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We study the weak interaction between a pair of well-separated coherent structures
in possibly non-local lattice differential equations. In particular, we prove that if a
lattice differential equation in one space dimension has asymptotically stable (in the
sense of a paper by Chow et al .) travelling-wave solutions whose profiles approach
limiting equilibria exponentially fast, then the system admits solutions which are
nearly the linear superposition of two such travelling waves moving in opposite
directions away from one another. Moreover, such solutions are themselves
asymptotically stable. This result is meant to complement analytic or numeric
studies into interactions of such pulses over finite times which might result in the
scenario treated here. Since the travelling waves are moving in opposite directions,
these solutions are not shift-periodic and hence the framework of Chow et al . does
not apply. We overcome this difficulty by embedding the original system in a larger
one wherein the linear part can be written as a shift-periodic piece plus another piece
which, although it is non-autonomous and large, has certain properties which allow
us to treat it as if it were a small perturbation.

1. Introduction

1.1. The system, hypotheses and main results

This paper is concerned with weak interactions between coherent objects in lattice
differential equations. These interactions include pulse–pulse interactions, the glu-
ing of fronts and backs to make a wide pulse, front stacking and the interaction
between a pulse and a front.

We study the equation

Ẋ = LX + G(X) =: F (X), X ∈ X := �∞(Z, Rn), (1.1)

where we use ‖ · ‖ to denote the norm for this space, L ∈ L(X ,X ) annihilates
constant functions and G : X → X includes nonlinear terms which may be non-
local (see (H0)).

∗Present address: Olin College, Olin Way, Needham, MA 02492, USA (aaron.hoffman@olin.
edu).

77
c© 2011 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210509001498 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001498


78 A. Hoffman and J. D. Wright

We say that a solution X of (1.1) is a travelling wave if it is of the form Xj(t) =
φ(j − ct) for some continuous function φ which has finite limits at ±∞,

φ(−∞) = α, φ(∞) = ω.

In the case where α = ω, φ is called a pulse, whereas, in the case where α �= ω, we
call φ a front.

We are interested in proving the existence and stability of solutions which are
roughly the linear superposition of two separated travelling waves which move with
different speeds: in particular, when the waves are separating apart from one another
as t increases, a situation we call an exit. Thus, we assume that (1.1) admits a pair
of stable travelling-wave solutions φ− and φ+, each of which is either a pulse or a
front. We denote their wave speeds and asymptotic values with ± subscripts. We
assume that c− < c+ and that φ+ is ‘located’ to the right of φ−. Therefore, we
require ω− = α+. Since L annihilates constant sequences, we can take α+ = 0
without loss of generality. To see this, let X̃ := X − α and note that

˙̃X = LX̃ + G̃(X̃),

where G̃(X) := G(X + α).
Before we can state our main theorem we need to make precise the hypotheses

that we impose. In what follows,

Xb :=
{

X ∈ �∞
∣∣∣ ‖X‖b := sup

j∈Z

|(1 + ebj)Xj | < ∞
}

,

the space of functions which decay exponentially fast as j (or −j, depending on the
sign of b) goes to infinity.

1.1.1. Standing assumptions

(H0) (Continuity of G.) G : X →X is of the form G(X)n =g(N1(X)n, . . . , NJ(X)n),
where g ∈ C1,1

loc (RnJ , Rn) with g(0) = 0 and Ni ∈ L(Xβ) for all β ∈ [−b, b]
and furthermore commutes with the shift.

(H1) (Existence of travelling waves.) There is a b > 0 such that the lattice dif-
ferential equation (LDE) (1.1) admits travelling-wave solutions φ− ∈ Xb and
φ+ ∈ X−b with speeds c− < c+ and ω− = α+. We further assume that
(φ±)′ ∈ X∓b.

(H2) (Spectral stability of travelling waves.) Let Φ±(t, t0) denote the time t map
for the linear equation Ẏ = (L + G′(φ±))Y , let S denote the shift on X ,
(Sx)j = xj−1 and let A± := S−1Φ±(1/c±, 0). Then one is a simple eigenvalue
of A± (with eigenfunction (φ±)′) and σ(A±)\{1} is contained in the open unit
disc. Here the spectrum is computed regarding A± as an operator on X∓b.

Remark 1.1. Typically, the conjugated operator A±
b = (1 + ebj)A±[·/(1 + ebj)] is

a small perturbation of A± so long as b is chosen sufficiently small. Thus, the spec-
trum of Ab

± in X coincides with that of A± in Xb. Hence, (H2) may be obtained in
examples as a consequence of the corresponding stability criterion with X replac-
ing Xb.
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Note that in [8], (H1) and (H2) are shown to be sufficient to conclude the asymp-
totic stability of the travelling wave. In § 1.3 we further discuss these hypotheses
as they relate to a number of different systems of interest. We now state our main
theorem.

Theorem 1.2. If c− < c+, ω− = α+ and (H0)–(H2) are satisfied, then there exists
a positive constant a such that, for each ε > 0, there exist positive constants C, δ0,
and τ∗ such that, if

‖Xinit − φ+(· − τ+) − φ−(· − τ−)‖ � δ < δ0

with

τ+ − τ− � τ∗,

then there are real constants γ+
∗ and γ−

∗ in (−ε, ε) such that the solution X of (1.1)
with initial condition Xinit satisfies

eat‖X(t)−φ+(·− c+t− τ+ − γ+
∗ )−φ−(·− c−t− τ− − γ−

∗ )‖ � C(e−aτ∗ +
√

δ) (1.2)

for all t � 0.

