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ABSTRACT
This paper presents performance analysis and design of ducted propellers for lighter-than-air
vehicles. High-fidelity computational fluid dynamics simulations were first performed on a
detailed model of the propulsor, and the results were in very good agreement with available
experimental data. Additional simulations were performed using a simplified geometry, to
quantify the effect of the duct and of the blade twist on the propeller performance. It was
shown that the duct is particularly effective at low flight speed and that the blades with
relatively high twist have better performance over the flight envelope. Design of the optimal
twist distribution and of the duct shape was also attempted by coupling the flow solver with
a quasi-Newton optimisation method. Flow gradients were computed by solving the discrete
adjoint of the Reynolds-averaged Navier-Stokes equations using a fixed-point iteration scheme
or a nested Krylov method with deflated restarting. The results show that the ducted propeller
propulsive efficiency can be increased by 2%.
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NOMENCLATURE
aw ducted propeller expansion ratio (aw = Ae/AR)
Ae area of the exit section of the duct
AR area of the propeller disc
croot blade root chord
CP propeller power coefficient (CP = P/ρ∞n3D5)
CT propeller thrust coefficient (CT = T/ρ∞n2D4)
D propeller diameter
I cost function [Eq. 9]
J Jacobian matrix, advance ratio (J = V∞/(nD))
Kr,n binomial coefficient
M∞ free-stream Mach number
n propeller rotational speed (revolutions per second)
P propeller power
P flow solution vector, primitive variables
R propeller radius
R flow equation residual vector
Re Reynolds number (Re = Vtipcroot/ν∞)
T propeller thrust
V mesh cell volume
V∞ free-stream velocity
Vtip blade tip velocity
W flow solution vector, conservative variables

Greek Symbols

α design variables vector [Eq. 9]
β blade pitch angle
θ blade twist angle
λ adjoint variable vector [Eq. 10]
η propeller propulsive efficiency (η = J CT /CP)
ν∞ free-stream kinematic viscosity
ρ∞ free-stream density

Acronyms

ADT Alternating Digital Tree
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy
CST Class/Shape Transformation
FGMRES-DR Flexible Generalised Minimum Residual with Deflated Restarting
GCG Generalised Conjugate Gradient
HAV Hybrid Air Vehicles Ltd
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HMB Helicopter Multi-Block
HPC High-Performance Computing
IDW Inverse Distance Weighting
LTA Lighter-Than-Air vehicle
NS Navier-Stokes
RANS Reynolds-Averaged Navier-Stokes
SLSQP Sequential Least-Squares Quadratic Programming

Subscripts

∞ free-stream value
i, j, k mesh cell indices

Superscripts

n time level
T matrix transpose operator

1.0 INTRODUCTION
Propellers are very efficient in generating propulsive forces for low-speed aircraft, such as
Lighter-Than-Air vehicles (LTAs). Their performance can be augmented by enclosing them
in ducts(20), that drive the expansion of their wake, decreasing the final wake velocity and
reducing the induced power. Moreover, ducts reduce noise emissions and protect the propeller
blades. The ideal power reduction Pducted/Pfree (for a fixed thrust) due to the duct is given by
momentum theory(22) and is a function of the ratio aw between the area of the exit section of
the duct Ae and the propeller disc area AR (see Fig. 1):

Pducted

Pfree
= 1√

2aw
… (1)

The higher the value of aw, the higher the power reduction. In reality, however, the value of
aw is limited by the adverse pressure gradient inside the duct diffuser, where flow separation
may also take place. It follows that accurate predictions of the propulsor aerodynamics require
high-fidelity Computational Fluid Dynamics (CFD) to capture the complex propeller flow
and the interaction between the propeller wake and the duct. The aerodynamic analysis and
the optimisation of a ducted propeller using high-fidelity flow modelling are pursued in this
paper.

A representative geometry of a ducted LTA propeller with 1.2 m radius was provided by
Hybrid Air Vehicles Ltd (HAV), which includes the rotor blades, the duct, the nacelle enclosing
the piston engine and the cooling devices (see Fig. 2). The performance of this baseline design
was studied by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ω
turbulence model(33) by means of the HMB3 flow solver(4,31). The obtained numerical results
were compared with experimental data available from static tests conducted by HAV on a
dedicated test rig (see Fig. 3), and very good agreement was observed between the predicted
and measured power and thrust.
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Figure 1. Schematic of a ducted propeller.

Figure 2. (Colour online) Ducted propeller with nacelle, radiators and cooler.

The CFD model for the detailed geometry of the propulsor is, however, computationally
expensive. Therefore, a simplified geometry was also considered, where the cooling devices
were removed and the engine nacelle was replaced by an axisymmetric body (Fig. 4). This
simpler geometry was used to quantify the effect of the duct by comparing the predicted
thrust and power consumption with those of the unducted (or ‘free’) propeller (Fig. 5). The
results revealed that the duct led to a substantial power reduction in low-speed operations,
which cover a significant part of the LTA flight envelope.

