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Abstract We study the moduli space of rank 2 instanton sheaves on P3 in terms of representations of a
quiver consisting of three vertices and four arrows between two pairs of vertices. Aiming at an alternative
compactification for the moduli space of instanton sheaves, we show that for each rank 2 instanton sheaf,
there is a stability parameter θ for which the corresponding quiver representation is θ-stable (in the sense
of King), and that the space of stability parameters has a non-trivial wall-and-chamber decomposition.
Looking more closely at instantons of low charge, we prove that there are stability parameters with
respect to which every representation corresponding to a rank 2 instanton sheaf of charge 2 is stable and
provide a complete description of the wall-and-chamber decomposition for representation corresponding
to a rank 2 instanton sheaf of charge 1.
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1. Introduction

Mathematical instanton bundles have been intensely studied by several authors since its
introduction in the late 1970s by Atiyah et al. [1]. They arose as holomorphic counter-
parts, via twistor theory, to anti-self-dual connections with finite energy (instantons) on
the four-dimensional round sphere and can be defined as μ-stable vector bundles E on
P

3 satisfying cohomological vanishing condition h1(E(−1)) = 0 plus a reality condition.
A generalization to odd-dimensional projective spaces was introduced by Okonek and
Spindler in [18], while a further generalization to non-locally free sheaves on arbitrary
projective spaces was considered in [7].

In this paper, we will focus on rank 2 instanton sheaves on the three-dimensional
projective space. These can be defined as rank 2 torsion-free sheaves E on P

3 with trivial
determinant and satisfying the vanishing conditions

h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.
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Instanton sheaves and representations of quivers 985

Let n := c2(E), which is called the charge of the instanton sheaf E; note that the vanishing
conditions imply that c3(E) = 0. The moduli space I(n) of rank 2 locally free instanton
sheaves of charge c is an affine [3], irreducible [21, 22], nonsingular [8] quasi-projective
variety of the expected dimension 8n − 3. On the other hand, the moduli space L(n) of
all rank 2 instanton sheaves has several irreducible components [10, 11], possibly of larger
than expected dimension.

One can show that every rank 2 instanton sheaf is stable [11, Theorem 4], so the moduli
spaces I(n) and L(n) can be regarded as open subsets of the Gieseker–Maruyama moduli
space M(n) of rank 2 semistable sheaves with Chern classes (c1, c2, c3) = (0, n, 0). An
interesting problem, addressed in [12, 16, 17, 20] is to understand the closures I(n) and
L(n) of I(n) and L(n) within the projective variety M(n), and one remarkable fact is
that both do contain locally free and non-locally free sheaves which are not instanton
when n ≥ 2.

The key point of this paper is to present an alternative compactification of I(n) and
L(n) in terms of representations of quivers. Indeed, every instanton sheaf can be regarded
as a representation of the following quiver (with four arrows between the vertices)

Q =:

{
•
−1

η0 ��...
η3

��
•
0

φ0 ��...
φ3

��
•
1

}
(1)

satisfying the relations φjηi + φiηj = 0, with 0 ≤ i, j ≤ 3, plus additional open conditions,
see details in § 2 below. One can then consider the projective moduli space of θ-semistable
representations of Q as constructed by King [13].

In this context, King’s θ-stability for representations of the quiver (1) depends on two
real parameters, and we obtain a wall-and-chamber decomposition of the real plane of
stability parameters. One can then study where the representations corresponding to
instanton sheaves are θ-stable with respect to different stability parameters and consider
the compactification of I(n) and L(n) within the projective moduli space of θ-semistable
representations of Q.

The goal of this paper is to give the first steps in this program, providing a full picture
in the simplest case, of charge 1 instanton sheaves.

More precisely, we prove that the moduli space of θ-stable representations of Q with
dimension vector (n, 2 + 2n, n) and θ = (α,−n(α + γ)/(2n + 2), γ), henceforth denoted
by Rθ(n), is always empty away from the fourth quadrant in the αγ-plane. Next, we
show that for each instanton sheaf E, there are stability parameters α and γ for which
the representation of Q corresponding to E is θ-stable. In addition, the line α + γ = 0
is a wall that destabilizes every instanton representation corresponding to a non-locally
free instanton sheaf.

Furthermore, when n = 1, 2, we show that there are stability parameters α and γ for
which every instanton representation of Q is θ-stable. Finally, we establish the following
result, providing a full picture for the case n = 1.

Main Theorem. Let Rθ(1) be the moduli space of semistable representations with
dimension vector (1, 4, 1) with θ = (α,−(α + γ)/4, γ). If (α, γ) is a value outside the
fourth quadrant of the αγ-plane then Rθ(1) is empty. Otherwise, the moduli space Rθ(1)
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is isomorphic to P
5, containing I(1) as the complement of an irreducible quadric. The

points of this quadric are the representations corresponding to non-locally free instanton
sheaves when γ < −α, and to the perverse instanton sheaves dual to the non-locally free
instanton sheaves when γ > −α (see Figure 1).

Figure 1. The graph illustrates the Main Theorem, describing the points in the quiver moduli
space Rθ(1) in each of the five regions of the αγ-plane.

This paper is organized as follows. We start by setting up notation and revising some
key facts about instanton sheaves and representations of quivers in § 2. We then prove the
results for instanton representations of arbitrary charge mentioned above in § 3. Finally,
§ 4 is dedicated to describing θ-stable representations with the dimension vector of a
representation corresponding to an instanton sheaf of charge 1 (see Theorem 14), later
showing that there exists only one wall for this dimension vector in § 5, thus completing
the proof of the Main Theorem.

