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We investigate the properties of forced inertial modes of a rotating fluid inside a
spherical shell. Our forcing is tidal like, but its main property is that it is on the
large scales. By numerically solving the linear equations of this problem, including
viscosity, we first confirm some analytical results obtained on a two-dimensional
model by Ogilvie (J. Fluid Mech., vol. 543, 2005, p. 19); some additional properties
of this model are uncovered like the existence of narrow resonances associated
with periodic orbits of characteristics. We also note that as the frequency of the
forcing varies, the dissipation varies drastically if the Ekman number E is low (as
is usually the case). We then investigate the three-dimensional case and compare the
results to the foregoing model. The three-dimensional solutions show, like their two-
dimensional counterpart, a spiky dissipation curve when the frequency of the forcing
is varied; they also display small frequency intervals where the viscous dissipation is
independent of viscosity. However, we show that the response of the fluid in these
frequency intervals is crucially dominated by the shear layer that is emitted at the
critical latitude on the inner sphere. The asymptotic regime, where the dissipation is
independent of the viscosity, is reached when an attractor has been excited by this
shear layer. This property is not shared by the two-dimensional model where shear
layers around attractors are independent of those emitted at the critical latitude.
Finally, resonances of the three-dimensional model correspond to some selected least
damped eigenmodes. Unlike their two-dimensional counter parts these modes are not
associated with simple attractors; instead, they show up in frequency intervals with
weakly contracting webs of characteristics. Besides, we show that the inner core is
negligible when its relative radius is less than the critical value 0.4E1/5. For these
spherical shells, the full sphere solutions give a good approximation of the flows.

Key words: rotating flows, waves in rotating fluids

1. Introduction
1.1. The background

The question of how close binary stars born on eccentric orbits reach a circular
trajectory with synchronous orbital and spin rotation is by far not fully resolved. The
process of circularization of the orbits and synchronization of rotations is thought

† Email address for correspondence: rieutord@ast.obs-mip.fr
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to be the result of the tidal interaction. Tides act in two ways: they first create a
tidal bulge which generates a torque leading to angular momentum exchange between
the orbital motion and the spinning stars. Second, they dissipate energy through the
induced fluid flows. This latter effect is important as it controls the time scale of the
whole evolution process.

Thus, much work has been devoted to evaluate the efficiency of the dissipative
processes, which can be triggered by tides. The first process that has been investigated
is the viscous damping of the equilibrium tide; this is the tide induced by the mere
deformation of equipotentials; the fluid is assumed ‘attached’ to these surfaces and
the time dependence of the tidal distortion makes the flow (see Zahn 1966, 1977,
1992, 2008). However, this process is efficient if the viscosity is high enough, a
condition which is met only by low-mass stars. Indeed, the convective envelope of
these stars provides a strong damping through their turbulent viscosity. However,
stars of mass larger than 1.8 solar mass have no convection in their outer layers (only
in the central part). Their envelope is stably stratified. But observations do show that
circularization and synchronization are also effective for these stars when they are
close enough (Giuricin, Mardirossian & Mezzetti 1984, but see also the recent review
of observational facts on tidal interactions between stars or between stars and planets
by Mazeh 2008). The present understanding of these results is based on the idea that
the radiative envelope of these stars are efficiently damping the gravity waves excited
by the tides. This mechanism was first investigated by Zahn (1975) using a simplified
approach with an asymptotic description of gravity modes in a non-rotating fluid.
However, stars in a binary system are rotating, sometimes quite rapidly. Rotation thus
appeared as an unavoidable feature. Following work of Rocca (1987, 1989) therefore
included the Coriolis acceleration but as a first-order perturbation.

More recently, Witte & Savonije (1999a ,b, 2001) investigated numerically the
synchronization process of massive stars, fully taking into account the Coriolis force
in the flow. They thus discovered the phenomenon of ‘resonance locking’ by which
the tidal forcing excites resonantly two rotationally modified gravity modes (called
gravito-inertial modes), which therefore strongly dissipate energy; the locking occurs
because one mode tends to spin the star up, while the other tends to spin it down.
The low frequencies of the resonant gravito-inertial modes, however, is synonymous
of short-wavelength modes that are not well suited to the foregoing two-dimensional
numerical calculations. This difficulty motivated Savonije & Witte (2002) to further
investigate the problem with the so-called Traditional Approximation which allows
a separation of the variables. However, as discussed by Gerkema et al. (2008), this
simplification eliminates a crucial feature of these modes, namely their internal shear
layers. Indeed, Dintrans, Rieutord & Valdettaro (1999) showed that gravito-inertial
modes are singular in the limit of vanishing diffusivities. This property is actually
shared by gravity modes and inertial modes in any configuration where variables
cannot be separated (see Rieutord, Georgeot & Valdettaro 2000). The singularities
come from the ill-posed nature of the mathematical problem which is of hyperbolic
or mixed type with boundary conditions. At non-zero but low diffusivities, dominant
singularities show up as modes confined in shear layers following attractors of
characteristics (Rieutord & Valdettaro 1997; Rieutord, Georgeot & Valdettaro 2001).
As far as dissipation is concerned, such modes behave very differently compared to
the regular ones. Astrophysical situations being characterized by large ratios between
integral and dissipation scales, it is crucial to understand the asymptotic properties
of resonant-mode dissipation at vanishing viscosities and thermal diffusion.

Besides the problem of tidal interactions between stars, which is quite old, the recent
discovery of many planetary systems harbouring Jupiter-like planets on orbits very
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Viscous dissipation by tidally forced inertial modes 365

close to the central star also motivates a new examination of the tidal interaction.
The novelty with planets, even of the size of Jupiter, is that they likely contain a
rocky core in their central part. Even if this core is not a solid body, the transition
with the surrounding envelope is likely sharp (Goodman & Lackner 2009). This
makes the fluid domain like a spherical shell. In stars this domain is delineated by
the Brunt–Väisälä frequency variations and may be more complex (e.g. Dintrans &
Rieutord 2000).

Beyond the astrophysical problem described above, the case of resonant inertial
modes is also of interest in Earth sciences in relation to the elliptic instability (e.g.
Lacaze, Le Gal & Le Dizès 2005), the rotating precessing flows (e.g. Hollerbach &
Kerswell 1995) or for the understanding of the dynamics of the ocean or of the
atmosphere (e.g. Maas 2001; Maas & Harlander 2007). Furthermore, it has also
been investigated in the context of engineering applications such as the oscillations
of fuel tanks of spinning spacecrafts (see Manasseh 1996). Finally, let us mention
that non-axisymmetric inertial modes also appear as the growing perturbations of a
rotating fluid destabilized by thermal convection (see Zhang 1994, 1995).

As may be guessed, the full astrophysical problem is very involved and some
simplifications are in order if one wishes to decipher the mechanisms controlling
the asymptotic laws of dissipation at small diffusivities. Thus, following the work of
Ogilvie (2005), we first investigate the case of forced singular modes in a slender
toroidal shell, which is a two-dimensional approximation for a spherical shell (e.g.
Rieutord, Valdettaro & Georgeot 2002). Thus doing, we can recover and extend the
results of Ogilvie. We proceed then by focusing on the three-dimensional problem of
the spherical shell and extend the previous work of Rieutord (1991) and Tilgner (1999).
We then discuss and compare the results of two-dimensional and three-dimensional
models. Some conclusions end the paper.

1.2. The model

We consider a viscous fluid inside a spherical shell that mimics a stellar or planetary
envelope, submitted to the tides of an orbiting mass point. This tidal forcing may be
condensed in the tidal potential which we write as

ΦT = Φaxr
2P2(cos θ) cos ωot + Φnxr

2P 2
2 (cos θ) cos(2ωot − 2ϕ)

following Zahn (1977). In this expression, ωo is the orbital angular velocity of the
point mass, (r, θ, ϕ) are the spherical coordinates whose origin is at the centre of the
body under consideration; P2 and P 2

2 are Legendre polynomials, while Φax and Φnx

are the amplitudes. On Earth Φnx is the amplitude of the well-known semi-diurnal tide.
Φaxr

2P2(cos θ) cos ωot is the leading term coming from the eccentricity of the orbit.
Although Φax is usually smaller than Φnx , we shall discard Φnx and only consider the
first term of ΦT . This is justified by the fact that the properties of non-axisymmetric
inertial modes in a spherical shell are the same as those of the axisymmetric ones as far
as singularities are concerned (Rieutord et al. 2001). Thus all the results derived below
for an axisymmetric forcing can be applied, mutatis mutandis, to a non-axisymmetric
forcing. In another problem like the resonant interaction of inertial modes, which
leads to the elliptic instability (Kerswell 2002), the non-axisymmetric terms would be
essential of course.