The shape of the baseline rotor blade was optimised without the duct, and one question is
whether this design is also optimal for the ducted configuration. This work focuses on the twist
distribution, while other blade design parameters, such as aerofoils, chord distribution and
sweep, are kept constant. To gain a basic understanding of the twist effect, the performance
of the baseline blade, which is highly twisted, was compared with a low-twist blade. The low-
twist blade design was the outcome of an optimisation study for low speeds, using a simple
panel method(1). However, the high-fidelity CFD results presented in this paper show that the
high-twist blade is superior at low and high speed.
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Figure 3. (Colour online) Propulsor test rig (Source Hybrid Air Vehicles Ltd).

Figure 4. (Colour online) Ducted propeller.

An optimisation of the blade twist distribution with CFD was also attempted using the
simplified geometry. The HMB3 flow solver was coupled with an external optimiser and
an in-house parametrisation software for the blade surface. The computational mesh is
updated at each optimisation cycle using an advanced deformation algorithm based on Inverse
Distance Weighting (IDW)(29). To minimise the expensive flow solution evaluations, a quasi-
Newton optimisation method was employed. The optimiser used a Sequential Least-Squares
Quadratic Programming (SLSQP) method(17), as provided in the software library NLopt(16).
The required flow derivatives with respect to the design variables were computed using an
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Figure 5. (Colour online) Free propeller.

implicit Fixed-Point Iteration (FPI) scheme(6) or a recently developed Flexible Generalised
Minimum Residual solver with Deflated Restarting (FGMRES-DR) nested with GMRES-DR
(or standard GMRES) as a pre-conditioner(13,21,26). While the FPI scheme has low memory
usage, the FGMRES-DR method is more robust and faster to converge but more expensive in
memory. The blade with optimised twist distribution has 1% higher propulsive efficiency with
respect to the baseline design. The propulsive efficiency for the ducted propeller is defined as

η = J
CT

CP
, … (2)

where the thrust coefficient CT includes the contribution of both the propeller and the duct.
The reference area used for computing the coefficients is the propeller disc area, which is kept
fixed throughout the optimisation process. To further increase the propulsor performance, the
duct diffuser shape and dimensions were also considered for the optimisation, in addition to
the twist distribution, and the resulting design has 2% more propulsive efficiency than the
baseline.

The paper is structured as follows. Section 2 describes HMB3 and adjoint method, as well
as the coupling strategy with the external optimiser. Section 3 presents the numerical results.
The performance of the baseline propeller is firstly analysed with the detailed model, and
a comparison with experimental data is presented. The effect of the duct and of the twist
distribution is then assessed using the simplified geometry. The results of the twist and duct
optimisations are finally presented. Conclusions are given in Section 4.

2.0 NUMERICAL METHODS
2.1 The optimisation tool chain

Gradient-based optimisation is an efficient and widely used method for aerodynamic shape
optimisation problems, since it minimises the required number of flow solutions. It requires,
however, the flow derivatives with respect to the design variables, which can be very expensive
to compute when high-fidelity CFD is employed. An economic way to obtain the flow
gradients with CFD is represented by the adjoint method, which reduces the cost of flow
gradients evaluation to about twice the cost of the base flow solution, regardless of the number
of design variables.
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Figure 6. (Colour online) Flow chart of the optimisation process.

The HMB3 flow solver employs two adjoint solvers based on FPI scheme(6) and FGMRES-
DR(13,21), which can be interfaced to any gradient-based optimisation tool to solve design
problems. The current implementation employs a Sequential Quadratic Programming (SQP)
optimisation algorithm(17), as implemented in the software library NLopt(16). It represents the
objective function as a quadratic approximation to the Lagrangian and uses a dense SQP
algorithm to minimise a quadratic model of the problem. It is intended for problems with up
to a few hundred constraints and variables, since the required computer memory scales with
the square of the problem dimension. The SQP algorithm is implemented in a separate tool,
and it is interfaced with HMB3 using files for data exchange.

The mapping between the design space and the shape to be optimised is problem specific.
In aerofoil design, usually a polynomial basis, such as Chebyshev or Bernstein polynomials,
is used to represent the aerofoil. For three-dimensional objects (propeller blades, propulsor
duct, etc.) more complex parametrisations may be required.

The design optimisation tool chain is described in Fig. 6 and can be summarised as follows.

1 The first step solves the flow around the baseline geometry of the shape under investigation
(e.g. aerofoil, blade).

2 The cost functional I (e.g. drag to lift ratio, torque to thrust ratio) is evaluated from the
flow solution.

3 The adjoint problem is solved to compute the gradient dI/dα of the cost functional with
respect to the design variables vector α.

4 The cost functional and its gradient are fed to the gradient-based optimiser, which
produces a new set of design variables, corresponding to a design candidate in the search
direction.

5 An external parametrisation software updates the aerodynamic shape.
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6 A mesh deformation algorithm computes the new volume mesh.

7 HMB3 solves the new flow problem and recomputes the cost functional I and its gradient
dI/dα.

Steps 2-7 are repeated for several design cycles until determined convergence criteria are
met.

