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ABSTRACT �-LIMIT SETS

WILL BRIAN

Abstract. The shift map � on �∗ is the continuous self-map of�∗ induced by the function n �→ n + 1
on �. Given a compact Hausdorff space X and a continuous function f : X → X , we say that (X, f) is a
quotient of (�∗, �) whenever there is a continuous surjection Q : �∗ → X such that Q ◦ � = � ◦ f.
Our main theorem states that if the weight of X is at most ℵ1, then (X, f) is a quotient of (�∗, �) if

and only if f is weakly incompressible (which means that no nontrivial open U ⊆ X has f(U ) ⊆ U ).
Under CH, this gives a complete characterization of the quotients of (�∗, �) and implies, for example, that
(�∗, �−1) is a quotient of (�∗, �).
In the language of topological dynamics, our theorem states that a dynamical system of weight ℵ1 is an

abstract �-limit set if and only if it is weakly incompressible.
We complement these results by proving (1) our main theorem remains true when ℵ1 is replaced by any

κ < p, (2) consistently, the theorem becomes false if we replace ℵ1 by ℵ2, and (3)OCA +MA implies that
(�∗, �−1) is not a quotient of (�∗, �).

§1. Introduction. In [20], Parovičenko proved that every compact Hausdorff
space of weight ℵ1 is a continuous image of �∗ = �� − �. In this article we
prove the analogous result concerning the continuous maps on �∗ that respect the
shift map.
The shift map � : �� → �� sends an ultrafilter p to the unique ultrafilter gener-
ated by {A+ 1: A ∈ p}. Equivalently, � is the unique map on �� that continuously
extends themap n �→ n+1 on�. The shift map restricts to an autohomeomorphism
of �∗.
If X is a compact Hausdorff space and f : X → X is continuous, we say that
(X,f) is a quotientof (�∗, �) whenever there is a continuous surjectionQ : �∗ → X
such thatQ◦� = f◦Q. Themain theorem of this article characterizes the quotients
of (�∗, �) that have weight at most ℵ1:
Main Theorem. SupposeX is a compact Hausdorff space with weight at most ℵ1,
and f : X → X is continuous. Then (X,f) is a quotient of (�∗, �) if and only if f is
weakly incompressible.

Recall that f : X → X is weakly incompressible if for any open U ⊆ X with
∅ 	= U 	= X , we have f(U ) 	⊆ U . This theorem is the appropriate analogue of
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Parovičenko’s because (�∗, �) is itself weakly incompressible, and this property is
always preserved by taking quotients. In other words, our theorem isolates a simple
property of the shift map that determines exactly when Parovičenko’s topological
result extends to a result of dynamics.
In order to understand the motivation for this theorem, and why we are paying
such special attention to the shiftmap as opposed to someother continuous function
�∗ → �∗, let us look to topological dynamics.

1.1. Connection with topological dynamics. A dynamical system is a pair (X,f),
where X is a compact Hausdorff space and f : X → X is continuous. Such things
have been studied intensively as models of time-dependent processes (we think off
as acting on X and being iterated repeatedly, and then we ask about the long-term
behavior of the system). An important notion in this field of study is that of an
�-limit set.
Given a point x ∈ X , the �-limit set of x is the set of all limit points of the orbit
of x:

�f(x) =
⋂
n∈�
{fm(x) : m ≥ n}.

It is easy to see that�f(x) is closed underf, so that (�f(x), f) is itself a dynamical
system. The structure of this system captures the topological behavior of the orbit
of x.
Recall that two dynamical systems (X,f) and (Y, g) are isomorphic (or, for some
authors, conjugate) if there is a homeomorphismH : X → Y withH ◦f = g ◦H .
An abstract �-limit set is a dynamical system that is isomorphic to a dynamical
system of the form (�f(x), f).
For example, (�∗, �) is an abstract �-limit set because �∗ = ��(n) for any
n ∈ � in the larger dynamical system (��, �). Notice that �∗ is not an �-limit set
“internally”; that is,�∗ 	= ��(p) for any p ∈ �∗ (indeed, �∗ is not even separable).
In order to realize (�∗, �) as an �-limit set, it is necessary to extend it to a larger
dynamical system.
A somewhat vague but very natural question is: What do �-limit sets look like?
Or, to put it a bit more precisely: Is there a useful or simple characterization of
abstract �-limit sets? Our main theorem is connected to these questions through
the following result, proved in the next section:

Theorem 2.4. A dynamical system is an abstract �-limit set if and only if it is a
quotient of (�∗, �).
In other words, (�∗, �) is universal (in the “mapping onto” sense) among all
abstract�-limit sets. Thus ourmain theorem is a characterization of abstract�-limit
sets that are not too large in weight:

Main Theorem (version two). Suppose (X,f) is a dynamical system and the
weight of X is at most ℵ1. (X,f) is an abstract �-limit set if and only if f is weakly
incompressible.

This way of stating the main theorem reveals it as an extension of the following
well-known result of Bowen and Sharkovsky:

Theorem 2.6. Ametrizable dynamical system is an abstract�-limit set if and only
if it is weakly incompressible.
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Sharkovsky proves the forward direction in [21] and Bowen proves the converse in
[6]. See [2] or [17], and the references therein, for further research on the connection
between weak incompressibility and �-limit sets.

1.2. Outline of the proof. Of the various proofs of Parovičenko’s theorem, ours
is closest in spirit to that of Błaszczyk and Szymański in [5]. Their proof begins by
writing a given compact Hausdorff spaceX as a length-�1 inverse limit of compact
metrizable spaces: X = lim←−〈Xα : α < �1〉. They then construct a coherent transfi-
nite sequence of continuous surjections Qα : �∗ → Xα , and define Q : �∗ → X
to be the inverse limit of this sequence. The Qα are constructed recursively, using a
variant of the following lifting lemma at successor stages:

Lemma 1.1. Let Y and Z be compact metrizable spaces, and let QZ : �∗ → Z
and � : Y → Z be continuous surjections. Then there is a continuous surjection
QY : �∗ → Y such that QZ = � ◦QY .
In our situation, the first part of Błaszczyk and Szymański’s proof goes through:
we prove in Corollary 3.3 below that given a dynamical system (X,f) of weight
ℵ1, one may always write (X,f) as a length-�1 inverse limit of metrizable dynam-
ical systems. However, we run into trouble with the analogue of Lemma 1.1: the
analogous lemma for dynamical systems is false (see Example 3.4).
To get around this problem, we modify Błaszczyk and Szymański’s approach by
using sharper tools.Rather thanbeginningwith (X,f) andwriting it as a topological
inverse limit, we begin with a particular embedding of X in [0, 1]�1 and use a
much stronger form of inverse limit: a continuous chain of elementary submodels
of a sufficiently large fragment of the set-theoretic universe. Each model in our
chain naturally gives rise to a metrizable “reflection” of (X,f), and the continuity
requirement organizes these reflections into an inverse limit systemwith limit (X,f).
Elementarity gives this system strong structural properties, and ultimately is the key
that unlocks a workable analogue of Lemma 1.1.
Our use of elementarity is inspired by the work of Dow and Hart in [9], where
they prove that every continuum of weight ℵ1 is a continuous image of H∗, the
Stone–Čech remainder of H = [0,∞). They give three proofs of this fact, each of
which relies on model-theoretic notions in some essential way. The proof of our
main theorem is most similar to their third proof, found in Section 3 of [9].
In Section 5, we will show that both Parovičenko’s theorem about continuous
images of �∗ and the Dow–Hart theorem about continuous images of H∗ can be
derived as relatively straightforward corollaries of our main theorem. In light of
this, it is unsurprising that our proof uses some of the same ideas found in [5] and
[9].