The fluid inside the spherical shell is rotating at the spin angular velocity Ω of the
star. Thus, in a frame co-rotating with the fluid, the tidal forcing is

ΦT = Φaxr
2P2(cos θ) cos[(ωo − Ω)t].
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The first response of a star to the tidal potential is the so-called equilibrium tide,
which describes the distortion of the equipotentials. This induces a velocity field ve,
which is derived from the time evolution of the equipotentials. Following Zahn (1966),
this induces a radial flow of the form:

Ve = Ar2P2(cos θ) sin ωter ,

where ω = ωo −Ω . As shown by Ogilvie (2005), this flow forces a dynamical response
of the star through the body force

f = −( iωVe + 2Ω × Ve).

We are interested in the dynamical response of the fluid. As the general realistic
case is much involved, we reduce it to the study of the response of an incompressible
viscous fluid inside a spherical shell. Although much simplified, this model retains
the essential feature of the low-frequency stellar modes, namely their singularities
associated with attractors of characteristics (e.g. Dintrans & Rieutord 2000).

Assuming that the fluid response remains of small amplitude, we need to solve
the linearized equations governing forced periodic perturbations of a viscous rotating
fluid with constant density. When the length scale is the outer radius of the shell
R, the time scale is (2Ω)−1, the equations of the non-dimensional pressure (p) and
velocity perturbation (u) may be written:

iωu + ez × u = −∇p + E�u + f ,

∇ · u = 0,

}
(1.1)

where E = ν/2ΩR2 is the Ekman number and ν is the kinematic viscosity. The
non-dimensional force reads

f = −Ve(r, θ) (iωer + sin θeφ), (1.2)

where Ve(r, θ) = Ar2P2(cos θ). We complete these equations with stress-free boundary
conditions. The use of stress-free boundary conditions may be surprising in the
planetary case as the interface between the fluid layer and the core is a solid boundary.
However, because of the nature of the fluid flows that are restricted to internal shear
layers, this boundary condition has little effect on the solution as was actually found
by Fotheringham & Hollerbach (1998). We give in Appendix B the scaling arguments
that lead to this result.

Even thus simplified, our problem remains challenging. A further simplification,
actually used many times (Maas & Lam 1995; Rieutord et al. 2002; Ogilvie 2005),
consists in reducing the problem to two dimensions. In such a case, the spherical
shell turns into a (cored) slender torus (see figure 1 and Rieutord et al. 2002), but
the eigenvalue problem as well as the forced one (far from resonances) can be solved
analytically (Rieutord et al. 2002; Ogilvie 2005). Although this latter simplification
seems quite drastic, it may be shown that it is nevertheless relevant to equatorial
regions of a thin spherical shell (e.g. Stewartson 1971; Rieutord et al. 2002). To
bridge the gap with the work of Ogilvie (2005), we therefore first consider this
two-dimensional model and then move on to the three-dimensional one.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

21
4X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200999214X


Viscous dissipation by tidally forced inertial modes 367

2a

R

φ
ρ

Figure 1. A schematic view of the slender cored torus: the principal radius a of the torus
tends to infinity.

2. Resonances of axisymmetric modes in the slender torus
2.1. Mathematical formulation

Using cylindrical coordinates (s, ϕ, z), we first introduce a meridional stream function
ψ so that mass conservation is automatically insured. Hence, we set

us = −∂ψ

∂z
, uϕ = u, uz =

1

s

∂sψ

∂s
.

The momentum equation leads to

E�′�′ψ − ∂zu − iω�′ψ = C,

E�′u + ∂zψ − iωu = −f,

}
(2.1)

where

�′ = � − 1/s2 =
∂

∂s

(
1

s

∂

∂s
s

)
+

∂2

∂z2

and

f = fϕ = − sin θVe(r, θ), C =
∂fs

∂z
− ∂fz

∂s
,

fs = − iω sin θVe(r, θ), fz = − iω cos θVe(r, θ).

The torque density C may be further reduced into

C =
iω

r

∂Ve

∂θ
.

System (2.1) is completed by stress-free boundary conditions which demand that

ψ =
∂

∂r

(
1

r

∂ψ

∂r

)
=

∂u

∂r
= 0 at r = η, 1.

Here η is the non-dimensional radius of the inner core.

2.2. Solving the equations

Because of the shape of the boundaries, it is natural to use polar coordinates (ρ, φ)
in a meridional section of the torus (see the schematic view in figure 1). These
coordinates are related to the foregoing cylindrical coordinates by

s = ρ cosφ, z = ρ sinφ.
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They are also related to the original spherical coordinates by r = ρ and θ = π/2 − φ.
The two-dimensional approximation is essentially summarized into the neglect of

the curvature terms so that, for instance, ψ/s � ∂ψ/∂s; hence,

uρ = us cos φ + uz sinφ = − 1

ρ

∂ψ

∂φ
,

uφ = −us sin φ + uz cos φ =
∂ψ

∂ρ
.

To obtain a numerical solution of the equations (2.1) (simplified with the two-
dimensional-approximation), we first use a Fourier decomposition, namely

(ψ, u, f, C)(ρ, φ) =
∑

n

(ψn, − iVn, fn, Cn)(ρ) einφ,

and find the set of ordinary differential equations controlling the shape of the radial
functions ψn(ρ) and Vn(ρ). They are

E�nVn +
ψ ′

n−1 − ψ ′
n+1

2
− (n − 1)ψn−1 + (n + 1)ψn+1

2ρ
− iωVn = − ifn,

E�n�nψn +
V ′

n−1 − V ′
n+1

2
− (n − 1)Vn−1 + (n + 1)Vn+1

2ρ
− iω�nψn = Cn,

⎫⎪⎬
⎪⎭ (2.2)

where

�n =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− n2

ρ2
.

With this formulation, the stress-free boundary conditions read

ψn =
∂2ψn

∂ρ2
− 1

ρ

∂ψn

∂ρ
=

∂Vn

∂ρ
= 0.

For the tidal forcing at hands, we find that

f (ρ, φ) =
1

2
ρ2(cosφ − 2 sin2 φ cos φ) =

ρ2

8
(cos φ + 3 cos 3φ),

C(ρ, φ) = −3 iωρ sin φ cos φ

⎫⎬
⎭ (2.3)

so that

fn = f−n =
ρ2

16
(δn,1 + 3δn,3), Cn = −C−n = −3

4
ωρδn,2.

The two-dimensional set-up restricts the number of excited attractors compared to
the three-dimensional one (see Rieutord et al. 2002 and below). Thus, although this
forcing is derived from the true tidal force, we complete our view of the solutions by
the use of the following forcing:

f (ρ, φ) = 2 cos 2φ, C = 0;

thus

fn = f−n = δn,2, Cn = 0.

2.3. Symmetries

In modelling the tidal interaction, it is commonly assumed that spin and orbital
angular momentum vectors are parallel. With this assumption, the tidal flow is
symmetric with respect to the equatorial and orbital planes. In this case, the tidal
force is such that fn = f−n and Cn = −C−n as noted above.
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This symmetry allows us to solve the set of equations (2.2) solely for n � 0.
However, solutions in the torus verify a further symmetry: they may be symmetric
or antisymmetric with respect to the transformation φ → φ + π. Such a symmetry is
specific to the torus and does not exist in the sphere. As noticed by Rieutord et al.
(2002), it has a selection effect on attractors: some may exist in the spherical shell
but be not authorized in the torus. For this reason, some attractors of the spherical
shell cannot be studied in two dimensions with the natural forcing (2.3), but can
be investigated with the second forcing. Still some others cannot be studied in two
dimensions altogether.

The equatorial symmetry of the tidal forcing in combination with the parity of its
Fourier component, implies that only half of the Fourier components are excited,
namely

V1, V3, . . . , V2n+1, . . . ψ2, . . . , ψ2n . . . ;

we also note that, since V−1 = V1,

��ψ0 − iω�ψ0 = 0,

which means that ψ0 is not excited and therefore vanishes. The second forcing excites
the other set of Fourier components, namely

V0, V2, . . . , V2n, . . . ψ1, . . . , ψ2n+1 . . . .

2.4. Dissipation

As discussed in the introduction, total viscous dissipation of the fluid volume is the
actual quantity to be evaluated when the solution is known (this is the quantity which
controls the secular evolution of the orbit). As noted by Ogilvie (2005), dissipation
may be evaluated in two ways:

D =
E

2

∫
(V )

|c|2 dV =

∫
(V )

Re(u∗ · f ) dV, (2.4)

where [c] is the rate-of-strain tensor. We use both of these expressions to evaluate
the internal numerical precision of our results.

