent individuakhis is reflected in Theorem(6) and(b), which
show that(), andﬁyX are respective consistent estimate$igfand(,, up to a
multiplicative scalar

Now we proceed to investigate the asymptotic distributiogafy. We con-
sider the sequential asymptotics first and then extend the result to the joint
asymptoticsTo get a definite joint limitwe need to control the relative rate of
expansion of the two indexeWrite Vn(BLry — B) = VN(Qyy — By Ol
Theorem 6 describes the asymptotic behavioflgf under the sequential and
joint limits. Under Assumption 4Q,, has full rank which implies that(;}
converge tqflAQ;)}. Therefore it suffices to consider the limiting distribution
of \/ﬁ(ﬂyx - BQXX)'

Under the sequential limitve first let T — oo for fixed n. The intermediate

limit is
N N 12
\/ﬁ(ny - BQXX) = ﬁ ZL Q. (42)
where
Q = C,i(DE; Ci(1) — BC4(D E; Cy(2), (4.3)

C,i(1) is them, X m matrix consisting of the firsin, rows of C;(1), andC,;(1)
is them, X mmatrix consisting of the lash, rows ofC;(1). In view of Lemma 5
the mean of the summand is

E(Q) = M(Eﬂyxi — BEQ,) = /-'L(ny - nyﬂ;xlﬂxx) =0,

and the covariance matrit is Eved Q;)ved Q;)". An explicit expression fo®
is established in the following lemma

LEMMA 7. Let Assumptions 1-4 hold. Thénis equal to
w?E vedQy, — BQyi)ved Qi — BQy)
+ 82E( Qi @ (Qyyi = By — Qi B + B B'))
+ 6%(E(Qyyi — Qi B') @ (Qyyi — Byxi)) Ky mys
where Koy my is the mm, X m,m, commutation matrix.

The sequence of random matridgg(1) E; Cy;(1) — BC, (D E; Cy(1) is i.i.d.
(0,®) acrossi. From the multivariate Linderberg—Levy theoreme then get
asn — oo,

1 n
n __Zl(Cyi (DE; Cu(1) — BC,i (D E; Cyi(1)) = N(0, 0). (4.4)
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Combining(4.4) with the limit lim Q! = w10}, we establish the sequential
limit in the following theorem

THEOREM 8 Let Assumptions 1-4 hold. Then, @n — o)seq
VN (BLrv = B) = N(O, (25! ® I )OLru( el @ I1)), (4.5)
where® ry is
EvedQy — BQui) Vet Qyyi — BQy)’
+ uT28%E( Qs @ (Qyyi — By — Qi B’ + B B'))
+ u 28 (E(Qyyi — Qi B') @ (Qypyi — BQi)) Kiny m, - (4.6)
We now show that the limiting distribution continues to hold in the joint

asymptotics asT, n — o). Write Yn({y, — B,,) as

\/ﬁ(ﬁyx - Bﬁxx) - 2 yxi Bﬁxxi)

T
T g LT T BT, 4.7)
where
Qi1 = Oy = By — E(Qyy — BOyy) (4.8)
and
bt = 3 E({y — B, (4.9)
yni&

Because of Lemma,3he termb,r vanishes under the sequential limttow-

ever under the joint limif we need to exercise some control over the relative

expansion rate ofT, n) so thatb,t vanishes a$T,n — o0). When this occurs

the term ¥VnXL; Q; + will deliver the asymptotic distribution &, n — oo).
Using Lemma 3we have

by = = S E(E((y — B |
nT_\/ﬁi;L((( yXi Bxxi)| ci))

= i i [E(nyi - BQxxi) + O(l/T)] = O(\/ﬁ/T), (410)
Vn &

because th®(-) terms in the summand are independent acroskerefore to
eliminate the asymptotic biagre need to assume the two indexes pass to infin-
ity in such a way that/n/T — 0. Under this conditionwe can prove the fol-
lowing theoremwhich provides the asymptotic distribution under the joint limit
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THEOREM 9 Let Assumptions 1-4 hold. Then, @n — o) such that
Vn/T -0,

VN (BLry = B) = N(O, (2 ® 1) OLrv( Q! @ Iy ). (4.11)
Remarks

(i) For the PLS estimatorK(r, s) 1 — (r Os). Therefore u?
(Jo(d — 9)d9? = 3, 6% = [J[;K3(r,s)drds = &, and w262 =
Hence the PLS estimator satisfiecander both the sequential and Jomt
limits,

VN (Bprs = B) = N(O, (0 ® 11 ) Ops(Ved ® Iy, ) (4.12)
with
OpLs = EVed(Qyy — By Ve Dy — By’

+ 2/3E(Qui @ (Qyyi = BOyi = Qi B + B B')

+ 2/3E(OQyyi — i B') @ (D — B ) Kiny - (4.13)

The preceding limiting distribution is identical to that obtained by Phil-
lips and Moon(1999.

(il) For the FE estimatoK (s, t) = min(s,t) — st In this caseit is easy to
see thaiu? = & and62 = &. Sou 282 = 2. HenceBee has the limit-
ing distribution given in(4.12) and (4.13) but with 5 replaced byz.
Once againthe asymptotic result is consistent with Phillips and Moon
(1999.

