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We discuss a mean-field theory of the generation of large-scale vorticity in a rotating
density stratified developed turbulence with inhomogeneous kinetic helicity. We show
that the large-scale non-uniform flow is produced due to either a combined action of a
density stratified rotating turbulence and uniform kinetic helicity or a combined effect
of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These
effects result in the formation of a large-scale shear, and in turn its interaction with
the small-scale turbulence causes an excitation of the large-scale instability (known as
a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds
stress-induced generation of the mean vorticity. The latter is due to the effect of
large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale
instability.
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1. Introduction
A large-scale non-uniform flow or differential rotation in a helical small-scale

turbulence can result in generation of a large-scale magnetic field by αΩ or α2Ω
mean-field dynamo, where α is the kinetic α effect and Ω is the angular velocity
(see, e.g. Moffatt 1978; Parker 1979; Krause & Rädler 1980; Zeldovich, Ruzmaikin
& Sokolov 1983; Ruzmaikin, Shukurov & Sokoloff 1988; Rüdiger, Kitchatinov &
Hollerbach 2013). The kinetic α effect is related to a kinetic helicity produced, e.g.
by a combined action of uniform rotation and density stratified or inhomogeneous
turbulence. Formation of the non-uniform flows is caused, e.g. by a rotating
anisotropic density stratified turbulence or turbulent convection. The latter effect
is also related to a problem of generation of large-scale vorticity by a turbulent flow,
and has various applications in geophysical and astrophysical flows (see, e.g. Lugt
1983; Pedlosky 1987; Chorin 1994).

It has been suggested by Moiseev et al. (1983), that the generation of the large-scale
vorticity in a helical turbulence occurs due to the kinetic alpha effect. This idea is
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based on an analogy between the induction equation for the magnetic field and the
vorticity equation (Batchelor 1950). The latter implies that a large-scale instability is
associated with the term ∇× (αW) in the equation for the mean vorticity, W, similarly
to the mean-field equation for the magnetic field, B, where the key generation term
is ∇ × (αB), see Moiseev et al. (1983). A mean-field equation for the vorticity has
been derived by Khomenko, Moiseev & Tur (1991) using the functional technique
for a compressible helical turbulence. It has been shown there that the mean vorticity
grows exponentially in time due to the kinetic alpha effect.

However, the analogy between the induction equation and the vorticity equation is
not complete, because the vorticity W =∇ × U, where the velocity U is determined
by the nonlinear Navier–Stokes equation. In addition, symmetry properties imply that
the term ∇× (αW) in the mean vorticity equation should originate from a Reynolds
stress proportional to the mean velocity. On the one hand, the Reynolds stress enters
neither the Navier–Stokes nor the vorticity equations without spatial derivatives. On
the another hand, the Reynolds stress is an important turbulent characteristics, e.g.
the trace of the Reynolds stress determines the turbulent kinetic energy density. To
preserve the Galilean invariance, the trace of the Reynolds stress as well as the
diagonal components of the Reynolds stress should be proportional to the spatial
derivatives of the mean velocity, rather than to the mean velocity itself.

Frisch, She & Sulem (1987), Frisch et al. (1988) have investigated the effect of
a non-Galilean invariant forcing that causes a large-scale instability resulting in the
formation of a non-uniform flow at large scales (the so-called anisotropic kinetic
alpha effect, or the AKA effect). A non-Galilean invariant forcing and generation of
large-scale vorticity have been also investigated by Kitchatinov, Rüdiger & Khomenko
(1994). There are various examples for turbulence driven by non-Galilean invariant
forcing, e.g. supernova-driven turbulence in galaxies (Korpi et al. 1999) and the
turbulent wakes driven by galaxies moving through the galaxy cluster (Ruzmaikin,
Sokoloff & Shukurov 1989). Also, the presence of boundaries can break the Galilean
invariance, see e.g. discussion in Brandenburg & Rekowski (2001), and references
therein.