Let us mention that the components of the rate-of-strain tensor [c] in the (ρ, φ)
coordinates are easily obtained if these coordinates are completed by an axial one,
let say ζ , so that (ρ, φ, ζ ) form a cylindrical system of coordinates (in our problem,
ζ is perpendicular to the meridional plane); we show in appendix the equivalence of
these expressions with the usual ones. In these coordinates, the rate-of-strain tensor
components are

cρρ = cφφ = 2

(
1

ρ

∂2ψ

∂ρ∂φ
− 1

ρ2

∂ψ

∂φ

)
, cρφ =

∂2ψ

∂ρ2
− 1

ρ

∂ψ

∂ρ
− 1

ρ2

∂2ψ

∂φ2
,

cρζ =
∂u

∂ρ
, cφζ =

1

ρ

∂u

∂φ
,

and the volumic dissipation reads

D = 2(|cρρ |2 + |cρζ |2 + |cφζ |2 + |cρφ |2).

2.5. Results

For comparison with previous work, in all the numerical applications, we set the ratio
of the inner radius to the outer one η to 0.35 which is the value of the Earth’s liquid
core.
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Tidal forcing, Ekman = 10–7

2arcsin (ω)/π
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100
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D
(ω

)

10–4
0 0.2 0.4 0.6 0.8 1.0

Figure 2. Scan of the dissipation as a function of the critical latitude angle at E = 10−7.
Resolution is Nr = 180, N φ = 400.

103

102

101

1

10–1

10–2

D
(ω

)

2arcsin (ω)/π

0 0.2 0.4 0.6 0.8 1.0

Second forcing, Ekman = 10–7

Figure 3. Same as in figure 2, but for the second forcing.

2.5.1. Overall properties

As shown by Witte & Savonije (1999b), during the evolution of the orbits, the tidal
forcing frequency scans the whole inertial band and resonances there play a major
part. Let us point out that in the text below, we shall understand the term ‘resonance’
as the local maximum (in frequency) of the viscous dissipation. This definition is
appropriate for our problem but slightly different from the usual one which refers
to the amplitude of the flow. Resonances are usually understood as the signature of
the excitation of eigenmodes. As will be clear later, this classical view is not always
appropriate here because of the ill-posed nature of the inviscid problem. Thus our
wording ‘resonance’ should be understood in a rather loose way.

With the tidal forcing in mind, we simulate a scan of the inertial band. We represent
the viscous dissipation as a function of the frequency, or, more appropriately, as a
function of the critical latitude ϑ = arcsin(ω). As shown by figures 2 and 3, the
curve D(ω) is very spiky and almost symmetric with respect to π/4. This underlying
symmetry is a consequence of an invariance of Poincaré equation in two dimensions.
Indeed, setting E = 0 in (2.1) and rewriting the equation for ψ , we find

∂2ψ

∂s2
−

(
1 − ω2

ω2

)
∂2ψ

∂z2
= F (s, z, ω)

in the two-dimensional limit. If F = 0 we easily see that this equation is invariant

with respect to the transformation s → z, z → s and ω →
√

1 − ω2. Thus the place of
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Nr = 180 N = 400 E = 3.0 × 10
–8 

ω = 0.6210 η = 0.350 CL = ff

Ek(a)
(b)

Figure 4. The attractor occupying the frequency band [0.60922, 0.62276]. Although prominent
in the three-dimensional problem, this attractor cannot be excited by the natural tidal forcing;
fortunately it can be studied with the second forcing. (a) The small segment indicates the place
where the velocity profiles of figure 6 have been taken. (b) The kinetic energy distribution in
a meridional plane for a numerical solution computed at ω = 0.621 and E = 3 × 10−8.

resonant frequencies is indeed symmetric with respect to π/4, if the critical latitude
is used as a variable. However, the final curves, which are shown in figures 2 and
3, partially lose their symmetry because the forcing does not verify the foregoing
invariance as well as the viscous terms (the second forcing breaks more strongly this
symmetry).

2.5.2. Attractors and associated resonances

To better understand the properties of the dissipation curves as shown in figures 2
and 3, we shall first concentrate on a given attractor, which is displayed in figure 4. This

attractor may be found in the frequency range [ωa, ωb] where ωb =
√

(5 −
√

5 − 4η)/8
(ωa has no analytic expression). In figure 5 we give a detailed view of the resonance
associated with this attractor around its asymptotic frequency ωb.

The remarkable property of these curves is the independence of dissipation from
viscosity for frequencies far from the asymptotic frequency ω1. This result perfectly
illustrates the demonstration of Ogilvie (2005) who showed that dissipation by
inertial modes associated with attractors with a finite Lyapunov exponent is actually
independent of the Ekman number. This comes from the width of the associated
shear layers, which scale like E1/3. Figure 6 indeed confirms that velocity gradients
inside a shear layer vary on a scale changing with the one-third power of the viscosity.

In Rieutord et al. (2002) however, it was shown that shear layers associated with
freely decaying inertial modes, shaped by attractors, have a width scaling like E1/4.
This means that at resonances, dissipation resulting from the excitation of such
singular modes diverges as E−1/4 in the asymptotic limit of small Ekman numbers
(see § 2.5.4). Moreover, as shown by Rieutord et al. (2002), the frequency of these
eigenmodes is of the form ω = ω0 + ω1E

1/2 for E � 1. We thus expect resonance
widths to be of the order of E1/2. Figure 5(b) perfectly illustrates these properties,
showing that if scaled properly, resonance curves are independent of viscosity.
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Figure 5. (a) Dissipation as a function of forcing frequency ω near the attractor of figure 4.
Note that far from the resonance the dissipation tends to be independent of the Ekman
number E. (b) For the same attractor, scaled resonance curves. Note that when scaled as
indicated, dissipation curves no longer depend on viscosity. Here ω0 = ωb is the upper bound
of the frequency interval of the attractor.
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Figure 6. Profiles of the derivative dvφ/dy along the straight thick line shown in figure 4(a)
crossing a segment of the attractor at ω = 0.621, η = 0.35. The abscissa is normalized by
E1/3: note that the location of the maxima of dvφ/dy is nearly the same for the three profiles,

showing that the width of the layer scales with E1/3.

2.5.3. Resonances associated with periodic orbits

The foregoing resonances are not the strongest, however. Indeed, we have shown
in Rieutord et al. (2001), that there exist a finite number of frequencies of the
spectrum which are associated with strictly periodic orbits of the characteristics.
These frequencies are ωp,q = sin(pπ/2q) where p and q are integers; they are such
that the angle between characteristics and the rotation axis is a rational fraction of
π. Not all the rationals are allowed however, because characteristics must propagate
periodically inside or outside the ‘shadow’ of the inner shell (see Rieutord et al. 2001).

This condition imposes that η � ω �
√

1 − η2 for the simplest periodic orbits (it is
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Figure 7. (a) Rescaled dissipation as a function of the forcing frequency, also rescaled, near

the periodic orbits with θcl = π/3 or ω =
√

3/2. (b) The kinetic energy distribution of the
corresponding forced flow at E = 10−7.

more restrictive for more complex orbits). In the case chosen here, namely η = 0.35,
the allowed periodic orbits are associated with the three angles: π/6, π/4 and π/3. For
the associated frequencies the trajectories of characteristics are strictly periodic, thus
no shear layer is generated (the mapping has no focusing power). This situation is
illustrated in figure 7. As shown, no small scale comes in, and the dissipation diverges
as E−1 when E → 0, while the width of the resonances diminishes as E. Inspecting
the spectral content of the flow, we note that the critical latitude contributes to some
parts of the flow but at such a low level (less than 10−4) that it does not influence the
resonance.

This feature of the spectrum may be understood as follows. Maas & Lam (1995)
showed that the two-dimensional semi-elliptic basin owns a denumerable set of regular
eigenmodes. These eigenmodes are associated with periodic orbits of characteristics.
They also showed that the eigenfrequencies are infinitely degenerate. This is because
of the ill-posed nature of the eigenvalue problem: for each eigenvalue, the eigenmode
is defined by an arbitrary function which is given on the so-called fundamental
intervals of the boundary (see Maas & Lam 1995 for details). In the case of our fluid
domain, the presence of an inner core removes almost all the periodic orbits, letting
only a finite number of them, depending on the size of the core. However, for each of
these frequencies which are of the form sin(pπ/q) (see the first paragraph of § 2.5.3),
the associated eigenfunctions are still infinitely degenerate since they are specified by
an arbitrary function. We illustrate this property by computing the first eigenmodes
associated with these orbits (see table 1 and figure 8).

The response of the fluid to a time-periodic forcing near these frequencies thus
results essentially from the superposition of these eigenmodes according to their
projection on the exciting body force. As the tidal forcing is on the large scale, the
responding flow is essentially on the large scales.

