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SUMMARY
Robots are expected to be pervasive in the society in a not
too distant future where they will work extensively as
assistants of humans in various activities. With this in view,
a novel affect-sensitive architecture for human-robot coop-
eration is presented in this paper where the robot is expected
to recognize human psychological states. As a demonstra-
tion, an online heart rate variability analysis to infer the
mental stress of a human engaged in a task is presented.
This technique involves real-time heart rate monitoring,
signal processing using both Fourier Transforrn and Wavelet
Transform, and inferring the stress condition based on the
level of activation of the sympathetic and parasympathetic
nervous systems using fuzzy logic. Results from human
subject trials are presented to validate the presented
methodology. This stress detection technique is expected to
be useful in the future human-robot cooperation activities,
where the robot will recognize human stress and respond
appropriately.

KEYWORDS:  Affect recognition; Wearable computing; Heart
rate variability (HRV), Interbeat Interval (IBI); Power Spectral
Density (PSD); Fourier transform (FT); Wavelet Packet (WP)
analysis; Fuzzy Logic; Human-robot cooperation.

1. INTRODUCTION
Robots are expected to communicate with humans in a
variety of applications in the future. For robots to interact
constructively and intelligently with human beings in work
or play environments, it is helpful that they have the ability
to detect and interpret the basic human affective responses.
Consider several human-robot exploration scenarios in
space, underwater, Antarctica, inside a dormant volcano and
in other similar risky environments where a human can
often encounter dangerous situations. The first reaction to
such situations will likely to be panic, fear, anxiety or stress.
A robot that is capable of sensing these internal psycho-
logical states can immediately take meaningful actions to
help the person. A similar situation may arise in human-
robot search and rescue operations or in fire fighting. The
US military is considering introducing a large number of

robots in the battlefield along with a small number of human
soldiers to reduce human casualties in future warfare. A
robot that can implicitly sense when a human is wounded or
is in fear of losing his/her life and can come to the rescue
immediately can be immensely helpful, because in such
situations there may not be sufficient opportunity to call for
explicit help. Helping disabled people is another major
potential application. Robotic aid for rehabilitation could
use affect sensing capability to provide exercise sequences
that are comfortable for the person. A robot that could sense
the fatigue of the worker on the shop floor with whom it
works would be able to take necessary precautions to avoid
accidents. The toy robotic industry could benefit from such
research where a robot that could understand and respond to
the emotions of a child could be very successful in engaging
children.

The main goal of the present work is to investigate how
to incorporate implicit communication from human to robot
so that the robot can “understand” the psychological state of
the human with whom it works. Implicit communication, in
the context of the present work, is defined primarily as
affective communication where the affective state and other
implicit states such as frustration, stress and fatigue of the
person is interpreted by the robot. It is well argued in the
psychological literature that the affective state of a person is
very important in relationships.1–5 For example, under-
standing our affective states and behaving responsively are
determining factors in our choice of friendships. It follows
with respect to personal computers and personal robots, that
if such a system could understand the affective state of a
person with whom it works, the human-robot interaction
could achieve a different dimension.

It is difficult to precisely define what “understanding” a
person means. However, it can be argued that if a robot can
recognize the affective and other implicit states of a person,
and can infer the cause of these states as related to the task,
it will achieve some degree of understanding. The need for
a computer to understand human emotion is discussed in
references [6–8]. Such a capability, alone or in conjunction
with other capabilities that allow explicit instructions from
a human, is expected to provide a new paradigm for human-
computer (and human-robot) interaction that will be
intuitive, smoother and more efficient. Figure 1 presents
affect-sensitive human-robot coordination architecture.