2. Preliminaries

We begin by setting up the notation and nomenclature to be used in the rest of the paper.

2.1. Instanton sheaves

Definition 1. An instanton sheaf on P
3 is a torsion-free sheaf E on P

3 with c1(E) = 0
and satisfying

h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.

The charge of E is given by its second Chern class c2(E).
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The definition above was originally proposed in [7] in a broader context. In the present
paper, we only consider rank 2 instanton sheaves on P

3.
Instanton sheaves are closed related to the concept of a linear monad by the use of the

Beilinson spectral sequence. Recall that a linear monad on P
3 is a complex of locally free

sheaves of the form
OP3(−1)⊕a α→ O⊕b

P3
β→ OP3(1)⊕c (2)

such that α is injective and β is surjective. The sheaf E := ker β/ im α is called the
cohomology of the monad. Consider the variety Σ := Supp(cokerα∗), which is called the
degeneration locus of the monad. One can show that, see [7, Proposition 4]:

(i) E is torsion free if and only if codim Σ ≥ 2;

(ii) E is reflexive if and only if codim Σ = 3;

(iii) E is locally free if and only if Σ = ∅.
Note that rank(E) = b − a − c, c1(E) = c − a, and c2(E) = (c + a + (c − a)2)/2.
A torsion-free sheaf E on P

3 is said to be a linear sheaf if it can be represented
as the cohomology of a linear monad. It can be proved that instanton sheaves on P

3 are
exactly the linear sheaves for which c1(E) = 0, that is, an instanton sheaf can be uniquely
represented as the cohomology of a linear monad as in display (2) for which a = c, see
[7, Proposition 2 and Theorem 3]. Therefore, rank 2 instanton sheaves of charge n are in
1–1 correspondence with linear monads of the form

OP3(−1)⊕n α→ O⊕2n+2
P3

β→ OP3(1)⊕n (3)

whose degeneration locus has codimension at least 2.
It will also be important for us to consider the following more general objects, which

were first introduced in [5, § 3.2]; see [6, Definition 5.6] for an alternative definition.
Below, Hp denotes the pth-cohomology sheaf of an object in Db(P3), while H

p denotes
its pth-hypercohomology group.

Definition 2. A perverse instanton sheaf on P
3 is an object C• in Db(P3) with

c1(C•) = 0 satisfying the following conditions:

(1) Hp(C•) = 0 for p �= 0, 1;

(2) H
p(C• ⊗OP3(q)) = 0 if p + q < 0 when p = 0, 1 and p + q ≥ 0 when p = 2, 3;

(3) the left derived functor Lj∗C• is a sheaf object where j : l ↪→ P
3 is the inclusion of

a line l in P
3.

Note that every instanton sheaf is a perverse instanton as a sheaf object in Db(P3).
In addition, it follows from the considerations in [4, § 2] that the derived dual of a rank
2 instanton sheaf is also a perverse instanton sheaf. However, there are rank 2 perverse
instanton sheaves which are not dual to a sheaf.

One can show that H0(C•) is a torsion-free sheaf and dimH1(C•) = 1, see [5, Corollary
3.16]. The rank of C• is defined to be the rank of H0(C•); the charge of C• is defined to
be the second Chern class of C•, which coincides with c2(H0(C•)) + mult(H1(C•)).
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If H0(C•) = 0, then the sheaf H1(C•) is called a rank 0 instanton sheaf , see [4, 5, 10]
for further details on such sheaves.

Furthermore, observe that every complex of sheaves like the one in display (3) is
a rank 2 perverse instanton sheaf when regarded as an object in Db(P3), provided
codim Supp(coker α∗) and codim Supp(cokerβ) are both at least 2. Conversely, every
rank 2 perverse instanton sheaf is canonically isomorphic (in Db(P3)) to a complex of
sheaves as in display (3) satisfying the latter property, see [5, Lemma 3.15].

2.2. Representation of quivers

Recall that a quiver Q is given by a finite set of vertices Q0, a finite set of arrows Q1

and two maps h, t : Q1 → Q0 called head and tail, respectively. A linear representation
of a quiver is given by R = ({Vi}i∈Q0 ; {fα}α∈Q1) where Vi is a C-vector space and fα :
Vt(α) → Vh(α) is linear. A morphism between two representations R and R′ is given by
φ = {φi}i∈Q0 where φi : Vi → V ′

i is linear and for each arrow α we have f ′
αφt(α) = φh(α)fα.

We denote RepCQ the abelian category of the linear representations of the quiver Q.
The algebra of the linear quiver Q is the associative C-algebra CQ determined by

generators ei, where i ∈ Q0, and α, where α ∈ Q1 and the relations:

eiej = 0 if i �= j, e2
i = ei, et(α)α = αeh(α) = α.

From the relations above, for any arrows α, β we get αβ = 0 unless h(α) = t(β). Thus, a
product of arrows αl · · ·α1 is zero unless the sequence π = (α1, . . . , αl) is a path, i.e.,
h(αj) = t(αj+1) for j = 1, . . . , l − 1. We then put s(π) = s(α1), t(π) = t(αl) and the
length of the path π, l(π) = l. For any vertex i, we also view ei as the path of length
0 at the vertex i.