2.5.4. Dissipation at resonances

The foregoing resonances, either associated with attractors (§ 2.5.2) or with periodic
orbits (§ 2.5.3), may be described by a simple model of a resonating eigenmode.
Although much simplified, this model is useful to understand the origin of the scaling
laws verified by the viscous dissipation.
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ϑ = π/6 ϑ = π/4 ϑ = π/3

ω2 τ1 τ1 ω2 τ1

Mode 1 1.6 × 108 −2.8 × 103 −1.05 × 102 −2 × 108 −2.8 × 103

Mode 2 5.8 × 109 −1.5 × 104 −4.32 × 102 −8 × 109 −1.5 × 104

Mode 3 3.8 × 1010 −3.8 × 104 −9.64 × 102 −6 × 1010 −3.7 × 104

Table 1. Eigenvalues of the first modes associated with periodic orbits of the torus
and verifying the same symmetry as the forcing (2.3). Each eigenvalue is written
λ = i sin ϑ + iω2E

2 + τ1E, as expected for regular modes with stress-free boundary conditions
when ω1 = 0 (the reason for this vanishing term is not clear). The ω2 term for the π/4 modes
could not be evaluated because of round-off errors. The coefficients τ1 and ω2 have been
evaluated numerically using values of E around 10−7.

Nr = 120 N = 300 E = 1.0 × 10–7

η = 0.350 CL = ff

|ω| = 0.7071

τ = –1.05 × 10
–5

|ω| = 0.7071

τ = –4.32 × 10
–5

Nr = 120 N = 300 E = 1.0 × 10–7

η = 0.350 CL = ff

(a) (b)

Ek Ek

Figure 8. Kinetic energy distribution of the two first modes associated with the ϑ = π/4
periodic orbit given in table 1.

Let L be the linear operator governing the forced flow; we write

iωu = L(u) + f , (2.5)

where ω is the frequency of the forcing. Let {un}n∈IN be a set of eigenfunctions of L
verifying the same boundary conditions as u. Hence

λnun = L(un),

where λn = iωn + τn is the associated eigenvalue. We assume that the {un}n∈IN

form a complete orthogonal basis. As far as modes associated with an attractor are
concerned, we have shown in Rieutord et al. (2002), that they may be described by a
Hermite function. They thus form a complete basis for the one-dimensional functions
defined along a line orthogonal to the attractor. Thus we may write

u =
∑

n

anun, f =
∑

n

fnun.
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Here, we assumed that f belongs to the same function space as u. From (2.5), we
easily find that an = fn/( iω − λn) so that

u =
∑

n

fnun

iω − λn

. (2.6)

Now assuming that a single eigenmode dominates the series, we simplify (2.6) as

u 	 fnun

iω − λn

.

The dissipation rate can now be evaluated from (2.4). The width of the shear layers
is assumed to scale like Eα . The volume that contains the shear layers also scales like
Eα and the gradients of the eigenmode un scale like E−α . We get

D =
E

2

∫
(V )

|c|2 dV ∼ E1−α

(ω − ωn)2 + τ 2
n

. (2.7)

Assuming that the complex eigenfrequency of the excited mode expresses as
λn = iωn + λ1E

β , we find that

D ∼ E1−α−2β

at the resonance. For resonances associated with attractors with vanishing Lyapunov
exponents, the solutions of Rieutord et al. (2002) give α = 1/4, β = 1/2 and thus
D ∼ E−1/4 as observed numerically. For the sharp resonances associated with the
periodic orbits of § 2.5.3, no small scales comes in so that α = 0. The damping rate of
a mode with a typical scale independent of viscosity is proportional to E; thus β = 1
and we get D ∼ E−1 as also observed.

Although not fully rigorous, this short analysis shows that the observed resonances
of the two-dimensional model behave in a standard way.

2.6. The critical latitude singularity

Before ending this section we wish to discuss shortly the role played by the critical
latitude singularity. We recall that this singularity comes from the ‘oblique nature’ of
the boundary conditions to be used with the Poincaré equation (see Rieutord et al.
2001). It leads to a singularity of the solutions but weaker than the one associated
with the attractors. When the problem takes into account the fluid’s viscosity, this
singularity manifests itself as a broadening of the Ekman layer, which thickens from
the usual E1/2 scale to the E2/5 scale, on a latitudinal extension that is O(E1/5)
(Roberts & Stewartson 1963). As illustrated in figure 4 this singularity generates its
own network of shear layers thus adding some dissipation to the one of the attractor.
However, the contribution of this singularity is much smaller than the one of the
attractor. We also observe that if the frequency of the forcing is not such that the
attractor has a branch grazing at the critical latitude, the amplitude of the flow in
this region vanishes with a vanishing Ekman number.

2.7. Summarizing the two-dimensional case

The preceding results show that the dissipation associated with periodically forced
shear layers may vary very strongly as a function of the frequency of the forcing.
At a generic frequency, we find that the dissipation is independent of the viscosity
and thus confirm the analysis of Ogilvie (2005). However, the inertial frequency band
contains also infinitely many frequencies (at accumulation points) where attractors
are weaker (their Lyapunov exponent vanishes and the convergence of characteristics
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is algebraic instead of exponential). At these points the dissipation strongly depends
on viscosity, namely as E−1/4. Finally, we also exhibited resonances that are associated
with the few allowed periodic orbits of characteristics. These resonances are those of
the regular modes which remain of the dense set of modes of the η = 0 torus (see
Maas & Lam 1995). As these periodic orbits, there is only a finite number of such
resonances for a given set-up with η �= 0.

We now examine the three-dimensional case so as to determine which of these
properties remain in this more realistic case.

3. Resonances in the spherical shell
3.1. Numerics

Turning to the spherical shell problem, we now solve (1.1) in spherical geometry.
We discretize the unknowns and the equations using an expansion of the fields on
the spherical harmonics Y m

� (θ, ϕ) for the horizontal part and using the Chebyshev
polynomials on the Gauss–Lobatto collocations nodes for the radial part. Details
may be found in Rieutord & Valdettaro (1997). We just recall here that the velocity
field is expanded as

u =

+∞∑
l=0

+l∑
m=−l

u�
m(r)Rm

� + v�
m(r)Sm

� + w�
m(r)Tm

�

with

Rm
� = Y m

� (θ, ϕ)er , Sm
� = ∇Y m

� , Tm
� = ∇ × Rm

� ,

where gradients are taken on the unit sphere. Using the same expansion for the body
force (1.2), we find

f = Ar2

(
− iωR0

2 +
1√
15

T 0
1 − 12√

35
T 0

3

)
.

Following Rieutord (1987), we derive the equations for the radial functions u�
m(r) and

w�
m(r) from the equations of vorticity and continuity. They read

E��w
� − iωw� = −A�r

�−1 ∂

∂r

(
u�−1

r�−2

)

−A�+1r
−�−2 ∂

∂r
(r�+3u�+1) − r2

(
δ�,1√

3
− 12√

7
δ�,3

)
,

E����(ru
�) − iω��(ru

�) = B�r
�−1 ∂

∂r

(
w�−1

r�−1

)
+B�+1r

−�−2 ∂

∂r
(r�+2w�+1) − iω6

√
5rδ�,2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where axisymmetry has been assumed. We have used

A� =
1

�
√

4�2 − 1
, B� = �2(�2 − 1)A�, �� =

1

r

d2

dr2
r − �(� + 1)

r2
.

The set of equations (3.1) is completed by stress-free boundary conditions, which read

u�
m =

∂2ru�
m

∂r2
=

∂

∂r

(
w�

m

r

)
= 0

for the radial functions taken at r = η or r = 1.
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Figure 9. Spectral content of the solution shown in figure 14(c). (a) Maximum Chebyshev
spectrum of the velocity field: for a given order of the Chebyshev coefficient we plot
the maximum absolute value of the coefficient obtained over all the spherical harmonic
components. (b) The maximum spherical harmonic spectrum of the velocity field: for each
spherical harmonic order � we plot the largest absolute value of all the Chebyshev coefficients;
w refers to w� while v refers to ru� (see also Rieutord & Valdettaro 1997).

In figure 9, we give an example of the spectral content of the forced flow shown
in figure 14(c), for E = 2 × 10−10. The spectra show that the truncation error of the
solutions are O(10−4), while we estimated the round-off error (with double precision
arithmetics) to a lower value, in this case (see Valdettaro et al. 2007, for a more
thorough discussion of these error matters).