In this work, we focus on the first part of the architecture,
namely affect recognition through physiological sensing.
We use physiological sensing because of two reasons. One,
if we include all types of the physical activities that are
available to infer affective states such as gestures, facial
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expressions, intonation etc., then the problem will be
immensely complex, theoretically and computationally.
Two, some physical expressions are somewhat culture,
gender, and age dependent. This poses difficulties in
analyzing them. Physiological responses, on the other hand,
are generally involuntary and less dependent on those
factors. They offer an avenue for recognizing affect that may
be less obvious for humans but more suitable for computers,
which can quickly implement signal processing and pattern
recognition tools to infer underlying affective states. With
the above-mentioned applications in mind we investigate in
this paper how a robot can detect stress during a human-
robot cooperative activity using physiological signals.
Stress is an important psychological state that, if detected in
time, can be useful in many applications such as avoiding
accidents in factory shop floor. The idea here is, if the robot
can detect the stress fast enough, it can respond to the need
of the human in real-time. There are sophisticated medical
diagnostic techniques that can detect stress in a patient. All
those techniques are slow, expensive, and more importantly
not suitable for a person who is moving and working – a
necessary condition for human-robot activity. However,
recent advances in wearable computers and affective
computing have ushered us in the era of small and
lightweight biofeedback sensors. These sensors are unob-
trusive, comfortable for the user to wear, and fast enough for
real-time applications. Hence, they can process physio-
logical signals in a non-invasive manner. Such capabilities
inspire us to use physiological sensing as an initial means to
recognize human affect for our proposed controller.

In this paper we propose a new method for online stress
detection of humans using wavelet packets decomposition
and fuzzy logic. This method is designed in such a way that
it can be integrated with a robot controller so that a stress-
sensitive human-robot activity becomes feasible. However,
the integration of this stress detection technique with a robot
controller is beyond the scope of this paper and is the
subject of future work. The stress detection technique has
been verified by human subject trials and the results are
presented in the paper.

2. THEORY
The theoretical background of the present stress detection
methodology can be divided into three parts: the physiology
of stress generation, signal processing of Heart Rate
Variability, and decision-making using fuzzy logic.

2.1. Physiological Aspects of Stress Detection
The human Peripheral Nervous System carries information
between the body and the Central Nervous System (CNS).
This information can either be input from the sensory
receptors or it can be output from the CNS to an organ of the
body. This output carrying system is known as the Efferent
Division and is further subdivided into the Somatic and
Autonomic Nervous Systems (ANS). The Somatic Nervous
System is the system a person has voluntary control over.
This is the system that controls the skeletal muscles for
body movement and other voluntary activities. The ANS,
also known as the involuntary nervous system, has control
over actions in the body that one does not have conscious
control over. The ANS controls smooth muscle, gland
activity and cardiac muscle. It is this system of the body and
its control over cardiac function that is of interest for stress
detection.

The Autonomic Nervous System is further divided into
two branches, each with a role in cardiac activity. The
sympathetic nervous system (SNS) is the branch with
dominant function in emergency situations or so-called
“fight or flight” situations. The parasympathetic branch
(PNS) is the relaxed activity controller. The PNS promotes
body maintenance such as food digestion. Increased activity
of the sympathetic branch causes an increase in the heart
rate while an increase in the parasympathetic branch results
in a slowing down of the heart rate. Under normal situations
there is a balance between these two systems placing the
body in a state of homeostasis. However, under a state of
mental stress this balance will be altered.9–11 Heart Rate
Variability can be used to detect this change in system
balance.9–11

Heart rate variability has been extensively applied in
understanding the function of the ANS.9, 10, 12–15 Figure 2

Fig. 1. Affect-sensitive human-robot coordination architecture.
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shows a typical EKG waveform. The sequence from P wave
to T wave represents one heart cycle. The number of such
cycles in a minute is called the heart rate and is typically
70–80 cycles (beats) per minute at rest.16

The Interbeat interval (IBI), which is beat-to-beat inter-
val, is defined as the time in millisecond between two
normal “R” to “R” waves of an Electrocardiogram. The IBI
is a valuable index for measuring heart rate variability. The
IBI variability can be determined either in the time domain
or in the frequency domain. Time domain analysis has the
limitation of needing very large sets of data (~24 hrs) for
accurate analysis.6 Frequency analysis does not have this
shortcoming and allows the use of much smaller data sets.
Since we are interested in measuring stress during a task, we
prefer frequency domain analysis to time domain analysis.