(iii) The efficiency ofB, gy depends only op. 252 The smallerw 252 is,
the more efficient the estimator.i$his is because the sum of the last
two terms in(4.6) is

E(C, (D) ® (Cy,(1) — BC, (1))
X (I + Kinm) (C (1) @ (Cy, (1) — BC, (1)),

which is positive semidefiniteTherefore B¢ is more efficient than
BrLs. But Bee is less efficient thamB gy if k = (f§ K(s5)ds)? X
folfolKZ(r,s) drds < 2. In Section 42, we consider a class of new
kernels that have smallarvalues

cwn |

If we assume that; ; are the same across individualsen; = O andg; = 8
for someg and alli. In this caseQ,,; — Q. = 0. As a consequenc®, gy
reduces to

Mizaz(ﬂxx ® (ny - nyﬂ;xlﬂxy))a

and we obtain the following corollary
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COROLLARY 10 Let Assumptions 1-4 hold. If €=, C; where G is an
m X m nonrandom matrix for all t, then, ad,n — o0)seq Or as(T,n — )
with Vn/T — 0,

VN(BLry — B) = N(O, 1 282(Ql ® (Qyy — 0, Q10 ))). (4.14)
Remarks

(i) The corollary generalizes a result of KE®99. He considers the homo-
geneous spurious regression and shows that under the sequential limit
the FE estimator satisfigd.14) with 262 = 2.

(i) Note that the matrix) ! ® (Qyy — 0,0 Q,) is positive semidefi-
nite. Therefore the efficiency of8, gy depends only on. =262 regard-
less of whetheC ; is heterogeneous or not

4.2. LRV-Based Estimator with Exponentiated Kernels

In this sectionwe exponentiate some commonly used kernels and investigate
the asymptotic properties of the LRV-based estimators that these exponentiated
kernels deliver
We first consider the sharp kernels definedkiy) = ki,(X), wherekg,(+)
is the Bartlett kernel ang € Z*. These kernelsas so definedexhibit a sharp
peak at the originSharp kernels are positive semidefiniés they are equal to
the products of the positive semidefinite kerndis see thiswe may use equa-
tion (A.11) in the Appendix and represent the Bartlett kernel by

* 1

Kgart(r —S) = >, = f.(r)f.(s), for(r,s)€[0,1]> (4.15)
m=1 'm

Then
SRR |

Kgan(r =) = X 3 ——— fa(1) (1) Ta(8) Tn(S). (4.16)
n=1m=1‘‘n'm

Sq for any functiong(x) € L2[0,1], we have

1 r1
f f g(r)kéart(r - S)g(S) drds
0 Y0

© 1 1 2
=22 (f g(r)fn(r)fm(r)dr> =0,
n=1m=1 0

AnAm

which implies thatk3,.(r — s) is indeed positive semidefinitéterating the
previous procedure leads to the positive semidefinitenedg; gfr — s) for
anyp € 7%,
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For sharp kerneJshe Parzen characteristic exponengis= 1 andk; = p.
The value ofx is k = 1/(p + 1). Therefore k is a decreasing function of the
exponenip. In principle we can choose to makek as small as possihlélow-
ever the finite-sample performance can be hurt wieis too large for a mod-
erate time series dimensiofthis is because the bias ¢f increases ag
increasesas shown by Lemma.3n fact whenvn/T — «, the asymptotic
distribution of Vn(B, gy — B) under the joint limit is

N(b, (0 ® Imy)®PLS(Q;x1 & Im,))s (4.17)

whereb = —27a(p + 1)(Q @ I, )Ved EfS, — BETSLy, ). Therefore the
squared asymptotic bidsb is increasing inp while the asymptotic variance is
decreasing irp. This observation implies that there exists an optimahat
minimizes the mean squared erroféie optimalp depends on the ratie@ and
the average spectral density Of. We can estimate the optimal along the
lines of Andrewq1991), but we do not pursue this analysis in the present paper
Next, we consider the steep kernels definedkix) = (kpr(X))? wherekpg(X)
is the Parzen kernelThese kernels decay to zero mspproaches onelhe
speed of decay depends @n The largerp is, the faster the decay and the
steeper the kerneBteep kernels are positive semidefinite because the Parzen
kernel is positive semidefiniteThe difference between the sharp kernels and
the steep kernels is that the former are not differentiable at the origin whereas
the latter areFor steep kerneJgshe Parzen characteristic exponengis= 2
andk, = 6p. The value ofk can be calculated using numerical integration
They are given in Table 1 fgs = 1,...,6. Obviously « decreases gsincreases
This is expected becaus@pr(x))”r = (kpr(X))?2 if p1 = p,. Therefore the
steep kernel can deliver an LRV-based estimaipsy that is more efficient
than Bre, as long as the exponent is greater thasde Table 1
When the steep kernel is employelde dominating bias ofy; is independent
of the exponentlf (n, T — o) such thatyn/T — «a, then the asymptotic dis-
tribution of Vn(B_ gy — B) is

N(b, (Q;xl ® Imy)®LRV(Q;x1 ® Imy))7 (418)

TABLE 1. The values of« for some kernels

p=1 p=2 p=3 p=4 p= p=
Kfartiett 05000 03333 02500 02000 01666 01429
KBarzen 0.4473 03359 02806 02459 02216 02033
(1-r0Os) 0.6666 06000 05714 05556 05455 05385

(min(r,s) —rs)? 0.4000 02857 02331 02016 01800 01642

Note: k = (fg K(s,5) d9)2(f o K?(r,s) drds).
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whereb = —27a(Q, @ I )Ved Efy, — BERST, ). This limiting distribu-
tion seems to imply that we can chogs¢o makex as small as possible with-
out inflating the asymptotic biashis is true in large sample8ut in finite
samplesa largex may lead to a poor performancehe reason is that the sec-
ond dominating bias term ify; is T 227k, EfL(,iszi, which depends ok,. As a
consequencgeahe asymptotic bias g6, ry under the joint limit is

— 27NN/ T (D5 ® | )VeO ERSTy, — BERSIL,) + O(kp\1/T2).