We can rephrase this theorem in terms of the ‘exit manifold’ as follows:

Mexit := {φ+(· − τ+) + φ−(· − τ−) : τ− − τ+ � τ∗}.

Mexit is a smooth two-dimensional submanifold of �∞ (see proposition 3.4 of [8])
and consists of all linear superpositions of two well-separated travelling waves. It
is not an invariant manifold for (1.1) but our main theorem implies that is a local
attractor for the dynamics. We therefore have the following corollary.

Corollary 1.3. If dist�∞(Xinit,Mexit) � δ0, then the solution X(t) of (1.1) with
X(0) = Xinit satisfies

dist
�∞

(X(t),Mexit) � Ce−at

Remark 1.4. There are numerous results concerning the existence and stability
of multi-pulse solutions for reaction–diffusion partial differential equations (PDEs).
For instance, [1, 10, 11, 18, 27] deal with the existence and stability of multi-pulse
standing solutions, [6,12–15,26,31] deal with counter-propagating fronts and pulses
in scalar systems using comparison principle, [9, 32], handle long distance weak
interactions between standing pulses, [5,28,30] deal with exit or shooting solutions
to systems of reaction diffusion equations; the methods used there are most simi-
lar to ours. Additionally, multi-pulse solutions in a Hamiltonian lattice have been
studied by Hoffman in [19,20].

The remainder of this paper is organized as follows. In § 1.2 we outline our
approach to the proof of theorem 1.2. In § 1.3 we discuss some examples of (1.1).
Section 2 decomposes the problem into stable and centre eigenspaces and we make
estimates on this decomposition in § 3. Finally, § 4 contains the proof of theorem 1.2.
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1.2. General strategy

We seek a solution of the form xj(t) = φ−(j − c−t) + φ+(j − c+t) + w, where w
goes to zero in �∞ as t → ∞. Note that, for large values of t, the sum φ−(j −c−t)+
φ+(j − c+t) is close to zero for compact sets of spatial indices j. To that end, we
embed (1.1) into the following system:

Ẋ− = LX− + G(X−) + H−(t){G(X− + X+) − G(X−) − G(X+)}
=: F−(X−, X+),

Ẋ+ = LX+ + G(X+) + H+(t){G(X− + X+) − G(X−) − G(X+)}
=: F+(X−, X+).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.3)

Here H− and H+ are localization operators defined as follows. Let h(x) = 0
for x � 0 and h(x) = 1 for x > 0 denote the usual Heaviside function, and let
c̄ = (c− + c+)/2. Define the operator H+(t) which acts on spaces of sequences by
(H+(t)X)j = h(j− c̄t)Xj and H−(t) = Id−H+(t). At time t, these operators local-
ize sequences to the right and left half-lattices which are centred ‘halfway between’
φ− and φ+.

Note that if (X−, X+) solves (1.3), then X = X− + X+ solves (1.1). Thus, if a
solution (X−, X+) solves (1.3) with X− = φ− + w− and X+ = φ+ + w+, where
w±(t) are decaying to zero, then X = X− + X+ is of the form that we seek with
w = w+ + w−. Equation (1.3) is a perturbation of two copies of (1.1). However,
the coupling terms H±(t){G(X− + X+) − G(X−) − G(X+)} are not small, at
least when viewed on X . To wit, an application of the mean-value theorem shows
(roughly speaking) that we have

|H−(t){G(X− + X+) − G(X−) − G(X+)}|
� CH−(t)|X−||X+|
� CH−(t)(|φ−||φ+| + |φ−||w+| + |φ+||w−| + |w−||w+|).

H−(t) localizes functions to the left half-lattice, where φ+ ∈ X−b is exponentially
small. Thus, H−|φ+| is exponentially small and we can handle two of the four
terms above. The term |w−||w+| is quadratic, and thus can also be made small.
However, H−(t)|φ−| is O(1) and thus the term H−(t)|φ−||w+| requires care. If w+

is exponentially localized to the right half-lattice, then H−(t)|w+| will be small just
as H−|φ+| was. (We make this heuristic argument rigorous in proposition 3.1.)

Therefore, we will require this localization. For the remainder of the paper we
regard (1.3) (after a series of non-trivial changes of coordinates) as an evolution
equation in the phase space Y := Xb × X−b. At first blush, this may seem to
shrink the size of the space of the initial data that we allow for equation (1.1).
However, for any X(t0) ∈ X , we have H±(t0)X(t0) ∈ X∓b. Therefore, we set
X±(t0) := H±(t0)X(t0) so that initially X− and X+ are supported on the left and
right half-lattices, respectively. Additionally, for any b, Xb ⊂ X . Thus, the study of
(1.3) in Y contains the dynamics of (1.1) in X . (Note that, for t > t0, in general we
will have X−(t) �= H−(t)X(t) and X+(t) �= H+(t)X(t).)
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1.3. Examples

Note that the class of models (1.1) which satisfy (H0) is quite general. Namely,
any system of lattice differential equations satisfies (H0) so long as very mild restric-
tions on the nonlinear piece of the non-local coupling are satisfied. The class of LDEs
to which theorem 1.2 can be applied is much smaller. In many cases (H1) and (H2)
are known to be false. Examples are furnished by soliton equations, conservation
laws and monostable reaction diffusion equations, each of which admits travelling
waves with two neutral directions, violating (H2).