In a homogeneous non-helical and incompressible turbulence with an imposed mean
velocity shear, the large-scale vorticity can be generated due to an excitation of a
large-scale instability, referred to as a vorticity dynamo and caused by the combined
effect of the large-scale shear motions and Reynolds stress-induced generation of
perturbations to the mean vorticity. This effect has been studied theoretically by
Elperin, Kleeorin & Rogachevskii (2003), Elperin et al. (2007) and detected in direct
numerical simulations by Yousef et al. (2008), Käpylä, Mitra & Brandenburg (2009).
To derive the mean-field equation for the vorticity, the spectral τ approach, which
is valid for large Reynolds numbers, has been applied by Elperin et al. (2003). The
linear stage of the large-scale instability which is saturated by nonlinear effects has
been investigated by Elperin et al. (2003), but not a finite-time growth of large-scale
vorticity as described by Chkhetiany et al. (1994). In particular, a first-order smoothing
(a quasi-linear approach) has been used in the latter study to derive the equation for
the mean vorticity in a compressible random flow with an imposed large-scale shear.
The latter approach is valid only for small Reynolds numbers, and this is the reason
why the large-scale instability has not been found by Chkhetiany et al. (1994).
Importance of the vorticity dynamo has been demonstrated by Guervilly, Hughes &
Jones (2015), where they suggested a mechanism for the generation of large-scale
magnetic fields based on the formation of large-scale vortices in rotating turbulent
convection.
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Formation of large-scale non-uniform flow by inhomogeneous helicity in a rotating
incompressible turbulence has been studied theoretically (Yokoi & Yoshizawa 1993)
and in direct numerical simulations (Yokoi & Brandenburg 2016). The theoretical
study and numerical simulations show that a non-uniform large-scale flow is
produced in the direction of angular velocity. Recent direct numerical simulations
have demonstrated formation of large-scale vortices in rapidly rotating turbulent
convection for both compressible (Chan 2007; Käpylä, Mantere & Hackman 2011;
Mantere, Käpylä & Hackman 2011) and Boussinesq fluids (Favier, Silvers & Proctor
2014; Guervilly, Hughes & Jones 2014; Rubio et al. 2014). These large-scale flows
consist of depth-invariant, concentrated cyclonic vortices, which form by the merger
of convective thermal plumes and eventually grow to the size of the computational
domain. Weaker anticyclonic circulations form in their surroundings.

In the present study we develop a mean-field theory of the generation of large-scale
vorticity in a rotating density stratified turbulence with inhomogeneous helicity and
large Reynolds numbers. To derive the mean-field equation for the vorticity, the
spectral τ approach is applied here for a large Reynolds number turbulence. We
show that a non-uniform large-scale flow is produced in a rotating fully developed
turbulence due to either inhomogeneous kinetic helicity or a combined effect of a
density stratified flow and uniform kinetic helicity. An interaction of the turbulence
with the formed large-scale shear causes an excitation of the large-scale instability
resulting in the generating of the mean vorticity (vorticity dynamo). On the other
hand, a fast rotation suppresses this large-scale instability. The present study of
the dynamics of large-scale vorticity in a rotating density stratified helical turbulence
demonstrates that the mean-field equation for the large-scale vorticity does not contain
the ∇× (αW) term as was previously suggested by Moiseev et al. (1983).

2. Effect of rotation on the Reynolds stress
To study the effect of rotation on the Reynolds stress in a rotating, density stratified

and inhomogeneous turbulence, we apply a mean-field approach and use Reynolds
averaging. In the framework of this approach, the velocity and pressure are separated
into the mean and fluctuating parts.

2.1. Equation for velocity fluctuations
To determine the Reynolds stress, we use equation for fluctuations of velocity u,
which is obtained by subtracting equation for the mean field from the corresponding
equation for the instantaneous field:

∂u
∂t
=−(U · ∇)u− (u · ∇)U−

∇p
ρ0
+ 2u×Ω +UN . (2.1)

Here p are fluctuations of fluid pressure, U is the mean fluid velocity and (2.1) is
written in the reference frame rotating with the angular velocity Ω . The fluid velocity
for a low Mach number fluid flow satisfies the continuity equation written in the
anelastic approximation: div (ρ0 U) = 0 and div (ρ0 u) = 0. The mean fluid density
and pressure with the subscript ‘0’ correspond to the hydrostatic basic reference
state, given by the equation: ∇P0 = ρ0g. The nonlinear term UN which includes the
molecular viscous force, ρ0 Fν(u), is given by

UN
= 〈(u · ∇)u〉 − (u · ∇)u+Fν(u). (2.2)
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The derivation of the equation for the Reynolds stress includes the following steps:
(i) use new variables for fluctuations of velocity v =

√
ρ0 u; (ii) derivation of the

equation for the second moment of the velocity fluctuations 〈vi vj〉 in the k space; (iii)
application of the spectral τ approach (see § 2.3) and solution of the derived equation
for 〈vi vj〉 in the k space; (iv) returning to the physical space to obtain the formula
for the Reynolds stress as a function of the rotation rate Ω . Here the angular brackets
denote ensemble averaging.