The O(.) term vanishes whefn, T — o) such thatvVn/T — «. But in finite
samplesthe O(-) term may have an adverse effect on the performangx .
Neverthelessthe effect is expected to be smadkspecially wherT is large

Finally, we may take powers of the kernels Afy and obtain more efficient
estimatesAlthough Assumption 3 does not cover exponentiated kernels of this
sort Theorems 8 and 9 go through without modification

Table 1 summarizes the valuesofor different exponentiated kernelShe
table clearly shows that for a given “mother” kernile value ofx decreases
as the exponent increasd®ecall that the smallex is, the more efficient the
LRV-based estimator idVe can thus conclude that a larger exporgntgives
rise to a more efficient estimator

5. HETEROGENEOUS PANEL COINTEGRATION

This section assumes that the variableZjipare cointegratedis discussed in
Engle and Grangef1987), the long-run covariance matrix is singular in this
case We consider the case where the cointegration relationships are different
for different individuals

Following Phillips and Moor(1999, we strengthen the summability condi-
tion and impose additional conditions

Assumption 5(Summability condition9.

(1) 22 o5M(0409)Y* < 0.
(i) 22 0s%(0gae) Y8 < 0.
(iil) 22 0(016a5)"*° < c0.

Assumption 6 (Rank condition9. rank(Q;) = rank(Q,.) = m, and
rank(Qyy) = m, almost surely for ali =1,...,n.

Assumption 7(Tail conditiong. The random matrixX,,; has continuous den-
sity functionf with

(i) f(Q) = O(exp{tr(—cQ)}) for somec > 0 when t(Q) — oo.
(i) f(Q) = O((det(Q2)”)) from somey > 7 when detQ) — co.
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Note that Assumption 5 is stronger than AssumptionTBerefore under
Assumptions 13, and 5 all results in Section 3 continue to holdet «; =
(Imy,—Bi), whereg; = nyiﬂgxli. Assumption 6 implies tha#; C;(1)Cy, (1) = 0.
As a consequencey; Ci(1) = 0, i.e, C;(1) = BiC(1). DefineE = o Zi ; =
Y.+ — Bi Xi,+. Then usinge; C(1) = 0, we have

t
E.=a 2 (CDVis+U1-Ug=0a0o—a U,
s=1
Therefore Assumption 6 implies the existence of the following panel cointe-
gration relationship with probability one
Y = Bi Xt Eip (5.1)

Xi,t = Xi,t—l + Ux,n

where

Foi= <E“> =S GMViis  Gas <_a‘ D“) (5.2)
’ Uyt s=0 ' Cxi,s

and

- —a;C o if s<t,

Di.s = {—ai(d,s— Coy ifs=t (5-3)

LetGi(1) = 2o Giss GNi,s = E’is#—lei,t, andﬁi,t =20 Gi,svi,t—s- As shown
by Phillips and Moon(1999, Assumptions 5 and 7 ensure that quantities
analogous to those in Lemma 1 are boundggecifically E X ,s?|G; 43
E[F. % EIGDI[% EIFR, % andZZo(E| G; o|*)¥* are all bounded

Using the long-run covariance matriwe can estimate the individual cointe-
gration relationship byg; = ,,; Q.2 It follows from Lemma 5 that

0 =B C(DECLD, O = C (DE CL (D). (5.4)

As a consequenc@; = B;, which implies thatB; —p Bi. This is becaus; is
a constant conditional oft .

The following theorem establishes the rate of convergengk.d@efore stat-
ing the theoremwe define Lipschitz continuityA functionf(-): T — R is Lip-
schitz continuous if there exists a constdht> 0 such that| f(x) — f(y)| =
M| x —y| for all xandyin . It is easy to see that the kernels satisfying Assump-
tion 3 are Lipschitz continuous

LEMMA 11. Let Assumptions 5—7 hold. Assume that the kernel function
K(-,-) is symmetric and Lipschitz continuous. Then
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(@) T(Bi — Bi) = Op(1) if K(1,r) = O for almost all r.
(b) NT(B; — Bi) = Op(1) if K(1,r) # O for some r in a set with positive
Lesbegue measure.

Remarks

(i) The lemma shows tha; is not only consistent but also converges to
the true value at the rate of T or T. This result is particularly interest-
ing. Although bothﬁyxi and () are inconsistentthe linear combina-
tion fzyxi - Bi ()yxi is consistentreflecting the singularity of the long-
run covariance matrix);. In fact the proof of the lemma shows that
Oy — BiQyi = 0,(1/T) or O,(1/T), depending on the kernel used

(i) The kernelK(-,-) may be called a “tied down” kernel iK(1,s) =
K(r,1) = 0 for anyr ands. Because both kernels ik, are tied down
kernels 3, converges tg at the rate ofl if K € K;. This is of course
a well-known resultLemma 11a) has more implicationsGiven any
kernel functionK(r,s), we can construct a new kern&*(r,s) =
K(r,s) — K(1,s) — K(r,1) + K(1,1) such thatk*(1,s) = K*(r,1) = 0
for anyr ands. The new kernel is then able to deliver an estimator that
is superconsistent