Frequency domain analysis has proven valuable in
linking physiological abnormalities and variabilities to
specific frequency bands. Parasympathetic and sympathetic
nervous system activity has been associated with two
frequency bands. The high frequency (HF) component
(0.15–0.4 Hz) measures the influence of the vagus nerve in
modulating the sinoatrial node and is associated with
parasympathetic nervous system activity.10–13, 15 The low
frequency (LF) component (0.04–0.15 Hz.) provides an
index of parasympathetic effects on the heart.10, 12, 14, 15 These
associations between frequency bands and nervous system
activity have been made through the use of functional and
pharmacological testing.13, 14

When a human being is mentally stressed, it is commonly
observed that the parasympathetic activity of his/her heart
decreases and the sympathetic activity increases. We have
exploited this feature of heart rate variability to detect stress
in a human subject.

2.2. Signal Processing
As mentioned above, the EKG signal is used to calculate the
IBI signal. A frequency domain analysis of this IBI signal is
useful in detecting physical abnormalities. The particular
abnormality, stress that we are looking at in this paper

shows its effect in parasympathetic and sympathetic fre-
quency ranges. The signal processing mainly involves
observing behavior in these frequency bands, and deducing
the physiological state based on its analysis.

Figure 3 shows a flow-chart outlining the steps involved
in the analysis of EKG data. When power spectral analysis
is done on the IBI calculated from the EKG signal, the range
of frequencies corresponding to parasympathetic and sym-
pathetic activity can be identified for a person. This
however, does not give us any time domain information
regarding the non-stationary nature of the signal.

Short Term Fourier Transformation (STFT) gives a partial
solution to the above problem. STFT is a windowed version
of the Fourier Transformation. The signal is assumed to be
stationary for small intervals over which the Fourier
transformation is performed. But STFT has its limitation
due to the uncertainty principle, which states that there is a
trade off between locality in the frequency domain and
locality in time domain. Hence both frequency and time of
an event cannot be accurately predicted simultaneously.

Wavelet Transform (WT) is a suitable alternative to STFT
as it allows both frequency, and time localization of the
signal with reasonable accuracy.17 This transformation is
based on representing a given function as a sum of time
shifted (translated) and scaled (dilated) representations of
some functions called mother wavelets.18

The Continuous Wavelet Transform (CWT) of a function
ƒ (t) can be written as:

CWT� (a, t) =
1

�|a|
�ƒ (t) ��t � �

a �dt (1)

where � (t) is Mother wavelet, a is the Scaling factor, � is the
Time shifting parameter.

A mother wavelet is a function with special properties.
Wavelet’s most useful feature is the time and frequency
localization of the mother wavelet. A single wavelet
generates a family of wavelets by dilating and shifting itself

Fig. 2. EKG waveform.
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over a continuum of dilation and translation values.17, 18 By
varying the values of a and �, we can scan the entire signal.
For any given value of a and �, the above transform
calculates the coefficient that quantifies the similarity
between the function ƒ (t) and the mother wavelet that has
been scaled by a and shifted by �. The CWT gives
information regarding the time-frequency characteristics of
the function ƒ (t), over the entire time-frequency domain if
we choose a mother wavelet such that it has enough time-
frequency localization. Calculating wavelet coefficients at
every possible scale involves a lot of computation and
generates excessive data. Hence we choose to use discrete
wavelet transform (DWT), in which scales and positions are
based on powers of two.

Several factors should be considered while choosing the
mother wavelet for a particular signal processing.19 An
orthogonal basis can be useful in analyzing discrete signals,
while non-orthogonal basis for the wavelet can better
represent smooth, continuous variations in the signal. The
shape of signal is another important factor to be considered.
The mother wavelet should be selected or designed such
that it reflects the type of feature present in the time series
of the signal. In general, it can be said that the wavelet
chosen should reflect the type of feature present in the time
series. Hence, for a time series signal with sharp jumps, one
may choose Harr wavelet, while a smoother function should
be chosen for a smooth signal.