2.2. Equation for the Reynolds stress
Applying a multi-scale approach (Roberts & Soward 1975) and using (A 2) derived
in appendix A, we obtain an equation for the correlation function: f ij(k, K, t) =
〈vi(k1, t)vj(k2, t)〉, where k1 = k+K/2, k2 =−k+K/2 and K correspond to the large
scales, and k to the small ones. The equation for f ij(k, R, t) =

∫
f ij(k, K, t) exp(iK ·

R) dK is given by

∂ f ij(k,R, t)
∂t

= (IU
ijmn + LΩijmn)fmn + N̂ f ij, (2.3)

where

IU
ijmn =

[
2kiqδmpδjn + 2kjqδimδpn − δimδjqδnp − δiqδjnδmp + δimδjnkq

∂

∂kp

]
∇pUq

− δimδjn [div U+U · ∇], (2.4)

LΩijmn =

∫ [
DΩ

im(k1) δjn +DΩ
jn (k2) δim

]
exp(iK ·R) dK,

DΩ
ij (k)= 2εijmΩnkmn.

 (2.5)

Here δij is the Kronecker tensor, kij = kikj/k2 and εijk is the Levi-Civita tensor. The
correlation function f ij is proportional to the fluid density ρ0(R) and N̂ f ij are the third-
order moments appearing due to the nonlinear terms:

N̂ f ij =

∫ (
〈Pim(k1)v

N
m(k1)vj(k2)〉 + 〈vi(k1)Pjm(k2)v

N
m(k2)〉

)
exp(iK ·R) dK. (2.6)

2.3. τ approach
Equation (2.3) for the second-order moment f ij(k) contains high-order moments and a
closure problem arises (see, e.g. McComb 1990; Monin & Yaglom 2013). To simplify
the notation, we do not show the dependencies on t and R in the correlation function
f ij. We apply the spectral τ approximation, or the third-order closure procedure
(see, e.g. Orszag 1970; Pouquet, Frisch & Léorat 1976; Kleeorin, Rogachevskii &
Ruzmaikin 1990; Rogachevskii & Kleeorin 2004). The spectral τ approximation
postulates that the deviations of the third-order moment terms, N̂ f ij(k), from the
contributions to these terms afforded by the background turbulence, N̂ f (0)ij (k), are
expressed through the similar deviations of the second moments, f ij(k)− f (0)ij (k):

N̂ f ij(k)− N̂ f (0)ij (k)=−
f ij(k)− f (0)ij (k)

τr(k)
, (2.7)
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where τr(k) is the characteristic relaxation time of the statistical moments, which
can be identified with the correlation time τ(k) of the turbulent velocity field for
large Reynolds numbers. In (2.7) the quantities with the superscript (0) correspond
to the background turbulence (i.e. a turbulence with ∇iU = 0). We apply the
τ -approximation (2.7) only to study the deviations from the background turbulence,
which is assumed to be known (see below). Validation of the τ approximation
for different situations has been performed in various numerical simulations and
analytical studies (Brandenburg & Subramanian 2005; Rogachevskii & Kleeorin
2007; Rogachevskii et al. 2011, 2012; Brandenburg et al. 2012a; Käpylä et al. 2012).

3. Effects of rotation and kinetic helicity on the Reynolds stress
In this section we consider a combined effect of rotation and kinetic helicity on the

Reynolds stress. To this end we consider a model for the background rotating helical
turbulence.