(iii) For translation invariance kerneks(1,r) = k(1 —r) # 0 in generalSo
the estimator that they deliver is oniyT -consistentThe difference in
the rate of convergence arises because the dominated terms are differ-
ent for different types of kernels

We now investigate the asymptotic distribution Bfry in the heteroge-
neous panel cointegration modé&We first consider the sequential limit of
\/ﬁ(fzyx - ,BQXX). The intermediate limit for largd is the same as that given
by (4.2). More explicitly,

n A 12
\l n(ny - BQXX) = \/— 2 (Cy| (1)E| C)/(I(l) - BCxi(l)Ei C):I(l))
ni=;

Following exactly the same argumentge can show that the summands are
i.i.d. (0,0). Invoking the multivariate Linderberg—Levy theorem and using the
consistency ofl,,, we have as(T,n — 0)seq

VI (BLry = B) = N(O, (Ol ® I )OLrv(Qsed @ Iy ) (5.5)

The next theorem shows that the asymptotic distribution is applicable to the
case of joint limit The proof of the theorem follows steps similar to that of
Theorem 9 and is omitted

THEOREM 12 Suppose Assumptions 1-3 and 6 hold. ThekTas— o0)seq
or as(T,n — o) with V/n/T — 0,

VN(BLry = B) = N(O,(2¢ ® Im, ) OLRU Lot @ I, ))- (5.6)
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Remarks

(i) Note that Assumption 7 is not needed for the theorem to.fidid strong
summability conditions in Assumption 5 are also not necessHng
asymptotic distribution not only has precisely the same form as in the
spurious regression case but also holds under the same conditimms
ever Assumptions 5 and 7 are required for Lemma a4 it relies on
the panel BN decomposition of the error tekyy,.

(i) Because the limiting distribution is the same as that in Theorgthed
remarks given there and the efficiency analyses presented in Sec@ion 4
remain valid Therefore in the presence of heterogeneithe LRV-
based estimator is more efficient than the PLS and FE estimators if expo-
nentiated kernels are used

(iii) The asymptotic theory developed previously allows us to test hypoth-
eses about the long-run average coefficignffo test the null hypoth-
esisHg: ¢(B) = 0, whereys(-) is a p-vector of smooth function on a
subseR™*™ such thaty/dB" has full rankp (= m,m,), we construct
the Wald statisticW,, = v (BLrv)V, 24 (BLry), Where

V,, = 0y (BLav)/9B'V g oy (BLrv)/9B, (5.7)
\73 = (Q;xl @ Imy)éLRV(ﬁ;x:L ® lmy)v (58)

and @ gy is the sample analogue 64.6). Some simple manipulations
show that this test statistic converges tovarandom variable under
both the sequential and joint limits

6. CONCLUSION

In this paperwe have proposed an LRV-based estimator of the long-run aver-
age relationshipOur estimator includes the pooled least squares and fixed effects
estimators as special cas@ée show that the LRV-based estimator is consistent
and asymptotically normal under both the sequential limit and the joint.limit
The joint limit is derived under the rate condition/T — 0, which is less
restrictive than the rate conditiaw’ T — 0, as required by Phillips and Moon
(1999. A central result is thatusing exponentiated kernels introduced in this
paperthe LRV-based estimator is asymptotically more efficient than the exist-
ing ones

It should be pointed out that we have not considered the homogeneous panel
cointegration modelWhen the long-run relations are the same across indi-
viduals the LRV-based estimator may have a slower rate of convergence than
the PLS and FE estimator®/e have shown thatwhen translation invariant
kernels are useg; is only \/T-consistentBecause of the slower rate of con-
vergence we expect that the LRV-based estimator converges at the rate of
\/nT in homogeneous panel cointegration mod&tse \nT rate is slower than
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the v/nT rate that is attained by the PLS and FE estimatdmsvever the \/nT
rate can be restored if “tied down” kernels are usdtk efficiency of the LRV-
based estimator with other tied down kernels is an open question

This paper can be extended in several directidiist, the power parameter
p for the sharp and steep kernels is fixed in the pajdéer may extend the
results to the case thatgrows to infinity at a suitable rate with and T along
the lines of Phillips et al(20033 2003h. Secondthe LRV-based estimator can
be employed in implementing residual-based tests for cointegration in panel
data Following the lines of Kaq1999, we can use the LRV-based estimator
to construct the residuals and test for unit roots in the resid@ssause the
LRV-based estimator is more efficient than the FE estimator employed by Kao
(1999, the test using the LRV-based residuals may have better power proper-
ties Finally, we generate the new kernels by exponentiating existing. &res
alternative approach to generating kernels is to start from a mother Kernel
and consider the clagk,(s t)} = {k(b~*r,b™1s): b € (0,1]} (Kiefer and Vogel-
sang 2003. For this approachTheorems 89, and 12 go through but witlx
andé§? defined by

1 1 1
n =f k(b™%r,b~*r)dr and 82=f f k?(b™'r,b"1s)drds (6.1)
0 0 Y0

With the preceding extensipwe may analyze the efficiency of the LRV-based
estimators for different values af
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APPENDIX: PROOFS

Proof of Lemma 1. Parts(a)—(d) are the same as Lemma 1 of Phillips and Moon
(1999. It remains to prove pair). From Lemma 9a) of Phillips and Moon(1999), for
anyp =1 and anyp X g matrix A = (a;), we have

