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Abstract

The purpose of this paper is to calculate proton energy loss straggling using a full conserving dielectric function (FCDF)
for plasmas at any degeneracy. This dielectric function takes into account plasma electron-electron collision considering
density, momentum, and energy conservation. When only momentum conservation law is accomplished, the FCDF
reproduces the well known Mermin dielectric function, when none of the conservations laws are obeyed, the random
phase approximation (RPA) is recovered. Then, the FCDF is applied for the first time to the determination of the
energy loss straggling. Differences among diverse dielectric functions to determine straggling follow the same behavior
for all kind of plasmas then, they do not depend on the plasma degeneracy but essentially do on the value of the
collision frequency. These discrepancies can rise up to 5% between FCDF values and the Mermin ones, and 2%
between the FCDF ones and RPA ones for plasma with high enough collision frequency. The similarity between
FCDF and RPA results is not surprising, as all conservation laws are also considered in RPA dielectric function. The
fact that FCDF and RPA give similar results and the fact that FCDF considers electron-electron collisions and RPA
does not, means that latter collisions are not significant for energy loss straggling calculations.
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1. INTRODUCTION

The energy loss of ions in plasmas is a topic of relevance to
understand the beam-target interaction in the contexts of par-
ticle driven fusion (Deutsch, 1984, 1992; Roth et al., 2001).
But actually if an ion beam interacts with target plasma, not
all of the ions of the beam slow down in the same way, as the
electronic energy loss is a stochastic process. It depends on
many parameters, for example, the target electron density
could not be uniform. Thus, it is convenient to define the
energy loss straggling, which describes the statistical fluctu-
ations of the energy loss of the ion (Bohr, 1948). To be con-
sistent with the usual definition of the energy loss S=−ΔE/
Δl, as the magnitude of the mean energy loss Δ E per unit of
path length Δ l, we define the energy loss stragglingΩ2 as the
variance of the energy loss per unit of path length

Ω2 = 〈 ΔE − 〈ΔE〉
( )2〉

Δl
= 〈 ΔE( )2〉− 〈ΔE〉2

Δl
,

where 〈…〉 denotes the mean value. Thus, the final electronic
energy loss Sp, suffered by a proton during the path length Δl
can be obtained from a draw of a Gaussian distribution
whose mean value is S and whose variance is Ω2/Δ l, then

P(Sp) = 1���
2π

√ �������
Ω2/Δl

√ exp − 1
2
(Sp − S)2

Ω2/Δl

[ ]
.

As well, the mean energy loss, the energy loss straggling can
be calculated through the dielectric formalism. We shall use
the random phase approximation (RPA), which consists of
considering the effect of the particle as a perturbation, so
that the energy loss is proportional to the square of the par-
ticle charge. Then the theory of slowing-down is simplified
to a treatment of the properties of the medium only, and a
linear description of these properties may then be applied.
The RPA is usually valid for high-velocity projectiles and
when plasma electron collisions are not considered (Barnes
& Luck, 1990).

In this work, we will study all kind of plasmas so electron
collisions in the target gas have to be taken into account. RPA
predicts an infinite lifetime for target electron collisions,
whereas it is well-known that in real materials these collisions
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must be considered. Mermin (1970) derived an expression
for the dielectric function caring for the plasma electron col-
lisions and also preserving the local particle density. Mermin
dielectric function has been successfully applied to solids
(dense degenerate electron gas) (Barriga-Carrasco & Garcia-
Molina, 2004), for classical plasmas (nondegenerate electron
gas) (Selchow & Morawetz, 1999; Gerike, 2002; Barriga-
Carrasco et al., 2006), and also for partially degenerate plas-
mas (Barriga-Carrasco, 2007). For solids, Mermin dielectric
function was used obtaining the electron collision frequency
from experiments (Ashley & Echenique, 1987; Abril et al.,
1998), but this frequency must be calculated a priori for plas-
mas. Many works have been devoted to calculating this fre-
quency, (Lampe, 1968a, 1968b; Flowers & Itoh, 1976; Urpin
& Yakovlev, 1980), others treat it as a free parameter (Ashley
& Echenique, 1985; Nersisyan & Das, 2004), but in the
present investigation this value is taken from a previous
calculation (Barriga-Carrasco, 2008).
The aim of this work is to calculate proton energy loss

straggling using a full conserving dielectric function
(FCDF) for plasmas at any degeneracy. Toward this goal,
the paper is divided into three main sections. In Section 1,
the RPA and Mermin dielectric functions of plasmas at any
degeneracy are calculated, but, as said before, Mermin
function only obeys the density conservation law. Then in
Section 2, a new dielectric function is established where
the electron collision events are constrained by all the con-
servation laws: the full conserving dielectric function.
Finally in Section 3, we use this latter dielectric function
to calculate proton energy loss straggling in plasmas at
any degeneracy.