Clearly, the paths generate the vector space CQ. They also are linearly independent:
consider indeed the path algebra with basis the set of all paths and multiplication given
by concatenation of paths. From the concept of a path algebra, we get the following
definition of quiver with relations generalizing the former definition of quiver:

Definition 3. A relation on a quiver Q is a linear combination of paths in CQ having
a common source and a common target and of length at least 2. A quiver with relations is
a pair (Q, I) where Q is a quiver and I is a two-sided ideal of CQ generated by relations.
The quotient algebra CQ/I is the path algebra of (Q, I).

In this paper, we shall be interested in the quiver Q given in display (1) with relations

Pij := φiηj + φjηi = 0 for 0 ≤ i ≤ j ≤ 3. (4)

A representation R = (V−1, V0, V1; {fηi
}, {gφi

}) of Q is said to satisfy the relations Pij

when gφi
fηj

+ gφj
fηi

= 0.

Definition 4. Let R = (V−1, V0, V1, {fηi
}, {gφj

}) be a representation of the quiver Q
with relations Pij .

(1) R is globally (locally) injective if for every (λ0, λ1, λ2, λ3) ∈ C
4 \ {0} (away from a

subset of codimension at most 2),
∑

λifηi
is injective.
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(2) R is globally (locally) surjective if for every (λ0, λ1, λ2, λ3) ∈ C
4 \ {0} (away from a

subset of codimension at most 2),
∑

λigηi
is surjective.

(3) R is an instanton representation if it is locally injective, globally surjective, and
dim R = (n, 2n + 2, n) for some n ≥ 0, called the charge of R.

(4) R is a perverse representation if it is locally injective, locally surjective, and dimR =
(n, 2n + 2, n) for some n ≥ 0, also called the charge of R.

We will make use of the following elementary facts:

(1) If a representation R with dimension vector (a, b, c) is locally injective, then b ≥
a + 1;

(2) If a representation R with dimension vector (a, b, c) is globally injective, then b ≥
c + 3;

(3) every subrepresentation of a locally (globally) injective representation is also locally
(globally) injective;

(4) every quotient of a (locally) globally surjective representation is also (locally)
globally surjective.

Example 5. It is clear that a representation R with dimR = (1, 4, 1) is globally injec-
tive if, and only if, {fη0 , fη1 , fη2 , fη3} is a basis of Hom(C, C4) = C

4, while R is globally
surjective if, and only if, {gφ0 , gφ1 , gφ2 , gφ3} is a basis of Hom(C4, C) = C

4.

2.3. Equivalence between categories of monads and representations

Let C be the category of complexes of the form (2), regarded as a full subcategory
of the category of complexes of sheaves on P

3. We shall also denote by Q the abelian
category of representations of Q satisfying the relations Pij .

Proposition 6. There is an equivalence of categories between between C and Q.
Moreover, under this equivalence:

(1) instanton sheaves are in 1–1 correspondence with instanton representations of Q;

(2) perverse instanton sheaves which are dual to the instanton sheaves of the first item
are in 1–1 correspondence with perverse representations of Q;

(3) locally free instanton sheaves are in 1–1 correspondence with instanton representa-
tions of Q that are globally injective.

Proof. We construct an equivalence functor F between C and Q which restricts to the
desired equivalences between their subcategories. Similar partial results in this direction
were obtained in [8, 9].
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First, fix homogeneous coordinates [x0 : x1 : x2 : x3] of P
3, and let {x0, x1, x2, x3} be

the corresponding basis of H0(OP3(1)); one has a natural isomorphism

Hom(OP3(−1)⊕a,O⊕b
P3 ) 	 Mb×a ⊗C H0(OP3(1)),

where Mb×a denotes the vector space of b × a matrices of complex numbers.
Consider the complex

C• : OP3(−1)⊕a α→ O⊕b
P3

β→ OP3(1)⊕c.

As α and β can be seen as matrices whose entries are linear forms on x0, x1, x2, x3, we
have

α = α0x0 + · · · + α3x3, β = β0x0 + · · · + β3x3,

where αi ∈ Mb×a and β ∈ Mc×b. Hence we can set

F (C•) = (Ca, Cb, Cc, {αi}, {βj}).

Further, we have

β ◦ α = 0 ⇐⇒
∑
i≤j

(βiαj + βjαi)xixj = 0.

It follows that

β ◦ α = 0 ⇔ βiαj + βjαi = 0, 0 ≤ i ≤ j ≤ 3.

Therefore, F(C•) satisfies the relations of Q.
Given a morphism φ• : C• → N• between complexes, by using the canonical isomor-

phism Hom(OP3(i)⊕r,OP3(i)⊕s) 	 Mr×s where i ∈ Z, we set F(φ•) to be the morphism
of representations obtained from the above isomorphism.

Finally, the functor F is dense: given a representation in Q and a choice of homogeneous
coordinates for P

3, one easily constructs a complex of the form (2). The functor is also
faithful and full since

HomC(C•,D•)
F→ HomQ(F (C•), F (D•))

is clearly an isomorphism.
For the second claim, just note that F(C•) is locally injective if and only if the morphism

α is injective, while F(C•) is globally surjective if and only if the morphism β is surjective.
In addition, the degeneration locus of C• is empty if and only if F(C•) is globally injective.