P q
|Alr =M > lay|” (A.1)

i=1j=1
for some constari¥l. Thereforeto evaluate the order 3£2° ,[E(||C; |*)]¥/4, it suffices

to consider X5 o[E(C3; ,)]¥4 By the generalized Minkowski inequality and the
Cauchy inequalitywe have for some constan,
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[}

> [E(CLi 1

p=0

M

o 4714 o o
[E( > c” =3 3 e
p=0t=p+

p=0 t=p+1

HMS

o) o 1/2 1/2
S e =3 3 o) (S o)
Ot=p+ =0 =p+1

t=p+1
=M E E oAt <
p—0<t—p+1 a ) (p + 1)3/2

w(Eew) 2)

< oo, (A.2)

where the last line follows from Assumption Phis completes the proof of the lemma
|

Proof of Lemma 2. Because parth) follows from part(a), it suffices to prove parta).
Write E 3,j2[T; ()] as

[}

E_onz|‘E(Ui,t+jUi,,t“7-<:i)|| = EEIZ < E CI qvl t+j—q |t p |p|'7:c,>H
i=

= p.g=0

= EE (E 2 Ci,j+kVi,t—kVi,'t—pCi',p|7:ci> ‘ = EE j2 E Ci,j+pCi',p
j=0 p=0k=—]j j=0 p=0

= 2 Z ICij+plICI ol = E X X i21Cijpl I ol

p=0j=0

8

\/\
ZMS

(2(1 +p2lC, ,+p||> Ici,l <E S, (2 ?|c, ,||> IC ol

Therefore E 27 ,j?|1; ()] is bounded by

> 2 J%EIClIC,l

p=0j=0

= 3 S 2EIC, 1)V2E(C ,|2)¥?

p=0j=0

8

= 2 J2(ElC; ;1»)v? Z E(IC, )" < oo,

j=0 p=0

where the last line follows fronfA.1) and Assumption 2This completes the proof of
part(a). n

Proof of Lemma 3. We first consider the case thKi(s, t) is translation invariant
i.e, K(st) = k(s — t). The proof follows closely those of Parz¢h957) and Hannan
(1970. We decompos& ()| ;) — & into three terms as follows
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E(|F) -0 = 2 k( ) >E(ﬁ<j)\fc,)—ﬂ

j=—T+1

S k(j>(1—m)m)— > 50

j=—T+1 T j=—o0

= Til <k<Tl>—1>ri(j)— Z k( >|”T(J)_ > L)

j=—T+1 j=—T+1 ljl=T

=05+ 0%+ 0%, say

We consider the expectations of the three terms in.t&irst, for g = min(q*2),

EQF is
I k(j/T)—1> . . I (k(j/T)—l> . :
q _— aT = q _— q :
! EJ—ETH( e I =T X (S YRR
Ly~ . k(i/T)—lb. .
=T79 U-T+1=j=T-1}{ | ——=— a9PEr
j;w{ +1=]j }<‘ Ak [JI9EL ()

= T‘*kq<_ > jl‘*Eri(i)>(1+ o(1).
j=—o0
The last inequality follows becausk(j/T) —1)|j/T|~% converges boundedly g, for
each fixed;.
Second EQF, is

E k( >|”EF( )= —T-1 i [J|EL(j)(1+ o(1)

j=—T+1 j=—o

using Lemma 2
Finally, |[EQf;| is bounded by

H > Ean =72 3 [JIPEIG())| = o(T2). (A.3)
lil=T lil=T

Let OF = (Qf + O + QF); then we have shown thavheng* =1, lim_, ., TEQF =
—2m(ky + DEFSY,, and whenq =2, limy_,,, TEQF = —27Ef Y.

Next we consider the case thite ;. Some algebraic manipulations show that

1T
1< )r'(”Tzlt:l T
fiiK(éi)roAiiK(fu)r .
= 3K(77)r0+ 13 3 k(35 )me s nein
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WhenK(s,t) =1 — (sOt),

s s—j) 1T2-2T+j2+j—T
2 T2
Combining the preceding calculation with the steps for the translation invariant case

we can getE(E(fliU—'cl) — 1/2Q;) = O(1/T). Similarly, we can show that when
K(s,t) = min(s t) — st

17 s s 11 /s 2 1(T?2-1)
F3x(57)-13G 7)1
s=1 s=1

<S s—j)_ 1j—T—-3T2+T3—j3+3j2T
6

’

T3
andE(E(Q \]—'Cl) 1/6Q;) = O(1/T).

The proof of the theorem is completed by noting tIfétk(O) ds = 1, fo 1 -
(sOs))ds= 3, and [ (min(s,s) — s?) ds= ¢. ]

Proof of Lemma 4.