2. RPA AND MERMIN DIELECTRIC FUNCTIONS
AT ANY DEGENERACY

The RPA dielectric function is developed in terms of the
wave number k and of the frequency ω provided by a consist-
ent quantum mechanical analysis. We use atomic units (a.u.),
e= ℏ=me= 1, to simplify formulas.
The RPA analysis yields to the expression (Lindhard,

1954)

εRPA(k, ω) = 1+ 1
π2 k2

∫ d3 k′ f (�k + �k′)− f (�k′)
ω+ iυ− (E�k+�k′ − E�k′ )

, (1)

where E�k = k2/2. The temperature dependence is included
through the Fermi-Dirac function

f (�k) = 1
1+ exp [β(Ek − μ)]

, (2)

where β= 1/kB T, and μ is the chemical potential of the
plasma with electron density ne and temperature T. In this
part of the analysis, we assume the absence of collisions so
that the damping constant tends to zero, υ→ 0.

Analytic RPA dielectric function (DF) for plasmas at any
degeneracy can be obtained directly from Eq. (1) (Gouedard
& Deutsch, 1978; Arista & Brandt, 1984)

εRPA(k, ω) = 1+ 1
4z3π kF

[g(u+ z)− g(u− z)], (3)

where g(x) corresponds to

g(x) = ∫
∞

0
ydy

exp (Dy2 − βμ)+ 1
ln

x+ y

x− y

( )
,

u= ω/kvF and z= k/2kF are the common dimensionless
variables (Lindhard, 1954). D= EFβ is the degeneracy par-
ameter and vF = kF = �����

2EF
√

is the Fermi velocity in a.u.
As mentioned in the Introduction, the RPA is not satisfac-

tory for partially coupled plasmas and the target electron
interactions have to be taken into account. The first corrective
effect taken to rectify this situation was carried out by
Mermin (1970) who was able to derive a DF, which con-
serves electron number during collisions

εM(k, ω) = 1+ (ω+ iυ)[εRPA(k, ω+ iυ)− 1]
ω+ iυ εRPA(k, ω+ iυ)− 1[ ]/[εRPA(k, 0)− 1]

,

(4)

where εRPA (k, ω) is the RPA dielectric function from Eq. (3).
Electron collisions are considered through their collision fre-
quency, υ. It is easy to see that when υ→ 0, the Mermin
function reproduces the RPA one.

3. FULL CONSERVING DIELECTRIC FUNCTION

Mermin dielectric function violates the two remaining con-
servation laws, momentum and energy, thus we need to in-
troduce a new model: the one-component system of
electrons whereby electrons are only scattered by other elec-
trons. Consequently the dynamics of such scattering events
are constrained by all the conservation laws. The one-
component model has the additional virtue of allowing us
to calculate dynamical local field corrections of the dielec-
tric function arising entirely from electron-electron corre-
lation effects (Morawetz & Fuhrmann, 2000). Here, the
expression for the FCDF is obtained by an extension of
the relaxation-time approximation (Atwal & Ashcroft,
2002)

εFCDF(k, ω) = 1+ V(k)
C0 + E

1+ F
, (5)

where VC (k)= 4π/k2 is the Fourier -transformed Coulomb
potential and

E = C2

ωi/υ− 1

( )
C2B0 − C0B2

D4B0 − D2B2
,
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and

F = iυ

ω+ iυ

D2C2 − D4C0 − iωυC2

k2ne
C2B0 − C0B2( )

D4B0 − D2B2
− 1

⎡
⎢⎣

⎤
⎥⎦

+ iωυC0

k2ne
,

are the conserving damping corrections. Bn is the nth mo-
mentum of the integrand of the static Lindhard polarizabil-
ity function,

Bn(k) = 2

(2π)3
∫d3p|p|n f (�k + �k′)− f (�k′)

E�k+�k′ − E�k′
,

and related dynamic functions

Cn(k, ω) = 2

(2π)3
∫d3p|p|n f (�k + �k′)− f (�k′)

ω+ iυ− (E�k+�k′ − E�k′ )
,

and

Dn(k, ω) = iυCn − ωBn

ω+ iυ
.