3.1. Model for the background turbulence
We use the following model of the background rotating, density stratified and
inhomogeneous turbulence with inhomogeneous kinetic helicity:

f (0)ij =
E(k)[1+ 2kεuδ(k̂ · Ω̂)]

8πk2(1+ εu)

{[
δij − kij +

i
k2

(
λ̃i kj − λ̃j ki

)]
ρ0 〈u2

〉
(0)

−
i

k2

[
εijp kp +

(
εipqkjp + εjpqkip

)
λ̃q

]
ρ0 χ

(0)

}
, (3.1)

where Ω̂ =Ω/Ω , δ(x) is the Dirac delta function, χ (0)=〈u · (∇× u)〉(0) is the kinetic
helicity, λ̃= λ−∇/2, λ=−(∇ρ0)/ρ0, τ(k)= 2τΩ τ̄ (k), the turbulent correlation time
τΩ is given below.

We assume that the background turbulence is Kolmogorov-type turbulence with
constant fluxes of energy and kinetic helicity over the spectrum, i.e. the kinetic
energy spectrum E(k) = −dτ̄ (k)/dk, the function τ̄ (k) = (k/k0)

1−q with 1 < q < 3
being the exponent of the kinetic energy spectrum (q = 5/3 for the Kolmogorov
spectrum), k0 = 1/`0 and `0 is the integral scale of turbulent motions.

To derive (3.1) we use the following conditions:
(i) the anelastic approximation: div(ρ0 u) = 0, which implies that (ik(1)i − λi)f

(0)
ij

(k, K) = 0 and (ik(2)j − λj)f
(0)
ij (k, K) = 0, where k1 ≡ k(1) = k + K/2 and k2 ≡ k(2) =

−k+K/2;
(ii)

∫
f (0)ii (k,K) exp[iK ·R] dk dK= ρ0 〈u2

〉
(0);

(iii) iεipj
∫

k(2)p f (0)ij (k,K) exp[iK ·R] dk dK= ρ0 χ
(0);

(iv) f (0)ij (k,K)= f ∗(0)ji (k,K)= f (0)ji (−k,K).
To introduce anisotropy of the background turbulence due to rotation, we consider

an anisotropic turbulence as a combination of a three-dimensional isotropic turbulence
and two-dimensional turbulence in the plane perpendicular to the rotational axis. The
degree of anisotropy εu is defined as the ratio of the turbulent kinetic energies of
two-dimensional to three-dimensional motions. In this model we neglect effects which
are quadratic in λ, ∇χ (0) and ∇〈u2

〉
(0). Different contributions in equation (3.1) have

been discussed by Batchelor (1953), Elperin, Kleeorin & Rogachevskii (1995), Rädler,
Kleeorin & Rogachevskii (2003).
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The effect of rotation on the turbulent correlation time is described just by an
heuristic argument. In particular, we assume that τ−2

Ω = τ
−2
0 +Ω

2/C2
Ω , that yields:

τΩ =
τ0

[1+ (C−1
Ω Ωτ0)2]1/2

. (3.2)

For a fast rotation, Ωτ0� 1, the parameter ΩτΩ tends to a finite value, CΩ ∼ 1, where
τ0 = `0/u0 and u0 is the characteristic turbulent velocity at the integral scale `0.

3.2. The Reynolds stress in a rotating and helical turbulence

In this section we determine the contribution to the Reynolds stress f (Ω,χ)ij caused by
either rotation and stratification in helical turbulence or rotation and inhomogeneous
kinetic helicity. For a slow rotation, Ω τ0� 1, the function f (Ω,χ)ij is given by

f (Ω,χ)ij =

∫
τ
[
L̃ijmnf (0,λ̃)mn + (L

∇

ijmn + Lλijmn) f (0,χ)mn

]
dk, (3.3)

where we use (A 12) derived in appendix A, the tensors f (0,χ)ij ∝ εijp kpχ
(0) and

f (0,λ̃)mn ∝ (εipqkjp+ εjpqkip)λ̃qχ
(0) determine corresponding terms in the model (3.1) of the

background turbulence, λ̃= λ−∇/2 and all other definitions are given in appendix A.
After integration in k space in (3.3), we obtain the contribution to the Reynolds stress
f (Ω,χ)ij caused by either rotation and stratification in helical turbulence or rotation and
inhomogeneous kinetic helicity for a slow rotation, Ω τ0� 1:

f (Ω,χ)ij =
(q− 1)

2q
ρ0τ0`

2
0

[
Ωiλj +Ωjλi +

4
15

(
Ωi∇j +Ωj∇i

)]
χ (0). (3.4)

