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abstract

This paper considers the modelling of claim durations for existing claimants under income
protection insurance policies. A claim is considered to be terminated when the claimant returns
to work. Data used in the analysis were provided by the Life and Risk Committee of the Institute
of Actuaries of Australia. Initial analysis of the data suggests the presence of a long-run
probability, of the order of 7%, that a claimant will never return to work. This phenomenon
suggests the use of mixed parametric regression models as a description of claim duration which
include the prediction of a long-run probability of not returning to work. A series of such
parametric mixture models was investigated, and it was found that the generalised F mixture
distribution provided a good fit to the data and also highlighted the impact of a number of
statistically significant predictors of claim duration.
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". Introduction

Insurers will benefit considerably from having a good understanding of
the durations of claims likely to be experienced by claimants under their
income protection (IP) insurance policies. Claim durations have a significant
impact on both the pricing and the reserving calculations routinely made by
insurers. Ultimately, inaccurate modelling of claim durations could also
contribute to insurer insolvency and a lack of consumer confidence. A
mathematical model of claim durations also enables the profit testing of a set
of premium rates to be readily automated. This paper provides a strategy
for modelling claim durations which is demonstrated to provide a good
summary of observed claim duration patterns, and hence will be of value to
insurers in their quest for suitable pricing and reserving methods in respect of
their IP insurance policies.

The first significant step in the modelling of claim termination rates was
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the production of a number of disability tables based on industry-wide data.
In the United States of America, we have seen the production of the
Commissioner’s Disability Tables in 1964, which were updated with the
production of the Commissioner’s Individual Disability Table A, CIDA, in
1985 (see Robinson, 1988). This U.S. derived table is based on data from 20
companies over the period 1973 to 1979. The termination rate for a
particular claim duration since disablement is derived as a product of factors
corresponding to the profile of each claim. These factors include duration
since onset of disability, age of claimant, deferred period, occupation of
claimant, gender, and an indicator of whether the claim is related to accident
or sickness.

In the United Kingdom, the Continuous Mortality Investigation (CMI)
Bureau has produced a number of reports which describe and model both
mortality and morbidity experience. Most notably, the twelfth report of the
CMI, CMIR12 (CMIB, 1991), describes the development of a multiple state
model for the description of IP insurance. CMIR12 contains a graduation by
mathematical formula of claim recovery rates. The mathematical formula
employed by the CMI in this report modelled the impact of age at the date of
falling sick, duration of disability and the deferred period written into the
insurance policy of the claimant in the description of the claim termination
rate.

The Institute of Actuaries of Australia (IAAust) has also developed its
own industry morbidity table. This table, known as IAD1989-93, was
produced by a subcommittee of the Disability Committee of the IAAust in
1995. The claim recovery rates were modelled using a series of linear
functions relating the recovery rate to the age of the claimant. The
coefficients in the estimated linear models were allowed to vary according to
the age and the gender of the claimant and the deferred period selected by
the claimant at the time of policy inception.

Besides industry developed tables, a number of other investigations into
recovery rates have been conducted. Gregorius (1993) describes a multiple
state model used for the analysis of IP policies in the Netherlands. The
recovery rates are described using a piecewise constant force of recovery.
Segerer (1993) describes the methodology used in Germany, Austria and
Switzerland. Recovery rates are not modelled explicitly in these countries. In
order to predict the expected present value of claim payments under an IP
policy, ordinary life table annuity values are used as the starting point. These
annuity values are then reduced by a factor to allow for the fact that
payment is made contingent on both survival and continuing disability.

This paper will consider the modelling of claim durations with the use of
survival analysis. After this introduction, Section 2 will describe the IP
insurance policy data used in the paper. Section 3 will provide the results of
some initial analysis of these data and will describe the modelling strategies
implied by these initial analyses. Section 4 will describe the main modelling
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technique employed in this paper, namely mixed parametric regression
models of claim continuation. The results of fitting these models will be
presented. Section 5 will provide discussion of the results from the mixture
modelling. Section 6 will conclude the paper, and will provide some avenues
for further research in this area.