Part (a). Plugging the BN decomposition

Ui,t =G (1)\/i,[ + Lji,t—l - Ui,t (A.4)

into

” 11T t 7

O == UKl =,= U, A5
R zu(r o “9

we get

O =0+R, (A.6)

whereR; = Ri; + Rj» + Rz with

1 T T t T B »

R, = ?Ci(l)z g (? ?)(Ui =1 Ui,f)
152 t 7

R, = ?2121( <? ?> ,CI(D) =R,
1 T T _ t T

Ri3: ?ZLZ]-(UI t—1" |t)K<? ?)
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We proceed to show th&tr(vec(Ri1)vedRi1)’) = o(1). It is easy to see thd;; is

17 1 J 17 T
?; (1)\/|IK<T T) i,O_?g (1)\/|tK<T T>U|T

1 T =1 t 7+1 t o7\
o Sle(12) (12

:=RY+R?+RY, say (A7)

But Etr(veqRY)veqRY)') is

1T T t 1 s 1
2 EIEIK<?, ?> (? ?> Etr(vedC (1)V; /o) ved G (DV; sU)")
1T t 1 s 1
=§g§1K<?,;>K<T T>Etf((U.o®C(1) DU, ®C(Vig))

L t 1 1
> ZK(— —)K(TS T)Etr((U.o®C<1>V.t>(U.o®V.sc (1))

53 3K(1.1 k(7 )ErG 0@V LG, A8)

where the first equality follows from the fact that fiorx 1 vectorsA andB, vec(AB’) =
B ® A, and the third equality follows from the rule th@d & B)(C ® D) = AC(& BD.
In view of the fact that ttC ® D) = tr(C)tr(D), we write Etr(vec(R})ved(RY)’) as

M-
~
N
I/
_{
_|
\/
m
=
<
°
=
o~
®
O
=
O
B

IA
_|
N
M -
e
N
S
—| ~
=~

(A.9)

Il
e
M-

~

N
//
— |~
=l
S———

o
e
Il
©)
S

I

¥~./

where the last two equalities follow from Lemmécland(d) and the boundedness of

K(-,).
The proofs of Etr(veoR?)vedR?)") = 0,(1) and Etr(vec(R} )vedRY)) =
op(1) are rather lengthyrhey are given in Su2003. The details are omitted here
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Given thatEtr(veoR¥)vedR¥)), k = 1,2,3, we haveEtr(veqRy)vedRi1)') =
o(1). As a consequencee also haveé tr(ved(R;»)ved(R;»)’) = o(1). Similarly, we can
proveEtr(vedRi3)vedRi3)’) = o(1). Again, details are omitted

Part (b). From part(a), we deduce immediately that
var(veo((),)) = Eved((), — EQ;)vedQ), — EQ,)’

= Eved (), — EQ,)ved O, — EQ,) + o(2).

Note thatE ved(Q);)vedo();)’ equals

Ei i K<ll> <—pﬂ>C1 C)(V V! V. V' ) (C/(1 C/(1
T2, T TT (GO RCW)(V,Vig®V Vi p)(C(D ® C (D)

%)) E(CG()®CGMW)(C(®CD)

lTKiiz C(()Cc/'(1 C(1)C/(1

TE T EvedCi(1)C/(1)ved C;(1)C/ (1))

1 T T
g <§ DB K<% T))E(C (1) ® C (D) Kl G/ () ® G/ (1)

1 T tt
HED KZ(; ;));E(c WG <1>)<E @ ®q.><c (1 ® C/(1)
(A.10)
and
(Eved))(Eved ()
2
(T > K<— —)) Eved(C;(1)C/ (1)) Eved C (1) C/ (1)),
soEved () — EQ)ved Q) — EGy) is
170 t
T Z, - 1_' var(vec(C (1)C/ (1))
1 17 t 7
<T_ g 22:1 K2 <?, ?>> E(C(D)®C()
X (I + K (C(D) @ C/ (1) + o(D).
Letting T — oo completes the proof u
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Proof Lemma 5.

Part (a). Lemma 3 has shown thdl, = @ + o,(1). To establish the asymptotic
distribution of };, we only need to considd®;. Because the kernels are assumed to be
continuous and positive semidefinitiéfollows from Mercer’s theorem tha(r,s) can
be represented as

%)

K(r,s)= > )‘ifm(r)fm(s)r (A.11)

m=1 tm

whereA,, > 0 are the eigenvalues of the kernel dpix) are the corresponding eigen-
functions i.e., fn(s) = )\mfolK(r,s)fm(r)dr, and the right-hand side converges uni-
formly over(r,s) € [0,1] X [0,1]. In fact, for the two kernels inC4, we have

[}

min(r,s) —rs = >, — 5 SinTmrsinmms (A.12)
m=17"M
i 8 7(2m—1)r 7(2m—1)s
1—max(r,s) = cos cos . A.13
(r,9) m% 72(2m—1)? 2 2 ( )

For kernels inkC,, we have the Fourier series representation

k(x) = S, > a,,cosmrx, (A.14)

2 m=1
wherean, = [*, k(x)exp(—immx) dx, Sm_o|am| < o, and the right side ofA.14) con-
verges uniformly ovek € [—1,1]. It follows from the preceding representation that for
anyr,s € [0,1],

k(r—s) = % + > a,,cosmar cosmrs+ . a,,Sinmar sinmars. (A.15)

m=1 m=1

Hence under Assumption 3the kernels can be represented (#.11) with smooth
eigenfunctions
Using (A.11), we have for anyT,

(77)= 25, 0(5)(5)

S n(i)n(7)e 2 mn(i)n(f)
A, \T) T A, M\T )T ) (A-16)

Therefore O; = Ci(1) (i1 + & ,)C/ (1) where

Ga-23 SV %if<l>f <1> ' A17
i1~ T == i,tm::L )\m m T m T i,79 ( . )
I = 1 <t> <T>

D,==3 3V =l = il = )V A.18
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Itis easy to see thafor a fixed M,

SRS )

1

ﬁz NUECY RAEEE

[

ff( m(r)fm(5)>dW(r)dW’(s). (A.19)