3.2. Overall view of the resonance spectrum

As for the two-dimensional case, we first scan the whole inertial band, computing
the viscous dissipation. The result is plotted in figure 10. There we note that the
response curve is very spiky as in the two-dimensional case, revealing very strong
variations (six orders of magnitude at E = 10−8). We plotted the quantity ω2D(ω)
to remove the 1/ω2 divergence at low frequencies, since in this range, the flow is
dominated by the velocity field u = Ar2 sin θ/ωeφ . The broad shape of the curve does
not show a marked symmetry with respect to ϑ = π/4 unlike its two-dimensional
counterpart (figure 2). This is expected since the curvature terms of the three-
dimensional operators contribute to break this symmetry. Another striking difference
is the absence of resonances at the three frequencies corresponding to strictly periodic
orbits of characteristics, namely ϑ = π/6, π/4, π/3. On the contrary, there is an
antiresonance phenomenon.

Before discussing in more details some specific features of this curve, let us focus on
figure 11. Here, following the idea of Ogilvie (2009), we have plotted the dissipation
curve when a frictional force −γ u replaces the viscous force E�u. As shown by
figure 11, the two curves are very similar, demonstrating that the fluid response is
mainly governed by the underlying Poincaré operator (i.e. the operator governing the
inviscid problem). The meaning of this similarity and the relation with the Poincaré
operator may be enlighted when using this simple frictional force. In this case the
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Figure 10. Scan of the whole inertial band for the viscous dissipation in a spherical shell.
Vertical dotted lines mark the frequencies allowing strictly periodic orbits of characteristics
ϑ = π/6, π/4, π/3.

flow verifies

(iω + γ )u + ez × u = −∇p + f ,

∇ · u = 0.

⎫⎬
⎭ (3.2)

Setting λ = iω + γ , this problem, which is completed by the boundary condition
u · n = 0, may be symbolically written as

λ

⎛
⎜⎝

Id 0

0 0

0 0

⎞
⎟⎠ (

u

p

)
=

⎛
⎜⎝

−ez× −∇
∇· 0

n· 0

⎞
⎟⎠ (

u

p

)
+

⎛
⎜⎝

f

0

0

⎞
⎟⎠

or

(λJ − LP ) X = Xf , X =

(
u

p

)
, Xf =

⎛
⎜⎝

f

0

0

⎞
⎟⎠ , J =

⎛
⎜⎝

Id 0

0 0

0 0

⎞
⎟⎠ .
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Figure 11. Scan of the whole inertial band for the dissipation using the viscous force (solid
line) or the friction force (dotted line). Note the similarity of the curves.

Here, X = t(u, p) and LP symbolizes the Poincaré operator. Formally, the solution
of the velocity field may be expressed as

u = (λJ − LP )−1 f ,

where (λJ − LP )−1 is a kind of resolvent of the Poincaré operator, restricted to a
vector field, since the operator J is ‘close’ to the identity. The dissipation associated
with the flow is proportional to the norm of u; indeed, it is

D = γ

∫
(V )

|u|2 dV.

Hence, using a restriction of the norm of X to the velocity field, we may write the
dissipation as

D = ‖(λJ − LP )−1 f ‖2.

Now, let us consider the ε-pseudospectrum of the Poincaré operator. This quantity is
indeed very appropriate to deal with a non-normal operator such as the Poincaré one
(see Trefethen & Embree 2005). It is defined as the set of complex numbers λ such
that

‖(λJ − LP )−1‖ > 1/ε,

where we recall that the norm of a bounded linear operator L is the number

max
over X

(
‖LX‖
‖X‖

)
.

We therefore see that all the regions of the frequency axis where D > γ/ε2 belong to
the ε-pseudospectrum of the Poincaré operator. Indeed, if D > γ/ε2 then

1/ε < ‖(λJ − LP )−1 f ‖ � ‖(λJ − LP )−1‖,

where we assumed that ‖ f ‖ = 1.
Thus, the dissipation curve obtained with the frictional force gives a partial (one-

dimensional) view of the ε-pseudospectrum of the Poincaré operator; computing the
curve for many γ would give a view of the two-dimensional subsets of the complex
plane, which belong to this pseudospectrum.
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Now, the similarity of the two dissipation curves associated with the two damping
forces, comes from the nature of the solutions. When these are in the form of a well
defined attractor, the width of the shear layers is a small scale that singles out so that
E�u ∼ −Ek2u, where k ∼ E−1/3.

To conclude this point, we see that the solution of the forced problem shows
another side of the Poincaré operator, namely its pseudospectrum, and this quantity
is independent of both the forcing and the frictional force. The peaks of the dissipation
curves offer a partial (one-dimensional) view of this quantity.

3.3. Antiresonances at periodic orbits of characteristics

We designate by antiresonances of the dissipation curve, the frequencies for which
the dissipation vanishes with the Ekman number.

We consider the three strictly periodic orbits authorized in the shell with η = 0.35,
namely those orbits for which characteristics remain either inside or outside the
shadow of the inner core (see Rieutord et al. 2001). These are associated with
ϑ = π/6, π/4, π/3. We plot in figure 12 the dissipation for these three values and
note that it decreases following quite closely the law D ∝ E2/5. Such a scaling is
obviously reminiscent of the critical latitude boundary layer. Actually, as shown by
figure 12(b), the fluid’s oscillation is confined along the characteristics emitted by the
critical latitude boundary layer.

One may retrieve the scaling of dissipation if we note that the volume of the
boundary layer surrounding the critical latitude singularity is O(E1/5+2/5) and that
the velocity field scales as E−1/5. This scaling appears if we observe that the singular
inviscid field has a finite normal velocity at the boundary and an infinite tangential
velocity (see Rieutord et al. 2001). Assuming that ur is of order unity (as the forcing),
boundary layers relations imply that the tangential velocity scales as E−1/5. Using the
second expression of the dissipation, D =

∫
(V )

Re(u∗ · f ) dV , we recover the scaling

law that we observe numerically. We note that this regularized singularity, propagates
along the (periodic path of) characteristics, but without any focusing, the resulting
shear layer widens slowly as we move away from the critical latitude of the inner
bounding sphere.

3.4. Dissipation in the frequency bands with strong attractors

One of the main results established in two dimensions is that a forced flow oscillating
at the frequency of an attractor dissipates energy independently of viscosity, provided
it is low enough. As shown in figure 13, which gives a zoom on the dissipation curve,
we clearly see a region of the spectrum (below ω = 0.624) where the dissipation is
independent of the Ekman number. The curve in figure 12 (diamonds) confirms this
convergence to a finite dissipation as viscosity vanishes.

There is however a surprise in this case. If we look at the Lyapunov exponent in
the same frequency band we note that something should happen at the frequency
ω0 where this exponent vanishes. According to the results of Rieutord et al. (2001),
we should expect a resonance, as in two dimensions. No such resonance occurs, and
this is independent of the symmetry of the forcing. Inspection of the associated flow
(see figure 13c) shows that the attractor is not excited. Rather, the critical latitude
singularity excites a shear layer, which propagates towards the attractor. This is all the
more surprising that in this frequency band there are many eigenmodes well centred
on the attractor path (an example may be found in Rieutord et al. 2001).

This situation is not unique: it is also the case when we consider the simple attractor
occupying the frequency band [0.529, 0.555]. As shown in figure 14, no resonance
occurs there. Actually, if we compare the least damped eigenmode associated with
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Figure 12. (a) Dissipation as a function of the Ekman number for four given frequencies.
‘Diamonds’: |D(E) − D(E = 10−6)| for a forcing frequency exciting the attractor shown in
figures 4 and 13 at ω = 0.621. ‘Pluses’, ‘stars’ and ‘triangles’ show the dissipation at frequencies
respectively: sin(π/6), sin(π/4) and sin(π/3); the dotted straight lines emphasize the power
law D(E) ∝ E2/5. (b) The kinetic energy distribution for a forcing at ω = sin(π/4) and E =
2 × 10−9.
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Figure 13. (a) Zoom of the dissipation in the spherical shell for ω ∈ [0.62, 0.64]. (b) The
associated Lyapunov exponents in the same frequency range. (c) The kinetic energy of the
forced flow at ω = 0.621 viewed in a meridional plane. The white line marks the path of
the attractor.

this attractor and the forced flow of the same frequency, which are shown in the
same figure, we clearly see that the attractor is not excited. There too, we see that the
shear layer emitted by the critical latitude is strongly excited. It propagates towards
the attractor. The dissipation curves computed at various Ekman numbers shows
that for these values of E, no asymptotic regime is reached. Actually, a calculation
for a specific frequency shows that an asymptotic regime exists but at a very low
Ekman number ( � 10−12). We also note that the Ekman number below which the
viscous dissipation is constant depends on the ‘distance’ between the attractor and
the characteristics emitted at the critical latitude. We observe that at ω = 0.542 the
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Figure 14. (a) Zoom of the dissipation curve for various Ekman numbers for ω ∈ [0.5, 0.6].
The two vertical solid lines delineate the frequency range of the attractor shown by the
eigenmode below. The dotted vertical line shows the frequency of the least damped eigenmode.
(b) The kinetic energy distribution in a meridional plane of the least damped eigenmode
(ω = 0.554838) associated with the attractor governing this frequency range. (c) The amplitude
of the forced flow at the frequency of the eigenmode. (d ) The frequency of the forcing is now
ω = 0.542 so that the attractor is closer to the critical latitude. Note that a second attractor
is now visible and excited by the southern branch of the shear layer emitted at the critical
latitude.

asymptotic regime is almost reached; in this case, the attractor is much stronger and
closer to the critical latitude (as confirmed by figure 14).