1.3. Extensions and limitations. Under the Continuum Hypothesis, our result
gives a complete characterization of the quotients of (�∗, �):
Theorem 5.5. Assuming CH, the following are equivalent:
(1) (X,f) is a quotient of (�∗, �).
(2) X has weight at most c and f is weakly incompressible.
(3) X is a continuous image of �∗ and f is weakly incompressible.
Every quotient of (�∗, �) is weakly incompressible, so (3) gives the most liberal
possible characterization of quotients of (�∗, �): they are the weakly incompressible
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dynamical systems for which the topology is not an obstruction. A corollary to this
is that (�∗, �−1) is a quotient of (�∗, �).
In Section 5, we show that the nontrivial conclusions of Theorem 5.5 are indepen-
dent of ZFC. Specifically, we show that (2) does not imply (1) or (3) in the Cohen
model, and that (3) does not imply (1) under OCA+MA. In fact, we will show
under OCA+MA that (�∗, �−1) is not a quotient of (�∗, �), even though �−1 is
weakly incompressible.
We also show in Section 5 that if κ < p then our main theorem holds with κ in
the place of ℵ1:
Theorem 5.10. If the weight ofX is less than p, then (X,f) is a quotient of (�∗, �)
if and only if f is weakly incompressible.

In the sameway that ourmain theorem is the dynamical analogueof Parovičenko’s
theorem, this result is the dynamical analogue of the following result of vanDouwen
and Przymusiński [8]: IfX is a compact Hausdorff space with weight less than p, then
X is a continuous image of �∗.

§2. First steps.
2.1. Extending maps from � to ��. If X is a compact Hausdorff space and
f : � → X is any function, then there is a unique continuous function�f : �� → X
that extendsf, the Stone extension of f. For a sequence 〈xn : n ∈ N〉 of points in X
and p ∈ ��, we will usually write p-limn∈� xn for the image of p under the Stone
extension of the function n �→ xn. We will need the following facts about Stone
extensions (proofs can be found in Chapter 3 of [14]):

Lemma 2.1. Let X be a compact Hausdorff space and 〈xn : n < �〉 a sequence of
points in X .

(1) p-limn∈� xn = y if and only if for every openU � y we have {n : xn ∈ U} ∈ p.
(2) p �→ p-limn∈� xn is a continuous function �� → X .
(3) If f : X → X is continuous and p ∈ ��, then

f(p-limn∈� xn) = p-limn∈� f(xn).

(4) For each p ∈ ��, �(p)-limn∈� xn = p-limn∈� xn+1.
2.2. Extending maps from �∗ to ��. The following result is a fairly straightfor-
ward consequence of the Tietze Extension Theorem; a proof can be found in [10],
Theorem 3.5.13.

Lemma 2.2. Suppose X is a compact Hausdorff space and f : �∗ → X is contin-
uous. Then there is a compact Hausdorff spaceY ⊇ X , such thatY \X = �, and the
function F : �� → Y defined by setting F ��∗ = f and F �� = id� is continuous.
Lemma 2.3. Let (X,f) be a dynamical system, and Q : X → Y a contin-
uous surjection such that, for all x1, x2 ∈ X , if Q(x1) = Q(x2) then Q(f(x1)) =
Q(f(x2)). Then there is a unique continuous g : Y → Y such that g ◦Q = Q ◦ f.
Proof. The assumptions about Q imply that there is a unique function
g : Y → Y such that g ◦ Q = Q ◦ f, namely g(y) = Q(f(Q−1(y))). We need to
check that this function is continuous.
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If K is a closed subset of Y , then f−1(Q−1(K)) is closed in X . Because X is
compact, f−1(Q−1(K)) is compact, which implies g−1(K) = Q(f−1(Q−1(K))) is
closed. Since K was arbitrary, g is continuous. �
Theorem 2.4. (X,f) is an abstract �-limit set if and only if it is a quotient of
(�∗, �).
Proof. It is well known that if (X,f) is an �-limit set then it is a quotient
of (�∗, �). Indeed, the map p �→ p-limn∈� fn(x) gives a quotient mapping from
(�∗, �) to (�f(x), f). For details and some discussion, see Section 2 of [4]. Here
we need to prove the converse.
Suppose q : �∗ → X is a quotient mapping from (�∗, �) to (X,f). Using
Lemma 2.2, there is a compact Hausdorff space Y ⊇ X with Y \ X = � such
that q extends to a continuous function Q : �� → Y , with Q �� = id� . Define
g : Y → Y by

g(y) =

{
f(y) if y ∈ X,
n + 1 if y = n ∈ �.

Clearly Q ◦ � = g ◦Q, and g is continuous by Lemma 2.3.
To finish the proof, we will show that in (Y, g), X = �g(p). Notice

{gm(0) : m ≥ n} = {m : m ≥ n}
for all n. Using the continuity of Q, we have

{m : m ≥ n}Y ⊇ Q
(
{m : m ≥ n}��

)
⊇ Q(�∗) = X.

Thus �g(0) ⊇ X , and the reverse inclusion is obvious. �
2.3. Chain transitivity. In this subsection we give a different but equivalent char-
acterization of weak incompressibility. This characterization (which, for historical
reasons, has a different name) is more difficult to state, but will prove more useful
in what follows.
Suppose (X,f) is a dynamical system and d is a metric for X . An ε-chain in
(X,f) is a sequence 〈xi : i ≤ n〉 such that d (f(xi), xi+1) < ε for all i < n. Roughly,
an ε-chain is a piece of an orbit, but computed with a small error at each step.
(X,f) is called chain transitive if for any a, b ∈ X and any ε > 0, there is an ε-chain
beginning at a and ending at b.
Using open covers in the place of ε-balls, we can reformulate this classical def-
inition of chain transitivity so that it applies to nonmetrizable dynamical systems.
Given (X,f) and an open cover U of X , we say that 〈xi : i ≤ n〉 is a U-chain if, for
every i < n, there is some U ∈ U such that f(xi), xi+1 ∈ U . A dynamical system
(X,f) is chain transitive if for any a, b ∈ X and any open cover U of X , there is a
U-chain beginning at a and ending at b.
Lemma 2.5.