�

To complete this section, recall that a representation R of a quiver is said to be Schurian
if every endomorphism is a multiple of the identity, that is Hom(R,R) 	 C. Since every
rank 2 instanton sheaf E is simple (see [7, Lemma 23]), and the endomorphisms of E
are bijective with the endomorphisms of the corresponding monads [19], it follows from
Proposition 6 that every instanton representation is Schurian.
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2.4. Stability of representations

Following King in [13], we consider the moduli space of representations of the quiver
with relations Q of fixed dimension vector (n, 2n + 2, n). Our notation and convention
for the definition of semistability come from [14] though.

Recall that for a quiver Q and a dimension vector v ∈ Z
I
+ where I is the number of

vertices of Q, we define the representation space R(v) of linear representations of Q with
dimension vector v and satisfying the relations, and the group GL(v) =

∏
i∈Q0

GL(vi)
acting on R(v) by conjugation. Since the group of constants acts trivially, we have an
action of the group PGL(v) on the representation space. For the moduli space of represen-
tations, we shall consider the twisted GIT quotient. Let θ ∈ Z

I be a stability parameter
and consider the character

χθ : GL(v) → C
×,

which sends g to
∏

det(gi)−θi . For the character to be well defined on G = PGL(v), we
must have

θ · v =
∑
i∈Q0

θi · vi = 0.

In this case, we define C[v]G,χθ = {f ∈ C[R(v)] : f(g · m) = χθ(g)f(m)}, where C[R(v)]
is the C-algebra of regular functions on R(v). Finally the GIT quotient associated with
the stability parameter θ and to the dimension vector v is the variety:

Rθ(v) = R(v)//χθ
G = Proj

(
⊕n≥0C[v]G,χn

θ

)
.

Now let θ ∈ R
I . A representation V of Q is called θ-semistable (respectively, θ-stable) if

θ · dimV = 0 and for any subrepresentation V ′ ⊂ V we have θ · dimV ′ ≤ 0 (respectively,
for every nonzero proper subrepresentation V ′ we have θ · dimV ′ < 0).

It was proved in [13] that the GIT χθ-semistable (respectively, χθ-stable) representa-
tions correspond to the θ-semistable (respectively, θ-stable) representations, so we get the
usual description of the moduli space Rθ(v) by means of θ-semistable representations.

In this paper, we are interested in representations of the quiver given in display (1)
satisfying the relations given in display (4) and dimension vector v = (n, 2n + 2, n). We
will set

θ =
(

α,−(α + γ)
n

2n + 2
, γ

)
,

so that θ · (n, 2n + 2, n) = 0. From now on, we will denote by Rθ(n) the moduli space of
θ-semistable representations of Q with dimension vector (n, 2n + 2, n) for θ as above.

A stability chamber is a subset Γ of the αγ-plane such that Rθ1(n) = Rθ2(n) (as sets)
for every θ1, θ2 ∈ Γ. Each irreducible component of the complement of the union of all
stability chambers is called a wall. Since θ-stability is invariant under multiplication by a
scalar (that is Rθ(n) = Rλ·θ(n) for every θ and every λ ∈ C

∗), it is easy to see that walls
are lines passing through the origin of the αγ-plane, while chambers are the unbounded
regions limited by two such lines.
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3. Stability of instantons representations

Every representation R of the quiver Q with dim R = (a, b, c) can be expressed as an
extension of two other representations as follows

0 → K → R → A⊕a → 0, (5)

where dim K = (0, b, c), and A is the simple representation associated with the first vertex.
With this in mind, K is called the kernel subrepresentation of R. Similarly, one also has
a short exact sequence of the form

0 → C⊕c → R → Q → 0, (6)

wherdim Q = (a, b, 0), and C is the simple representation associated with the third vertex;
Q is called the cokernel quotient of R. These previous two sequences correspond, under the
functor F described in the proof of Proposition 6, to the following short exact sequences
of complexes:

Lemma 7. The moduli space Rθ(n) is empty whenever (α, γ) lies outside the fourth
quadrant of the αγ-plane.

Proof. If α < 0, then θ · dim A⊕n = nα < 0, so (5) is a destabilizing sequence for R.
Similarly, if γ > 0, then θ · C⊕n = nγ > 0, so (6) is a destabilizing sequence for R. �

Next, we argue that there is a stability parameter θ for which the moduli space Rθ(n)
is non-empty and contains (at least some) instanton sheaves, that is, L(n) ∩Rθ(n) �= ∅.

Proposition 8. Let R be an instanton representation. Then there exists a stability
parameter θ for which R is θ-stable.

Proof. We already observed in the end of § 2.3 that every instanton representation R
is Schurian. In this case, the stabilizer group of R is trivial and hence we get an open
set in which the generic point has trivial stabilizer. By a result of Van den Bergh [2,
Proposition 6], if the stabilizer group of R is zero-dimensional then there is an invariant
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affine open set in which the generic orbit is closed. This open set in the GIT construction
is given by the non-vanishing of a relative invariant function of some weight χθ. Hence, the
generic point will be χθ-stable and therefore θ-stable by Theorem 4.1 in [13]. Finally, as
the conditions of locally injective and globally surjective are open, we get the result. �

Having proved that the moduli spaces Rθ(n) are not always trivial, we now show that
there always are at least two different stability chambers within the fourth quadrant.

Lemma 9. There is a wall that destabilizes all instanton representations corresponding
to non-locally free instanton sheaves, in any charge.

Proof. Let E be a non-locally free rank 2 instanton sheaf of charge n, and let R be
the corresponding instanton representation.