Æ. The Institute of Actuaries of Australia Claim Duration Data

The IAAust IP insurance policy database contains information on
policyholders who have purchased insurance from the main Australian
providers of this form of insurance. There are about 20 different insurers
which provide data to this database on an annual basis. Data are recorded
for each policyholder, based on the information provided in the insurance
proposal form. In addition, and most importantly for this study, dates of
claim commencement and claim cessation are recorded for each policyholder
who commenced claim.

For this research, all claims which began in calendar year 1995 were
extracted from the IAAust database. There were 8,863 new claims recorded in
respect of calendar year 1995. These claims were followed until termination
or until the end of calendar year 1998, whichever occurred first. The data set
contains information including: the duration of each policyholder’s claim;
the age of the claimant on the date of disability onset; the definition of
disability used in assessing whether the policyholder is eligible for a benefit
under the policy; the gender of the policyholder; the occupation class of the
policyholder (classified into four levels ö see The Institute of Actuaries of
Australia, 1997); the frequency of benefit payment; the rate of benefit
payable monthly; the type of benefits payable (increasing in line with
inflation or level); the smoker status of the insured life; and the deferment
period specified in the insurance contract. Appendix A provides a table of the
characteristics (potential rating factors) recorded for each of these
claimants, along with the coded variable name and a brief description of the
variable.

Of the 8,863 claims recorded, 7,771 (88%) related to terminated claims,
the remainder being censored. Terminated claims include those claims where
claimants recovered and returned to work. All other forms of claim
cessation, including death of the claimant, result in a censored claim for the
purpose of this study. The most common cause of censoring was that the
claim reached the end of 1998 and was continuing at that time. There were a
small number of claims which were lost at the end of each of 1995, 1996
and 1997, and which are unable to be followed further. This issue arose due
to changes in claim codes adopted by companies which provided these data
to the IAAust Life and Risk Committee at the end of particular calendar
years. Most of these claims could be traced by matching claims from one
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calendar year to the next on the basis of date of birth, date of entry to the
policy, sex, occupation class and smoker status. However, a small proportion
(comprising less than 1% of the total number of claims which began in
1995) could not be successfully matched. The age profile of claimants ranged
from 17 to 70, with an average age of 40. The distribution of ages for new
claimants was approximately bell shaped. Of the 8,863 claimants included in
the dataset, 2,409 (27.2%) were in occupation class A, 667 (7.5%) were in
occupation class B, 3,165 (35.7%) were in occupation class C, and 2,622
(29.6%) were in occupation class D. Occupation Class A relates to
professional white collar and sedentary occupations. Class B relates to other
sedentary occupations, including supervision of manual workers. Class C
relates to light manual workers and class D relates to moderate manual
workers. See The Institute of Actuaries of Australia (1997) for further
discussion on occupation class descriptions. Just over 50% of the claims related
to disability definitions where the ‘inability to perform any occupation’ test
is applied in determining whether the claim can continue after an initial period.

Males account for 87% of the data, while monthly benefit payments are
clearly the most common, also accounting for 87% of the data. We note also
that 54.7% of the claimants had chosen benefits which increase in line with
inflation. Only 5% of the claimants would have required thorough medical
examinations before claim payments commenced. Level premiums accounted
for 13.6% of the data, the remainder relating to stepped premiums. The
smoker prevalence rate amongst claimants was 19.5%. Sickness caused 58.9%
of the claims, the remainder being due to accident.

â. Initial Analysis of the Data

In order to understand the duration profile of disability claims, Kaplan-
Meier survival curves (see Kaplan & Meier, 1958) have been created for the
duration of disability claims. Kaplan-Meier curves can be used to provide
a non-parametric estimate of the survival function for claims. The event of
interest in this survival analysis is clearly claim termination. The duration
variable is used to measure time since payment of disability benefits
begins.

In order to produce Figure 1, all claims data have been aggregated. This
Figure shows the Kaplan-Meier estimated survival function for claims where
both sexes, all deferred periods and all other possible classifications of the
data have been grouped together. Immediately apparent from Figure 1 is the
drop in claims in force after 730 days; that is after two years. This issue was
investigated, and claims which cease due to the expiry of a two-year benefit
period were not included in the data used to create Figure 1. It is suspected,
therefore, that a small proportion of claims which cease after two years are
recorded as recoveries, when, in fact, they relate to the expiry of the benefit
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period. The effect is negligible, and subsequent analysis proceeds using the
data as presented in Figure 1.