(1) A dynamical system is chain transitive if and only if it is weakly incompressible.
(2) Every quotient of (�∗, �) is weakly incompressible.
The proof of (1) is essentially the same as the proof for metrizable dynamical
systems (see, e.g., Theorem 4.12 in [1]). Proofs of both (1) and (2) can be found in
Section 5 of [7].
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2.4. The Bowen–Sharkovsky theorem. In the interest of keeping this article self-
contained, we will now sketch a proof of the theorem of Bowen and Sharkovsky
mentioned in the introduction.
Theorem 2.6 (Bowen–Sharkovsky). Ametrizable dynamical system is an abstract
�-limit set if and only if it is weakly incompressible.
Proof sketch. The forward direction is a consequence of Theorem 2.4 and
Lemma 2.5. To prove the reverse direction, we will use chain transitivity instead
of weak incompressibility.
Let (X,f) be a metrizable, chain transitive dynamical system. Fix a sequence
〈dn : n ∈ �〉 of points in X such that every tail of the sequence is dense in X . For
each n ∈ �, we may use chain transitivity to connect dn to dn+1 via a 1

n+1 -chain,
resulting in an infinite sequence

〈d0, x01 , . . . , x0	0 , d1, x11 , . . . , x1	1 , d2, x21 , . . . , x2	2 , d3, . . .〉.
Re-indexing this sequence as 〈yn : n ∈ �〉 and defining Q : �∗ → X to be the
Stone extension of the map n �→ yn, one may check that Q is a quotient mapping
from (�∗, �) to (X,f). By Theorem 2.4, (X,f) is an abstract �-limit set. �

§3. A few lemmas. In this section we begin the proof of our main theorem in
the form of several lemmas (the main part of the proof is in the next section). The
purpose of these lemmas is to give a detailed description of which functions on �
induce quotient mappings on �∗.
Given an ordinal 
, the standard basis for [0, 1]
 is the basis generated by sets
of the form �−1α (p, q), where p, q ∈ [0, 1] ∩ Q and �α is the projection mapping a
point of [0, 1]
 to its αth coordinate. Whenever we mention basic open subsets of
[0, 1]
 , this is the basis wemean. Notice that every basic open subset of [0, 1]
 can be
defined using finitely many ordinals less than 
 and finitely many rational numbers.
Suppose X is a closed subset of [0, 1]
 . By an open cover of X , we will mean a
set U of open subsets of [0, 1]
 with X ⊆ ⋃U . A nice open cover of X is a finite
open cover U ofX consisting of finitely many basic open subsets of [0, 1]
, such that
U ∩ X 	= ∅ for all U ∈ U .
If U is a collection of subsets of [0, 1]
 and A ⊆ [0, 1]
 ,

U�(A) =
⋃
{U ∈ U : U ∩ A 	= ∅} .

For convenience, if A = {a} we write U�(a) instead of U�({a}).
If U and V are collections of open sets, recall that U refines V if for every U ∈ U
there is some V ∈ V with U ⊆ V . U is a star refinement of V if for every U ∈ U
there is some V ∈ V such that U�(U ) ⊆ V . It is known (see, e.g., Theorem 5.1.12
in [10]) that every open cover of a compact Hausdorff space has a star refinement.
Lemma 3.1. Let X be a closed subset of [0, 1]
 . A function f : X → X is contin-
uous if and only if for every open cover U of X there is a nice open cover V of X such
that

{V�(f(V�(x) ∩ X )) : x ∈ X}
is an open cover of X that refines U .
The proof of this lemma is an elementary exercise in general topology, and we
omit it.
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Given a countable ordinal 
, define Π
 : [0, 1]�1 → [0, 1]
 to be the natural
projectiononto thefirst 
 coordinates, namelyΠ
 = Δα<
�α .A formof the following
lemma was proved by Noble and Ulmer in [19], and later rediscovered by Shchepin
in [22].

Lemma 3.2. Let X be a closed subset of [0, 1]�1 and let f : X → X be continuous.
There is a closed unbounded C ⊆ �1 such that for every 
 ∈ C and x, y ∈ X , if
Π
(x) = Π
(y) thenΠ
(f(x)) = Π
(f(y)).

Corollary 3.3. Every dynamical system of weight ℵ1 can be written as an inverse
limit of metrizable dynamical systems.

Proof. Let (X,f) be a dynamical system of weight ℵ1. Embed X in [0, 1]�1 , and
let C be the closed unbounded set of ordinals described in the previous lemma. For
each 
 ∈ C , let X
 = Π
(X ) and define f
 : X
 → X
 by f
(Π
(x)) = Π
(f(x)),
which is continuous by Lemma 2.3. Then 〈(Π
(X ), f
) : 
 ∈ C 〉 is an inverse limit
system, having the natural projections as bonding maps, and the limit of this system
is (X,f). �
Before moving on to our next lemma, we take a moment to justify the use
of elementary submodels in the next section. Naı̈vely, one might wonder why we
cannot simply prove our main theorem in the style of Błaszczyk and Szymański,
using Corollary 3.3 and the appropriate analogue of Lemma 1.1:

(∗) Let (Y, g) and (Z, h) be metrizable dynamical systems, and suppose
QZ : �∗ → Z and � : Y → Z are quotient mappings. Then there is a
quotient mappingQY : �∗ → Y such that QZ = � ◦QY .

The following example shows that (∗) is not true, so that we needmore than a simple
topological inverse limit structure in order to make Błaszczyk and Szymański’s
proof go through. We will simply sketch the example and leave detailed proofs to
the reader.

Example 3.4. ([0, 1], id) is a weakly incompressible dynamical system, and for
our example it will play the role of both (Y, g) and (Z, h) in (∗). Define � : [0, 1]→
[0, 1] by setting �(0) = 0, �( 23 ) = 1, and �(1) =

1
2 , and then extending � linearly to

the rest of [0, 1]. We will define a quotient mapping �Z from (�∗, �) to ([0, 1], id)
that does not lift through �.
Define pZ : � → [0, 1] so that pZ(n) is the distance from s(n) =

∑
m≤n

1
m to the

nearest even integer. Letting �Z : �∗ → [0, 1] be the map induced by pZ , it is easy
to check (using Lemma 3.5 below) that �Z is a quotient mapping from (�∗, �) to
([0, 1], id).
Suppose �Y : �∗ → [0, 1] is another quotient mapping from (�∗, �) to ([0, 1], id).
By the Tietze Extension Theorem, �Y is induced by a map pY : � → [0, 1]. If �Z =
� ◦�Y , then limn→∞ |pZ(n)−�(pY (n))| = 0. Since �Y ◦� = �Y , limn→∞ |pY (n)−
pY (n + 1)| = 0 also. Putting these facts together, one may show that, for large
enough n, pY (n) ∈ [0, 23 +ε) for any prescribed ε > 0, contradicting the surjectivity
of �Y .