The kind of equations that we have in mind are spatial discretizations of possibly
non-local reaction–diffusion equations. These equations are dissipative, and thus
(H2) is not immediately ruled out. However, establishing (H1) and (H2) is highly
non-trivial. To demonstrate this, consider the simple scalar equation

u̇n =
1
h2 (un+1 + un−1 − 2un) − f(un), (1.4)

which arises as a spatial discretization of the PDE

ut = uxx − f(u). (1.5)

Here f is the derivative of a double-well potential, e.g. f(u) = u(u − 1)(u − a) for
some a ∈ (0, 1). Upon substituting the travelling-wave ansatz un(t) = φ(n− ct), we
obtain the mixed-type equation

−cφ′(ξ) = φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ) − f(φ(ξ)), (1.6)

which is ill-posed as a dynamical system on the infinite-dimensional phase space
C([−1, 1], R). Comparing it with −cφ′ = φ′′ − f(φ), which arises as a wave-profile
equation for the PDE (1.5), we can see why the existence and stability theory
for (1.4) has lagged behind that for (1.5). Nevertheless, both (H1) and (H2) have
been established for (1.4). The existence theory (H1) can be based upon either
topological fixed-point theorems [33] or comparison principles [16]. Mallet-Paret
[25] developed the Fredholm theory of differential-difference operators and built a
continuation argument on this theory [24] which establishes (H1) for a more general
subclass of (1.1) than (1.4) under the mild assumptions of finite interaction length,
spatial homogeneity and ellipticity (see [24] for details). The assumptions of finite
interaction length and spatial homogeneity have been weakened [2, 7].

With regard to stability theory, it is usually the case that the essential spectrum
can be easily computed, e.g. via Fourier transform. However, the eigenvalue prob-
lem is of the form (1.6) with an additional spectral parameter. When comparison
principles are available, this problem is tractable. When comparison principles are
not available, little is known.

We should note that comparison principles are typically available in scalar equa-
tions of reaction–diffusion type and can be used to construct a stable monotone
front. Note also that if (c, φ(ξ)) is a solution of equation (1.6), then (−c, φ(−ξ)) is
also a solution. Thus, having established the existence of one front (c+, φ+) with
c+ > 0, we may take c− = −c+ and φ−(ξ) = φ+(−ξ). This situation, sometimes
referred to as ‘gluing a front and back together’ is typical for the kinds of scalar
equations with comparison principles for which (H1) and (H2) have been estab-
lished.
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We now mention some examples for which a comparison principle has recently
been leveraged to obtain stability. Consider the following convolution model for
phase transitions:

u̇n =
∑
k∈Z

Jkun−k − un + f(uk)

with f bistable. The existence of travelling fronts was established in [2] under an
ellipticity assumption on the convolution kernel J , while asymptotic stability was
established in [23]. Chen et al . studied

u̇n =
∑

|k−n|�k0

an,kun+k + f(uk)

in the case where the kernel an,k is periodic in n and elliptic, and the nonlinearity
f is of bistable type [7]. In both of these examples, the authors do not verify (H2)
directly. However, their results imply (H2).

One example which arises in applications is the backwards reaction–diffusion
equation

ẇn = − 1
h2 (wn+1 + wn−1 − 2wn) + f(wn),

which Vainchtien and Van Vleck [29] derived in the study of martensitic phase
transitions. Here the nonlinearity f is bistable. After making the change of variables
zn = (−1)nwn, this model falls under the general framework studied in [7]; hence
(H1) and (H2) are proven for this model.

Another example which arises in applications is the discrete Fitzhugh–Nagumo
(dFHN) equation

u̇n = d(un+1 + un−1 − 2un) + un(un − 1)(un − a) − vn, (1.7)
v̇n = ε(un − bvn). (1.8)

Although the dFHN equation does not admit a comparison principle, it is a singular
perturbation of (1.4) for which (H1) and (H2) have been established. Geometric
singular perturbation theory has recently been extended to mixed-type equations,
where it has been used to establish (H1) for the dFHN equation [21].

Another situation for which results exist is front-stacking. In any of the above
examples, we can replace the bistable nonlinearity f with a tristable nonlinearity,
e.g. g(u) = −u(u + 1)(u − 1)(u − a1)(u − a2) with −1 < a1 < 0 < a2 < 1. We can
restrict attention to u ∈ [−1, 0] and apply the above results for the bistable case
to establish the existence and stability of a monotone front (c−, φ−) connecting −1
to 0. Similarly, we can restrict attention to u ∈ [0, 1] to obtain a second monotone
front (c+, φ+) connecting 0 to 1. In this case theorem 1.2 establishes the existence
of a monotone solution connecting −1 to 1 with a long plateau at 0 which grows
longer over time.

One situation to which our results do not apply is front stacking in conserva-
tion laws. This is because, in conservation laws, there is a line of equilibria at the
constant solutions which generates an additional neutral eigenvalue, violating (H2).
Stability for fronts in semi-discrete conservations laws was established in [4]. How-
ever, the presence of an additional neutral mode complicates the analysis both for

https://doi.org/10.1017/S0308210509001498 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001498


Exit manifolds for lattice differential equations 83

the stability of a single wave and for the interaction. This lies beyond the scope of
this paper.