For a fast rotation, Ω τ0�1, the contribution to the Reynolds stress f (Ω,χ)ij caused by
either rotation and stratification in helical turbulence or rotation and inhomogeneous
kinetic helicity is given by

f (Ω,χ)ij =

∫
τ [L∇ijmn + Lλijmn] f

(0,χ)
mn dk. (3.5)

After integration in k space in (3.5), we obtain

f (Ω,χ)ij =CΩ

(q− 1)
4q

ρ0 `
2
0{Ω̂iλj + Ω̂jλi + Ω̂iΩ̂j[Ω̂ · (λ+∇)]}χ

(0), (3.6)

where Ω̂ = Ω/Ω . In the derivation of (3.6) we take into account that the turbulent
time τΩ for a fast rotation, Ω τ0 � 1 is determined by (3.2). To integrate over
the angles in k space for a fast rotation we use the integrals given at the end of
appendix A.

3.3. Formation of the mean velocity shear
Let us consider the case when the angular velocity, Ω = (0, Ω, 0), is perpendicular
to the density stratification axes, λ= (λ, 0, 0). For simplicity, also consider the case
when the gradient of the kinetic helicity is parallel to λ, i.e. ∇χ (0) = (∇χ (0), 0, 0).
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In this case, f (Ω,χ)xy (x) is only one non-zero contribution to the Reynolds stress f (Ω,χ)ij
caused by either rotation and stratification in helical turbulence or rotation and
inhomogeneous kinetic helicity for Ω τ0� 1:

f (Ω,χ)xy (x)= f (Ω,χ)yx (x)=
(q− 1)

2q
ρ0(x) (Ωτ0)`

2
0

(
λχ (0) +

4
15
∇χ (0)

)
. (3.7)

The last term in (3.7) is in agreement with equation (30) of Yokoi & Brandenburg
(2016).

The steady-state solution of the momentum equation for the y-component of the
mean velocity U(S)

reads:

∇x

[
ρ0(x) νT

(
∇xU

(S)
y

)
− f (Ω,χ)yx (x)

]
= 0, (3.8)

where νT = (q+ 3)u0`0/30 is the turbulent viscosity (Elperin et al. 2002) and we take
into account that the gradient of the mean pressure along Ω vanishes. Integrating (3.8)
over x, we determine the formed large-scale shear:

S≡∇xU
(S)
y =

f (Ω,χ)yx

ρ0 νT

=
15(q− 1)
2q(q+ 3)

Ωτ 2
0

(
λχ (0) +

4
15
∇χ (0)

)
. (3.9)

It follows from (3.9) that the large-scale shear is produced in rotating turbulence due
to either inhomogeneous kinetic helicity or a combined action of a density stratified
flows and uniform kinetic helicity.

In the present study we assume that shear does not affect the background turbulence.
For large values of the shear rate, the background turbulence and turbulent correlation
time can be affected by the shear. In this case the quenching of the correlation time
can be increased by the shear, i.e. the shear can decrease the correlation time (Zhou
& Blackman 2017). The inclusion of these effects in the background turbulence is a
subject of a separate study. On the other hand, the solution of (2.3) determines the
deviations from the background turbulence, and the obtained solution of this equation
yields (A 12), that describes the effect of shear on turbulence.

4. Generation of the large-scale vorticity

The formed large-scale shear S in a turbulent flow causes an excitation of the large-
scale instability resulting in the generation of the mean vorticity due to the vorticity
dynamo. The linearised equation for the small perturbations of the mean vorticity is
given by

∂W
∂t
=∇×

[
U(S)
×W +U×W(S)

+ 2U×Ω + ρ−1
0

(
F (S)
+F (νT )

)]
, (4.1)

where U and W are perturbations of the mean velocity and mean vorticity, while
U(S)
= (0, Sx, 0) and W(S)

= (0, 0, S) are the equilibrium mean velocity and
mean vorticity related to the formed large-scale shear S, given by (3.9). Here
F (S)

i =−∇j(ρ0 〈ui uj〉
(S)) is the effective force caused the shear effect on the Reynolds

stress, F (νT ) determines the turbulent viscosity, and we neglect small kinematic
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viscosity. Let us consider for simplicity small perturbations of the mean vorticity,
W(t, z)= (Wx,Wy, 0), so that (4.1) reads:

∂Wx

∂t
= S Wy + νT W ′′x , (4.2)

∂Wy

∂t
=−β S `2

0 W ′′x − 2ΩλUx + νT W ′′y , (4.3)

(see appendix B), where W ′i = ∇zW i and the coefficient β has been determined in
Elperin et al. (2003): β= 4(2q2

− 47q+ 108)/315. For a Kolmogorov energy spectrum
(q= 5/3), the coefficient β= 0.45. In (4.2) and (4.3) we take into account the Coriolis
force and the density stratification. In the presence of the density stratification due to
the gravity field that is directed perpendicular to the angular velocity, we can neglect
a weak centrifugal force. In (4.2) we take into account that the characteristic scale
of the mean vorticity variations is much larger than the maximum scale of turbulent
motions `0. Since Wy =U′x, equation (4.3) can be rewritten as

∂W ′y
∂t
=−β S `2

0 W ′′′x − 2ΩλWy + νT W ′′′y . (4.4)

We seek a solution of (4.2) and (4.4) in the form ∝ exp[γ t+ i(ω+Kzz)], where the
growth rate of the large-scale instability and the frequency of the generated waves are
given by

γ =

[
β (S `0 Kz)

2
−

(
Ωλ

Kz

)2
]1/2

− νT K2
z , (4.5)

ω=
Ωλ

Kz
. (4.6)

Equation (4.5) implies that rotation in a density stratified turbulence decreases
the growth rate of the large-scale instability. Since we consider the case when
the angular velocity is perpendicular to the wave vector K of the mean vorticity
perturbations, large-scale inertial waves are absent in the system. In the absence
of rotation and density stratification, the expression (4.5) for the growth rate of
the large-scale instability coincides with that obtained by Elperin et al. (2003).
Equation (4.6) describes three-dimensional slow Rossby waves in rotating density
stratified flows which are similar to those studied by Elperin, Kleeorin & Rogachevskii
(2017), see equation (28). We remind that the system considered in this study is a
three-dimensional one, where the angular velocity, Ω = (0, Ω, 0), stratification,
λ= (λ, 0, 0) and the wavenumber, K= (0, 0,Kz), are perpendicular each other.

The mechanism of the large-scale instability studied here is as follows. The first
term, S Wy, in (4.2) describes a stretching of the mean vorticity component Wy by
non-uniform motions, which produces the component Wx. On the other hand, the
first term, −β S l2

0 W ′′x , in (4.3) determines a Reynolds stress-induced generation of
perturbations of the mean vorticity Wy by turbulent Reynolds stresses. In particular,
this term is determined by [∇×(ρ−1

0 F (S)
)]y, where F (S)

i describes the effective force
caused the shear effect on the Reynolds stress. The growth rate of the instability is
caused by a combined effect of the sheared motions and the Reynolds stress-induced
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generation of perturbations of the mean vorticity (Elperin et al. 2003, 2007). On the
other hand, the equilibrium large-scale shear is produced either rotating turbulence and
inhomogeneous kinetic helicity or a combined effect of a density stratified rotating
turbulence and uniform kinetic helicity (see § 3.2).

The physical explanation for why the rotation quenches the vorticity growth is
the following. In the presence of the density stratified rotating turbulence, there
are three effects: (i) the three-dimensional slow Rossby waves; (ii) the Reynolds
stress-induced generation of perturbations of the mean vorticity Wy; (iii) turbulent
viscosity which decreases both the energy of the Rossby waves and the Reynolds
stress-induced generation of perturbations of the mean vorticity Wy. When rotation is
fast, the Reynolds stress-induced generation of perturbations of the mean vorticity Wy
is suppressed. A slow rotation just decreases the latter effect, so there is a competition
between the generation of perturbations of the mean vorticity and the Rossby waves.

Note that additional terms in (4.2) and (4.3) caused by a combined effect of
kinetic helicity and large-scale shear, are much smaller than the terms which are
taken into account in these equations. The combined effects of the uniform kinetic
helicity, rotation and stratification or non-uniform kinetic helicity and rotation are
only important for the production of the background large-scale velocity shear.