Suppose X ⊆ [0, 1]
 and f : X → X is continuous. If U is a nice open cover of
X , we say that a sequence 〈xn : n < �〉 is eventually compliant with U if there exists
some m ∈ � such that
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(1) {xn : n ≥ m} ⊆
⋃U ,

(2) {xn : n ≥ m} ∩U is infinite for all U ∈ U , and
(3) for all n ≥ m, we have xn+1 ∈ U�(f(U�(xn) ∩ X )).
Roughly, the idea behind this definition is that if our vision is blurred (with the
amount of blurriness prescribed by U), then (1) it appears that every xn could be in
X , (2) it appears that {xn : n ≥ m} could be dense inX , and (3) for each n, not only
does it seem that xn could be in X , but also that xn+1 = f(xn). A finite sequence
〈xn : n ≤ k〉 is said to be compliant with U if condition (3) holds for every n < k.
Lemma 3.5. Let X be a closed subset of [0, 1]
 and let f : X → X be continuous.
If 〈xn : n < �〉 is a sequence of points in [0, 1]
 that is eventually compliant with every
nice open cover of X , then the map p �→ p-limn∈� xn is a quotient mapping from
(�∗, �) to (X,f).
Conversely, if Q is a quotient mapping from (�∗, �) to (X,f), then there is a
sequence 〈xn : n < �〉 in [0, 1]
 such that Q(p) = p-limn∈� xn for all p ∈ �∗, and
this sequence is eventually compliant with every nice open cover of X .

Proof. Fix X ⊆ [0, 1]
 and f : X → X , and suppose 〈xn : n < �〉 is a sequence
of points in [0, 1]
 that is eventually compliant with every nice open cover of X .
Define Q : �∗ → [0, 1]
 by Q(p) = p-limn∈� xn. From the definitions, we know
thatQ is a continuous function with domain�∗. We need to check thatQ(�∗) = X
and that Q ◦ � = f ◦Q.
First we show that Q(�∗) ⊆ X . Let U be any open subset of [0, 1]
 containing
X . There is some nice open cover U of X such that ⋃U ⊆ U . By part (1) of our
definition of eventual compliance, p-limn∈� xn ∈ U for every p ∈ �∗. Since U was
arbitrary, F (�∗) ⊆ X .
Next we show that X ⊆ Q(�∗). Let U be any basic open subset of [0, 1]
 with
U ∩ X 	= ∅. We may find a nice open cover U of X such that U ∈ U . By part (2)
of the definition of eventual compliance, Q(�∗) ∩ U 	= ∅. Because Q(�∗) is the
continuous image of a compact space, and therefore closed, this showsX ⊆ Q(�∗).
Lastly, we show thatQ ◦ � = f ◦Q. Fix p ∈ �∗, and let U be an open neighbor-
hood of f(Q(p)). We may find an open cover U of X such that U ∈ U and U is
the only member of U containing f(Q(p)). Applying Lemma 3.1, we obtain a nice
open cover V of X such that V�(f(V�(Q(p)) ∩ X )) ⊆ U .
Letm be large enough towitness the fact that 〈xn : n < �〉 is eventually compliant
with V . Because p is nonprincipal,

A = {n ≥ m : xn ∈ V�(Q(p))} ∈ p.
Using part (3) of the definition of eventual compliance, xn+1 ∈ U for every n ∈ A.
Thus

Q(�(p)) = �(p)-limn∈� xn = p-limn∈� xn+1 ∈ U.
BecauseU was an arbitrary open neighborhood off(Q(p)), this showsQ(�(p)) =
f(Q(p)). Since p was arbitrary, Q ◦ � = f ◦ Q as desired. This finishes the proof
of the first assertion of the lemma.
For the converse direction, suppose Q is a quotient mapping from (�∗, �) to
(X,f). By the Tietze Extension Theorem, Q extends to a continuous function on
��. In other words, there is a sequence 〈xn : n < �〉 of points in [0, 1]
 such that
Q(p) = p-limn∈� xn for every p ∈ �∗. We want to show that this sequence is
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eventually compliant with every nice open cover of X . Using the fact thatQ(�∗) =
X , it is easy to check parts (1) and (2) of the definition of eventual compliance.
To verify (3), let U be a nice open cover of X and suppose 〈xn : n < �〉 is not
eventually compliant with U . Then there is an infinite A ⊆ � such that, for every
a ∈ A, xa+1 /∈ U�(f(U�(xa) ∩ X )). Let p ∈ A∗, let x = Q(p), and fix U ∈ U with
x ∈ U . By definition, x = p-limn∈� xn ∈ U implies that for some infinite B ∈ p,
{xn : n ∈ B} ⊆ U . Replacing B with B ∩ A if necessary, we may assume B ⊆ A.
B+1 ∈ �(p), and for all b ∈ B we havexb+1 /∈ U�(f(U�(xb)∩X )) ⊇ U�(f(U∩X )).
Thus

Q(�(p)) = �(p)-lim
n∈� xn = p-limn∈� xn+1 /∈ U�(f(U ∩ X )) � f(Q(p)).

Thus Q ◦ �(p) 	= f ◦ Q(p), contradicting the assumption that Q is a quotient
mapping. �

§4. The main theorem. We are now in a position to prove the main theorem. As
mentioned in the introduction, our proof technique parallels that in Section 3 of
Dow and Hart’s article [9]. In order to make things easier for the reader (especially
the reader already familiar with [9]), we have tried to match our notation to that of
[9] wherever possible.

Theorem 4.1 (Main theorem). Suppose (X,f) is a dynamical system with weight
ℵ1. Then (X,f) is a quotient of (�∗, �) if and only if f is weakly incompressible.

Proof. Every quotient of (�∗, �) is weakly incompressible by Lemma 2.5. We
must prove that a weakly incompressible dynamical system with weight ℵ1 is a
quotient of (�∗, �).
Let (X,f) be a weakly incompressible dynamical system with weight ℵ1. Using
transfinite recursion, we will construct maps q� : � → [0, 1] for all � < �1. In the
end, the diagonal mapping Q = Δ�<�1q� will define a sequence 〈Q(n) : n < �〉 in
[0, 1]�1 that is eventually compliant with every nice open cover ofX . By Lemma 3.5,
this suffices to prove the theorem.
The recursion will be guided by a sequence of elementary submodels of a large
fragment of the set-theoretic universe. Fix a large enough regular cardinal κ (to
be specific, “large enough” means κ ≥ (2ℵ1 )+) and let H denote the set of all
sets hereditarily smaller than κ. A large enough choice of κ guarantees X,f ∈ H .
The regularity of κ guarantees that H is a model of ZFC—the power set axiom,
and even the power set axiom fails only for sets X with |P(X )| ≥ κ. Thus H is
a good substitute for the universe of all sets. The argument below, which does not
mention the power set of any very large sets, can take place “inside” H . Using the
Löwenheim–Skolem Theorem (see Chapter 3 of [15] for a reference), fix a sequence
〈Mα : α < �1〉 of countable elementary submodels ofH such that
(1) X,f ∈M0.
(2) M� ⊆Mα whenever � < α.
(3) for limit α,Mα =

⋃
�<α M� .