Back to the ω = 0.621 case, we note that all dissipation curves at some frequencies
above ω0 = 0.622759 (which is the upper limit of the attractor living at ω � ω0), seem
to have converged to a limit. We think that the asymptotic limit has not actually been
reached there, and that undulations of the dissipation curve will appear, as they do
at higher frequencies, in response to the rapid variations of the Lyapunov exponent.

To conclude this point, the foregoing examples show that the asymptotic regime,
where dissipation is independent of viscosity, is reached when the Ekman number
is low enough so that the shear layer emitted at the critical latitude on the inner
boundary is ‘feeding’ an attractor. In this case the widening and softening of the
shear layer, due to viscous diffusion, is stopped. The shear layers are then in a regime
similar to what has been described by Ogilvie (2005) in two dimensions.
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Figure 15. Zoom of the dissipation in the spherical shell in a given frequency range; the
four vertical straight lines show the range of existence of two short-period attractors.

3.5. Resonances

The two-dimensional case gave a nice illustration of resonances which correspond
to frequencies where the Lyapunov exponent vanishes. The foregoing discussion has
shown that the three-dimensional situation is not so simple. Actually, we could not
identify a single resonance that matches the frequency corresponding to the vanishing
Lyapunov exponent of a well-determined attractor.

Nonetheless, dissipation curves show many peaks indicating some privileged
frequencies. The formation of these peaks as viscosity decreases is not quite standard.
Indeed, if we compare the dissipation curves in the interval [0.5, 0.6] (figure 14) and
the one in the interval [0.65, 0.67] (figure 15), there is a common feature. It is the
fact that ‘resonant peaks’ are more and more numerous as the viscosity decreases (as
expected); however, they do not seem to appear because the resonances are more
and more vigorous (it is only marginally the case), but because the neighbouring
frequencies resonate less and less. Hence, it seems to be that many peaks are not true
resonances, but small intervals of frequencies where the dissipation is independent of
the viscosity provided it is low enough. The series of peaks for ω ∈ [0.56, 0.58] is
quite illustrative of this phenomenon.

However, there are also some peaks which do behave like true resonances, i.e. their
amplitude steadily increases as the Ekman number decreases. This is, for instance, the
case of the two major peaks of the spectrum, lying at ω1 = 0.6598 and ω2 = 0.6629.
These resonances correspond to the least damped axisymmetric inertial modes that we
actually studied in Rieutord & Valdettaro (1997). We therefore extended this previous
study to lower Ekman numbers. In figure 16, we focus our attention to the first mode,
which seems to follow some asymptotic regime (as shown, the damping rate of the
second mode is clearly not a power law). Figure 16 shows that the dissipation, there,
grows like E−1/3 when E � 10−9, but like E−1/2 if E � 10−9. On the other hand, the
width of the resonance narrows as E2/3 when E � 10−9; we note that the associated
eigenmode has a damping rate decreasing as E0.57. Applying the simplified model of
§ 2.5.4 to this case, we recover the scaling law of the viscous dissipation at E � 10−9

if we assume that the critical latitude singularity emits a shear layer of width E1/5,
i.e. corresponding to the latitudinal extension of the perturbed Ekman layer on the
inner sphere. Hence, dissipation should scale as like E4/5−2β . Using β = 0.57 we find
D ∼ E−0.34. A similar matching of the exponents can be obtained if the forced flow
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Figure 16. (a) The viscous dissipation at the resonance ω = 0.6598 as a function of the
Ekman number; the straight lines shows the power laws E−1/3 and E−1/2. (b) The solid line
and pluses show the width δω of the resonance compared to the power law E 2/3 (dotted line).
(c) We show the damping rate τ of the two least damped eigenmodes at ω1 = 0.6598 (pluses)
and ω2 = 0.6629 (solid line); the power law E 0.57 is shown by the dash-dotted straight line.

is confined to a neighbourhood of the critical latitude. The volume responding to the
forcing is O(E3/5) but the velocity gradients are O(E−2/5), thus leading to the same
power law for the dissipation. The simple model of § 2.5.4 cannot be more precise,
but it clearly underlines the crucial role played by the critical latitude. We refer the
reader to the work of Kerswell (1995) for a detailed analysis of the boundary layers
and shear layers in the vicinity of the critical latitude in the case of the spin-over
mode (i.e the non-axisymmetric, m = 1 at ω = 0.5, inertial mode).

Now, the power law change at E ∼ 10−9 may be understood with figure 17. In
this figure we show an enlarged view of the resonance together with the Lyapunov
exponents. It is clear that, as the Ekman number decreases, the resonance shifts
to the frequency interval where this exponent is very small. We note that E = 10−9

corresponds to the transition where the resonance leaves the frequency range occupied
by a short-period attractor and enters the frequency interval where only long-period
attractors exist, leading to a stronger resonance. The new E−1/2 regime is likely not
asymptotic as well: inspection of the Lyapunov curve shows that the size of the
frequency intervals, where a definite Lyapunov exponent exists, is at least less than
10−8. This means that an asymptotic regime may be reached at Ekman numbers less
than 10−15 (assuming that the resonance keeps narrowing as E2/3). Such numbers,
even if theoretically reachable in stars or planets, are likely unrealistic because any
small-scale turbulence would increase them by many orders of magnitude. Thus, the
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Figure 17. (a) The viscous dissipation at the resonance near ω = 0.6596 as a function of
the frequency for various Ekman numbers. (b) The corresponding Lyapunov exponents in
the same frequency interval. Note the progressive move of the resonance peak towards the
frequencies with small Lyapunov exponents.

intermediate regimes revealed by the E−1/3 or E−1/2 laws for the dissipation are
likely to be more relevant to astrophysical or geophysical applications, but more
investigations are needed to determine their origin.

3.6. Influence of the size of the core

A last question that is often raised is whether the size of the core, when it is small,
influences notably the response curve that would be obtained if neglecting the core.
From the foregoing results and the discussion of Rieutord et al. (2000), the answer to
this question obviously depends on the Ekman number. It is indeed expected that for
large viscosities, a small inner core is hardly seen by the fluid motion. To illustrate
further this point we plot in figure 18, the dissipation curves for various sizes of the
inner core together with the one of the full sphere. As shown, at a rather large Ekman
number E = 10−4 (unrealistic for planetary or stellar applications), the dissipation
curve of the spherical shell notably differs from the full sphere case only when η � 0.2.
On the other hand, with a more realistic value E = 10−8, we note that a very small
core η = 0.05 already amplifies the dissipation by an order of magnitude. One also
observes that the frequencies of some resonances are quite similar. This likely comes
from the polynomial nature of the full sphere solutions. Using a truncated solution
in series of spherical harmonics, Rieutord (1991) showed that the frequency of one of
the large-scale modes of the full sphere was shifted by an amount O(η5).

In fact, in the inviscid case, the presence of a small core, although fully perturbating
the eigenvalue spectrum of the Poincaré operator, likely has a less drastic influence
on the pseudospectrum, which we partially view through the dissipation curve.
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Figure 18. The resonance curve for various size of the inner core and two Ekman numbers.
(a) Note that the pluses correspond to the case η = 0.1 and are almost sitting on the curve
η = 0; the difference is always less than two percents. (b) The same scan at a much lower, but
more realistic Ekman number. A small core induces important differences.
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Figure 19. Variations of the dissipation at a given Ekman number for varying sizes of the
inner core. The frequency of the forcing has been arbitrarily fixed to ω = 0.55.

To be more quantitative and determine the threshold ηc, for a given E, beyond
which the core cannot be ignored, we computed the dissipations at various E, keeping
ω fixed and varying the size of the inner core. The curves in figure 19 illustrate these
variations of the dissipation. They have been computed for ω = 0.55 but the behaviour
seems to be generic: We picked up two other frequencies and found the same trends.
However, for ω =

√
3/7, which is the broad resonance showing up in figure 18(b) and

which corresponds to a large-scale mode of the full sphere (e.g. Greenspan 1969), we
do not find this behaviour.