2.2 The Flow Solver

The following contains a brief outline of the approach used in HMB3. The Navier-Stokes
(NS) equations are discretised using a cell-centred finite-volume approach. The computational
domain is divided into a finite number of non-overlapping control-volumes Vi jk, and the
governing equations are applied to each cell. Also, the NS equations are re-written in a
curvilinear co-ordinate system which simplifies the formulation of the discretised terms since
body-conforming meshes are adopted here. The spatial discretisation of the NS equations
leads to a set of ordinary differential equations in real time:

d
dt

(
W i jkVi jk

) = −Ri jk (W ) , … (3)

where W and R are the vectors of cell conserved variables and residuals, respectively.
The convective terms are discretised using Osher’s upwind scheme(11) for its robustness,
accuracy and stability properties. Monotonic Upstream-Centred Scheme for Conservation
Laws (MUSCL) variable extrapolation(14) is used to provide second-order accuracy with the
Van Albada limiter(32) to prevent spurious oscillations around shock waves. Alternatively,
the classical Roe’s scheme(25), an all-Mach variant of the Roe’s scheme(24), and the AUSM+
scheme(19), can be used. Boundary conditions are set using ghost cells on the exterior of the
computational domain. At the far-field, ghost cells are set at the free-stream conditions. At
solid boundaries, the no-slip condition is set for viscous flows.

The integration in time of Equation (3) to a steady-state solution is performed using a fully
implicit time-marching scheme by:

W n+1
i jk − W n

i jk

�t
= − 1

Vi jk
Ri jk

(
W n+1

i jk

)
, … (4)

where n + 1 denotes the real time (n + 1)�t. For steady-state problems, the real time is
replaced by a pseudo-time (τ), which is also used for unsteady problems according to the
dual-time stepping scheme of Jameson(15). Equation (4) represents a system of non-linear
algebraic equations, and to simplify the solution procedure, the flux residual Ri jk(W n+1

i jk ) is
linearised in time as follows:

Ri jk
(
W n+1) ≈ Rn

i jk (W n) + ∂Ri jk

∂W i jk
�W i jk, … (5)
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where �W i jk = W n+1
i jk − W n

i jk. Equation (4) now becomes the following linear system:

[
Vi jk

�t
I + ∂Ri jk

∂W i jk

]
�W i jk = −Rn

i jk (W n) … (6)

The left-hand side of Equation (6) is then rewritten in terms of primitive variables P:

[(
Vi jk

�t

)
∂W i jk

∂Pi jk
+ ∂Ri jk

∂Pi jk

]
�Pi jk = −Rn

i jk (W n) … (7)

and the resulting linear system is solved with a Generalised Conjugate Gradient (GCG)
iterative solver(3). Since at steady state the left-hand side of Equation (7) must be zero, the
Jacobian ∂R/∂P can be approximated by evaluating the derivatives of the residuals with a
first-order scheme for the inviscid fluxes. The first-order Jacobian requires less storage and,
being more dissipative, ensures a better convergence rate to the GCG iterations.

The steady-state solver for turbulent flows is formulated and solved in an identical manner
to that of the mean flow. The eddy-viscosity is calculated from the latest values of k and ω, for
example, and is used to advance the mean and the turbulent flow solutions. An approximate
Jacobian is used for the source term of the models by only taking into account the contribution
of their dissipation terms, i.e. no account of the production terms is taken on the left-hand side
of the system.

2.3 The adjoint solvers

An efficient way to compute the derivatives of the cost functional with respect to design
variables is via solving the sensitivity equation casted in adjoint form. The underlying idea
is to write explicitly the cost functional I as a function of the flow variables W and of the
design variables α, that is, I = I (W (α),α). The flow variables are subject to satisfy the fluid
dynamics governing equations (e.g. the NS equations) written in compact form as:

R(W (α),α) = 0 … (8)

Formally, taking the derivative of I with respect to α, we obtain:

dI
dα

= ∂I
∂α

+ ∂I
∂W

∂W
∂α

… (9)

By introducing the adjoint variable λ as the solution of the following linear system:

(
∂R
∂W

)T

λ = −
(

∂I
∂W

)T

… (10)

Equation (9) can be rewritten as:

dI
dα

= ∂I
∂α

+ λT ∂R
∂α

… (11)

The computational cost of the dual-sensitivity problem (10)-(11) scales with the number of
outputs, since the right-hand side of (10) depends on I , but it is independent of the input
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parameters. The adjoint form of the sensitivity equation is particularly efficient for cases
where the number of (output) cost functionals is small, while the number of (input) design
variables is large.

2.3.1 Fixed-point iteration scheme

The linear system (10) for computing the adjoint variable can be solved with a FPI scheme,
where an approximation Ĵ of the linear system matrix J, with better condition number, is
introduced as a pre-conditioner to advance the solution at each iteration(10,12). The FPI scheme
reads:

ĴT�λn+1 = −
(

∂I
∂W

)T

− JTλn, … (12)

where

J = ∂R
∂W

, … (13)

Ĵ = V
CFL �t

I +
[

∂R
∂W

]1st

, … (14)

�λn+1 = λn+1 − λn … (15)

The pre-conditioner Ĵ is the matrix used for the base flow implicit update (7) and consists of
the sum of the stabilising pseudo-time derivative term and of the first-order residual Jacobian
(e.g. the Jacobian evaluated using a first-order scheme for the inviscid fluxes and having the
sparsity pattern induced by the inviscid discretisation scheme of the equations). The CFL
number in the pseudo-time derivative term can be adjusted to obtain the desired convergence
speed of the FPI (12), which is solved using a GCG iterative scheme(3).