By the Main Theorem in [4], the double dual sheaf E∨∨ is a locally free instanton sheaf,
and QE := E∨∨/E is a rank 0 instanton sheaf. Letting QR and SR be the representations
of Q corresponding to the sheaves E∨∨ and QE , respectively, the short exact sequence of
sheaves 0 → E → E∨∨ → QE → 0 gives rise to the short exact sequence 0 → SR → R →
QR → 0 in Q. Since dimSR = (d, 2d, d) for some d ≥ 1, we have that

θ · dim SR =
d

n + 1
(α + γ),

So R is not θ-semistable when α + γ > 0.
According to the previous proposition, there is a stability parameter θ for which R is

θ-stable. Since R cannot be θ-semistable above the line α = −γ, we obtain the desired
statement. �

Of course, our goal is to know whether there exists a stability parameter θ for which
every instanton representation is θ-stable. In order to do that, one must find suit-
able restrictions on the possible dimension vectors of subrepresentations of instanton
representations.

Lemma 10. If S is a non-trivial subrepresentation of an instanton representation of
charge n with dim S = (s−1, s0, s1), then the following inequalities hold:

(1) s−1 + 1 ≤ s0;

(2) s0 − s1 ≤ n − 1 when s1 < n;

(3) s0 − 4s1 ≤ 0;

(4) s1 ≥ 1.

Proof. The first inequality simply reflects the fact that every subrepresentation S of
an instanton representation R must be locally injective.
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Similarly, the quotient representation R/S must be globally surjective. Since

dim R/S = (n − s−1, 2n + 2 − s0, n − s1),

one must have, when s1 < n,

(2n + 2 − s0) − (n − s1) ≥ 3,

which is equivalent to the inequality in item (2).
Next, consider the composed morphism φ : S ↪→ R � A⊕n. It follows from the exact

sequence in display (5) that kerφ is a subrepresentation of the kernel subrepresentation
of R, so, in particular, dim kerφ = (0, s0, s1). Thus ker φ is associated, via the functor F
of Proposition 6, to a morphism of sheaves β′ : O⊕s0

P3 → OP3(1)⊕s1 . Note that kerβ′ is a
subsheaf of ker β, which has no global sections since H0(ker β) = H0(E) = 0. Therefore,
H0(ker β′) = 0 as well, which means that the induced map in cohomology

H0(O⊕s0
P3 )

H0(β′)−→ H0(OP3(1)⊕s1)

must be injective, thus s0 ≤ 4s1, as desired.
Finally, if s1 = 0, then the inequality in item (3) implies that s0 = 0, while the first

inequality implies that s−1 = 0 as well. �

The inequalities in the previous lemma are all we need to answer our main question
when n ≤ 2. In fact, the case n = 1 was already considered in [15, § 6], where it was
shown, in a broader context, there is θ for which that every representation corresponding
to a locally free instanton of charge 1 is θ-stable; we will say more about this case in § 4
below. We close this section by considering the case n = 2.

Proposition 11. There exists a stability parameter θ for which every instanton
representation of charge 2 is θ-stable.

Proof. We show that there exists 0 < ε � 1 for which every every instanton represen-
tation of charge 2 is θε-stable, where θε = (ε, (1 − ε)/3,−1). We have

θε · (s−1, s0, s1) =
(
s−1 − s0

3

)
ε +

s0

3
− s1.

By the fourth item in Lemma 10, it is enough to consider the cases s1 = 1, 2.

• Case s1 = 2. If s0 < 6, then s0/3 − s1 < 0, hence, since the quantity inside the first
parenthesis can only have finitely many values, one can find 0 < ε � 1 for which
θ · (s−1, s0, 2) < 0. If s0 = 6, then s−1 ≤ 1, so again θ · (s−1, 6, 2) < 0.

• Case s1 = 1. By item (2) of Lemma 10, we have s0 ≤ 2 and hence s0/3 − 1 < 0. Again
one can find ε for which θ · (s−1, s0, 2) < 0.

�
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4. Description of representations in I(1)

We consider again the quiver with relations Q and representations of this quiver with
dimension vector (1, 4, 1). If θ = (α, β, γ) is a stability parameter then as θ · (1, 4, 1) =
0 we get θ = (α,−(α + γ)/4, γ). Finally, let Rθ(1) be the moduli space of semistable
representations of the quiver Q of fixed dimension vector (1, 4, 1). We want to establish
conditions on α and γ in order to get I(1) ⊂ Rθ(1) as we know that I(1) may be seen
in Rθ(1) as the set of orbits of representations which are globally surjective and globally
injective.

From now on, we shall use the notation C
b = 0 if b = 0.

Proposition 12. Every representation R in Rθ(1) has subrepresentation S of
dimension vector (0, b, 1) for all b ∈ {0, 1, 2, 3, 4}.

Proof. Let R ∈ Rθ(1) be the representation given by

From the decomposition C
4 = C

b ⊕ C
4−b (being trivial in case C

b = 0 or C
b = C

4), we
can define for all i ∈ {0, 1, 2, 3}, v′

i = vij where j : C
b ↪→ C

4 is the inclusion in the first
summand of the decomposition. It is clear that the representation

satisfies the relations of Q and it is a subrepresentation of R:

being the second square commutative from the expression v′
i = vij for all i ∈ {0, 1, 2, 3}.