From the curves in figure 19, we could determine that for sufficiently small η

D(η) = D(η = 0) + a(η)E + bη5, (3.3)

where D(η) is the viscous dissipation, b is a constant and a(η) is a rapidly varying
piecewise bounded linear function. The E-dependence is expected from a flow which
does not (or little) depend on the viscosity as it is the case for the full sphere
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modes. The η5-dependence can be, tentatively, explained using the solution derived in
Rieutord (1991) (see the discussion in Appendix C). From the law (3.3) we therefore
conclude that the inner core influences the dissipation when bη5 � amE, am being the
upper bound of a(η), showing that the critical radius of the inner core is

ηc = qE1/5, (3.4)

where the coefficient q weakly depends on the frequency of the forcing. We find
q ∼ 0.4. This formula shows that only extremely small cores can be neglected in
realistic conditions where E � 10−8.

3.7. Discussion

The foregoing results show that the three-dimensional flows are significantly different
from their two-dimensional counter part. The numerical solutions show a kind of
exchange of the roles between the attractors and the critical latitude singularities as one
shifts from the two-dimensional to the three-dimensional problem. In two dimensions
the attractors are clearly dominating the dynamics and control the periodically forced
flows. The shear layer emitted at the critical latitude is present but not essential.
In three dimensions we observe the opposite: the shear layer emitted at the critical
latitude on the inner sphere plays a crucial role in the fluid’s response to the periodic
forcing, while attractors appear when they are ‘fed’ by this shear layer.

We have no definite explanation to this observation. We conjecture that it is a
consequence of two modifications in the solutions when one changes the dimension
of the problem. The first may come from the different Riemann functions of the two-
and three-dimensional problems. We recall that the general solution of a hyperbolic
problem may be expressed as

Π(S) =
1

2
(Π(P ) + Π(Q)) +

1

2

∫
PQ

R(S, M)

(
∂Π

∂u+

du+ − ∂Π

∂u−
du−

)

+ Π(M)

(
∂R

∂u+

du+ − ∂R

∂u−
du−

)
, (3.5)

where R(S; M) is the Riemann function associated with the Poincaré operator;
integration is done on the data line PQ. In two-dimensional this function is a
combination of a Dirac distribution and the identity, while in three-dimensional
it is a Legendre function (see Rieutord et al. 2001). Hence, in two-dimensional, a
singularity on the data line will remain on the web of characteristics issued from
this point, while in three-dimensional it may generate singular points outside this
web. Thus, the influence of the critical latitude singularity in the three-dimensional
problem is likely stronger than in the two-dimensional one.

The second modification brought about by the third dimension is the boundary of
the domain. While in two-dimensional the true fluid domain is a disk with a core,
which is not a simply connected fluid domain, in three-dimensional the meridional
section of the fluid layer is a simply connected domain. The difference comes from
the presence of the rotation axis which is a line of the meridional plane where the
characteristics must reflect, which is not the case in two-dimensional. We conjecture
that this difference makes the eventual existence of fundamental intervals (introduced
by Maas & Lam 1995), more difficult thus making the excitation of shear layers along
the attractors also more difficult.
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4. Conclusions
To conclude this work, we may summarize our results in the following way. First,

it turns out that the two-dimensional model, which is equivalent to the section of a
slender (cored) torus, is well understood:

(i) The dissipation curve is very spiky as one scans the frequency axis and each
spike corresponds to a resonance. This resonance is associated with a frequency for
which the Lyapunov exponent is zero. We have shown that in most cases the flow is
associated with an attractor whose shear layer width scales as E1/4. In a few cases,
when the frequency of the forcing is of the form sin(pπ/2q), where p and q are
integers, the resonance is stronger, but narrower, and corresponds to one of the few
eigenmodes which remain when an inner core is inserted at the centre of a circular
domain.

(ii) In between resonances, which are not dense (but have accumulation points),
the dissipation reaches a constant value at vanishing viscosity, as predicted by Ogilvie
(2005).

The two-dimensional model thus offers a rather neat picture well constrained by
the analytical results. It shows that, contrary to previous expectations, dissipation is
very sensitive to viscosity, essentially because of resonances but also because, outside
resonances, shear layers associated with different attractors reach their asymptotic
regime at very different Ekman numbers.

In three dimensions, results show some similarities with the two-dimensional model
but also major differences. Among the similarities, we note that the dissipation curve
is very spiky too. There also exist intervals of frequencies where the dissipation does
not depend on viscosity when this quantity is low enough. There are also resonances
where the dissipation seems to increase without bounds when the viscosity vanishes.

However, there are major differences. First, we observed that the critical latitude
singularity on the inner sphere plays a major role in the response of the fluid to the
forcing. It is systematically emitting a shear layer. Using the scalings of the Ekman
layer at this place, we could explain the vanishing dissipation with vanishing viscosity
when the frequency of the forcing is associated with a periodic orbit of characteristics.
The latter case also stresses another difference: whereas in the two-dimensional case
these periodic orbits were associated with strong and narrow resonances, in the three-
dimensional case they are associated with antiresonances: the dissipation vanishes
with the viscosity (following a E2/5 law).

We observed that in the two-dimensional case, least damped modes are associated
with frequencies where the Lyapunov exponent is zero. In three dimensions, such
an association also exists but some of the least damped modes are also found in
association with intervals of frequencies where the mapping is weakly contracting
(because of long-period attractors). Our numerical results on the forced problem
show that only this latter kind of least damped modes lead to strong resonances. The
question of whether these resonances can reach an asymptotic regime remains open;
the fractal nature of the Lyapunov exponents in the frequency region where they
exist may prevent any asymptotic limit. Clearly, for one of them, even at E = 10−11,
the asymptotic regime is not reached. The close examination of this resonance has
nevertheless shown that some intermediate regimes may exist when attractors of very
long period cover the same intervals of frequencies as the resonances. Such regimes
are astrophysically relevant and deserve more investigations.

Unfortunately and unlike in the two-dimensional case, we have little analytical
guide in the three-dimensional case. Tentatively, we interpreted the striking role of
the characteristics emitted at the critical latitude as a consequence of the nature of the
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Riemann function associated with the Poincaré operator and the probable different
fundamental intervals associated with the mapping of characteristics.

Finally, the striking general conclusion is that a periodically forced flow in a
spherical shell is quite different from what can be expected from a simple response of
resonant eigenmodes. Previous work has shown that eigenmodes were often featured
by attractors of characteristics, but those modes turned out to be of little interest for
the forced problem. Interestingly enough, the dissipation curve reveals some parts of
the pseudospectrum of the Poincaré operator, thus offering another way to investigate
the properties of this operator.

The solutions that we computed also showed that the critical latitude singularity is a
determinant feature of the periodically forced flows. More work is now needed to fully
understand the interplay of the singularities generated by both the critical latitude
and the attractors of characteristics. We note that Goodman & Lackner (2009), while
examining the tidal response of a Jovian planet, were also led to the conclusion that
the critical latitude at the interface between a solid core and a fluid envelope plays
a crucial role in the dissipation of kinetic energy. In this same planetary context, we
showed that planets with a very small core could be assimilated to a full sphere only
when the relative radius of the inner core η is less than 0.4E1/5. Beyond this, usually
very small, value the dissipation grows rapidly with the core size as η5.

To conclude on the astrophysical problem, which motivated this study, our results
stress the importance of viscosity. They unfortunately remove the possibility, envisaged
by Ogilvie & Lin (2004), that the synchronization time scale of binary stars be
independent of the viscosity, which is usually not a well known quantity.

We are very pleased to acknowledge fruitful discussions with Gordon Ogilvie
and Serge Gratton. We are also grateful to Keke Zhang and the referees for
their detailed review of the first version of this work. The numerical calculations
have been carried out on the NEC SX8 of the ‘Institut du Développement et des
Ressources en Informatique Scientifique’ (IDRIS) and on the CalMip machine of the
‘Centre Interuniversitaire de Calcul de Toulouse’ (CICT) which are both gratefully
acknowledged.

Appendix A. Viscous dissipation in the slender torus
A.1. Equivalence of coordinate systems

Using non-dimensional variables, viscous dissipation is

D =
E

2

∫
(V )

|c|2 dV,

where |c| symbolizes the norm of the shear tensor. In usual cylindrical coordinates,
this norm reads

|c|2 = cij c
∗
ij = |css |2 + |cϕϕ |2 + |czz|2 + 2(|csϕ |2 + |csz|2 + |cϕz|2)

with

css = 2
∂vs

∂s
, cϕϕ = 2

(
1

s

∂vϕ

∂ϕ
+

vs

s

)
, czz = 2

∂vz

∂z
,

csϕ =
1

s

∂vs

∂ϕ
+

∂vϕ

∂s
− vϕ

s
, csz =

∂vz

∂s
+

∂vs

∂z
, cϕz =

∂vϕ

∂z
+

1

s

∂vz

∂ϕ
.
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Considering axisymmetric solutions at s � 1, the shear tensor components simplify
into

css = 2
∂vs

∂s
, cϕϕ = 0, czz = 2

∂vz

∂z
,

csϕ =
∂vϕ

∂s
, csz =

∂vz

∂s
+

∂vs

∂z
, cϕz =

∂vϕ

∂z
.