Note that the iterative scheme (12) does not require the full, exact Jacobian J, but only
the matrix-vector product JTv. The computer code to perform the product is obtained by
automatic differentiation in reverse mode of the flow steady residual function. This avoids
storing J, and hence the computation of the adjoint sensitivities adds only a small memory
overhead to the base solver. More details about the development of the fully implicit FPI
scheme are given in Ref.(6).

The steady RANS equations for the flows considered in this work are not always
asymptotically converging. In fact, they sometimes enter limit cycles, because small residual
unsteadiness is present in the flow field, due to the complexity of the geometry. This flow
unsteadiness leads to the presence of unstable modes in the associated adjoint problem, which
may hinder the convergence of the FPI(8). To stabilise the FPI, HMB3 embeds the Recursive
Projection Method (RPM)(9,30), which, for mildly unstable flows, allows to detect and isolate
the unstable modes and to restore the FPI convergence.

2.3.2 Nested Krylov-subspace method

The FPI scheme presented in the previous section has very low memory requirements, and
it is suited to large applications on High-Performance Computing (HPC) systems with low
memory per computing core. For stiff problems, however, the convergence rate of the FPI
scheme can be poor, or it may even diverge. For this reason, a new Krylov-subspace solver
based on the Generalised Minimum Residual (GMRES) method(28) is introduced here.
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GMRES is a robust method for the solution of a non-symmetric linear system, based on
the minimisation of the equations residual over a Krylov subspace generated using Arnoldi’s
method(2). A well-known theoretical result states that GMRES is guaranteed to converge in
at most n steps, where n is the dimension of the system matrix(27). The GMRES is easily
parallelizable, as it involves only matrix-vector products and vector inner products. The
drawback of the method is its memory requirements, because it needs to store all the base
vectors of the Krylov subspace, whose size increases by one at each Arnoldi’s iteration.
To limit the memory demand, a restarted version of the method is employed, where the
Krylov subspace is discarded after a predefined number m of Arnoldi’s iterations, and the
process is restarted from the last solution. The method is denoted as GMRES(m), and its
memory requirement is equal to m vectors of size n. Since the information contained in the
Krylov subspace is lost after a restart, the restarted GMRES has poorer convergence than
full GMRES, and the process may even stagnate if the size m of the Krylov subspace is not
sufficiently large.

The robustness and efficiency of Krylov subspace methods relies on the choice of a suitable
pre-conditioner(27). In HMB3, the no-fill Incomplete Lower-Upper decomposition, or ILU(0),
is used(5). For parallel computations, the ILU(0) terms are computed locally on each processor
because of the poor scalability of a fully coupled decomposition. For large and tough linear
problems, however, neglecting the coupling terms may prevent convergence of the linear
solver. In our tests, GMRES(m) with decoupled ILU(0) running on 128 cores failed to
converge the adjoint problem associated to the large, three-dimensional, RANS flow solutions
considered in this work, for values of m up to 500, which was the maximum allowed by the
used HPC system memory.

A significant improvement over the restarted GMRES is GMRES with deflated restarting
(GMRES-DR)(21). At the end of a cycle, k approximate eigenvectors associated with the
smallest eigenvalues are extracted from the Krylov subspace, and used to augment the
subspace at the next cycle. This operation is referred to as deflation of the eigenvalues.
The method is denoted as GMRES-DR(m,k), and the memory requirement is the same as
that of GMRES(m). Note that GMRES-DR(m,0), i.e. with no deflation, reduces to standard
GMRES. The deflation of the eigenvalues greatly improves the convergence rate of GMRES,
and the minimum size m of the Krylov subspace to avoid stagnation can also be significantly
reduced. Nevertheless, even GMRES-DR was stagnating or having slow convergence for the
considered adjoint problems using less than 500 Krylov base vectors. This was mainly due
to the reduced accuracy of the decoupled ILU(0) pre-conditioner, which is particularly severe
when a large number of parallel processes is used.

To restore the effectiveness of the pre-conditioner, while maintaining the scalability of the
method, we introduced a nested GMRES-DR solver as the pre-conditioner for the (outer)
GMRES-DR cycles. To allow for this, a flexible variant of the outer solver was needed(26),
at the cost of higher memory requirement, since two vectors need to be stored at each
Arnoldi’s iteration. The development of flexible GMRES-DR (FGMRES-DR) is described in
Ref. 13. The inner GMRES-DR solver inverts the pre-conditioning matrix Ĵ defined in (14),
and uses, in turn, the decoupled ILU(0) pre-conditioner. The CFL number in the pseudo-
time derivative term can be used to regulate the diagonal dominance of Ĵ and to obtain the
desired convergence rate for the inner cycles. The whole scheme may be denoted as FGMRES-
DR(m,k)-GMRES-DR(mp,kp), or FGMRES-DR(m,k)-GMRES(mp) when standard GMRES
is used for the inner cycles. This nested Krylov-subspace solver proved to be able to converge
tough adjoint problems using about 200 Krylov base vectors for the outer cycles, where
GMRES(m) and GMRES-DR(m,k) with decoupled ILU(0) pre-conditioning were failing.
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Figure 7. Convergence history of the Krylov-subspace solvers.