(4) for each α,
〈
M� : � ≤ α

〉 ∈Mα+1.
For each α < �1, define 
α = �1 ∩Mα . Recall that 
α is a countable ordinal, the
supremum of all countable ordinals inMα .
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For each α < �1, let Xα = Π
α (X ). In Shchepin’s proof of Lemma 3.2, it is
clear that the closed unbounded set C mentioned in the statement of the lemma is
a subset of {
α : α < �1}. (Moreover, even if this were not already true we could
simply observe that {
α : α < �1} is closed unbounded, and replace it with C ∩
{
α : α < �1}, discarding all those Mα with α /∈ C .) Thus we may define fα :
Xα → Xα to be the unique self-map of Xα satisfying Π
α ◦f = fα ◦Π
α , and have
fα continuous by Lemma 2.3.
(Xα,fα) is a dynamical system, and Π
α provides a natural quotient mapping
from (X,f) to (Xα,fα). Xα is metrizable because it is a subset of [0, 1]
α , and fα
is weakly incompressible by Lemma 2.5 (alternatively, weak incompressibility can
be proved directly by an elementarity argument). We may think of the (Xα,fα) as
metrizable “reflections” of (X,f).
If 〈xn : n < �〉 is a sequence of points in [0, 1]
α for some α, let us say that a
sequence 〈yn : n < �〉 of points in [0, 1]�1 is a lifting of 〈xn : n < �〉 if Π
α (yn) = xn
for all n.
Let U be a nice open cover of X with U ∈ Mα . Only ordinals less than

α can be used in the definition of U , so U naturally projects to a nice open
cover of Xα in [0, 1]
α , namely Π
α (U) = {Π
α (U ) : U ∈ U} . Conversely, every
nice open cover U of Xα in [0, 1]
α lifts to a nice open cover of X , namely
Π−1

α
(U) =

{
Π−1

α
(U ) : U ∈ U

}
. Using this correspondence, one may easily verify

the following:

Observation: A sequence of points in [0, 1]
α is eventually compliant with every
nice open cover of Xα (with respect to the map fα) if and only if any lifting of that
sequence to [0, 1]�1 is eventually compliant with every nice open cover of X that is
defined using ordinals < 
α .

We are now in a position to begin our recursive construction of the maps q�. Step
α of the recursion will be used to construct simultaneously all the maps q� with
� ∈ 
α \

⋃
�<α 
� .

By Theorems 2.4 and 2.6, (X0, f0) is a quotient of (�∗, �). By Lemma 3.5, there
is a sequence 〈xn : n < �〉 of points in [0, 1]
0 eventually compliant with every nice
open cover of X0 in [0, 1]
0 . For � < 
0, define q�(n) = ��(xn) (in other words,
we define the q� so that Δ�<
0q� maps � to the sequence just constructed). This
completes the base step of the recursion.
For later stages of the recursion, we assume two inductive hypotheses:

(H1) the sequence 〈q� : � < 
α〉 is inMα+1.
(H2) the sequence 〈Δ�<
α (n) : n ∈ �〉 is eventually compliant with every nice

open cover of Xα (with respect to the map fα).

The first hypothesis is preserved at every stage simply because we are assuming
that

〈
M� : � ≤ α

〉 ∈Mα+1 for each α. This means that any construction involving
only models M� with � < α can be carried out “inside” of Mα+1. (At least, this
is true provided that any arbitrary choices made in the construction are made in
some canonical fashion; let us assume this from now on.) We have listed the first
hypothesis only because it is necessary for performing the construction of the q� with
� ∈ [
α, 
α+1) at stageα of the recursion. The second hypothesis is not automatically
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preserved at every stage like the first; indeed, we will need to choose the maps q�
very carefully in order to preserve (H2).
At limit stages there is nothing to construct: due to our choice of the Mα , we
have 
α =

⋃
�<α 
� for limit α, so that all the q� with � < 
α have already been

defined by stage α. We need only check that (H2) is preserved at limit stages. For
this, suppose U is any nice open cover of Xα . U is defined using only finitely many
ordinals, so because 
α =

⋃
�<α 
� , there is some � < α such that U is defined

using only ordinals < 
� . Because (H2) holds at � , 〈Δ�<
α (n) : n ∈ �〉 is eventually
compliant with U . As U was arbitrary, (H2) holds at α.
For the successor stage, let α < �1 and suppose the functions q� have already
been constructed for every � < 
α . Let Qα = Δ�<
α q�.
BecauseMα+1 is countable, there are only countably many nice open covers of X
inMα+1, namely those that are definable from ordinals < 
α+1. Also, any two nice
open covers of X inMα+1 have a common refinement that is also a nice open cover
of X inMα+1. Thus we may find a countable sequence 〈Um : m < �〉 of nice open
covers of X such that
(1) Um ∈Mα+1 for every m,
(2) Un refines Um whenever m ≤ n, and
(3) if U is any nice open cover of X inMα+1, then some Um refines U .
Note that this part of the construction occurs “outside”Mα+1, because we are using
the fact thatMα+1 is countable.
Fixm ∈ � and consider Um. The finite set of ordinals used in the definition of Um
may be split into two parts: those ordinals below 
α , which we call F 0m, and those
in the interval [
α, 
α+1), which we call F 1m. The ordinals F

1
m are not inMα , but we

may use elementarity to find a set of ordinals Gm inMα that “reflects” the set F 1m.
More formally, suppose that we write down in the language of first-order logic a
(very long) formula ϕm that does all of the following:
(1) ϕm defines Um in terms of F 0m ∪ F 1m,
(2) ϕm asserts that Um is a nice open cover of X ,
(3) ϕm records information about how Um interacts with X and f:

(a) for allJ ⊆ Um,ϕm asserts either that
⋂J∩X = ∅or that⋂J∩X 	= ∅,

(b) if J ⊆ Um,
⋂J ∩ X 	= ∅, and U ∈ Um, then ϕm asserts either that

f(
⋃J ∩ X ) ∩U = ∅ or that f(⋃J ∩ X ) ∩U 	= ∅.

Given a finite sequence of points, the information contained in (1) is enough to
determine precisely which elements of Um contain each member of the sequence.
Once that is known, the information in (3) is enough to determine whether the
sequence is compliant with Um.
By elementarity, there is a finite set Gm of ordinals inMα such that ϕm remains
true when the members of F 1m are replaced with the members of Gm. For each
� ∈ F 1m, let �m denote the corresponding member of Gm.
Let Vm be the nice open cover of X that is defined via ϕm, but substituting the
members ofGm in place of the corresponding members of F 1m. We think of Vm as the
reflection of Um inMα . Let k(m) ∈ � be the least natural number with the property
that for all k ≥ k(m), Qα(k) ∈

⋃Vm and 〈Qα(k), Qα(k + 1)〉 is Vm-compliant.
This k(m) exists by the inductive hypothesis (H2). If m < m′, then Vm′

refines Vm,
which implies k(m) ≤ k(n). Thus the function m �→ k(m) is nondecreasing.
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We are now in a position to define the maps q� for 
α ≤ � < 
α+1:

q�(n) =

{
0 if k(m) ≤ n < k(m + 1) and � /∈ F 1m,
q�m (n) if k(m) ≤ n < k(m + 1) and � ∈ F 1m.