�

We are interested in knowing the possible dimension vectors of subrepresentations of
a representation R ∈ I(1). For this, we have to study the globally surjective and the
globally injective representations in more detail.

Definition 13. Let R be the representation of the quiver with relations Q

https://doi.org/10.1017/S0013091520000292 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000292


996 M. Jardim and D. D. Silva

We say R is globally surjective of rank r if R is globally surjective and the rank of
the matrix M = [u0, u1, u2, u3] where the ui are the column vectors of M is equal to r.
Similarly, we say R is globally injective of rank r if R is globally injective and the rank
of the matrix N = [v0, v1, v2, v3]T where the vi are the row vectors of N is equal to r.

Remark. It is clear that we could have changed the roles of row and column vectors
or used just one of them in the above definition but the notation introduced here will be
important to what follows.

Now we are going to explain a few facts that shall be used throughout the rest of
the paper. Let again R be the representation as in (I) such that the 4 × 4 matrix N =
[v0, v1, v2, v3]T , where the row vectors are the vectors vi ∈ Hom(C4, C) = C

4, has rank
b ∈ {0, 1, 2, 3, 4}. Then we take g = (1, A−1, 1) where A ∈ Gl(C4) is the invertible matrix
that we multiply N on the right in order to get a matrix of the kind

Ñ =
[
Ib 0
∗ 0

]
,

where Ib represents the identity matrix of order b and ∗ represents a possible non-trivial
submatrix of order (4 − b) × b. Acting g on R, we get a representation

in the same orbit of R such that Ñ = [ṽ0, ṽ1, ṽ2, ṽ3]T , i.e., ṽ0, ṽ1, ṽ2, ṽ3 are the rows of Ñ .
It is clear that the sets of dimension vectors of subrepresentations of R and R̃ are the
same.

Observe that in the special case b = 4 we get in the same orbit of R a representation
with the canonical basis of C

4 in the places of {v0, v1, v2, v3}.
Analogously, given a representation R such that the 4 × 4 matrix M = [u0, u1, u2, u3],

where the column vectors are the vectors ui ∈ Hom(C, C4) = C
4, has rank b ∈

{0, 1, 2, 3, 4} we can take g = (1, A, 1) where A is the invertible matrix that we multiply
M on the left in order to find a matrix of the kind:

M̃ =
[
Ib ∗
0 0

]
,

where Ib represents the identity matrix of order b and ∗ represents a possible non-trivial
submatrix of order b × (4 − b). Acting g on R we get a representation
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where ũ0, ũ1, ũ2, ũ3 are the column vectors of the matrix M̃ . Again, in case b = 4, we
have that {ũ0, ũ1, ũ2, ũ3} is the canonical basis of C

4 and we also have that the sets of
dimension vectors of subrepresentations of R and R̃ are the same.

We are going to use the discussion above to get a characterization of both globally
surjective representations and globally injective representations in terms of the dimension
vectors of their subrepresentations.

Theorem 14. Let R be a representation in Rθ(1). Then

(1) R is globally injective if, and only if, there does not exist subrepresentation S of R
of dimension vector (1, b, 1) for b ∈ {0, 1, 2, 3}.

(2) R is globally surjective if, and only if, there does not exist subrepresentation S of
R of dimension vector (0, b, 0) for b ∈ {1, 2, 3, 4}.

Proof. Let R be as in display (I) in Definition 13.
For the first item, suppose R is globally injective. Then {u0, u1, u2, u3} is a basis for

Hom(C, C4) = C
4. Let us prove the desired implication by contradiction.

If S is a subrepresentation of dimension vector (1, b, 1), for b < 4, then we get the
quotient R/S as below

The kernel of the map p has dimension b < 4 and from the diagram above we see that
{u0, u1, u2, u3} is contained in it. As {u0, u1, u2, u3} are linearly independent we have a
contradiction.

Now suppose R is not globally injective and suppose the rank of the matrix M =
[u0, u1, u2, u3] is b < 4. From the discussion above, we can consider R in such a way that
the matrix M is of the kind

M =
[
Ib ∗
0 0

]
,

where u0, u1, u2, u3 are the column vectors of the matrix M .
We show that there exists subrepresentation S with dimension vector (1, b, 1). Indeed,

let S be the representation denoted by
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where {u′
0, u

′
1, u

′
2, u

′
3} are the column vectors of the submatrix M ′ of M given by the first

b rows of M

M ′ =
[
Ib ∗]

and {v′
0, v

′
1, v

′
2, v

′
3} are the row vectors of the submatrix N ′ of N = [v0, v1, v2, v3]T (where

each vi is a row vector) given by the first b columns of N . Later we are going to show
that S also satisfies the relations of the quiver Q.