From the general form of Eq. (5) we can obtain the other
models revised in this work. The RPA dielectric function,
Eq. (1), corresponds to the choices E= 0, F= 0, and υ
→ 0; when υ is not zero we get the damped RPA one.
The Mermin dielectric function, Eq. (4), is retrieved for
E= 0, nonzero υ and

F = −iυ

ω+ iυ
1+ C0

B0

[ ]
.

Finally the FCDF is given by Eq. (5) with non zero υ.
Then we can calculate the real and imaginary parts of these

dielectric functions for plasma at any degeneracy. For
example, we choose T= 10 eV and ne= 1023 cm−3, i.e.,
with degeneracy parameter D= 0.785 (see Fig. 1). Solid
lines represent RPA dielectric function from Eq. (3). To
include electron-electron collisions in the calculations,
we need the exact relaxation frequency, υ= 0.252ωp,
where ωp =

������
4πne

√
is the plasma frequency. This value is

obtained from Barriga-Carrasco (2008) regarding only
electron-electron collisions. Then, we can include this fre-
quency in the Mermin DF. Now, the values are damped
but we recover the same results as in the RPA case for the
static limit, ω→ 0. But we know that the Mermin DF only
conserves the number density violating the two remaining
conservation laws. If we consider three conservation laws,
through the FCDF, we expect an important variation of all
values approaching the RPA values. It is not surprising that
as we include more conservation laws the behavior of the

DFs resembles more closely to the RPA, a model where all
the conservation laws are enforced.

4. ENERGY LOSS STRAGGLING

In the dielectric formalism, the energy loss straggling rate is
(Arista & Brandt, 1981)

Ω2
t =

Z2

π2v
∫
∞

0
d3 k
k2

ω2N(ω) Im
−1

ε(k, ω)

[ ]
, (6)

where ω ≡ ω(�p, �k) is the energy transfer

ω(�p, �k) = E(�p ′)− E(�p) = �k · �v+ k2

2M
,

in terms of the incident velocity �v = �p/M and the massM of
the projectile. �k = �p ′ − �p is the momentum transfer, which
applies to the energy loss of a ion of charge Z with initial
momentum �p and final momentum �p′. N(ω) = [ exp (βω)−
1]−1 is the Planck function. For incident ion with M≫me

recoil effects are small and we can expand Eq. (6) in terms

Fig. 1. (Color online) Real and imaginary parts of different DF as a function
of ω/EF for a partially degenerate plasma, T= 10 eV and ne= 1023 cm−3

(D= 0.785). The wave vector is k/kF= 0.2 and the finite relaxation
frequency is υ= 0.252ωp.
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of Δω= k2/2M to obtain

Ω2
t = Ω2

t0 +Ω2
t1 + . . . ,

where the two first terms are

Ω2
t0 =

Z2

π2v
∫
∞

0
d3k
k2

ω2N(ω)Im
−1

ε(k, ω)

[ ]∣∣∣∣
ω=�k·�v

,

Ω2
t1 =

Z2

π2v2M
∫
∞

0 d
3k

∂
∂ω

ω2N(ω)Im
−1

ε(k, ω)

[ ][ ]
ω=�k·�v

.
The integrals take into account the contribution from both

negative frequencies (ω< 0, emission processes) and posi-
tive frequencies (ω> 0, absorption processes), but here it is
more instructive to transform them into integrals over
positive frequencies only. We can simplify Ωt0

2 term,
making use of the relations N(−ω)=−[N(ω)+ 1] and

ε∗(�k, ω) = ε(�k, ω), then this leads to

Ω2
t0 =

2Z2

π2v
∫ω>0

d3 k
k2

ω2[2N(ω)+ 1] Im
−1

ε(k, ω)

[ ]∣∣∣∣
ω=�k·�v

,

where the temperature dependence is contained in the dielec-
tric function ε(�k, ω) and in the Planck function N(ω). Finally,
the energy loss straggling per unit of path length is

Ω2 = 2Z2

πv2
∫
∞

0
dk
k
∫
kv

0 dωω
2[2N(ω)+ 1]Im

−1
ε(k, ω)

[ ]
,

where ε (k, ω) is any of the dielectric functions stated before.
Figures 2 to 4 represent proton energy loss straggling for

different plasma degeneracies and different dielectric func-
tions, normalized to the Bohr straggling Ω2

B = 4πneZ2, as a

function of its energy. The first case analyzed is a plasma
with the same temperature and electronic density values as
in Figure 1, these features correspond to a partially degener-
ate plasma, D= 0.785 (see Fig. 2). Solid line corresponds to
the calculation with the RPA dielectric function, i.e., not con-
sidering target electron-electron collisions, Eq. (3). Dashed
line is the result considering the electron collisions through
the Mermin dielectric function, Eq. (4) and dotted line
refers to the result considering the electron collisions through
the full conserving dielectric function, Eq. (5). This plasma
has a large enough collision frequency, υ= 0.252ωp, to dis-
criminate between the various dielectric functions. When
target electron collisions are taken into account through
Mermin dielectric function, the straggling values decrease a
great deal. Then if we include momentum and energy conser-
vation laws in the dielectric function, FCDF, the result be-
comes similar, but a bit larger, than in the RPA model,
where plasma electron collisions are not considered.