The preceding weak convergence result follows from integration and summation by parts
and the continuous mapping theorehote that the integrafo1 f(r) dW(r) is well
defined becausg,(-) is of bounded variatian

Following the same argument as(i.10), we have asMg — oo,

~ ~ 1

E(vedQ;;)vedQ;,)') = 0(;) > E EvedV Vi/;)vedV; Vi',) = 0(1),  (A.20)
t=17=1

which implies that(};, = 0p(1) for any T asMg — oo. Combining the previous results

(e.g., Nabeya and Tanakd 988, we obtain

R 1 1
QizCi(l)LfoK(r,S)dW(r)dW’(S)Ci’(l)

Part (b). The mean of any off-diagonal element®f is obviously zerolt suffices
to consider the means of the diagonal elemeiffitsey arefolK(s,s) ds SO0 EE; =
JiK(ss)dsl,. As a consequenceEG(1)E C/(1) = C(1)C/(D)fyK(ss)ds =
QO [y K(s ) ds ]

Proof of Theorem 6. By Assumption 3 Q,; is positive definite almost sureland
c’'QuiC > 0 for anyc # 0 in R™ ThusEC'Q,Cc = c’QyC > 0, which implies that(,
is positive definite Hence,,! exists and part(c) follows from parts(a) and (b). It
remains to prove par(a) and(b). We first consider the joint probability limit§o prove
Oy —p my and ny —p uQyy as (T,n — o0), it is sufficient to show that
plim oy N 13, 1lim O, = Q. Note thatE (¢, | Fo) = uQi + Qf whereQf = QF +
Q5 + O andQf, k= 1,2,3 are defined in the proof of Lemma @/e can wrlteQ as
O = uQ + QF + QF, whereQf is i.i.d. acrossi with EQ® = O(1/T) and Q¢ is i.i.d.
across with EQ? = 0. Therefore
1
n;

" 1
PliM 7, o) E = plim, n-soo) E (nQ; + QF + QF)

) I . 12
= plim 1, o0 (‘ > Qi) + PliM T o0 (‘ > Qi£>
ni=1 nNi=1

1 n
+ plim n o) (H E QF)

. 13 .
= pQ +plime o) n > o8, (A.22)
-1
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by the law of large numbersThe last line holds becaude; and Qf do not depend
on T. In this case the joint limits as(T,n — o) reduce to the limits as — oo.

It remains to show that plig,_,., n~1>" .08 = 0. To save spacewe only pre-
sent the proof for plimy ., n13',08 = 0. A sufficient condition is that
iM 1. nsee) EIN"2 2L, Q8 | = 0. Using Lemma 2we have

ellson|-ells S <k(i)_1)r<-)
ns Niz1j="7+1 T '
1 n T-1 ) J ) )
=-> > " k(‘)*l‘JEHE(J)H
NiZ1j="7+1 T
1.0 T-1 j 2\1/2 o . 1/2
=2 3( 3 () ) remor)
Niz1\j==71+1 T j=—oo

M l T-1 J -2 J 2\1/2 1
=—\ = = kl =) -1 =0, —= A.23
e (7,2,3) 7)1 ) ol ) h29
as(T,n — o). By the Markov inequalitywe get plim+ , .., n~t>",08 = 0, which
completes the proof of the joint limits
Next, we consider the sequential probability limitBy Lemma Fa) of Phillips

and Moon (1999, it suffices to show thatfor fixed n, the probability limit
plimy_..(1/n X1, O; exists But the latter is true by Lemma(#). u

Proof of Lemma 7. Note that
Eved(Cy; (1) E; Ci(1) — BC4 (D E; Cyi(D)ved C,;i (1) E; Cyi(1) — BC,i (D E; Cxi(1))
= E(vedC,;(1) — BC,i(1) E; Ci(1) ved(C,; (1) — BC,i (1) E; Cii(1))
= E(C4(D) ® (Ci(1) — BCi (D) ved E;)) (ved 5 )'Cyi(1) & (Cyi (1) — BC,i(1))")
= EGi(1) ® (Cyi (1) — BCi (1) E(ved 5 )ved E;)") Cli(1) @ (Cyi(1) — BC,i(1)),

andE(ved E;)vedE;)') can be written as
1l rl1 1
k k 4 4 .
E(fofojofo (r,s) (D,Q)Vec(de(r)d\/\4n(s))veo(d\/\4n(p)d\/\4n(q))>

Some calculations show thEt{ ved(dW,,(r) dW;(s))vec(dW,,(p) dW,,(q))) is

vedl,)vedl,) drdp, ifr=s#p=q,

Iedrds fr=p#s=aq,

. (A.24)
Kmnmdrds ifr=q#s=p,
0, otherwise

Using the preceding resulive have

E(ved g )vedE;)') = p?vedly)vedly,) + 82(lpe + K.
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Consequently
EC.(1) ® (Cyi (1) — BC,i (1) E(ved E;)ved E;)') Ci(1) & (Cyi (1) — BC, (1))
= u?Cy(1) ® (Cyi(1) — BCi (1) vedly)ved ) Cii(1) & (Cyi(1) — BC,(D))
+ 8%E(C4i(D) ® (Cyi (1) — BC4(D)(Cii(1) ® (Cyi (1) — BC,i(D)))
+8%E(C(D) ® (Cyi(1) — BC(D)((Cyi (1) — BC4(1)) ® Ci(1) Ky m,
= u?Eved(Cy;(1) — BC,i(1))ImCy(1)ved(Cy;(1) — BC(1)ImCii(1)
+ 8%E(Qys @ (Qyyi = Byi = Qi B’ + B B'))
+ 82(E(Qyi — Qi B) ® (D — By Ky,
= RZPEVedQyy — Bq) Ve Qi = i)’
+ 8%E(Qyi ® (Qyyi = Byi = Qi B’ + B B'))
+ 82(E(Qyyi = 0oi B) @ (Qysi = Byi)) Ky, -
Here we have used the identity that
Kmnm(Cxi(D) & (Cyi(1) = BC,i(1))") = ((Cyi (1) — BCi(1)) ® Cii(1) Ky m,
(see Magnus and Neudecké®79 Theorem 3L, part (viii )). u