Figure 1 includes lines showing the 95% confidence intervals for the
estimated claim duration survival function. From the Kaplan-Meier analysis
we note that:
ö there appears to be a non-zero long-term survival probability of about

0.07, which relates to lives who do not recover from their disability; and
ö the Kaplan-Meier estimate of the survival function is very smooth,

which suggests that parametric survival function models may work well
in this context.

The results of an initial investigation of the impact of the various rating
factors given in the table in Appendix A on claim termination rates are now
presented. Again Kaplan-Meier estimation is used. Kaplan-Meier estimates
of the survival function are created for the claims relating to levels of each of
the rating factors which are deemed statistically significant predictors of
claim duration in the Australian industry table for IP insurance claim rates
(IAD 89-93). These factors are age, sex, occupation class, deferment period
and smoker status.

Note that the Kaplan-Meier plots shown in Figures 2 to 6 represent one-
way analyses of claim duration experience observed from 1995 to 1998
inclusive.
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Figure 1. Kaplan-Meier estimate of the claim duration survival function
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Figure 2. Kaplan-Meier survival function split by gender
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Figure 3. Kaplan-Meier survival function split by occupation class
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The estimated survival functions for males and females are very close
with mild evidence that males have higher recovery rates than females
between six months and one and a half years after onset of disability, but
that in the long term there is very little difference.

The Kaplan-Meier estimates by occupation class indicate that
occupations can be grouped into two groups, ‘A and B’ compared with ‘C
and D’.

The most noticeable feature of the Kaplan-Meier estimates by deferred
period is the significantly larger long-term claim probability associated with
the longest (greater than three months) deferred period group. There is also
evidence of longer claim durations amongst those claimants with policies
which have deferred periods of one month. Note that these durations exclude
the deferred period itself. The initial three-month continuous disability
period which is required before claim payments commence under the relevant
IP insurance contract means that this group contains only more seriously
disabled individuals than are present in the other deferred period groups.

Examination of Figure 4 raises an interesting issue regarding IP insurance
claims data with different deferred periods. It is clear from Figure 4 that the
duration of claims arising from three-month deferred period policies is

Claim Duration (Days)
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Figure 4. Kaplan-Meier survival function split by deferment period

Policyholders using Parametric Mixture Models 7

https://doi.org/10.1017/S1748499500000233 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499500000233


considerably longer than the duration of claims arising from either zero,
two-week or one-month deferred period policies. A natural question to ask is
whether, for example, the probability that a claim, where the policy has a
three-month deferred period, will continue for two months from when
payments commence is approximately equal to the probability that a claim,
where the policy has a deferred period of one month and payments have been
made for two months already, will continue for a further two months. This
analysis attempts to see whether duration of disability is related to the
deferred period of the policy. Table 1 reports the estimated survival
probabilities for claims, conditional on the life being disabled for a period of
three months for each of the two-week, one-month and three-month
deferred periods. The estimated conditional survival probabilities are
calculated using the estimated Kaplan-Meier survival functions shown in
Figure 4. It is clear from Table 1 that longer deferred period claims lead to
claims with longer duration. This indicates that insured lives who have been
disabled for a period of three months are more likely to continue with their
claim for long periods into the future if the deferred period on their policy is
of longer duration.

Figure 5 demonstrates the effect of smoker status on claim duration.
Smoker status does not appear to have a significant impact on the longevity
of claims. This conclusion is the same as that reached by the IAAust
Graduation SubCommittee of the Disability Committee in the development
of the IAD89-93 table.

Figure 6 shows the effect of age on claim duration. We note that there is
a steady and consistent increase in the height of the survival function across
the range of possible claim durations with increasing age. Of course,
marginal analyses such as those presented above do not give a complete
picture of how the covariates (jointly) relate to the claim termination rates.
We now turn our attention to modelling the duration of claims using a
regression model.