Like for the FPI scheme, the implementation of the nested Krylov-subspace solver does not
require the Jacobian matrix J, but only the matrix-vector product JTv. Therefore, J is never
stored explicitly, and the product JTv is computed by means of automatically differentiated
code of the residual function.

Figure 7 shows the convergence history of the developed Krylov-subspace methods for the
solution of the adjoint equations (10) of a three-dimensional RANS flow. In particular, we
considered the flow through the simplified model of the ducted propeller (see Fig. 4) at cruise
condition, solved using a grid of about 9 m cells. The k-ω turbulence model was used, and
the derivatives of its terms were fully accounted for in the system matrix J, thus leading to a
tough linear problem with 63 m degrees of freedom. The adjoint solvers were run on 128 Xeon
E5-2650 2 GHz cores, and 4 GB of memory was available for each core. The GMRES(500)
failed to converge, and it stagnated after dropping the residual by 2 orders of magnitude,
whereas GMRES-DR(400,100) showed very slow convergence. The nested Krylov-subspace
solver FGMRES-DR(210,70)-GMRES(50), with Ĵ computed using a CFL equal to 1,200,
was instead able to fully converge the solution. The performance of the nested method were
also competitive in terms of run time, as it took 12 hours to drop the residual by 7 orders of
magnitude, which is half of the time that was needed to converge the base flow.

2.4 Mesh deformation

To adapt the volume mesh to the surface generated by the parametrisation software at
each optimisation cycle, an advanced mesh deformation algorithm has been implemented in
HMB3, based on Inverse Distance Weighting (IDW)(29). IDW is an interpolation method that
calculates the values at given points with a weighted average of the values available at a set of
known points. The weight assigned to the value at a known point is proportional to the inverse
of the distance between the known and the given point.
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Given N samples ui = u(xi ) for i = 1, 2, . . . , N, the interpolated value of the function u at
a point x using IDW is given by:

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

wi(x)ui

N∑
i=1

wi(x)

, if d (x, xi ) �= 0 for all i

ui, if d (x, xi ) = 0 for some i

, … (16)

where

wi(x) = 1
d (x, xi )p

… (17)

In the above equations, p is any positive real number (called the power parameter), and d (x, y)
is the Euclidean distance between x and y (but any other metric operator could be considered
as well).

The method in its original form tends to become extremely expensive as the sample data
set gets large. An alternative formulation of the Shepard’s method, which is better suited for
large-scale problems, has been proposed by Renka(23). In the new formulation, the interpolated
value is calculated using only the k-nearest neighbours within the R-sphere (k and R are given,
fixed, parameters). The weights are slightly modified in this case:

wi(x) =
(

max(0, R − d (x, xi ))
Rd (x, xi )

)2

, i = 1, 2, . . . , k … (18)

If this interpolation formula is combined with a fast spatial search structure for finding the
k-nearest points, it yields an efficient interpolation method suitable for large-scale problems.

The modified IDW interpolation formula is used in HMB3 to implement mesh deformation
in an efficient and robust way. The known displacement of points belonging to solid surfaces
represent the sample data, while the displacements at all other points of the volume grid
are computed using Equation (16) with the weights (18). For fast spatial search of the sample
points, an Alternating Digital Tree (ADT) data structure(7) is used. A blending function is also
applied to the interpolated displacements so that they smoothly tend to zero as the distance
from the deforming surface approaches R.

3.0 NUMERICAL RESULTS
3.1 CFD mesh and problem set-up

To model the propulsor, a system of grids is used along with the sliding mesh method available
in HMB3. The sliding grids allow for the front and rear part of the intake to be meshed
independently of the blades or other parts of the geometry, making the parameterisation and
optimisation of the propulsor easier. This allows, for instance, to compare the performance
of different blades, or of the ducted and unducted propellers, without the need to re-mesh the
complete geometry.

https://doi.org/10.1017/aer.2016.78 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.78


Barakos 1645Optimisation of Ducted Propellers...

Figure 8. (Colour online) Propulsor grids including nacelle and coolers.

Figure 9. (Colour online) Propulsor grids for the simplified cases.

The CFD grid for the detailed model of Fig. 2 counts 1,171 blocks and 33.5 m cells
(Fig. 8a). The radiators and coolers were included in the CFD simulations as infinitely thin
walls, by setting up a solid wall boundary at the interface between two adjacent grid blocks(34).
The location of these thin walls, which must have rectangular shape, is specified by giving
their corner point coordinates. HMB3 automatically localises the set of block boundary cells
that approximate best the rectangular region and flags these cells as solid boundaries. The
grid for the unducted case (Fig. 8(b)) counts 921 blocks and 31.3 m of cells. The commercial
software Ansys ICEMCFD was used to generate the meshes.

The simplified ducted and free propellers of Figs 4 and 5 are axisymmetric and,
consequently, only a cylindrical sector around one blade was meshed. Periodic boundary
conditions were used to account for the other blades. The grid for the ducted and free
propellers are shown in Figs 9(a) and 9(b), respectively. The former grid has 324 blocks and
9.8 m cells, while the latter has 256 blocks and 9.3 m cells.