In Discrete Wavelet Transform20, 21 the signal ƒ [n] of
length N is decomposed into approximation coefficients
s [n] and detail coefficients d [n] by the use of two
quadrature mirror filters g [n] and h [n], which can be
computed from the shifted and dilated versions of the
mother wavelet � (t) and of a scaling function � (t). A
wavelet analysis can be seen as a filtering operation where

the high frequency component appears in the detail
coefficients and low frequency component in the approx-
imation coefficients. The detail coefficients are not
decomposed further. At any given level n, the detailed
coefficient vector d [n], will have N/2 j elements (the original
signal has N elements) and will cover the frequency range
�ƒ/2 j. Hence, we observe that at every level of decomposi-
tion, the frequency resolution is doubled and the time
resolution is halved as the approximation coefficients span
one half of the frequency band and the detail coefficients
span the other half. Generally, the detail coefficients are not
analyzed any further. In this paper, one of the frequency
bands of interest exists in the detail coefficient, hence
wavelets pose a limit to our analysis. To overcome this limit
we extend the analysis to wavelet packet decomposition.

In the Wavelet Packet (WP) decomposition,22, 23 the
approximation coefficients as well as the detail coefficients
are recursively decomposed using the same filtering and
down sampling techniques that are used in DWT. Figure 4
shows the difference between the wavelet decomposition
and wavelet packet decomposition. A wavelet packet
analysis provides us with a convenient tool to analyze a
signal for a desired frequency without losing the time
information. The wavelet packets can be used for numerous
expansions of a given signal, from which we can capture the
exact frequency band that we are interested in.

The WP decomposition of the input signal is performed
by computing the convolution of the signal ƒ [n] with the
wavelet atoms:

w [n] = 2� j/2�
k

ƒ [n] Wp (2� j/2 k � n) (2)

Fig. 3. Flow chart for signal processing.
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These wavelet atoms can be obtained from the high pass
filter (g [n]) and the low pass filter (h [n])

W2p (t) = �2�
n

h [n] Wp (2t � n) (3)

W2p + 1 (t) = �2�
n

g [n] Wp (2t �n) (4)

Each atom Wp (2� j/2 k� n) is characterized by three
parameters – frequency p, scale j, and position m. For our
purpose, we have used the Daubechies wavelet filter db5.
This wavelet has been used because it best extracts the
frequency contents that are required to analyze the IBI
signal. The wavelet db5 has been used for EKG signal
processing in many cases.24 After experimenting with
various mother wavelets, we also found db5 to give better
results than the other wavelets.

2.3. Decision Making Using Fuzzy Logic
2.3.1. General Overview. For meaningful Human-robot
interaction, it is important that the robot interprets the
physiological signals of the subject intelligently to deduce
his/her stress level.

To obtain the stress level of a given human subject, we
monitor his/her heart rate variability, extracting informative
features from that signal. Since the transition from a relaxed
physiological state to a stressed one is a gradual process,
these states cannot be treated as classical sets, which will
either wholly include a given feature or exclude it. Hence
the decision regarding whether a feature belongs to a
stressed or a relaxed state is not a binary one.

In such a case, fuzzy reasoning can prove invaluable in
making the decision-making process resemble human
reasoning. Fuzzy logic is based on the theory of fuzzy sets.
Fuzzy set theory implements classes or groupings of data
with boundaries that are not sharply defined (i.e. fuzzy). A
fuzzy set can contain elements with only a partial degree of
membership. This enables the fuzzy models to exercise
flexibility in capturing various aspects of vagueness in the
data available to us.25 Fuzzy set theoretic methods have been
used extensively for pattern recognition in the past.26–28 We

can identify the patterns indicating mental stress using
features extracted from the heart rate variability of the
subject.

As explained in Section 2.2, we know that the sym-
pathetic and the parasympathetic activities of the heart are
indicators to the level of mental stress. In the fuzzy model
that we use here, the input variables are the standard
deviation of the IBI signal in the sympathetic and para-
sympathetic frequency ranges and the output is the stress
index.