Table 1. This table gives the probability that a period of disability extends
for various durations, given that it has continued for a period of three

months for policies with varying deferred periods

Duration of disability

4 months 5 months 6 months 9 months 12 months

Deferred period
2 weeks

0.779 0.653 0.579 0.415 0.341

Deferred period
1 month

0.801 0.681 0.607 0.435 0.362

Deferred period
3 months

0.929 0.788 0.752 0.560 0.460
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Figure 5. Kaplan-Meier survival function split by smoker status
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Figure 6. Kaplan-Meier survival function split by age groups
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The most commonly used approach to model the effect of covariates on
survival probabilities is the Cox Proportional Hazards Model, see Cox
(1972).
The relation between the distribution of event time and the covariates, or

risk factors z, can be described in terms of a model, in which the hazard rate
at time t for an individual is:

lðt; zÞ ¼ l0ðtÞ expðzbÞ ð1Þ

where l0ðtÞ is the baseline hazard rate, a function for which the mathematical
form is not specified, which outputs the hazard function for the standard set
of conditions z ¼ 0 and b is a p-vector of unknown coefficients. For further
description of the Cox model see, for example, Pitt (2006).

In the context of actuarial modelling of IP insurance, this model has two
major shortcomings. First, the Cox model does not produce a closed form
mathematical formula for either the predicted hazard rate or the survival
function. A significant motivation for the modelling of claim durations is
ultimately to produce premium and reserve recommendations using multiple
state or some other form of modelling. In order for such work to be
performed, it is preferable to have a mathematical model linking the various
transitions between the states of the model. The second possible limitation of
the Cox model is the potential invalidity of the proportional hazards
assumption.

A number of methods for testing the validity of the proportional hazards
assumption have been proposed. Methods proposed based on statistical tests
have included:
ö Cox (1972) suggested testing the statistical significance of an interaction

between time (or log{time}) and the various covariates specified in the
model. If such an interaction term is statistically significantly different
from zero, then there is evidence that the impact of the covariate on
survival duration varies with time; and

ö Therneau & Grambsch (1994) and also Harrell (1986) have developed
statistical tests based on the Schoenfeld partial residuals. These residuals
are a measure of the difference between observed and expected values of
the covariate at each time point. The idea of the tests is to detect a
correlation between the Schoenfeld partial residuals (or some
transformation thereof) and the rank order of the failure times.

Graphical procedures have also been proposed for testing the proportional
hazards assumption. These have included:
ö Andersen & Gill (1982) suggested a plot of cumulative baseline hazards

in different groups;
ö a plot of the difference of the log cumulative baseline hazard versus

time; and

10 Modelling the Claim Duration of Income Protection Insurance
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ö Arjas (1988) suggested a plot of the estimated cumulative hazard versus
the number of failures.

For categorical covariates with only a small number of levels, graphical
checks are more suitable than tests based on the correlation of residuals.

Integration of both sides of (1) leads to cumulative hazard rates, which
are also proportional. Hence, if the proportional hazards assumption is valid,
we would expect graphs depicting the ratios of cumulative hazards to be
horizontal.

Note that the graphs in Figure 7 show the ratio
L (Group 1)
L (Group 2)

, where Group 1

represents the first named classification in the graph title and Group 2
refers to the second named covariate classification in the graph title, and LðxÞ
is an empirical estimate of the cumulative hazard for disabled lives with
characteristic set x. So, for example, in the first graph in Figure 7, we

Figure 7. Cumulative hazard ratio plots for various levels of independent
variables
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are considering the ratio
L (Occupation A)
L (Occupation B)

as a function of claim duration.

Again note that these cumulative hazard comparisons are one-way analyses.
The cumulative hazard ratio graphs for occupation class show immediately

that the cumulative hazard ratio seems to decrease with time. The occupation
class graphs all show cumulative hazard ratios less than one. This indicates
that the cumulative hazards are greater for occupation classes B, C and D
than for class A. These graphs also indicate that the higher rate of return to
work for claimants in Occupation Classes B, C and D compared to Occupation
Class A becomes more significant as the duration of claim increases.

The cumulative hazard ratio graphs for benefit rate also indicate that
middle and higher income earners have a lower rate of return to work. The
effect of middle income compared to low level income is close to
proportional across time. It is difficult to discern a pattern in the cumulative
hazard ratio of high income earners compared to low income earners. There
is certainly evidence of non-proportionality in the cumulative hazard ratio.
The effect of smoking on the hazard rate is close to proportional. The
cumulative hazard ratio graph for gender indicates that males have a higher
rate of return to work than females, but that the effect reduces significantly
with the duration of claim. Hence, there is also evidence of non-proportionality
in the effect of gender on the rate of return to work.