We remark, finally, that stability of pulses is generally more challenging than
stability of monotone fronts in PDEs. This is because monotone tools such as the
Krein–Rutman theorem are not available to control the location of the discrete spec-
trum. Instead, the spectrum is usually controlled via Evans function methods (see,
for example, [22]). The Evans function is built on top of exponential dichotomies
for the spatial dynamical problem (see, for example, (1.6)) and requires finite-
dimensional unstable manifolds. In the continuum case (1.6) becomes an ordinary
differential equation (ODE) and this is not a problem. Exponential dichotomies have
been constructed for mixed-type equations such as (1.6) (see, for example, [17]).
However, the unstable manifolds are typically infinite dimensional. The develop-
ment of techniques for establishing stability of travelling waves in lattice equations
is an area of active research [3].

2. CMS-type decomposition to stable and centre directions

In the study of stability of travelling waves for PDEs, it is standard to change
coordinates to a moving frame in which the travelling wave becomes an equilib-
rium. Lattices do not admit such a moving frame. Nevertheless, travelling waves on
lattices are shift-periodic, that is, φ(n − cTc) = φ(n − 1) when Tc = 1/c. The sta-
bility theory for travelling waves on lattices developed in [8] is based on a Floquet
theory for the time Tc = 1/c map. A key step in the development of this Floquet
theory is the construction of local coordinates which separate the neutral mode
associated with translations of the travelling wave from the rest of the phase space.
The purpose of this section is to develop a similar decomposition for the situation
when two travelling waves are present.

Let

p±(t) := φ±(· − c±t) ∈ X∓b and V±
0 = {p±(t) : t ∈ R} ⊂ X∓b.

Lemma 4.1 of [8] shows that there exist Z± ∈ Cr(R, GL(X∓b)) with the following
properties, which hold for all θ ∈ R:

• Z±(0) = Id;

• Z±(θ + 1/c±) = SZ±(θ);

• Z±(θ)ṗ±(0) = ṗ±(θ).

Note that, in [8], the authors work in spaces lp, which have norms that are invariant
under the shift S, and thus they can conclude (by the second property) that the
operator norm of Z±(θ) is bounded independent of θ. Our spaces Xb are not shift-
independent and thus the operator norm of Z±(θ) may be large if θ is large.

Now fix codimension-one subspaces Es
± ⊂ X∓b which do not contain ṗ± and

define Φ± : R × Es
± → l∞ as

Φ±(θ±, y±) = p±(θ±) + Z±(θ±)y±.

Proposition 4.2 of [8] ensures that (θ±, y±) can be used as local coordinates nearby
V±

0 , where the chart is given by Φ±.
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Letting X±(t) = Φ±(θ±(t), y±(t)), we now derive equations of motion for θ± and
y±. We carry the details out for the minus component. Differentiating X± with
respect to time and using (1.3) gives

Z−(θ−){[ṗ−(0) + q−(θ−)y−] ˙θ− + ẏ−} = F−(X−, X+),

where the operator-valued function q− is given by

q−(θ) := Z−(θ)−1DZ−(θ).

Note that q−(θ + 1/c−) = q−(θ) and thus the operator norm of q− is bounded
uniformly in θ.

After multiplying both sides by Z−(θ−)−1, apply the functional ν− ∈ X ∗
b , defined

so as to annihilate Es
± (and thus ẏ−) and which maps ṗ−(0) to one. This yields

θ̇− = Θ−(θ−, y−, θ+, y+)

:=
1

1 + ν−(q−(θ−)y−)
ν−(Z−(θ)−1F−(X−, X+)). (2.1)

For ẏ−, we can solve

ẏ− = Y−(θ−, y−, θ+, y+)

:= Z−(θ−)−1F−(X−, X+) − [ṗ(0) + q−(θ−)y−]Θ−(θ−, y−, θ+, y+)

=
[

Id −
[

ṗ(0) + q(θ−)y−

1 + ν−(q−(θ−)y−)

]
ν(·)

]
Z−(θ−)−1F−(X−, X+). (2.2)

Similarly, we choose ν+ ∈ X ∗
−b, which annihilates ẏ+ and maps ṗ+(0) to one to

derive similar equations for θ+ and y+.
Define γ±(t) := θ±(t) − t and

Γ−(γ−, y−, γ+, y+, t)

:= Θ−(γ− + t, y−, γ+ + t, y+) − 1

= (1 + ν−(q(θ−)y−))−1

× [ν−Z−(θ−)−1F−(X−, X+) (2.3)

− (1 + ν−(q(θ−)y−))ν−Z−(θ−)−1F−(p−(θ−), 0)]

= [ν−(Z−(θ−)−1[F−(X−, X+) − F−(p−(θ−), 0)]) − ν−(q−(θ−)y−)]

× (1 + ν−(q(θ−)y−))−1, (2.4)

and similarly for Γ+. In the second line we have used the fact that

1 = ν−(ṗ−(0)) = ν−(Z(θ−)−1ṗ−(θ−)) = ν−(Z(θ−)−1F−(p−(θ−), 0)).

Therefore, (1.3) becomes

ẏ− = Y−(θ−, y−, θ+, y+), ẏ+ = Y+(θ−, y−, θ+, y+),

γ̇− = Γ−(γ−, y−, γ+, y+, t), γ̇+ = Γ+(γ−, y−, γ+, y+, t).