For both the detailed and the simplified models, to reduce the computation of the flow to
the solution of a steady problem, the flow equations were formulated in the rotating reference
frame attached to the blade. This is obvious in the case of the free propeller. For the ducted
case, the duct is rotating with the propeller angular velocity, but in the opposite sense, in
the blade attached reference frame. This is accounted for through the boundary conditions by
imposing this rotational velocity to the boundary faces on the duct surface. The duct geometry
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Figure 10. (Colour online) CFD simulations of the ducted and free propellers
with nacelle, radiators and cooler.

is invariant under rotations around the propeller axis, so the flow can be still modelled as
steady in the blade reference frame.

The detailed model is not invariant under rotations, due to the presence of the cooling
devices and the shape of the nacelle. The formulation as a steady problem represents an
approximation in this case. The comparison with experimental data shown in the next section
confirms the validity of this assumption.

3.2 Assessment of the numerical model

Experimental data is available from static tests of the ducted propeller conducted by Hybrid
Air Vehicles Ltd. The test conditions were replicated in CFD simulations for both ducted
and free propeller cases, using the detailed and the simplified geometries. The flow was
modelled using the RANS equations endowed with the k-ω turbulence model. The choice
of the model was dictated by its simplicity and robustness and also by the good agreement
between available static test data for the propulsor and our preliminary computations. The
Reynolds number, based on the blade root chord and blade tip speed, was between 0.795 × 106

and 3.18 × 106, while the tip Mach number was between 0.175 and 0.7.
The complex flow through the ducted and free propellers is shown in Fig. 10, where

a significant blockage effect due to the nacelle, radiators and cooler can be observed.
The predicted performances are reported in Fig. 11, which also shows the static test
measurements for the ducted case. Note that the data is scaled with a reference value to
respect the confidentiality of the real-world design. The plot reveals the importance of using
a more detailed representation of the real geometry. Indeed, there is a good agreement
between the CFD results for the realistic model and the experiments, while the simplified
model significantly underestimates the required power. Nonetheless, the simplified model is
significantly more economic and was selected to study the effect of the duct, and for the
analysis and optimisation of the blade twist distribution. The analysis of the results reveals
also the beneficial contribution of the duct, that allows to increase significantly the thrust for
a given power (compare, for instance, points A and B in Fig. 11).
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Figure 11. Computed and experimental performance of the ducted and free propellers.

3.3 Effect of the Duct

To assess the effect of the duct, the performance of the ducted and free propellers were
computed using the baseline high-twist blade and the simplified geometry of Figs 4 and
5. The flow was modelled using the RANS equations and the k-ω turbulence model. The
Reynolds number was 3.18 × 106 and the tip Mach number was 0.7. Three advance ratios
were considered, that is, J = 0, 0.136, 0.540, which correspond to static conditions, cruise
speed and dash speed, respectively.

Figures 12(a) and 12(b) show, respectively, the wake visualised using the Q-criterion and
the surface pressure coefficient (based on the free-stream velocity) on the ducted high-twist
propeller at dash speed. The blade loading shows the importance of the outboard part of the
blades with high suction produced near 60% of the blade radius. The complex swirling flow
is also well resolved with the current set of CFD grids.

Figures 13(a) and 13(b) compare the flow through the ducted and unducted propellers at
the same flight conditions. The differences in the flow-field are substantial and well captured
by the simulation. It is clearly shown how the rear part of the duct operates as a diffuser,
decreasing the propeller wake speed and increasing the static pressure, so as to induce a
positive contribution to the overall thrust.

The predicted performance of the ducted and free propellers are given in Table 1. In static
conditions (J = 0), the performance of the ducted propeller is significantly higher than that
of the free propeller. For instance, at a low blade pitch angle the ducted propeller gives 24%
more thrust with 25% less power. At cruise speed (J = 0.136), the contribution of the duct is
still important, and at a medium pitch angle, the ducted propeller gives 10% more thrust with
22% less power.

When the speed is higher, the positive effect of the duct reduces due to the increase of
the duct drag that compensates the positive contribution of the static pressure in the diffuser.
Consider, for example, the flight condition at dash speed (J = 0.54). At fixed blade pitch
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Table 1
Computed performance of the propulsor

Twist Configuration J [-] β CT /CT,ref [-] CP/CP,ref [-] η/ηref [-]

High Ducted 0.000 Low 5.417 1.588 0.000
High Ducted 0.000 Medium 6.861 2.206 0.000
High Ducted 0.136 Medium 5.278 2.206 0.586
High Ducted 0.540 Low 1.333 1.059 1.241
High Ducted 0.540 Medium 2.056 1.588 1.276
High Ducted 0.540 High 2.444 1.882 1.276
High Free 0.000 Low 4.361 2.000 0.000
High Free 0.136 Medium 4.778 2.676 0.431
High Free 0.540 Low 2.361 1.824 1.276
Low Free 0.136 Medium 5.278 2.412 0.534
Low Free 0.540 Low 1.000 1.000 1.000

Figure 12. (Colour online) CFD simulation of the ducted propeller at dash speed.