This graphical analysis shows clear violations of the assumption of
proportional hazards for some of the key rating factors used in the proposed
proportional hazards model. Extensions to the Cox regression model
allowing for time varying regression coefficients have also been proposed, see
Therneau & Grambsch (2000). These methods, however, will also not solve
the problem of deriving a closed form mathematical expression for the
predicted hazard rates. While a significant advance made by the Cox
regression model is the ability to model covariates without having to specify
the form for the baseline hazard, we decide not to continue with this
approach, given that the underlying modelling assumptions are not satisfied
by this particular dataset. We therefore proceed with a parametric analysis of
claim termination rates.

ª. Model and Results

In Section 2 we noted that the Kaplan-Meier estimates of the survival
function were relatively smooth and also plateaued at long durations at a
probability greater than zero, approximately 0.07. This non-zero long-run
probability of survival is referred to in the literature, see Maller & Zhou
(1995), as an ‘immune probability’. This section describes survival analysis
models, which take this feature of the data into account and therefore are
suitable for describing claim termination rate data.

12 Modelling the Claim Duration of Income Protection Insurance
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Maller & Zhou (1995) describe a statistical test for determining whether
‘immunes’ are present in data. Immunes are long-term survivors, and, in the
case of IP insurance claim termination rate analysis, they refer to those
individuals who become disabled and remain disabled for the long term. The
method of Maller & Zhou is described for the case of the exponential
distribution of claim duration, and involves comparing the likelihood for a
model where the immune probability is zero with the maximum likelihood
achievable when the immune probability is allowed to vary on the range from
zero to one. The test statistic is based on the usual likelihood ratio test, and
is written dn ¼ ÿ2flnð ~yH0

Þ ÿ lnð ~yÞg, where ~y are the maximum likelihood
estimates (MLEs) obtained from fitting an exponential mixture model, ~yH0

is
the corresponding MLE under the null hypothesis of no immunes, and
lnðyÞ is the log-likelihood function evaluated at y. Maller & Zhou show that
the asymptotic distribution of dn, under the null hypothesis of no immunes, is
a 50-50 mixture of a chi-square random variable with one degree of
freedom and a point mass at zero. Applying this test to the claim termination
rate data, we get a test statistic of ÿ2ðÿ17;846:38þ 16;357:45Þ ¼ 2;977:86,
highly significant under the chi-square point mass mixture distribution. This
conclusion is not surprising after considering the Kaplan-Meier survival
functions in Section 2. ‘Total and permanent disability’ is also a commonly
insured event, and therefore long-duration claims are well known
phenomena, and should also be expected to occur for claimants under IP
policies.

Mixture models are based on fitting a parametric distribution to the
claim durations for the lives who return to work. Define T to be a mixed
random variable for the unknown claim duration of a disabled life who has
just reached the end of the deferred period and is about to receive claim
payments for the first time under this current period of disability. This
distribution is then mixed with a point mass probability that the life will
never return to work. For the case of the exponential mixture distribution, the
density function is f ðtÞ ¼ ð1ÿ pÞleÿlt; t � 0, and the associated distribution
function is FðtÞ ¼ ð1ÿ pÞð1ÿ eÿltÞ; t � 0, where p is the immune probability
and l is the usual exponential rate parameter. The survival function for the
exponential mixture distribution is pþ ð1ÿ pÞeÿlt; t � 0.
In order to achieve a good fit to the data, we will also consider a number

of other potential mixture models from the generalised F distribution family
(Peng et al., 1998). The density functions and survival functions from the
generalised F family are summarised in Table 2. All probability functions in
the table are defined over t � 0.

In order to determine which family of mixture densities is most
appropriate, each of the models identified was fitted to the claim duration
data. At this stage, covariate information was ignored in the analysis. The
fitted claim survival function was then compared with the Kaplan-Meier
estimate of the survival function from Section 2.
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The results of fitting the log-logistic, generalised log-logistic and generalised
F mixture models to the claim duration data are given in Table 3 and
Figure 8. The results of fitting the remaining models from Table 2 are shown
in Pitt (2006).