Proof of Theorem 9. Under the joint limit we have shown(,, —p 1y and
bt —p 0 @s(n, T — c0) and \/n/T — 0. To prove the theorenit suffices to show that

1 n
T; Q.1 = N(0,8)

under the joint limit Note thatQ; r are ii.d. random matrices acrosswith zero mean
and covariance matri®+ = EvedQ; t)vedQ; ). To calculate®r, let

0 0
mn= 1o I and

o350 e bEEe(h)

t=1 t=17=1

®
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Then by Lemma 4b), 6+ is
EVGC(nyi - :Bﬂxxi - E( yxi B‘me))vedﬂy)q B‘nyi - ( yxi BQyXI)),
= Eved(ly,—B)(Q — EQ)Gplved (I, —B)(( — EQ) Gy’
= [Gh ® (Im,,—B)EVed & — EQ)ved & — EQ,)' [G ® (I, )]’
= u3[GL® (I, —B)IEvedC;(1)C/ (1)) ved C;(1)C/ (1) [G ® (I, —B)]'
- u3[Gh® (I, —B)IEvedC;(1)C/ (1) Eved C (1) C/ (1) [GH ® (I, —B)]’
+ 8F[GH ® (I, =BG (D) @ C(1))(C/(D) ® C/([GH ® (I, —B)]'
+ 8F[GH ® (I, =BG (D) @ Ci(1)Kim(C/ (1) @ C/(D)[Gy ® (I, —B)]
+ o(1).
A few more calculations give us
Or = /“L%Evec(ﬂyxi - BQxxi)(vec(nyi - BQXXi))/
+ 512' EQxxi ® (nyi - IBQxyi - nyiB, + BQxinB,)
+ 8$E(Qxyi - QxxiB,) ® (nyi - B‘Q’xxi)Kmme +0o(D).
So{Q t}i is an ii.d. sequence with mean zero and covariance maikix
Next we apply Theorem 3 of Phillips and Mo¢h999 with C; = I, ,, to establish
1/\/52?:1@: = N(0,®). Conditions(i), (ii), and (iv) of the theorem are obviously
satisfied in view of the facts tha; = I, , and®7 — ® asT — oo. To prove the
uniform integrability of|Q; 1|, we use Theorem.8 of Billingsley (1999. Put in our
context the theorem states that i), +| = |Qi| andE|Q, | — E|Qil, then| Q. 1| is
uniformly integrable Note thaf using the continuous mapping theorewe have as

T —> oo,

1Q.+12 = 1Qil12 = [Cyi (D Ei Cu(1) = BC4(DE; Cu(D)]2

- H (C,i(1) — BC (1) folfol

’
X1

and

EIQ. 7= Etr(vedQ; r)vedQ 1)) =tr(05)
—tr(0) =E[Q 2

Therefore |Q; 1| is uniformly integrableWe invoke Theorem 3 of Phillips and Moon
(1999 to complete the proof n

https://doi.org/10.1017/50266466604206077 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206077

1260 YIXIAO SUN

Proof of Lemma 11. Note that3; — 8; = (Qy — B; Qi) Lid. We first consider the
stochastic order of)y,; — Bi Q. By definition,

t 7 , 15T t ,
xi,tK ?>? Uxif+?§E(Ei,t |t 1)K T T U

§)
|
=l
M-
M
»
C

LI t 7
2 E(Ei,t_ Ei,t—l)K<?,?

N 1 T T ,
+ Bi Qxxi + = EiT Z K 19? leq—y (A25)

where the last equality follows from summation by parts
Therefore whenK(1,r) = K(s,1) = 0 for anyr ands,

N LI t 7 t+1 7
T(Qyyi E(\K|l=,=| " K({—,= - A.2
( yxi | XXI) g ;1 |,t< (T’T> ( T ,T>>Uxi7 ( 6)
Following the same steps as the proof of Lemnfa)4we can prove that
LI t 7 t+1 7
E (K=, =) —K Uy.. = Op(D), A.27
ZE "t< (T T) ( T T)) 1 (A.27)

provided thatk (-,-) is Lipschitz continuousAs a consequenceve getT(3; — B;) =
Op(D). . R
WhenK(Ls) # 0, VT (Qy — Bi Oa) equals

1 1 t 7 t+1 7 1 T T
— E. Kl==]—-K U,,+ —=E K(1L=]U;..
TEE "‘( <T T) (T T>> T TZ <LT> '

(A.28)
In view of (A.27), the first term isoy(1). The second term i©,(1) because
T T 1
YNTY K(l,;)uxp: f K(Lr) dW'(r)Cl(D). (A.29)
=1 0o

HenceVT (O, — Bi Oxxi) = Op(1), which implies thatVT (B, — i) = Op(1). [ |
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