}
(2.5)
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Now we let
Y−0(γ, y, t) = Y−(t + γ, y, 0, 0)

and

Y−1(γ−, y−, γ+, y+, t) = Y−(t + γ−, y−, t + γ+, y+) − Y−0(γ−, y−, t),

and similarly for Y+. Let A±(t) := DyY±0(t, 0). Then (2.5) becomes

ẏ− = A−(t)y− + {(A−(t + γ−) − A−(t))y−}
+ {Y−0(γ−, y−, t) − DyY−0(γ−, 0, t)y−} + Y−1(γ−, y−, γ+, y+, t),

ẏ+ = A+(t)y+ + {(A+(t + γ+) − A+(t))y+}
+ {Y+0(γ+, y+, t) − DyY+0(γ+, 0, t)y+} + Y+1(γ−, y−, γ+, y+, t),

γ̇− = Γ−(γ−, y−, γ+, y+, t),

γ̇+ = Γ+(γ−, y−, γ+, y+, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

This system is equivalent to (1.3) in a neighbourhood of V−
0 × V+

0 .

3. Estimates for the right-hand side

In this section we prove a series of useful estimates for the right-hand side of (2.6).
The most important term is Z−(θ−)−1[F−(X−, X+) − F−(X−, 0)], which appears
in both Y−1 and Γ−.

Proposition 3.1. We have

‖Z−(θ−)−1[(F−(X−, X+) − F−(X−, 0))]‖Xb

� C(1 + |γ−|)e|c+γ+|

1 + eb(c+−c−)t/2 (1 + ‖y−‖Xb
+ ‖y+‖X−b

+ ‖y+‖X−b
‖y−‖Xb

). (3.1)

Proof. We compute

Z−(θ−)−1[(F−(X−, X+) − F−(X−, 0))]

= Z−(θ−)−1[H−(G(X− + X+) − G(X−) − G(X+))].

Note the following consequence of the mean-value theorem. Recall that G(X) is of
the form G(X)n = g((N1X)n, . . . , (NJX)n). Let x denote the vector

(N1X
+, . . . , NJX+)

and let y denote the vector

(N1X
−, . . . , NJX−).

Use the mean-value theorem to write

g(x + y) − g(x) =
∫ 1

0
Dg(x + ty)y dt and g(y) =

∫ 1

0
Dg(ty)y dt
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so that, after using the fact that Dg is locally Lipschitz, we obtain

|g(x + y) − g(x) − g(y)| =
∣∣∣∣
∫ 1

0
{Dg(x + ty) − Dg(ty)}y dt

∣∣∣∣
� C|x||y| � C

∑
i,k

|NiX
−||NkX+|, (3.2)

where the constant C may be chosen uniformly on bounded sets of x and y.
Now let �τ	 denote the greatest integer less than τ . Note that the second property

of Z± implies that

Z±(θ±) = Z±

(
�θ±c±	

c±
+ θ̃±

)
= Sm±Z±(θ̃±) (3.3)

and

Z±(θ±)−1 = Z±(θ̃±)−1S−m± ,

where m± = �θ±c±	 and θ̃ = c±θ − m± ∈ [0, 1/|c±|). Since θ̃ is restricted to lie
in a compact set and θ 
→ Z±(θ) is continuous, it follows that there is a universal
constant C such that the operator norm of Z±(θ̃) and its inverse are bounded by C.

This, together with (3.2), implies

‖Z−(θ−)−1[(F−(X−, X+) − F−(X−, 0))]‖Xb

� C
∑
i,k

‖S−m−H−{‖NiX
−||NkX+‖}‖Xb

= C
∑
i,k

‖|S−m−H−{NiX
−}||S−m−H−{NkX+}|‖Xb

� C
∑
i,k

‖|S−m−H−{NiX
−}|‖Xb

‖|S−m−H−{NkX+}|‖�∞

� C
∑
i,k

‖|S−m−H−{Nip
−(θ−)}|‖Xb

‖|S−m−H−{Nkp+(θ+)}|‖�∞

+ C
∑
i,k

‖|S−m−H−{Nip
−(θ−)}|‖Xb

‖|S−m−H−{NkZ+(θ+)y+}|‖�∞

+ C
∑
i,k

‖|S−m−H−{NiZ−(θ−)y−}|‖Xb
‖|S−m−H−{Nkp+(θ+)}|‖�∞

+ C
∑
i,k

‖|S−m−H−{NiZ−(θ−)y−}|‖Xb
‖|S−m−H−{NkZ+(θ+)y+}|‖�∞ .

(3.4)

In the second line of (3.4) we have used the fact that H−(xy) = (H−x)(H−y).
In the third line we have used the estimate ‖UV ‖Xb

� ‖U‖Xb
‖V ‖�∞ . Each of the

last four terms corresponds to one of the four terms on the right-hand side of the
estimate in the proposition.
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We first estimate the contribution from the rightmost pulse p+, which is small
because of the cut-off function H−:

‖S−m−H−Nkp+(θ+)‖�∞

= sup
n∈Z

(1 − h(n − c̄t + m−))|Nkφ+(n − c+θ+ + m−)|

� ‖Nk‖L(X−b)‖φ+‖X−b
sup
n∈Z

((1 − h(n − c̄t + m−))(1 + e−b(n−c+θ++m−))−1)

� C(1 + e−b(c̄t−c+θ+))−1 � C(1 + e−b(−(c+−c−)/2t−c+γ+))−1

� C
ec+|γ+|

1 + eb(c+−c−)/2t
.