From the results shown here and in Pitt (2006), it is clear that the three-
parameter distributions, excluding the log-logistic distribution, all significantly
overestimate the survival function for claims of duration less than six
months. The PP plots highlight this deficiency very clearly. This phenomenon
occurs because the first six months after claim inception accounts for
approximately 80% of claim terminations. The extended generalised gamma
fit exhibits similar properties to the Weibull, gamma and lognormal models.
The log-logistic distribution provides the best three-parameter distribution

Table 2. Summary of potential claim duration parametric distributions

Model Density function Survival function

Weibull mixture ð1ÿ pÞðltÞaÿ1la expfÿðltÞag ð1ÿ pÞ expfÿðltÞag þ p

Log-logistic
mixture

ð1ÿ pÞlaðltÞaÿ1f1þ ðltÞagÿ2
1ÿ p

1þ ðltÞa
þ p

Generalised log-
logistic mixture

ð1ÿ pÞ
ðtlÞasÿ1al

f1þ ðtlÞag2sBðs; sÞ
no simple form

Extended
generalised
gamma mixture

ð1ÿ pÞ
alðltÞas1ÿ1

Gðs1Þ

½s1 expfÿðtlÞag�s1

no simple form

Gamma mixture ð1ÿ pÞ
ðs1lÞ

s1ts1ÿ1

Gðs1Þ
expðÿs1ltÞ no simple form

Lognormal
mixture

ð1ÿ pÞ
a

t
ffiffiffi
2
p

p
exp
ÿa2flogðltÞg2

2

� �
ð1ÿ pÞ½1ÿ Ffa logðltÞg�

Generalised F
mixture

ð1ÿ pÞ
a
t
Bðs1; s2Þ

ÿ1 s1ðtlÞ
a

s2

� �s1

1þ
s1ðtlÞ

a

s2

� �ÿðs1þs2 Þ

no simple form

Table 3. Assessment of fit of parametric density to claim duration

Model Maximised log-
likelihood

R-squared for PP plot Akaike’s information
criterion (AIC)

Log-logistic mixture ÿ15,598.72 99.609% 31,205.44

Generalised log-logistic
mixture

ÿ15,550.93 99.680% 31,109.86

Generalised F mixture ÿ15,478.77 99.915% 30,967.54
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Figure 8. Assessment of fit of parametric density to claim duration
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summary of the data. The generalised log-logistic distribution provides only
a marginal improvement over the log-logistic distribution. The generalised F
is clearly the best of the distributions considered in terms of fit. Note that the
generalised F distribution leads to a very small estimated immune
probability. However, the tail of the standard (non-mixed) generalised F
distribution is sufficiently long that the resulting model still predicts that a
small percentage of claims will continue for a long period. The fitted model
predicts a 5.1% probability of claim continuation after ten years.

Based on the above findings and those in Pitt (2006), the analysis of the
impact of covariates on claim duration will be performed using the log-
logistic, generalised log-logistic and generalised F mixture distributions. We
now describe the mixture models which are fitted and tested in this section.
Assume that T is a random variable for the time (measured in days) it
takes for a new IP insurance claimant to return to work. We consider
the transformation Y ¼ log T . The survival function for Y is modelled
using:

SðyÞ ¼ ð1ÿ pÞSuðyÞ þ p ð2Þ

where SuðyÞ is the survival function of Y , given that the person returns to
work. The density function for Y is:

f ðyÞ ¼ ð1ÿ pÞfuðyÞ ð3Þ

where fuðyÞ is the density function for the time until return to work,
conditional on the individual returning to work at some stage. The long-term
disability probability p is modelled using a logistic regression:

Eðp j ZÞ ¼
1

1þ expðZ0gÞ

where Z is a covariate vector and g is a vector of regression coefficients.
The part of the model relating to return to work is often called the
accelerated failure part of the survival model in the literature. The random
variable T is said to have a generalised F distribution, with m and s as

location and scale parameters and s1; s2 as shape parameters, if W ¼
log T ÿ m

s
is the logarithm of a random variable having an F distribution, with 2s1 and
2s2 degrees of freedom. The density of W is then:

f ðw; s1; s2Þ ¼
s1e

w

s2

� �s1

1þ
s1e

w

s2

� �ÿðs1þs2Þ

Bðs1; s2Þ
ÿ1

ð4Þ
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and the survival function is:

Sðw; s1; s2Þ ¼

ðs2ðs2þs1e
w
Þ
ÿ1

0
xs2ÿ1ð1ÿ xÞ

s1ÿ1Bðs2; s1Þ
ÿ1

dx ð5Þ

where ÿ1 < m <1; s > 0, s1 > 0, s2 > 0 and Bðs1; s2Þ is the beta function
evaluated at s1 and s2. For claimants who may return to work, we assume
that the failure time T follows a generalised F distribution where the
covariate vector X impacts the failure time through the relationship m ¼ X0b,
where b is a vector of regression coefficients. The model is fitted using
maximum likelihood estimation. The log-likelihood function for the model
is:

L ðs1; s2; s; b; gÞ ¼
Xn

i¼1

½di logf f ðyi; xi; zi; s1; s2; s; b; gÞg

þ ð1ÿ diÞ logfSðyi; xi; zi; s1; s2; s; b; gÞg� ð6Þ

where di is an indicator variable equal to one if the claimant is observed to
return to work and zero otherwise. Note that if s1 ¼ s2 ¼ s, then the
generalised F distribution reduces to the generalised log-logistic distribution.
If, in the generalised log-logistic, we have s ¼ 1, then the model further
reduces to the log-logistic distribution.

The covariates described in Appendix A, along with all possible two-way
interaction variables, were tested in each of the three model families
described above. Model selection was performed on the basis of the marginal
significance of regression variables. This is equivalent to testing the statistical
significance of estimated regression coefficients using the likelihood ratio
test. Two-way interaction variables were also considered as possible
regression variables. However, due, most likely, to the high correlation
between the interaction variables and the underlying main effects, these
interaction variables did not continue to have a significant effect throughout
the model selection process, and hence were not included in the final model.

The only continuous predictor used in the model was age. In order to
model the effect of age on the return to work probability properly, three
variables were used. The first variable was a simple linear predictor, based on
the age in years of the claimant at the time when the disability commenced.
The remaining two variables used were break-point predictor terms. These
terms enable a different sensitivity of the return to work probability to
increases in age at different levels of age. The terms were labelled ageind and
ageind2 in S-Plus. The variable ageind is equal to the age of the claimant if
the claimant is ‘young’ and ageind2 is equal to the age of the claimant if the
claimant is ‘old’. The definitions of ‘young’ and ‘old’ were formed by
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maximising the log-likelihood of the resulting model. The definitions used in
the final model are ageind is the age for claimants below age 29. The variable
ageind2 is equal to the age for claimants above age 44.
The likelihood ratio test and the Akaike’s Information Criterion (AIC)

were used to assess the models fitted. The results are summarised in Table 4.
Note also that these likelihood ratio test statistic values can be compared

to critical values derived from the chi-squared distribution. This statistical
test will be conservative, because the true distribution of the likelihood ratio
test statistic has greater density at zero and the shortest durations than does a
chi-square variable.

It is clear from Table 4 that the generalised F mixture model, with
covariates for both the accelerated failure time part of the model and the
logistic part of the model, is optimal. A summary of this fitted model is given
in Tables 5 and 6.

ä. Discussion

The majority of the regressors shown in Tables 5 and 6 have a
statistically significant effect on the rate of return to work at the 5%
significance level. For variables which are highly subdivided, for example
occupation, which has four classes, the statistical significance of the variable

Table 4. Assessment of accelerated failure and mixture models for claim
duration

Maximised
log-likelihood

Likelihood ratio test
statistic relative to
generalised F model

AIC

Accelerated failure: no covariates; no logistic model
Generalised F ÿ15,478.44 ö 30,964.9
Generalised log-logistic ÿ15,631.24 305.6 31,268.5
Log-logistic ÿ15,701.86 446.8 31,407.8

Accelerated failure: no covariates; logistic: no covariates
Generalised F ÿ15,478.77 ö 30,967.5
Generalised log-logistic ÿ15,550.93 144.3 31,109.9
Log-logistic ÿ15,598.72 239.9 31,203.4

Accelerated failure: covariates included; logistic: no covariates
Generalised F ÿ15,297.81 ö 30,627.6
Generalised log-logistic ÿ15,343.79 92.0 30,717.6
Log-logistic ÿ15,403.06 210.5 30,834.12