Roughly, this says that q� assumes the behavior of itsmirror image q�m on the interval
between k(m) and k(m+1), provided some suitable mirror image has already been
found. Asm increases, the �m become better and better reflections of �, because the
formulas ϕm include more and more information about X and f.
With the q� thus defined, we need to check that the inductive hypothesis (H2)
remains true at the next stage of the recursion. Let Qα+1 = Δ�<
α+1q�.
Let U be a nice open cover of X with U ∈ Mα+1 and fix m large enough so that
Um refines U . By the definition of k(m), if k(m) ≤ k < k(m + 1) then Qα(k) ∈⋃Vm and 〈Qα(k), Qα(k + 1)〉 is Vm-compliant. Of course, only the coordinates in
F 0m∪Gm are relevant to determining these facts.More importantly, all of this relevant
information is captured by the formula ϕm . By elementarity and our choice of the
set Gm, if k(m) < k ≤ k(m+1) thenQα+1(k) ∈

⋃Um and 〈Qα+1(k), Qα+1(k+1)〉
is Um-compliant.
Given any k > k(m), the same argument shows that Qα(k) ∈

⋃Um′ and
〈Qα+1(k), Qα+1(k + 1)〉 is Um′ -compliant, for some m′ ≥ m. Because Um′ refines
Um, this shows that the sequence 〈Qα+1(n) : n ∈ �〉 satisfies parts (1) and (3) of the
definition of Um-compliance.
For part (2), it suffices to recall that statements of the form “Qα(n) is a member
of the 	 th member of Vm” are completely determined by the data recorded in ϕm.
Thus, by elementarity, Qα(n) is in the 	 th member of Vm if and only if Qα+1(n) is
in the 	 th member of Um. From this, and the fact 〈Qα(n) : n ∈ �〉 satisfies part (2)
of the definition of Vm-compliance, it follows easily that 〈Qα+1(n) : n < �〉 satisfies
part (2) of the definition of Um-compliance. This finishes the proof that (H2) is
preserved at successor stages, and this in turn completes the successor step of our
recursion.
We claim that the map Q = Δα<�1qα is as required; i.e., that the sequence
〈Q(n) : n < �〉 is eventually compliant with every nice open cover of X . Indeed,
if U is a nice open cover of X , then U is defined by finitely many ordinals, so it was
considered at some stage α of our recursion. At stage α, we guaranteed that any
lifting of 〈Qα(n) : n < �〉 is eventually compliant with U . 〈Q(n) : n < �〉 is such a
lifting, so it is eventually compliant with U . As U was arbitrary,Q is as required. �

§5. Related results.
5.1. A few corollaries. Consider the following two theorems, both discussed in
the introduction:

• (Parovičenko, [20]).Every compact Hausdorff space of weight ℵ1 is a continuous
image of �∗.
• (Dow-Hart, [9]). Every connected compact Hausdorff space of weight ℵ1 is a
continuous image of H∗, where H = [0,∞).

We begin this section by showing that both of these theorems can be derived as
fairly straightforward consequences of Theorem 4.1.
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Lemma 5.1. Let Y be a compact Hausdorff space of weight κ. There is a weakly
incompressible dynamical system (X,f) such thatX has weight ℵ0 ·κ andY is clopen
in X .

Proof. Let Y be a compact Hausdorff space of weight κ. Let X be the one-point
compactification of Z × Y , where Z is given the discrete topology. Let ∗ denote
the unique point of X − Z × Y , and define f : X → X so that f(∗) = ∗, and
f(n, y) = (n + 1, y). Clearly, f is continuous, X has weight ℵ0 · κ, and Y is
(homeomorphic to) a clopen subset of X .
It remains to show that (X,f) is chain transitive. Let U be any open cover of X
and a, b ∈ X . To find a U-chain from a to b, fix U ∈ U with ∗ ∈ U . If a = ∗ and
b = (n, y), we may choose m small enough thatm < n and (m, y) ∈ U . Then

〈∗, (m, y), (m + 1, y), . . . , (n, y)〉
is a U-chain from a to b. Similarly if a = (m, y) and b = ∗, choose n large enough
that n > m and (n, y) ∈ U . Then

〈(m, y), (m + 1, y), . . . , (n, y), ∗〉
is a U-chain from a to b. If a 	= ∗ 	= b, then we may get a U-chain from a to b
by concatenating a U-chain from a to ∗ with a U-chain from ∗ to b. Thus (X,f) is
chain transitive. �
Parovičenko’s theorem follows immediately fromTheorem 4.1 and the next result:

Proposition 5.2. Suppose everyweakly incompressible dynamical systemofweight
κ is a quotient of (�∗, �). Then every compact Hausdorff space of weight κ is a
continuous image of �∗.

Proof. Suppose every weakly incompressible dynamical system of weight κ is
a quotient of (�∗, �), and let Y be a compact Hausdorff space of weight κ. Let
(X,f) be the dynamical system guaranteed by Lemma 5.1. (X,f) is a quotient of
(�∗, �), so in particular there is a continuous surjection Q : �∗ → X . Q−1(Y ) is
clopen in�∗, and therefore homeomorphic to�∗. ThusQ �Q−1(Y ) is a continuous
surjection from (a copy of) �∗ to Y . �
Observe that a compact Hausdorff spaceX is connected if and only if the dynam-
ical system (X, id) is weakly incompressible. Thus Theorem 4.1 and the following
proposition immediately imply the Dow–Hart theorem:

Proposition 5.3. If (X, id) is a quotient of (�∗, �) then X is a continuous image
of H∗.

Proof. Suppose (X, id) is a quotient of (�∗, �), and assume that X ⊆ [0, 1]
 for
some 
. By Theorem 4.1 and the second part of Lemma 3.5, there is a sequence
〈xn : n < �〉 of points in [0, 1]
 that is eventually compliant with every nice open
cover of X .
Define a map q : H→ [0, 1]
 by sending n to xn for n ∈ �, and then extending q
linearly to the rest of H. This function on H induces a map Q : H∗ → [0, 1]
, and
we claim Q is a continuous surjection from H∗ to X .
Q is continuous by definition. We see that Q(H∗) ⊇ X by considering those
elements of H∗ that are supported on the integers. It remains to show Q(H∗) ⊆ X .
LetW be anopen set containingX and letU be a nice open coverwith⋃U ⊆W . Let
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V be a star refinement of a star refinement of U . Because 〈xn : n < �〉 is eventually
compliant with V , there is some m such that for all n ≥ m, xn+1 ∈ V�(V�(xn)).
By our choice of V , there is some U ∈ U with xn, xn+1 ∈ U . As every basic open
subset of [0, 1]
 is convex, q(r) ∈ U for all r ∈ [xn, xn+1]. Thus q(r) ∈ W for
every r ∈ [m,∞), which implies Q(H∗) ⊆ W . SinceW was an arbitrary open set
containing X , Q(H∗) ⊆ X . �
We end this subsection with a third corollary of Theorem 4.1, articulating a
seemingly newuniversal property of (�∗, �).Roughly, it states that any small enough
dynamical system can be obtained from (�∗, �) by first taking a subsystem and then
taking a quotient.