We now estimate the contribution from y+:

‖S−m−H−NkZ+(θ+)y+‖�∞

= ‖S−m−H−NkSm+Z+(θ̃+)y+‖�∞

= sup
n∈Z

(1 − h(n − c̄t + m−))|[NkZ+(θ̃+)y+](n + m− − m+)|

� ‖Z+(θ̃+)‖L(X−b)‖Nk‖L(X−b)‖y+‖X−b

× sup
n∈Z

((1 − h(n − c̄t + m−))(1 + e−b(n+m−−m+))−1)

� C‖y+‖X−b
(1 + e−b(c̄t−m+))−1

� C‖y+‖X−b
(1 + e−b(c̄t−c+θ++θ̃+))−1

� C‖y+‖X−b

ec+|γ+|

1 + eb(c+−c−)/2t

We have used (3.3) together with the fact that S commutes with Nk.
We now estimate the contribution from the leftmost pulse p−, which is bounded,

‖S−m−H−Nip
−(θ−)‖Xb

� ‖NiS
−m−p−(θ−)‖Xb

� ‖Ni‖L(Xb)‖φ−(· − c−γ− + θ̃−)‖Xb

� C(1 + |γ−|).

Finally, the contribution from y− is

‖S−m−H−{NiZ−(θ−)y−}‖Xb
� ‖S−m−NiS

m−Z−(θ̃−)y−‖Xb

� ‖Ni‖L(Xb)‖Z−(θ̃−)‖L(Xb)‖y−‖Xb

� C‖y−‖Xb
.

In the first line we have used the pointwise bound |(H−{X})n| � |Xn| and in
the second line we have used the fact that S commutes with Ni. Arranging the
estimates for p± and y± completes the proof.

Having estimated this crucial term, we are now ready to bound the right-hand
sides of the evolution equation (2.6).
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Proposition 3.2. We have

|γ̇−| � C‖y−‖Xb
+

C(1 + |γ−|)e|c+γ+|

1 + eb(c+−c−)t/2

× (1 + ‖y−‖Xb
+ ‖y+‖X−b

+ ‖y+‖X−b
‖y−‖Xb

), (3.5)

‖ẏ− − A−(t)y−‖Xb
� C‖y−‖2

Xb
+ |γ−|‖y−‖Xb

+
C(1 + |γ−|)e|c+γ+|

1 + eb(c+−c−)t/2

× (1 + ‖y−‖Xb
+ ‖y+‖X−b

+ ‖y+‖X−b
‖y−‖Xb

). (3.6)

Proof. We first estimate

|Γ−| � C(‖Z−(θ−)−1[F−(X+, X−) − F−(X+, 0)]‖Xb

+ ‖Z−(θ−)−1[F−(X−, 0) − F−(p−, 0)]‖Xb
+ ‖y−‖Xb

).

Here we have used (2.6) together with the fact that the terms 1/(1+ν−(q−(θ−)y−))
and ‖q−(θ−)‖L(Xb) are bounded uniformly by a constant. We now estimate the term

‖Z−(θ−)−1[F−(X−, 0) − F−(p−, 0)]‖Xb

= ‖Z−(θ̃−)S−m− [F−(X−, 0) − F−(p−, 0)]‖
= ‖Z−(θ̃−)−1[F−(S−m−(p− + Sm−Z−(θ̃−)y−), 0) − F−(S−m−p−, 0)]‖Xb

� C‖y−‖Xb
.

Combining this with proposition 3.1 yields (3.5).
We compute

Y−1 =
(

1 − ṗ−(0) + q−(θ−)y−

1 + ν−(q−(θ−)y−)
ν−(·)

)
(Z−(θ−)−1[(F−(X−, X+) − F−(X−, 0))]).

Thus,

‖Y−1‖Xb
�

∥∥∥∥1 − ṗ−(0) + q−(θ−)y−

1 + ν−(q−(θ−)y−)
ν−(·)

∥∥∥∥
�∞

× ‖Z−(θ−)−1[F−(X+, X−) − F−(X+, 0)]‖Xb

� C(1 + |γ−|)e|c+γ+|

1 + eb(c+−c−)t/2 (1 + ‖y−‖Xb
+ ‖y+‖X−b

+ ‖y+‖X−b
‖y−‖Xb

).

Here we have used the fact that the operator norm of q− is bounded uniformly in
θ and the fact that ‖y−‖ can be made small to bound the first term, and we have
used proposition 3.1 to bound the second term. Since

‖(A−(t + γ−) − A−(t))y−‖Xb
� C|γ−|‖y−‖Xb

and Y−0(γ−, 0, t) ≡ 0, we also have the estimate

‖Y−0(γ±, y±, t) − DyY−0(γ±, 0, t)y−‖Xb
� C‖y−‖2

Xb
.