Consider the map φ : C
b → C

4 given by

φ =
[
Ib

0

]
,

where Ib is the identity matrix of order b. We need to show that the diagram below
commute:

We have φu′
i = ui for all i ∈ {1, 2, 3, 4} since

φ · M ′ =
[
Ib

0

] [
Ib ∗] =

[
Ib ∗
0 0

]
= M

and also we have viφ = v′
i for all i ∈ {0, 1, 2, 3} by the definition of the v′

i themselves.
Observe that S obeys the relations of the quiver Q:

v′
iu

′
j + v′

ju
′
i = viφu′

j + vjφu′
i = viuj + vjui = 0

for 0 ≤ i ≤ j ≤ 3.
Hence S is a subrepresentation of R of dimension vector (1, b, 1) with b < 4.
Moving on to the second item, suppose R is globally surjective. Then we know we may

consider {v0, v1, v2, v3} as the canonical basis of C
4 = Hom(C4, C).
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If there exists a subrepresentation S of dimension vector (0, b, 0) where b ∈ {1, 2, 3, 4}
then by the diagram

we get vij = 0 for all i ∈ {0, 1, 2, 3}. But this implies j = 0 and hence C
b = 0 which is a

contradiction.
On the other hand, suppose R is not globally surjective and let the rank of the matrix

N = [v0, v1, v2, v3]T , where v0, v1, v2, v3 are the row vectors of N , be b′ < 4. Then we may
consider R such that the matrix N is of the form

N =
[
Ib′ 0∗ 0

]
.

Set b = 4 − b′ with b′ ∈ {0, 1, 2, 3}. We shall prove that there exists subrepresentation S
of dimension vector (0, b, 0).

Consider the representation S

which trivially satisfies the relations of the quiver Q. We take the injective map φ : C
b →

C
4 given by matrix

φ =
[

0
Ib

]
.

From equation

N · φ =
[
Ib′ 0
∗ 0

] [
0
Ib

]
=

[
0
0

]
,

we get viφ = 0 for all i ∈ {0, 1, 2, 3} which implies that S is in fact a subrepresentation
of R:

�
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Proposition 15. Let R be a representation in Rθ(1) which is globally (surjective)
injective. Then R is not locally (injective) surjective if, and only if, R has subrepresenta-
tion S of dimension vector (1, b, 0) with b ∈ {0, 1, 2, 3, 4}.

Proof. Firstly, suppose R globally injective. Let S be a subrepresentation of R of
dimension vector (1, b, 0) with b ∈ {0, 1, 2, 3, 4}:

From the diagram in display (7), as {u0, u1, u2, u3} is a basis of Hom(C, C4) = C
4

we get b = 4 and hence φ is an isomorphism. Then from viφ = 0, we get vi = 0 for all
i ∈ {0, 1, 2, 3}, so the rank of R is zero and R is not locally surjective. On the other hand, if
R is not locally surjective then v0 = v1 = v2 = v3 = 0 and hence R has subrepresentation
S of dimension vector (1, 4, 0): using the notation of the diagram (II) it is enough to set
φ = 1C4 and u′

i = v′
i for all i.

Now take R globally surjective. Let {v0, v1, v2, v3} be the canonical basis of
Hom(C4, C) = C

4. Let S be a subrepresentation of R with dimension vector (1, b, 0)
where b ∈ {0, 1, 2, 3, 4}. By the diagram (II), we get viφ = 0 for all i ∈ {0, 1, 2, 3} and
hence φ = 0. Thus, from the same diagram, we have u0 = u1 = u2 = u3 = 0, i.e., R is not
locally injective.

On the other hand, if u0 = u1 = u2 = u3 = 0 then by taking C
b = 0 and φ = 0, we get

that S is a subrepresentation with dimension vector (1, 0, 0). �

Now we are able to characterize the representations in I(1) in terms of the dimension
vectors of its subrepresentations.

Proposition 16. Let R be a representation in I(1). Then the dimension vectors of
its subrepresentations are exactly (0, b, 1) for all b ∈ {0, 1, 2, 3, 4}.

Proof. The possible dimension vectors of subrepresentations of a representation in
Rθ(1) are of the kind (0, b, 0), (1, b, 1), (0, b, 1) and (1, b, 0). By Proposition 12, R has
subrepresentations of dimension vectors (0, b, 1) for all b ∈ {0, 1, 2, 3, 4}. As R is both
globally injective and globally surjective, by Theorem 14, it does not have subrepresenta-
tions of dimension vectors (0, b, 0), (1, b, 1) and, by Proposition 15, it also does not have
subrepresentations of dimension vectors (1, b, 0). �

5. Chamber decomposition for Rθ(1)

As the stability parameter θ = (α,−(α + γ)/4, γ) depends only on the values of α and
γ, we can talk about (α, γ)-stability. In this section, we obtain a wall-and-chamber
decomposition of the real αγ-plane of stability parameters.
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In this setting, a representation R of dimension vector (1, 4, 1) is (α, γ)-stable if, and
only if, every proper subrepresentation S of dimension vector (a, b, c) satisfies

θ · (a, b, c) < 0 ⇐⇒ (4a − b)α + (4c − b)γ < 0

From Proposition 12 and Proposition 16, we know that every representation R ∈ Rθ(1)
has subrepresentation S of dimension vector (0, b, 1) for all b ∈ {0, 1, 2, 3, 4} and the
representations in I(1) have exactly subrepresentations of this kind.

Then for R ∈ I(1) to be stable it is required that θ · (0, b, 1) < 0 for every subrepresen-
tation S of dimension vector (0, b, 1), that is,

(4 − b)γ < bα

for b ∈ {0, 1, 2, 3, 4}.
The five possible values of b give us five inequalities whose intersection is the fourth

quadrant of the real plane determined by (α, γ).
Thus, for values of (α, γ) in the fourth quadrant, we have I(1) ⊂ Rθ(1) and for values

of (α, γ) outside the fourth quadrant we have Rθ(1) = ∅, by Lemma 7.
We are now interested in knowing which are exactly the orbits of representations in

Rθ(1) \ I(1) for values of (α, γ) in the fourth quadrant.