5. Conclusions
In the present study, the following effects are investigated: (i) the effect of density

stratification on the production of the large-scale vorticity by the helical rotating
turbulence; (ii) the large-scale instability (vorticity dynamo) suggested by Elperin
et al. (2003) for incompressible non-helical turbulence with a large-scale shear, has
been generalised for the case of density stratified rotating and helical turbulence. In
particular, we show that the large-scale flow is produced in rotating turbulence due to
inhomogeneous kinetic helicity or a combined action of a density stratified flows and
uniform kinetic helicity. This results in the formation of a large-scale shear determined
by the balance between the turbulent viscous force and the effective force caused by
the modification of the Reynolds stress by either rotation and inhomogeneous kinetic
helicity or a combined action of rotation and a density stratified turbulence with a
uniform kinetic helicity. This large-scale shear interacting with a turbulent flow results
in an excitation of the large-scale instability generating the mean vorticity due to the
vorticity dynamo, while fast rotation suppresses this instability.
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Appendix A. Derivation and solution of the Reynolds stress equation
In this appendix we derive and solve the equation for the Reynolds stress. To this

end, equation (2.1) is rewritten in the new variables for fluctuations of velocity v =
√
ρ0 u:

1
√
ρ0

∂v(x, t)
∂t

=−∇

(
p
ρ0

)
+

1
√
ρ0

[
2v×Ω − (v · ∇)U−GU v

]
+ vN, (A 1)
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where GU
= (1/2) div U + U · ∇ and vN are the nonlinear terms which include the

molecular viscous terms. The fluid velocity fluctuations v satisfy the equation ∇ · v=
λ · v/2, where λ=−(∇ρ0)/ρ0. To derive equation for the Reynolds stress, we rewrite
the momentum equation in Fourier space:

dvi(k)
dt
= [DΩ

im(k)+ JU
im(k)]vm(k)+ vN

i (k), (A 2)

where

JU
ij (k)= 2kin∇jUn −∇jUi −

[
1
2

div U+ i(U · k)
]
δij. (A 3)

To derive (A 2), we multiply the momentum equation written in k space by Pij(k)=
δij − kij to exclude the pressure term from the equation of motion. Here we also use
the following identities:

√
ρ0 [∇× [∇×(u×Ω)]] = (Ω ×∇(λ)) (λ · v)+ (Ω · ∇(λ)) (∇(λ)×v), (A 4)

√
ρ0
[
∇×[∇×u]

]
k =−[Λ

2 δij −Λiλj]vj(k), (A 5)

where ∇(λ) =∇+ λ/2 and Λ= ik+ λ/2.
To derive the equation for the Reynolds stress, we apply a standard multi-scale

approach (Roberts & Soward 1975), i.e. the non-instantaneous two-point second-order
correlation function is written as follows:

〈vi(x, t) vj(y, t)〉 =
∫

dk1 dk2〈vi(k1, t)vj(k2, t)〉 exp[i(k1 · x+ k2 · y)]

=

∫
f ij(k,R, t) exp(ik · r) dk, (A 6)

where we use large-scale variables: R = (x + y)/2 and K = k1 + k2; and small-scale
variables: r = x − y, and k = (k1 − k2)/2. Mean fields depend on the large-scale
variables, while fluctuations depend on the small-scale variables, where

f ij(k,R, t)=
∫
〈vi(k1, t) uj(k2, t)〉 exp(iK ·R) dK, (A 7)

k1 = k+ K/2 and k2 =−k+ K/2. Applying a multi-scale approach and using (A 2),
we derive an equation for the correlation function: f ij(k,R, t), see (2.3), where IU

ijmn=∫ (
JU

im(k1) δjn + JU
jn(k2) δim

)
exp(iK ·R) dK.

To solve (2.3) we extract in tensor LΩijmn the parts which depend on large-scale
spatial derivatives or the density stratification effects, i.e.

LΩijmn = L̃ijmn + L∇ijmn + Lλijmn +O(λ2,∇2), (A 8)

where

L̃ijmn = 2Ωq(εimpδjn + εjnpδim)kpq, L∇ijmn =−2Ωq(εimpδjn − εjnpδim)k∇pq, (A 9a,b)

Lλijmn =−2Ωq

[
(εimpδjn − εjnpδim) kλpq +

i
k2
(εilqδjnλm − εjlqδimλn) kl

]
, (A 10)
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k∇ij =
i

2k2
[ki∇j + kj∇i − 2kij(k · ∇)], kλij =

i
2k2
[kiλj + kjλi − 2kij(k · λ)].