In light of (2.6), this yields (3.6) and hence completes the proof.
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4. Proof of theorem 1.2

Proof. Let B±(t, t0) denote the evolution operator associated to ẏ = A±(t)y. It
follows from (H2) and statement 1 of theorem 5.3 of [8] that

‖B(t, t0)‖L(Xb) � Ce−λ(t−t0)

for some C > 0, λ > 0.
After applying the Duhamel formula to the equations for y and using proposi-

tion 3.2, the equations for ẏ− in (2.6) give

‖y−(t)‖Xb

� ‖B−(t, t0)‖L(Xb)‖y−(t0)‖Xb

+
∫ t

t0

‖B−(t, s)‖L(Xb)‖ẏ−(s) − A−(s)y−(s)‖Xb
ds

� Ce−λ(t−t0)‖y−(t0)‖Xb
+ C

∫ t

t0

e−λ(t−s)

×
(

‖y−(s)‖2
Xb

+ |γ−(s)|‖y−(s)‖Xb
+

(1 + |γ−(s)|)e|c+γ+(s)|

1 + eb(c+−c−)/2s

× (1 + ‖y−(s)‖Xb
+ ‖y+(s)‖X−b

+ ‖y+(s)‖X−b
‖y−(s)‖Xb

)
)

ds.

(4.1)

Similarly, for γ−, we have

|γ−(t)| � C

∫ t

t0

(‖y−(s)‖Xb
+ |γ−(s)|‖y−(s)‖Xb

+
(1 + |γ−(s)|)e|c+γ+(s)|

1 + eb(c+−c−)/2s

× (1 + ‖y−(s)‖Xb
+ ‖y+(s)‖X−b

+ ‖y+(s)‖X−b
‖y−(s)‖Xb

)) ds. (4.2)

There are similar estimates for y+ and γ+.
Now let δ := ‖y−(t0)‖Xb

+‖y+(t0)‖X−b
and assume δ < 1. Let b∗ := b(c+−c−)/4,

let a := min{λ/4, b∗} and define

KT := sup
t0�t�T

[|γ−(t)| + |γ+(t)| + ea(t−t0)(
√

δ + e−b∗t0)−1(‖y−(t)‖Xb
+ ‖y+(t)‖X−b

)].

Thus,

‖y−(t)‖Xb
+ ‖y+(t)‖X−b

� e−a(t−t0)(δ + e−b∗t0)KT

whenever t0 � t � T . Note that Kt0 = δ/
√

δ +e−b∗t0 < 1 and that KT is increasing
with T . (This increase is continuous since our LDE is locally well posed.) Our
theorem is proven if we can show that KT is bounded uniformly for all T > t0. We
choose T so that KT � 1.
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Then (4.1) gives, for t0 � t � T ,

‖y−(t)‖Xb
� Cδe−λ(t−t0) + CK2

T (δ + e−b∗t0)
∫ t

t0

e−λ(t−s)e−as ds

+ C

∫ t

t0

e−λ(t−s) 1
1 + e2b∗s

ds

for some constant C that is independent of T , δ and t0. Here we have used the fact
that one dominates ‖y±(t)‖X∓b

and that
√

δ+e−b∗t0 dominates (
√

δ+e−b∗t0)2. Inte-
grating the exponentials and using the fact that, for sufficiently large s, 1/(1 + e2b∗s)
is well approximated by e−2b∗s, we obtain

ea(t−t0)(
√

δ + eb∗t0)−1‖y−(t)‖Xb

� C

{
δ√

δ + e−b∗t0
e−(λ−a)(t−t0) + K2

T

+
e−2b∗t0

√
δ + e−b∗t0

(e−(2b∗−a)(t−t0) + e−(λ−a)(t−t0))
}

.

We can control the right-hand side of (4.2) in much the same fashion, though
we omit the details. Taking all this together, we can show there exists C∗ > 0
(independent of T , δ and t0) so that

KT � C∗(
√

δ + K2
T + e−b∗t0). (4.3)

There exists positive constants δ0, t∗0 and 0 < K− < K+ � 1 so that if K− � K �
K+, 0 < δ < δ0 and t0 > t∗0, then

C∗(
√

δ + K2 + e−b∗t0) � 1
2K. (4.4)

Let T ∗ be the smallest time greater than t0 for which KT = K+, if such a T
exists. Otherwise, set T ∗ = +∞. Note that if T ∗ = +∞, then we are done with
the proof of theorem 1.2 (t0 in this formulation corresponds to τ∗/(c+ − c−) in
the statement of the theorem). Suppose that T ∗ < +∞. If so, then (4.3) and (4.4)
imply that

KT � 1
2KT ,

which is a contradiction. The proof is complete.

Acknowledgements

The authors would like to express their gratitude to the NSF for funding this project
under Grant nos DMS 0603589 (A.H.) and DMS 0807738 (J.D.W.). Additionally,
special thanks are due to Erik Van Vleck for suggesting this problem.

References

1 J. C. Alexander and C. K. R. T. Jones. Existence and stability of asymptotically oscillatory
double pulses. J. Reine Angew. Math. 446 (1994), 49–79.

2 P. W. Bates and A. Chmaj. A discrete convolution model for phase transitions. Arch.
Ration. Mech. Analysis 150 (1999), 281–305.

https://doi.org/10.1017/S0308210509001498 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001498


Exit manifolds for lattice differential equations 91

3 M. Beck, H. J. Hupkes, B. Sandstede and K. Zumbrun. Nonlinear stability of semidiscrete
shocks for two-sided schemes. SIAM J. Math. Analysis 42 (2010), 857–903.