Proposition 5.4. Let (X,f) be any dynamical system with the weight of X at
most ℵ1. There is a closed, G
 , shift-invariant subset K of �∗ such that (X,f) is a
quotient of (K, �).

Proof. We begin with a slightly stronger version of Lemma 5.1:

Claim. Let (X,f) be a dynamical system, with X of weight κ. There is a weakly
incompressible dynamical system (Y, g) such that X ⊆ Y and f = g �X . Moreover,
X is G
 in Y and Y has weight ℵ0 · κ.
Proof of claim. Let (X,f) be a dynamical system. Let Y be the one-point
compactification of X × (Z ∪ {∞}), where Z ∪ {∞} is given the usual topol-
ogy, with the positive integers converging to ∞. Let ∗ denote the unique point of
Y − X × (Z ∪ {∞}). Define g : Y → Y so that g(∗) = ∗ and otherwise

g(x, z) =

⎧⎪⎨
⎪⎩
(f(x), z + 2) if z ∈ Z and z is even,
(f(x), z − 2) if z ∈ Z and z is odd,
(f(x),∞) if z =∞.

We omit the proof that this dynamical system is chain transitive: it is just as in
the proof of Lemma 5.1, but with a few extra cases to check. Identifying X with
X × {∞}, it is clear that X is G
 in Y and that f = g �X . �
Returning to the proof of the proposition, let (X,f) be a dynamical systemwhere
the weight of X is at most ℵ1. Let (Y, g) be as in the claim. By Theorem 4.1, there is
a quotient mapping Q from (�∗, �) to (Y, g). Clearly K = Q−1(X ) is a closed, G
 ,
shift-invariant subset of �∗, andQ �K provides a quotient mapping from (K, �) to
(X,f). �
5.2. The first and fourth heads of ��. If we assume the Continuum Hypothesis,
then Theorem 4.1 gives a complete internal characterization of the quotients of
(�∗, �):

Theorem 5.5. Assuming CH, the following are equivalent:

(1) (X,f) is a quotient of (�∗, �).
(2) X has weight at most c and f is weakly incompressible.
(3) X is a continuous image of �∗ and f is weakly incompressible.

Proof. (1) ⇔ (2) is a straightforward consequence of Theorem 4.1 and CH.
(2)⇔ (3) is a straightforward consequence of Parovičenko’s characterization of the
continuous images of �∗ under CH. �
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Of the six implications this theorem entails, three are provable from ZFC:
(1) ⇒ (2), (1) ⇒ (3), and (3) ⇒ (2). We will now consider the other three,
and show that each of them is independent of ZFC.
Lemma 5.1 shows that (2) ⇒ (3) if and only if every compact Hausdorff space
of weight ≤ c is a continuous image of �∗. This is a purely topological question
about �∗ that is considered elsewhere, e.g., in [18]. It is known to be independent:
for example, a result of Kunen states that �2 + 1 is not a continuous image of �∗ in
the Cohen model.
Because (1) ⇒ (3) is a theorem of ZFC, the previous paragraph also shows that
(2)⇒ (1) is independent.
The independence of (3) ⇒ (1) requires a different argument. Consider the
following corollary to Theorem 5.5:

Corollary 5.6. Assuming CH, (�∗, �−1) is a quotient of (�∗, �).

Proof. The proof is immediate from Theorem 5.5 and the following observation:
If X is a compact Hausdorff space and f : X → X is a homeomorphism, then f is
weakly incompressible if and only if f−1 is.
This is easy to see using chain transitivity: (X,f) has a U-chain from a to b if
and only if (X,f−1) has a U-chain from b to a. �
To show that (3)⇒ (1) is independent, it is enough to prove that the conclusion
of Corollary 5.6 is independent.

Theorem 5.7. Assuming OCA+MA, (�∗, �−1) is not a quotient of (�∗, �).

Recall that a continuous function F : �∗ → �∗ is trivial if there is a function
f : � → �� such that F = �f ��∗. Similarly, given A ⊆ �, F : A∗ → �∗ is trivial
if it is induced by a functionA→ ��. To prove Theorem 5.7, we use a deep theorem
greatly restricting the self-maps of �∗ under OCA+MA. A strong version of the
result is proved by Farah in [11], but we need only a special case, already implicit
in the work of Velickovic [25], with precursors in the work of Shelah-Steprāns [24]
and Shelah [23].

Theorem 5.8 (Farah, et al.). AssumingOCA+MA, for any continuousF : �∗ →
�∗ there is some A ⊆ � such that F �A∗ is trivial and F (�∗ − A∗) is nowhere dense.

Proof of Theorem 5.7. Suppose Q is a quotient mapping from (�∗, �) to
(�∗, �−1). Using Theorem 5.8, fixA ⊆ � such thatQ �A∗ is trivial andQ(�∗−A∗)
is nowhere dense. Also, fix q : A→ �� such that Q �A∗ = �q �A∗.
Because Q is surjective, A must be infinite.
Let X = {a ∈ A : q(a) ∈ �}. Observe that Q � X remains trivial and that
Q(�∗ − X ∗) remains nowhere dense. Thus, replacing A with X if necessary, we
may (and do) assume that q(a) ∈ � for all a ∈ A.
If q is not finite-to-one on A, there is an infinite set Y ⊆ A and some n ∈ �
with q(Y ) = n, but then Q(p) = n for any p ∈ Y ∗, a contradiction. Thus q is
finite-to-one on A.
SupposeA is not co-finite. ThenB = {a ∈ A : a + 1 /∈ A} is infinite. Observe that
�−1 ◦Q(B∗) = �−1(q(B)∗) = (q(B)−1)∗. This set is clopen and, in particular, has
nonempty interior. Thus there is some p ∈ B∗ such that �−1 ◦Q(p) /∈ Q(�∗−A∗),
since the latter is nowhere dense. However,

https://doi.org/10.1017/jsl.2018.11 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.11