The design and implementation of this fuzzy model
involves the following steps:29, 30 (1) Specifying the input
and output variable membership functions; (2) Fuzzification
of the input variables; (3) Defining the rule statements that
relate the input variables to the output; (4) Aggregating
all outputs (Fuzzy Inference); and (5) Defuzzification of
the output variable. The Fuzzy system has been shown in
Figure 5.

2.3.2. Definition of membership functions. A Fuzzy set
F in a space of points S = {s} is a set of elements with a
varying grade of membership and is characterized by a
membership function MF (s ) that maps each element of S to
a real number in the interval [0 1]. The value of MF(S) for
any given s, indicates the degree of s in F or the degree an
s belongs to F.31 The value 1 indicates complete inclusion of
s in F, the value of 0 indicates complete exclusion of s in F,
and the intermediate values indicate partial inclusion. There
is a wide variety of membership functions built from
piecewise linear functions, the Gaussian distribution func-
tion, the sigmoid curve, or the quadratic and cubic
polynomial curves as these standardized functions have
adjustable parameters.

2.3.3. Fuzzification of inputs. Fuzzification of inputs is
necessarily determining the degree to which they belong to
each of the appropriate fuzzy sets via membership func-
tions.30 We resolve the inputs into a number of different
fuzzy linguistic sets: Sympathetic activity shows relaxation;
sympathetic activity shows stress, parasympathetic activity
shows relaxation. Before the rules can be evaluated, the
inputs must be fuzzified according to each of these linguistic
sets. For example, to show to what extent does the
sympathetic activity shows stress, we can fuzzify it into the
following two sets: relaxation and stress.

Fig. 4. (a) Wavelet decomposition; and (b) wavelet packet decomposition.
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2.3.4. Definition of rules. The next step is laying down
certain rules, which relate the inputs to an output. The
parallel nature of the rules is one of the most important
aspects of fuzzy logic systems. The transition from a region
where the system’s behavior is dominated by one rule to a
region where another dominates it is smooth, avoiding sharp
switching between modes based on breakpoints. A single
fuzzy if-then rule assumes the form:

if x is A then y is B

Where A and B are linguistic values defined by fuzzy sets
on the ranges (universes of discourse) X and Y, respectively.
The if-part of the rule “x is A” is called the antecedent or
premise, while the then-part of the rule “y is B” is called the
consequent or conclusion. The antecedent of a rule can have
multiple parts connected by the logic “AND” or “OR.”

if x1 is A and x2 is B then y is C

Every rule has a weight (a number between 0 and 1), which
is applied to the number given by the antecedent. Generally
this weight is 1 (as it is for this example) and so it has no
effect at all on the implication process. From time to time
we may want to weight one rule relative to the others by
changing its weight value to something other than 1.

2.3.5. Aggregating Output (Fuzzy Inference). Since
decisions are based on the testing of all of the rules, the
rules must be combined in some manner in order to make a
decision. Aggregation is the process by which the fuzzy sets
that represent the outputs of each rule are combined into a
single fuzzy set.30 The output of the aggregation process is
one fuzzy set for each output variable.

All the rules are evaluated together and the output of each
rule is combined, or aggregated, into a single fuzzy set
whose membership function assigns a weighting for every
output value.

2.3.6. Defuzzifcation of the output. The defuzzification
process transforms the fuzzy set (the aggregate output fuzzy
set) into a single number. The aggregate of a fuzzy set
encompasses a range of output values, and so must be

defuzzified in order to resolve a single output value from the
set.

This defuzzification method could employ methods like
centroid, bisector, middle of maximum (the average of the
maximum value of the output set), largest of maximum,
smallest of maximum and other such criteria.

3. EXPERIMENT
There are three major components in the stress detection
task. First, we generate reliable mental stress data in
laboratory conditions. Second, we process the physiological
signals that are collected using wearable biofeedback
sensors. Third, we infer the underlying psychological state
from the processed physiological signals.

3.1. Stress Generation
One of the most challenging aspects of this research is to
gather accurate physiological data related to mental stress in
a human being. The aim of the experiment was to generate
mental stress in human subjects by simulating an adequate
environment of stress in the laboratory. A typical session
measuring stress or relaxation lasted for 10 minutes wherein
the data was continuously acquired and processed. We have
simulated mental stress by making the subject play video
games of varying levels of difficulties. Gathering accurate
physiological data pertaining to stress is made difficult by
several practical problems.