Using the meridional stream function ψ , we may further write

czz = 2
∂2ψ

∂s∂z
= −css, csz =

∂2ψ

∂s2
− ∂2ψ

∂z2
csϕ =

∂u

∂s
, cϕz =

∂u

∂z

So that the volumic dissipation is:

|c|2 = 2(|css |2 + |csϕ |2 + |csz|2 + |cϕz|2).

Now a direct calculation shows that

czz = sin 2φ
(
ψρρ − ψρ/ρ − ψφφ/ρ

2
)

+
2 cos 2φ

ρ
(ψρφ − ψφ/ρ) = −css

and

csz = cos 2φ(ψρρ − ψρ/ρ − ψφφ/ρ
2) − 2 sin 2φ

ρ
(ψρφ − ψφ/ρ),

where we recognize the expressions of cρρ and cρφ of (mr). Thus,

czz = −css = sin 2φcρφ + cos 2φcρρ,

csz = cos 2φcρφ − sin 2φcρρ.

In the same way, we also find that

csφ = cos φcρζ − sinφcφζ and cφz = sinφcρζ + cos φcφζ ,

which leads to

|c|2 = 2(|cρρ |2 + |cρζ |2 + |cφζ |2 + |cρφ |2)
as expected.

A.2. Dissipation as function of the Fourier components

We first note that∫ 2π

0

|cρζ |2 + |cθζ |2 dθ = 2π
∑

n

|V ′
n|2 +

n2

ρ2
|Vn|2,

∫ 2π

0

|cρρ |2 dθ = 2π
∑

n

∣∣∣∣2n

ρ

(
ψ ′

n − ψn

ρ

)∣∣∣∣
2

,

∫ 2π

0

|cρθ |2 dθ = 2π
∑

n

∣∣∣∣ψ ′′
n − ψ ′

n

ρ
+

n2ψn

ρ2

∣∣∣∣
2

.

Since the total dissipation is

D = E

∫
(V )

(|cρρ |2 + |cρζ |2 + |cθζ |2 + |cρθ |2) dV,
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it finally expresses as

D = 2πE

∫ 1

η

{∑
n

|V ′
n|2 +

n2

ρ2
|Vn|2 +

∣∣∣∣2n

ρ

(
ψ ′

n − ψn

ρ

)∣∣∣∣
2

+

∣∣∣∣ψ ′′
n − ψ ′

n

ρ
+

n2ψn

ρ2

∣∣∣∣
2
}

ρ dρ.

If the solutions are equatorially symmetric V−n = Vn and ψ−n = −ψn, so that

D = 4πE

∫ 1

η

{
1

2
|V ′

0|2 +
∑
n>0

|V ′
n|2 +

n2

ρ2
|Vn|2 +

∣∣∣∣2n

ρ

(
ψ ′

n − ψn

ρ

)∣∣∣∣
2

+

∣∣∣∣ψ ′′
n − ψ ′

n

ρ
+

n2ψn

ρ2

∣∣∣∣
2
}

ρ dρ.

Appendix B. Influence of boundary conditions
Fotheringham & Hollerbach (1998) studied the influence of boundary conditions

(no-slip or stress-free) on the inertial modes of a spherical shell. They found that
this influence was very small. In the forced flow that we study here, this is also the
case. The contribution to dissipation of Ekman layers that appear if no-slip boundary
conditions are used may be estimated as follows: In the case of the asymptotic
regime where the fluid flow is following an attractor, the velocity scales as E−1/3

(Ogilvie 2005) and the boundary layer velocity gradients ∂u/∂x are O(E−1/3/E1/2) =
O(E−5/6). However, the volume occupied by the boundary layers is O(E5/6), thus, the
resulting dissipation scales like E1/6 which is very small compared to the contribution
of the internal shear layers, which is unity. In the case of the resonances of the
two-dimensional slender torus, which are associated with shear layers of width scaling
in E1/4, the contribution of Ekman layers is even weaker, namely O(E1/4). It is only in
the case of the regular modes of the torus, that a strong effect is noticed, as expected.
However these modes do not exist in the more realistic set-up of a spherical shell: we
obtained singular solution (the ‘antiresonances’ see § 3.3). In this case we find that the
dissipation scales like E2/5, which seems to be also the case when a no-slip boundary
condition is used on the inner core.

Appendix C. The asymptotic law for cores of vanishing sizes
We may recover the dependence in η5 of the viscous dissipation when η � 1 by

considering the solutions found by Rieutord (1991). Indeed, in this paper it was
shown that an oscillatory flow in a rotating background with spherical symmetry
could be described by two kinds of solutions when these are decomposed onto
the spherical harmonic basis. These solutions (in fact the radial functions of each
spherical harmonic component) are either of Bessel or polynomial type. The Bessel
type solutions describe the boundary layer regions, while the polynomials describe
the flow in the remaining volume.

Considering the inviscid case, we shall focus on the polynomial solutions. Rieutord
(1991) has shown that these solutions also split into two categories: one is regular
at the origin, the other is regular at infinity. The first one is easily related to the
inertial modes of the full sphere which have been found by Bryan (1889) (see also
Greenspan 1969; Rieutord 1997). They are exact solutions of the inviscid problem at
eigenfrequencies. Below, we shall refer to these solutions as class-one solutions.
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The second class of solutions are those with radial functions with polynomials in
1/r that are regular at infinity. However, unlike those regular at the origin, these
solutions are exact only when the momentum equation is expanded on a finite
number of spherical harmonics, namely when the series is artificially truncated at a
given maximum order, just like in a numerical calculation. This is expected since the
solutions regular at infinity are singular at the critical latitude on an inner bounding
sphere (see Rieutord et al. 2001). Below, we refer to these solutions as class-two
solutions.

Now if we think to the solutions in their spherical harmonic decomposition, we
note that the radial velocity of the class-one solution is dominated near the centre by
its u2Y2 component (we restrict the discussion to the axisymmetric and equatorially
symmetric flows). This is because u� ∼ r�−1 as r → 0. When a small inner core is
introduced in the inviscid problem, we need to add solutions that are regular at infinity
so that the inner boundary condition ur (η) = 0 is met. This is the usual procedure
in regular elliptic problems like the Poisson problem for instance. However, in the
Poincaré problem, this cannot be done because the class-two solutions are singular.
However, if we restrict our problem to a finite number of spherical harmonics (which
is a way of regularization), we can use this kind of solutions.

As shown in Rieutord (1991), the form of class-two solutions for u2(r) is in r−4. If
we write

u = u0 + α2u2
∞ + α4u4

∞ + · · · ,
where u0 is the class-one solution and uJ

∞ are the class-two solution of order J (their
lowest order is uJ (r) = r−J ). Imposing that ur (η) = 0 for η � 1, we easily find that
α2 is O(η5) and that more generally, α2p is O(η2p+3).

Hence, to leading order, we may write

u = u0 + η5uη. (C 1)

Although the truncated solutions are not exact, we know that viscosity will, in the
end, also truncate the spherical harmonics series. Computing the viscous dissipation
from (C 1) shows that

D(η) = D(η = 0) + η5D1,

where the D1 term might depend on the Ekman number. Although quite close to the
searched expression (3.3), this equation misses the a(η)E term and the fact that D1

seems to be independent of E.
We note that the critical latitude boundary layer on the inner sphere could induce

a velocity field which is O(η/E1/5). This scaling also suggests that a transition occurs
when η ∼ E1/5. This latter remark shows that the complete explanation is likely
involved and a more detailed analysis is necessary to fully understand the intricacy
of the limits η → 0 and E → 0.
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Zahn, J.-P. 1966 Les marées dans une étoile double serrée. Annales d’Astrophysique 29, 313, 489,
565.

Zahn, J.-P. 1975 The dynamical tide in close binaries. A&A 41, 329–344.

Zahn, J.-P. 1977 Tidal friction in close binaries. A&A 57, 383–394.

Zahn, J.-P. 1992 Circulation and turbulence in rotating stars. A&A 265, 115.

Zahn, J.-P. 2008 Tidal dissipation in binary systems. In EAS Publications Series (ed. M.-J. Goupil
& J.-P. Zahn), vol. 29, pp. 67–90.

Zhang, K. 1994 On coupling between the Poincaré equation and the heat equation. J. Fluid Mech.
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