Figure 13. (Colour online) Axial velocity in the vertical symmetry plane of the ducted
and free propellers at dash speed.
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Table 2
Force breakdown on the ducted and free propellers

Thrust Torque

J Blades Spinner Duct Blades Spinner Duct
[-] Configuration [%] [%] [%] [%] [%] [%]

0.136 Ducted 54.6 0.3 45.1 100.2 0.0 −0.2
0.136 Free 100.6 − 0.6 – 100.0 0.0 –
0.540 Ducted 77.2 1.1 21.7 100.1 0.1 −0.2
0.540 Free 99.8 0.2 – 99.9 0.1 –

angle, the thrust and the torque of the ducted propeller are considerably lower, since the
acceleration of the flow at the duct inlet reduces the effective angle of attack of the blade.
Therefore, to compare the performance at this speed, we alter the angle of attack of the ducted
propeller blades to match the thrust of the free propeller. By interpolating results for the ducted
and free propellers in Table 1, it is deduced that the torque in the ducted case is only 1% lower
than the free propeller value. At this higher advance ratio, the duct is ineffective.

To better understand the role of the duct in the thrust generation, Table 2 reports the force
breakdown of the ducted and free propellers at cruise and dash speeds. At cruise speed, the
duct contribution is 45% of the overall thrust, and the diffuser effect overcompensates the duct
drag force and the reduced effective angle of attack of the propeller blades. At dash speed, the
contribution is reduced to 22%, and it is barely sufficient to balance the negative effects. For
higher speeds, the duct is detrimental to the propulsor performance.

3.4 Effect of the blade twist

The propulsor analysed in the previous section is equipped with highly twisted blades. Their
twist distribution was designed for the free propeller, and it is therefore interesting to verify if
it is also optimal for the ducted configuration. To better understand the effect of the blade twist
on the propulsor performance, a new set of blades was considered, having the same sectional
shape but a lower twist value (around one-fourth).

The thrust and torque obtained with CFD for the ducted propeller with low-twist blades are
given in Table 1. The comparison with the high-twist blade results reveals that the propulsive
efficiency of the low-twist blades is lower both at cruise and dash speeds. These results
contradict those obtained with the simple panel method(1), and highlight the necessity of using
high-fidelity CFD to predict accurately the performance of a ducted propeller. In light of these
results, an optimisation of the blade twist distribution was attempted, using a gradient based
method coupled to the HMB3 flow solver.

3.5 Optimisation of the twist distribution

The performance of a ducted propeller depends mainly on the blade geometry and on
the expansion ratio of the duct. But there are also other factors that might influence the
performance, such as

(a) the shape of the duct diffuser, which needs to be designed to avoid separations due to the
adverse pressure gradient;
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(b) the shape of the duct inlet lips, whose design determines the behaviour at off-design
working conditions such as, for instance, when the flow is not perfectly axial;

(c) the clearance between the blade tip and the duct inner surface, which affects the blade-tip
losses;

(d) the blockage induced by non-aerodynamic parts, such as purely structural component,
engine and cooling devices.

This work focuses on the blade and duct geometries. Initially, the twist distribution alone
was optimised, and at a second stage, both the blade twist distribution and the duct shape were
included in the optimisation process. The results of the twist optimisation are given in this
section, while the optimisation including the duct shape follows.

The ducted propeller with the high-twist blades with medium pitch, and with advance ratio
corresponding to the LTA cruise speed was considered for the twist optimisation exercise. The
baseline performance of the propulsor at these conditions are listed in Table 1, from which we
get CT /CT,ref = 6.861 and CP/CP,ref = 2.206. The optimisation objective was to maximise
the thrust coefficient CT , with the power coefficient CP constrained to the value of the baseline
design.

The shape of the duct was fixed, as well as the shape of the blade sections. The
only permitted modification to the blade geometry was a perturbation of the initial twist
distribution. This perturbation was described by a Bernstein polynomial expansion of order
n:

�θ(ξ) =
n∑

r=0

αrKr,nξ
r(1 − ξ)n−r, … (19)

where Kr,n is given by

Kr,n =
(

n
r

)
= n!

r!(n − r)!
… (20)

and ξ is the blade span-wise normalised coordinate, which has a value of 0 at the rotation axis
and value of 1 at the blade tip.

The gradients of the thrust and power coefficients with respect to the design variables were
computed by means of FGMRES-DR(210,70)-GMRES(50). The number of inner iterations
was limited to 50, and the CFL number used for computing the pre-conditioning matrix Ĵ,
given by Equation (14), was 1,200. The linear solver was run on 128 Intel Xeon E5-2650
2 GHz cores, and it took about 12 hours and 1,637 outer iterations to converge the solution of
the adjoint equations to a relative residual of 10−7, which is almost half of the time needed
to solve the base flow (see Fig. 14). The developed GMRES method proved to be particularly
effective for the solution of the adjoint equations that represent a particularly challenging
problem in this work, since the derivatives of the two-equation k-ω turbulence model are
included. Note also that the base flow is not asymptotically converging but instead enters a
limit cycle (see Fig. 14), and this is known to lead to an even tougher linear system for the
adjoint variables(8).

Figures 15 and 16 show, respectively, the distribution of the adjoint variable of the thrust
and power coefficients relative to the pressure equation for the baseline design. Even if a
direct interpretation of the adjoint variable is not easy, by Equation (11) we can infer that
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Figure 14. Convergence history of the base flow and of the adjoint equations.