Design and implementation of experiments simulating
mental stress in a human subject requires considerable
insight into human psychology. Unlike physical stress,
mental stress is difficult to simulate and sustain. From a host
of activities that trigger mental activity in a subject we need
to select those that are most successful in generating stress.
Another problem is validating the data pertaining to stress.
We also need to consider the day-to-day variability and
subject variability. Moreover the data is very sensitive to the
manner of sensor placement, sudden body motion and the
subject’s state of mind during that particular session. This
needs to be taken into account too.

We have tried to overcome most of these limitations in
our experiments. Activities like playing video games,

Fig. 5. Fuzzy model.
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solving puzzles, arithmetic problems, anagrams usually
generate mental stress. We chose playing video games as it
was found to very effective in bringing the subject under
pressure of performance and hence stressing him out. Since
the level of difficulties can be varied, we can get data
pertaining to varying levels of stress. Although there is no
definite way of finding out whether the data gathered is
genuine or not, self-reporting from the subject undergoing
the experiments has proven to be a reliable method.8 We
have used this self-assessment of the subject regarding his
level of stress before we proceed to process the data for
feature extraction.

3.2. Physiological Signal Processing
We mounted an EKG sensor on the subjects’ body, the
positive and negative terminals placed above and below the
heart, respectively, and the ground terminal placed on the
right side of the chest. The real time monitoring of the EKG
signal was done using the wearable EKG sensors and
Procomp+data acquisition system.32 The Procomp+sensors
are small and comfortable to wear without interfering with
a person’s normal activities. The digitally sampled sensor
information is sent to the serial port of the computer using
a fiber optic cable (Figure 1). The serial interface of Matlab
has been used for online data acquisition and processing of
the EKG signal. The signal processing includes IBI
calculation, wavelet packet analysis and obtaining standard
deviation of the IBI frequency spectrum.

The data varies from subject to subject, though the basic
characteristics of the frequency spectrum of the IBI signal
from most human subjects remains the same. Our experi-
ments across subjects have verified these characteristics. We
have gathered data from a single subject over many weeks
of time in order to isolate the specific characteristics shown
by the frequency spectrum of his IBI signal. Once we
identify the frequency ranges that correspond to his
sympathetic and parasympathetic activities, we can look for
variations in these ranges as his stress level changes. We can
employ the same methodology for gathering and analyzing

the data from another subject since our approach is
generic.

Day-variability is a small change that occurs in one’s
physiology over time. Comparing data from a typical stress
generating session with a reference data gathered on the
same day minimizes day variability. The reference data is
obtained from a relaxed subject who is not engaged in any
mental or physical activity. Quiet breathing, listening to
music and leisure reading are some of the activities that put
the subject at ease. The data taken during these sessions are
pertaining to a stress-free state and can be used for
thresholding other data.

The results that are discussed in the following sections
were arrived at after several experiments generating stress
of varying intensity were conducted on several subjects.
These experiment were conducted over a period of 6
months, giving reliable stress indicating data.

3.3. Inference of the psychological state
The raw EKG signal obtained from a subject (Figure 6) is an
index of his heart rate variability during the session. The
interbeat interval as calculated from this signal is shown in
Figure 7.

Since research in the field of heart rate variability shows
that mental stress is reflected in the sympathetic and
parasympathetic frequency bands, we need to identify these
frequency ranges for the subject (Subject A). In order to
determine these frequency ranges, we observe the frequency
spectrum of the IBI signal obtained from the raw EKG
signal.