Fig. 2. (Color online) Proton energy loss straggling, as a function of its
energy, normalized to the Bohr straggling ΩB

2 = 4πneZ
2. The plasma

target is the same as in Figure 1. Solid line corresponds to the result with
RPA DF, dashed line is the one with Mermin DF and dotted line is the
one with FCDF.

Fig. 3. (Color online) The same as Figure 2 but for a degenerate plasma, T=
0.056 eV and ne= 6 × 1022 cm−3 (D= 99.727). The relaxation frequency is
υ= 0.039 ωp.

Fig. 4. (Color online) The same as Figure 2 but for a nondegenerate plasma,
T= 1 eV and ne= 2 × 101 cm−3 (D= 5.8 × 10−3). The relaxation frequency
is υ= 2 × 10−3 ωp.

Barriga-Carrasco84

https://doi.org/10.1017/S0263034610000789 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034610000789


To check the reliability of our model at any degeneracy,
we can repeat the calculation of the straggling of the
former dielectric functions for other plasma parameters.
First, we examine a degenerate plasma with T= 0.056 eV
and ne= 6 × 1023 cm−3, i.e., with degeneracy parameter
D= 99.727 (see Fig. 3). As we see all results look very
similar, this is due to a rather small relaxation frequency,
υ= 0.039ωp. Then, there are no large discrepancies among
dielectric functions. But the behavior is the same as in the
partially degenerate case; when we care for collisions with
the Mermin dielectric function, the stopping values are
slightly damped. On the other hand, when momentum and
energy conservation laws are included in the full conserving
dielectric function these values feature the RPA ones as in the
partially degenerate case.
Finally, we study the straggling using the same dielectric

functions as before but this time for nondegenerate plasma
(see Fig. 4). The plasma parameters are T= 1 eV and
ne=2 × 1018 cm−3, with degeneracy parameter D= 5.8 ×
10−3. In this case, the relaxation frequency is even smaller
than for the degenerate case, υ= 2·10−3ωp, so we expect
minimal discrepancies among the calculations with different
dielectric functions. Using the Mermin dielectric function re-
sults in a remote relaxation of the stopping values while using
the FCDF results in similar, or a little bit higher, values than
in the RPA case.

5. CONCLUSIONS

In conclusion, first, we have been able to calculate a dielec-
tric function that includes the three conservation laws (den-
sity, momentum, and energy) when we take into account
plasma electron-electron collisions for plasmas at any degen-
eracy. This full conserving dielectric function reproduces the
former and very well known dielectric functions mentioned
in the bibliography, the RPA and Mermin ones, which con-
firms our outcome.
Then we applied this full conserving dielectric function to

the determination of the proton energy loss straggling. We
must remark that it is the first time that a full dielectric func-
tion is used to estimate the proton energy loss straggling in
plasmas at any degeneracy. This estimation has been com-
pared with the same calculation derived from other dielectric
functions. Discrepancies in the straggling calculation are not
very relevant if the plasma collision frequency is not high
enough. We have seen that only in the partially degenerate
plasma, D= 0.785, the collision frequency is sufficiently
large to produce important variations in the straggling calcu-
lation. These discrepancies for degenerate and nondegenerate
plasmas follow the same pattern as for the partially degener-
ate case. Then we can assert that pertaining variations do not
depend on the plasma degeneracy. They essentially rely on
the value of the plasma collision frequency.
Differences in applying various dielectric functions are

around 5% between FCDF values and the Mermin ones,
and around 2% between the FCDF ones and RPA ones at

maximum straggling value for plasmas with high enough
collision frequency. It is not surprising that as we include
more conservation laws the behavior of the dielectric func-
tions yields back the RPA, a model with every conservation
laws enforced. The meaning of the fact that FCDF results are
similar to the RPA ones, a dielectric function which does not
consider electron-electron collisions, is that latter collisions
are not important for energy loss straggling calculations.
Whether from previous investigations it was inferred the
opposite, this was because electron collisions were
usually taken into account through a Mermin dielectric
function which does not consider momentum and energy
conservation.
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