Figure 15. (Colour online) Pressure equation adjoint variable of the thrust coefficient CT .

modifications to surface regions with higher absolute values of the adjoint variable shall affect
more the output functional (CT or CP). On the other hand, regions with small absolute values
of the adjoint variable have negligible influence on the output functional.

Seven coefficients were used for the parametrisation (19), and each coefficient was
constrained within the range (−5◦, 5◦). The optimisation loop converged after 15 cycles
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Figure 16. (Colour online) Pressure equation adjoint variable of the power coefficient CP.
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Figure 17. Optimisation history.

(see Fig. 17), yielding an increase in the propulsive efficiency of the propulsor of about 1%.
This is a moderate improvement over the baseline design and suggests that the original twist
distribution was nearly optimal for the ducted propeller configuration. Figure 18 compares
the baseline and optimised blade surfaces and shows how the local pitch has been increased
next to the blade tip and at the root and decreased in the sections between 65% and 93% of
the blade radius. This leads to a higher loading at the tip of the optimised blade, as shown in
Figs 19 and 20.
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Figure 18. Comparison of baseline (light gray) and optimised (dark gray) blade surfaces.

Figure 19. (Colour online) Surface pressure coefficient of the baseline blade
(cruise speed, medium blade pitch).

Figure 20. (Colour online) Surface pressure coefficient of the optimised blade
(cruise speed, medium blade pitch).

3.6 Optimisation of the duct shape

A further improvement of the propulsor performance is expected if the duct shape and size
are included in the optimisation process. As for the twist optimisation case, the optimisation
objective was the maximisation of the thrust coefficient CT , with the power coefficient CP

constrained to the value of the baseline design.
The blade twist perturbation was described again by the Bernstein polynomial

expansion (19). The duct is axisymmetric; therefore, only the section shape needs to be
parametrised. The considered design variables allow to vary the shape of the duct diffuser,
the radius at the duct outlet and the length of the duct (see Fig. 21). This is done as follows.
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Figure 21. Schematic of the parametrisation of the duct cross-section.

� The shape of the duct diffuser is described using a Class/Shape Transformation (CST)
parametrisation(18):

r(ξ1) = CN2
N1

(ξ1)
n∑

r=0

αrKr,nξ
r
1(1 − ξ1)n−r, … (21)

where

CN2
N1

(ξ1) = ξ
N1
1

(
1 − ξ

N2
1

)
… (22)

The symbol r represents the radial coordinate of the duct, while ξ1 is a nondimensional
variable that ranges from 0 at the duct lip to 1 at the inner flat surface of the duct section,
as shown in Fig. 21. To represent the rounded lip at ξ = 0 and the flat surface at ξ = 1,
we take N1 = 0.5 and N2 = 1.0.

� The variation of the duct radius �R at the outlet is given by the following two functions:

�r(ξ1) = �R[1 − sin2(0.5πξ1)], … (23)

�r(ξ2) = �R[1 − sin2(0.5πξ2)] … (24)

The first function is used to parametrise the duct diffuser surface, whereas the second is
used for the duct outer surface.

� The variation of the duct length �L is described by the following function:

�z(ξ1) = �L[1 − sin2(0.5πξ1)], … (25)

�z(ξ2) = �L[1 − sin2(0.5πξ2)], … (26)

where z represents the axial coordinates, positive from the aft to the forward side of the
propulsor. The first function is used for the diffuser, while the second is for the outer
surface.

Seven coefficients were used for the parametrisation of the twist variation (19). The shape of
the duct diffuser was described considering 16 coefficients for the CST parametrisation (22).
Two design variables were finally used to define the variation of the duct radius and length
in (23) and (25), respectively. There was a total of 25 design variables. The twist coefficients
were constrained within the range (−5◦, 5◦). Both the duct radius and length variations were
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Figure 23. Comparison of baseline (light gray) and optimised (dark gray) blade and duct surfaces.

limited to (−100 mm, 100 mm). The optimisation converged after 19 cycles (see Fig. 22),
leading to a 2% increase in the propulsive efficiency. Figure 23 shows a comparison of the
optimised and baseline surface of the blade and duct. Note that the computed optimal shape
of the duct has a larger radius and shorter length. Minor variations have been introduced in
the diffuser shape, with the optimised one having a slightly higher curvature near the outflow
section.

4.0 CONCLUSIONS
This paper presented the analysis and design of a ducted propeller by means of high-
fidelity CFD methods. The numerical results prove the effectiveness of the duct for
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low-speed operations, where it significantly increased the overall propulsor efficiency. The
effect of the blade twist on the performance was also analysed, and results indicate that blades
loaded outboard operate with higher efficiency over a wide range of operating conditions.
Optimisation of the twist distribution and of the duct shape was then attempted using a
quasi-Newton method and an adjoint solver to provide the required gradients. A moderate
increase in the propulsor efficiency was obtained using the blade with optimised twist. Further
performance improvement was achieved by combined optimisation of the blade twist and the
duct shape, which led to a 2% increase in the propulsor efficiency. The above optimisations
were facilitated by the developed nested Krylov-subspace method for solving the adjoint
equations.
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