In order to study subject variability and day-to-day
variability, we analyzed data gathered from multiple
subjects over a period of several months. This has yielded
some valuable conclusions, which have been presented
below. Figure 8 and Figure 9 show the power spectral
density plot of the IBI signal obtained from two different
experiments conducted on separate days on the same
subject. Both the experiments were of similar nature as they
aimed at generating mental stress in the subject by means of

Fig. 6. EHG waveform of Subject.
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similar activity in almost identical environments. These
figures illustrate the phenomena of day-to-day variability.
This variability can be attributed to several factors like the
mental and physical health of the subject on that particular
day, manner of sensor placement and the accuracy of self-
assessment. We observe that the sympathetic and
parasympathetic activities occur at the frequency bands,
0.05–0.125 Hz and 0.2–0.3 Hz, respectively. The amplitude
of the peaks changes from day to day but the sympathetic
and parasympathetic frequency ranges remain almost the
same for a particular subject across experiments.

Figure 10 shows the power spectral density plot of the IBI
signal obtained from another subject (Subject B) by the
same kind of experiment. Comparing this figure with Figure
8 and Figure 9 we detect the occurrence of subject

variability. The frequency ranges at which Subject B show
sympathetic and parasympathetic activities are not identical
to those of Subject A. However, there is an easily observable
underlying similarity in all these frequency spectrums of the
IBI data gathered on different days from different subjects.

As expected, with an increase in the level of mental
stress, the power in the sympathetic band increases and the
power in the parasympathetic band decreases. After the
frequency bands of interest have been identified by FT, we
use Wavelet Packet Decomposition to analyze the heart rate
variability of the subject in real time. As explained in the
preceding section, Wavelet Packet Decomposition allows
sufficient time-frequency localization to detect the varia-
tions in the exact frequency band that we are interested in
with corresponding timing information.

Fig. 7. Interbeat interval as derived from the EKG waveform above.

Fig. 8. FT of the IBI signal from Subject A during experiment No. 1.
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Figure 11 shows how the Wavelet packet tree decomposes
the signal into components. The IBI signal is progressively
filtered and down sampled until we capture the exact
frequency content of the signal that we are interested in. The
frequency bands of interest are the ranges corresponding to
sympathetic and parasympathetic activities for the subject.
Once we have zoomed down to the exact frequency range,
we need to extract a feature from the signal that can be used
as an index for detecting mental stress.

Standard deviation of the signal in frequency range of
concern proves to be a reliable index for such detection. As

expected we find that as the subject gets stressed, the
variation in this index is most pronounced in the sym-
pathetic and parasympathetic frequency ranges. For any
given IBI signal we calculate the standard deviation in the
two above-mentioned frequency ranges. These values are
then compared to the standard deviation in the same bands
computed from the reference signal.

Figure 12 compares the standard deviation of wavelet
packet coefficients at the frequency ranges of interest. A
change in standard deviation in the coefficients corresponds
to a change in signal power at that frequency range. In

Fig. 9. FT of the IBI signal from Subject A during experiment No. 2.

Fig. 10. FT of the IBI signal from Subject B.
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Figure 12, the first two bars refer to the standard deviations
in the frequency range 0.094–0.109 (sympathetic activity
range) and the third and fourth bars refer to the frequency
range 0.25–0.3125 (parasympathetic activity range). In the
various experiments that we conducted, it was consistently
observed that as the subject gets stressed, the standard
deviation of his sympathetic activity increases and that of
his parasympathetic activity decreases as compared to the
respective standard deviations when he is relaxed. In Figure
12 the lighter bars indicate the standard deviation of the IBI
signal in the sympathetic and parasympathetic frequency
ranges calculated from the heart rate variability of the
subject when he was completely relaxed. The black bars
indicate the same when he was considerably stressed. It can
be seen that as theorized in the preceding sections, the
sympathetic and the parasympathetic frequency ranges are
the ones that register maximum change during a transition
from relaxed to stressed mental state. Hence stress detection
can be reliably based on the monitoring of this index of
heart rate variability.

3.3. Fuzzy Inference Model
Now that we have extracted features, we proceed to build a
fuzzy logic system for interpreting these inputs to detect
whether or not the subject is showing signs of stress.
Here we have used Gaussian curve membership functions
for the two inputs AS (sympathetic activity) and AP

(parasympathetic activity) and the output-stress index. The
crisp values of the inputs are fuzzified and expressed by the
fuzzy sets:

SP (Index for stress in the parasympathetic range);
RP (Index for relaxation in the parasympathetic range);
SS (Index for stress in the sympathetic range);
RS (Index for relaxation in the sympathetic range).