(A 11a,b)

Equation (2.3) in a steady state and after applying the spectral τ approximation (2.7),
reads

f ij(k)= L−1
ijmn

[
f (0)mn + τ (I

U
mnpq + L∇mnpq + Lλmnpq) fpq

]
, (A 12)

where we neglected terms ∼O(∇2, λ2). Here the operator L−1
ijmn(Ω) is the inverse of

δimδjn − τ L̃ijmn, and it is given by

L−1
ijmn(Ω) =

1
2

[
B1δimδjn + B2 kijmn + B3(εimpδjn + εjnpδim)k̂p + B4(δimkjn + δjnkim)

+B5εipmεjqnkpq + B6(εimpkjpn + εjnpkipm)
]
, (A 13)

where k̂i= ki/k, B1= 1+ φ(2ψ), B2=B1+ 2− 4φ(ψ), B3= 2ψ φ(2ψ), B4= 2φ(ψ)−
B1, B5= 2−B1, B6= 2ψ [φ(ψ)−φ(2ψ)], φ(ψ)= 1/(1+ψ2) and ψ = 2τ(k) (k ·Ω)/k.
Note that for a slow rotation, L−1

ijmn(Ω)= δimδjn + τ L̃ijmn.
To integrate in (3.5) over the angles in k space for a fast rotation, we use the

following integrals: ∫
k⊥ij dϕ =πδ

(2)
ij ,

∫
k⊥ijmn dϕ =

π

4
∆
(2)
ijmn, (A 14a,b)

where δ(2)ij ≡ Pij(Ω)= δij −ΩiΩj/Ω
2 and ∆(2)

ijmn = δ
(2)
ij δ

(2)
mn + δ

(2)
im δ

(2)
jn + δ

(2)
in δ

(2)
jm .

Appendix B. Effect of shear on Reynolds stress
There are two effects of shear on Reynolds stress. The first effect is related to the

contribution due to the turbulent viscosity: 〈ui uj〉
(νT ) = −2νT (∂U)ij, and the second

contribution determines the Reynolds stress-induced generation of perturbations of
mean vorticity by the effect of large-scale shear on turbulence (Elperin et al. 2003):

〈ui uj〉
(S)
=−l2

0[4C1 Mij +C2(Nij +Hij)+C3 Gij], (B 1)

where νT is the turbulent viscosity, (∂U)ij = (∇iUj +∇jUi)/2,

Mij = (∂U(S)
)im(∂U)mj + (∂U(S)

)jm(∂U)mi, Gij =W (S)
i W j +W (S)

j W i, (B 2a,b)

Hij =W (S)
n [εnim(∂U)mj + εnjm(∂U)mi], Nij =Wn[εnim(∂U(S)

)mj + εnjm(∂U(S)
)mi],

(B 3a,b)

U and W are perturbations of the mean velocity and mean vorticity, while
U(S)
= (0, Sx, 0) and W(s)

= (0, 0, S) are the equilibrium mean velocity and
mean vorticity related to shear S, the coefficients, C1 = 8(q2

− 13q + 40)/315,
C2 = 2(6 − 7q)/45, C3 = −2(q + 2)/45, depend on the exponent of the energy
spectrum. When small perturbations of the mean velocity, U(t, z) = (Ux, Uy, 0) and
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the mean vorticity, W(t, z) = (Wx, Wy, 0), depend only on z, the effective force
ρ−1

0 F (S)
i =−∇j〈uiuj〉

(S) is given by

ρ−1
0 F (S)

i =−S`2
0(βW ′x, β0 W ′y, 0), (B 4)

where β = C1 + C2 − C3 and β0 = C2/2 − C1 − C3. Here we used the following
identities:

∇jMij =−(S/4)(W
′

x,−W ′y, 0), ∇jNij =−(S/2)(W
′

x, 0, 0), (B 5a,b)

∇jHij =−(S/2)(W
′

x,W ′y, 0), ∇jGij = S(W ′x,W ′y, 0). (B 6a,b)

Equation (B 4) yields the first term in the right-hand side of (4.3), see (4.1).
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