4 S. Benzoni-Gavage, P. Huot and F. Rousset. Nonlinear stability of semidiscrete shock waves.
SIAM J. Math. Analysis 35 (2003), 639–707.

5 W.-J. Beyn, S. Selle and V. Thümmler. Freezing multipulses and multifronts. SIAM J.
Appl. Dyn. Syst. 7 (2008), 577–608.

6 X. Chen and J.-S. Guo. Existence and uniqueness of entire solutions for a reaction–diffusion
equation. J. Diff. Eqns 212 (2005), 62–84.

7 X. Chen, J.-S. Guo and C.-C. Wu. Traveling waves in discrete periodic media for bistable
dynamics. Arch. Ration. Mech. Analysis 189 (2008), 189–236.

8 S.-N. Chow, J. Mallet-Paret and W. Shen. Traveling waves in lattice dynamical systems.
J. Diff. Eqns 149 (1998), 248–291.

9 S.-I. Ei. The motion of weakly interacting pulses in reaction–diffusion systems. J. Dyn.
Diff. Eqns 14 (2002), 85–137.

10 J. W. Evans, N. Fenichel and J. A. Feroe. Double impulse solutions in nerve axon equations.
SIAM J. Appl. Math. 42 (1982), 219–234.

11 J. A. Feroe. Existence and stability of multiple impulse solutions of a nerve equation. SIAM
J. Appl. Math. 42 (1982), 235–246.

12 P. C. Fife. Long time behavior of solutions of bistable nonlinear diffusion equations. Arch.
Ration. Mech. Analysis 70 (1979), 31–46.

13 P. C. Fife and J. B. McLeod. The approach of solutions of nonlinear diffusion equations to
travelling front solutions. Arch. Ration. Mech. Analysis 65 (1977), 335–361.

14 J.-S. Guo and Y. Morita. Entire solutions of reaction–diffusion equations and an application
to discrete diffusive equations. Disc. Contin. Dyn. Syst. 12 (2005), 193–212.

15 Y.-J. L. Guo. Entire solutions for a discrete diffusive equation. J. Math. Analysis Appl.
347 (2008), 450–458.

16 D. Hankerson and B. Zinner. Wavefronts for a cooperative tridiagonal system of differential
equations. J. Dynam. Diff. Eqns 5 (1993), 359–373.

17 J. Härterich, B. Sandstede and A. Scheel. Exponential dichotomies for linear non-autono-
mous functional differential equations of mixed type. Indiana Univ. Math. J. 51 (2002),
1081–1109.

18 S. P. Hastings. Single and multiple pulse waves for the FitzHugh–Nagumo equations. SIAM
J. Appl. Math. 42 (1982), 247–260.

19 A. Hoffman and C. E. Wayne. Counter-propagating two-soliton solutions in the Fermi–
Pasta–Ulam lattice. Nonlinearity 21 (2008), 2911–2947.

20 A. Hoffman and C. E. Wayne. Asymptotic two-soliton solutions in the Fermi–Pasta–Ulam
model. J. Dynam. Diff. Eqns 21 (2009), 343–351.

21 H. J. Hupkes and B. Sandstede. Traveling pulses for the discrete FitzHugh–Nagumo system.
SIAM J. Dyn. Syst. Applic. 9 (2010), 827–882.

22 C. K. R. T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system.
Trans. Am. Math. Soc. 286 (1984), 431–469.

23 S. Ma and Y. Duan. Asymptotic stability of traveling waves in a discrete convolution model
for phase transitions. J. Math. Analysis Appl. 308 (2005), 240–256.

24 J. Mallet-Paret. The Fredholm alternative for functional-differential equations of mixed
type. J. Dynam. Diff. Eqns 11 (1999), 1–47.

25 J. Mallet-Paret. The global structure of traveling waves in spatially discrete dynamical
systems. J. Dynam. Diff. Eqns 11 (1999), 49–127.

26 Y. Morita and H. Ninomiya. Entire solutions with merging fronts to reaction–diffusion
equations. J. Dynam. Diff. Eqns 18 (2006), 841–861.

27 B. Sandstede. Stability of multiple-pulse solutions. Trans. Am. Math. Soc. 350 (1998),
429–472.

28 A. Scheel and J. D. Wright. Colliding dissipative pulses—the shooting manifold. J. Diff.
Eqns 245 (2008), 59–79.

29 A. Vainchtein and E. S. Van Vleck. Nucleation and propagation of phase mixtures in a
bistable chain. Phys. Rev. B79 (2009), 144123.

30 J. D. Wright. Separating dissipative pulses: the exit manifold. J. Dynam. Diff. Eqns 21
(2009), 315–328.

https://doi.org/10.1017/S0308210509001498 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001498


92 A. Hoffman and J. D. Wright

31 H. Yagisita. Backward global solutions characterizing annihilation dynamics of travelling
fronts. Publ. RIMS Kyoto 39 (2003), 117–164.

32 S. Zelik and A. Mielke. Multi-pulse evolution and space-time chaos in dissipative systems.
Mem. Am. Math. Soc. 198 (2009), no. 925.

33 B. Zinner. Existence of traveling wavefront solutions for the discrete Nagumo equation. J.
Diff. Eqns 96 (1992), 1–27.

(Issued 25 February 2011 )

https://doi.org/10.1017/S0308210509001498 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001498