Similarly the output signal is expressed by the fuzzy sets:

SL (Least stress);
SM (Medium stress);
SH (High stress).

Fig. 11. Wavelet packet decomposition tree showing frequency division.

Fig. 12. Standard deviation of the signals in the sympathetic and parasympathetic frequency range when relaxed and stressed.
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Figure 13 shows the membership function plots for the
inputs and the output. The membership functions of the
fuzzy sets that define the input are as follows:

MS/R = e
� (x � �)2

2�2

where � and � are the mean and standard deviation values
for stress and relaxation indices in the sympathetic and
parasympathetic activity ranges that determine the shape
and position of the membership functions.

Since all the input measurements are compared to the
baseline values, we need to adjust the scale first. The input
parameters are bounded by xmin and xmax, which are
determined after performing several experiments on a
subject. Here, for the inputsympathetic activity, we have
expressed x as the ratio of the standard deviation of the IBI
signal in the sympathetic activity range to the standard
deviation of the reference signal. xmin is the value of x when
the signal shows least stress or when it emulates the
reference signal. xmax is the value of x when the signal shows
maximum stress. We have chosen the values of x after
experimentation (Table I).

The membership functions of the fuzzy sets that define
the output are as follows:

MS/R = e
� (x � �)2

2�2

� = 0 For least stress

� = 0.5 For medium stress

� = 1.0 For highest stress

We now define the rules that determine the output, given
certain input variables.

Rule (i). If the parasympathetic activity index shows
relaxation and the sympathetic activity index shows relaxa-
tion, the stress in the subject is least.
Rule (ii). If the parasympathetic activity index shows stress
and the sympathetic activity index shows relaxation, the
stress in the subject is medium.
Rule (iii). If the parasympathetic activity index shows
relaxation and the sympathetic activity index shows stress,
the stress in the subject is medium.
Rule (iv). If the parasympathetic activity index shows stress
and the sympathetic activity index shows stress, the stress in
the subject is highest.

The fuzzy inference process is implemented using these
rules. The output of each rule is combined to make an
aggregate output that is then defuzzified to obtain an output
on a scale of [0 1] that indicates the degree of stress in the
subject.

We can also view the three-dimensional output surface
that shows the variance of the output with the change in the
two input variables (Figure 14).

We checked the results of the fuzzy logic system with
data from Subject A and Subject B. The subjects were made
mentally stressed and their heart rate variability was
monitored. From the EKG data, the features corresponding
to the sympathetic and parasympathetic activities were
extracted. The results have been shown in Table II.

Comparing the values of outputs �0.837 and 0.806 in
Table II to the output membership function in Figure 13, we
find that they lie close to the highest stress state. This fuzzy
logic system can either be trained with data from a single
subject to get very accurate results pertaining to his inputs
or it can be trained with data from a single subject to get
very accurate results pertaining to its inputs or multiple
subjects to get reasonably accurate results for each subject.

Fig. 13. Membership function plots.

Table I. Values of xmin and xmax.

Activity xmin xmax

Sympathetic 1.0 1.55
Parasympathetic 0.53 1.0
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4. CONCLUSION AND FUTURE WORK
We have presented a novel technique for online stress
detection by monitoring the sympathetic and parasympa-
thetic activity of the heart of a human. This method uses
wearable computing and is suitable for human-robot
cooperative activity. We have used wavelet decomposition
and fuzzy logic techniques to determine the stress during an
ongoing task. While a robot controller is not developed that
can sense stress and respond accordingly, the complete
architecture and concepts are presented in the paper.

There are a few limitations to the current work. Gathering
accurate physiological data pertaining to specific emotional
states, simulating stress environment for eliciting adequate
response, day variability and subject variability are few of
them.

Future work will focus on overcoming these limitations
and integrating this stress detection technique with a robot
controller system that takes adequate measures after implic-
itly detecting stress in a human working in the same
environment.
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