492 WILL BRIAN

Q ◦ �(p) ∈ Q ◦ �(B∗) = Q((B + 1)∗) ⊆ Q(�∗ − A∗),

so that �−1 ◦Q(p) 	= Q ◦ �(p), a contradiction. Thus A is co-finite.
To summarize: Q = �q ��∗ for some finite-to-one function q defined on a co-
finite subset of �. Changing q on a finite set does not change Q = �q ��∗, so we
may assume Q is induced by a finite-to-one function q : � → �.
We now construct an infinite sequence of natural numbers as follows. Pick b0 ∈ �
arbitrarily. Assuming b0, b1, . . . , bn are given, there are co-finitely many b ∈ �
satisfying

(1) b 	= b0, b1, . . . , bn,
(2) q(b)− 1 	= q(b0 + 1), q(b1 + 1), . . . , q(bn + 1), and
(3) q(b + 1) 	= q(b0)− 1, q(b1)− 1, . . . , q(bn)− 1.
This follows from the fact that q is finite-to-one. Also, there are infinitely many
b ∈ � satisfying
(4) q(b)− 1 	= q(b + 1)
since otherwise q would be an order-reversing map on �, which is absurd. Thus,
given b0, b1, . . . , bn, we may choose some bn+1 ∈ � satisfying (1)− (4).
Let B = {bn : n < �}. B is infinite by (1), so B∗ 	= ∅. By (2) - (4), we have
q(B + 1) ∩ (q(B)− 1) = ∅. However, observe that

Q ◦ �(B∗) = Q((B + 1)∗) = q(B + 1)∗,

�−1 ◦Q(B∗) = �−1(q(B)∗) = (q(B)− 1)∗.
Hence Q ◦ �(B∗) ∩ �−1 ◦Q(B∗) = ∅. This contradicts our assumption that Q is a
quotient mapping from (�∗, �) to (�∗, �−1), which would imply that these two sets
should be equal instead of disjoint. �
We do not knowwhether Corollary 5.6 can be improved from a quotient mapping
to an isomorphism:

Question 5.9. Is it consistent that there is a homeomorphismH : �∗ → �∗ with
H ◦ � = �−1 ◦H ?
We point out that if the answer to this question is yes, then it seems likely that CH
will imply the existence of such an isomorphism already (see Section 5.1 of [12]).
See [13] for some partial results.

5.3. An extension usingMartin’s Axiom. Our final theorem extends Theorem 4.1
to cardinals κ < p.

Theorem 5.10. Let (X,f) be a dynamical system with the weight of X less than
p. Then (X,f) is a quotient of (�∗, �) if and only if f is weakly incompressible.
Proof. Let (X,f) be a weakly incompressible dynamical system, and let κ be the
weight of X . Suppose κ < p. By a theorem of M. Bell in [3], this is equivalent to the
assumption MAκ(�-centered), Martin’s Axiom at κ for �-centered posets. We may
(and do) assume that X ⊆ [0, 1]κ.
We will use MAκ(�-centered) to construct a sequence of points in [0, 1]κ that is
eventually compliant with every nice open cover of X .
Recall that [0, 1]κ is separable, and fix a countable dense D ⊆ [0, 1]κ.
Fix x ∈ X , and without loss of generality suppose x,f(x) ∈ D. Let P be the
set of all pairs 〈s,U〉, such that s is a sequence of distinct points in D with final

https://doi.org/10.1017/jsl.2018.11 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.11


ABSTRACT �-LIMIT SETS 493

element x, andU is a nice open cover ofX . Order P by defining 〈t,V〉 ≤ 〈s,U〉 if and
only if

• V refines U .
• s is an initial segment of t.
• if t 	= s , then t − s is a U-compliant sequence of points in D ∩⋃U , beginning
at f(x), ending at x, and meeting every U ∈ U .

Ultimately, we will use MAκ(�-centered) to obtain a suitably generic G ⊆ P, and
then � =

⋃ {s : 〈s,U〉 ∈ G} will be the desired sequence of points. Roughly, a
condition 〈s,U〉 is a promise that s is an initial segment of �, and that the part of �
after s is U-compliant.
Because D is countable, there are only countably many possibilities for the first
coordinate of a condition in P. Thus to show that P is �-centered, it suffices to
show that any two conditions 〈s,U〉, 〈s,V〉 with the same first coordinate s have a
common extension. But this is obvious: takingW to be any nice open cover refining
both U and V , 〈s,W〉 is as desired.
For each nice open cover U of X , define DU = {〈s,V〉 ∈ P : V refines U} . We
claim that DU is dense in P. To see this, fix a nice open cover U of X and let
〈s,V〉 ∈ P. By the previous paragraph, 〈s,V〉 and 〈s,U〉 have a common extension.
This common extension is in DU and below 〈s,V〉, as desired. So DU is dense in P.
For each n ∈ N, define En = {〈s,V〉 ∈ P : |s | ≥ n}. We claim that each En is
dense in P. To see this, let 〈s,U〉 ∈ P. Using the chain transitivity of X , we may
find a U-compliant sequence t of points in D ∩⋃U , beginning at f(x), ending at
x, and meeting every U ∈ U . Then 〈s�t,U〉 extends 〈s,U〉 and has a longer first
coordinate. Repeating this process if needed, we may find extensions of 〈s,U〉 with
arbitrarily long first coordinates. Thus each En is dense in P.
By MAκ(�-centered), there is a filter G on P meeting all the DU and all the En.
Then � =

⋃ {s : 〈s,U〉 ∈ G} is an infinite sequence (infinite because G ∩ En 	= ∅),
and for any nice open cover U of X , � is eventually compliant with U (because
G ∩DU 	= ∅). Applying Lemma 3.5 completes the proof. �

We end with a question linking weakly incompressible dynamical systems with
the Katowice problem:

Question 5.11. Is it consistent to have a weakly incompressible autohomeomor-
phism of �∗

1 ?

If F were such a map, then F could not be trivial on any set A∗ with A co-
countable. It is consistent that no such map exists, but it is not currently known
whether the opposite is also consistent. See [16] for some discussion of this problem
and related results. We leave it as an exercise to show that there is no weakly
incompressible dynamical system on κ∗ for any κ ≥ �2.
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[8] E. K. van Douwen and T. C. Przymusiński, Separable extensions of first-countable spaces.

Fundamenta Mathematicae, vol. 111 (1980), pp. 147–158.
[9] A. Dow and K. P. Hart A universal continuum of weight ℵ. Transactions of the American

Mathematical Society, vol. 353 (2000), no. 5, pp. 1819–1838.
[10] R. Engelking, General Topology, revised ed., Sigma Series in Pure Mathematics, vol. 6,

Heldermann, Berlin, 1989.
[11] I. Farah, Analytic quotients: Theory of lifting for quotients over analytic ideals on the integers.

Memoirs of the American Mathematical Society, vol. 148 (2000), no. 702, pp. 1–177.
[12] , The fourth head of �N, Open Problems in Topology II (E. Pearl, editor), Elsevier,

Amsterdam, 2007, pp. 145–150.
[13] S. Geschke, The shift on P(�)/fin, unpublished manuscript. Available at

www.math.uni-hamburg.de/home/geschke/publikationen.html.en.
[14] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, second ed., De
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