Proposition 17. If R ∈ Rθ(1) is a globally (surjective) injective representation which
is not locally (injective) surjective then R is not (α, γ)-stable for all values of α and γ.

Proof. In either case, from Proposition 15, we know R has subrepresentation S of
dimension vector (1, b, 0) with β ∈ {0, 1, 2, 3, 4}. Then

θ · (1, b, 0) < 0 ⇐⇒ 4α + b(−α − γ) < 0.

If b = 0 then α < 0 and if b > 0 then γ > ((4 − b)/b)α. In both cases, the intersection
with the fourth quadrant is empty and hence R is not (α, γ)-stable. �

Proposition 18. Let (α, γ) be a value in the fourth quadrant of the real plane. If
R is not globally injective then R is (α, γ)-stable only for γ < −α. If R is not globally
surjective then R is (α, γ)-stable only for γ > −α.

Proof. By Theorem 14, if R is not globally injective then there is a subrepresentation
S with dimension vector (1, b, 1) with β ∈ {0, 1, 2, 3}. Consider R (α, γ)-stable. Thus

θ · (1, b, 1) < 0 ⇐⇒ (4 − b)α + (4 − b)γ < 0

which implies γ < −α since b ∈ {0, 1, 2, 3}.
Again by Theorem 14, if R is not globally surjective then there is a subrepresentation

S with dimension vector (0, b, 0) with β ∈ {1, 2, 3, 4}. If R is (α, γ)-stable then

θ · (0, b, 0) < 0 ⇐⇒ b
−α − γ

4
< 0,

which implies γ > −α since b �= 0. �
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Proposition 19. The moduli spaces associated with values of (α, γ) in the fourth
quadrant of the real plane such that γ < −α are formed exactly by the globally surjective
representations which are locally injective as the moduli spaces for γ > −α are formed
exactly by the globally injective representations which are locally surjective.

Proof. Let (α, γ) be in the fourth quadrant and let R be a representation whose
orbit is in the moduli space associated with (α, γ). By Proposition 18, R must be either
globally injective or globally surjective. If γ > −α then again by Proposition 18, R must
be globally injective and by Proposition 17, it must be locally surjective. Analogously, if
γ < −α then R must be globally surjective and locally injective. �

Now we are going to prove that we can see the moduli spaces associated with (α, γ)
in the fourth quadrant as compactifications of the open subset I(1) ⊂ Rθ(1), all of them
isomorphic to P

5.
Let (α, γ) be in the fourth quadrant such that γ < −α. Let R be a globally surjective

representation of non-trivial rank (locally injective) in an fixed orbit of Rθ(1):

Up to the action of a convenient g ∈ G we know we can consider {v0, v1, v2, v3} as
being the canonical basis. In this case, the representation R is uniquely determined by
the values of {u0, u1, u2, u3} up to the multiplication of a nonzero scalar.

Since {v0, v1, v2, v3} is the canonical basis, from the relations of the quiver Q, we get:

u0 =

⎡
⎢⎢⎣

0
a
b
c

⎤
⎥⎥⎦ , u1 =

⎡
⎢⎢⎣
−a
0
d
e

⎤
⎥⎥⎦ , u2 =

⎡
⎢⎢⎣
−b
−d
0
f

⎤
⎥⎥⎦ , u3 =

⎡
⎢⎢⎣
−c
−e
−f
0

⎤
⎥⎥⎦ .

Hence, there is a bijective correspondence between orbits in Rθ(1) and non-trivial
skew-symmetric matrices

R̃ =

⎡
⎢⎢⎣

0 −a −b −c
a 0 −d −e
b d 0 −f
c e f 0

⎤
⎥⎥⎦

up to the multiplication of a nonzero scalar.
Thus, there exists a bijective correspondence between orbits of Rθ(1) and points of P

5

whose homogeneous coordinates can be represented by [a : b : c : d : e : f ], the entries of
the skew-symmetric matrix above.

Further, one can easily check that det(R̃) = (be − af − dc)2. Since R̃ is skew-symmetric,
there exists an invertible matrix P such that P tR̃P is of the kind⎡

⎢⎢⎣
0 λ1 0 0

−λ1 0 0 0
0 0 0 λ2

0 0 −λ2 0

⎤
⎥⎥⎦
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and hence the rank of R̃ is 0, 2 or 4. We can not have rank(R̃) = 0 since this would imply
u0 = u1 = u2 = u3 = 0, that is, the representation R would not be locally injective.

We know R is a globally surjective representation of rank 4 if and only if R is also
globally injective, that is, R ∈ I(1). Thus, we can identify I(1) with the open set given
by the complement of the quadric det(R̃) = 0 in P

5. On the other hand, the instanton
sheaves in L(1) \ I(1) are in correspondence, by Proposition 6, with the globally surjective
representations of rank 2 and hence with the points in the quadric det(R̃) = 0 in P

5.
Similarly, if we take (α, γ) in the fourth quadrant such that γ > −α and we take R a

globally injective representation of non-trivial rank in an fixed orbit of Rθ(1) then we get
again that Rθ(1) = P

5 is a compactification of the open set I(1) which is the complement
of a quadric. In this case, the points of the quadric are in correspondence with the globally
injective representations of rank 2 which can be seen as the perverse sheaves dual to the
non-locally free instanton sheaves of charge 1, by Proposition 6.

We have therefore completed the proof of the Main Theorem.
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