Accelerated failure: covariates included; logistic: covariates included
Generalised F ÿ15,260.81 ö 30,565.6
Generalised log-logistic ÿ15,291.47 61.3 30,624.9
Log-logistic ÿ15,351.74 181.9 30,743.5
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is strongly affected by the amount of data for that particular class. For that
reason, we note that occupation class C does not appear to have a
significantly different rate of return to work than occupation class A, despite
the contrasting results from the Kaplan-Meier analysis shown in Figure 3.
It is also of interest that there are independent variables which are

statistically significant predictors of the rate of return to work in the
accelerated failure time part of the model which are not significant in the
logistic part of the model. In particular, the model shows that smoker status,
which until now in Australian studies has not been considered a significant

Table 5. Accelerated failure model regression coefficients

Generalised F mixture model

The maximum loglikelihood is ÿ15,256.62

Terms in the accelerated failure time model

Coefficients Std. err. z-score p-value

Log(scale) 0.00278 0.003667 0.7579 0.4485249
(Intercept) ÿ0.00354 0.147557 23.4308 0.0000000
age 0.00278 0.003667 0.7579 0.4485249
ageind ÿ0.00354 0.002286 ÿ1.5489 0.1213947
ageind2 0.00202 0.001226 1.6476 0.0994444
occupB 0.12864 0.063015 2.0414 0.0412076
occupC ÿ0.04742 0.042424 ÿ1.1178 0.2636703
occupD ÿ0.12454 0.044126 ÿ2.8224 0.0047672
benrate2 0.06753 0.040174 1.6809 0.0927729
benrate3 0.11961 0.041763 2.8639 0.0041843
benrate4 0.27448 0.056277 4.8774 0.0000011
benratetop2 0.12041 0.050253 2.3961 0.0165717
sick 0.04555 0.031021 1.4685 0.1419671
defpd2 0.35779 0.033275 10.7526 0.0000000
defpd3 1.02768 0.183896 5.5884 0.0000000

Table 6. Logistic model regression coefficients

Terms in the logistic model

Coefficients Std. err. z-score p-value

(Intercept) 10.00406 1.586363 6.3063 0.0000000
age ÿ0.07391 0.015437 ÿ4.7875 0.0000017
smokernew ÿ0.92219 0.298505 ÿ3.0894 0.0020058
conttypenew1 ÿ0.58790 0.271987 ÿ2.1615 0.0306560
sick ÿ2.51927 1.482109 ÿ1.6998 0.0891704
defpd0 ÿ2.52043 1.643859 ÿ1.5332 0.1252161
defpd2 ÿ0.83440 0.301255 ÿ2.7697 0.0056100
defpd3 ÿ2.54072 0.424056 ÿ5.9915 0.0000000
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determinant of claim termination rates, leads to a statistically significant
increase in the probability of long-term disability.

Apart from the likelihood ratio test, it is also possible to assess the
quality of the fit of the model by dividing the data into groups according to
the values of the covariates included in the final model. Out of the 8,863
individuals in the study, 61 were found to possess all of the following
characteristics: aged between 35 and 45; disability benefit of less than $2,000
per month; disability caused by sickness; deferred period of two weeks;
occupation class A; and non-smoker. For these 61 lives, the Kaplan-Meier fit
to the survival function is compared to the survival function predicted by
the generalised F model. The result of this comparison is shown in Figure 9,
where 95% confidence bands have been included around the Kaplan-Meier
estimate.

The fit of the generalised F distribution is clearly very good except at the
shortest durations, where the model predicts higher rates of return to work
than does the empirical Kaplan-Meier survival function. Since pricing and
reserving for IP insurance are impacted most by long-duration claims, this
imperfect fit at the shorter durations has less financial consequences for a life
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Figure 9. Comparison of actual and fitted rates for the generalised F
distribution
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office than would imprecise model fitting in the tail of the claim duration
probability distribution, and so may not be of practical significance.

In Section 2 we demonstrated that the proportional hazards assumption
of the Cox regression model was not satisfied by the covariates in the IP
insurance claim termination data. The impact of this assumption not being
satisfied on the fit of the Cox regression model is shown in Figure 10. This
graph compares the same data as were used in Figure 9 to compare the
empirical Kaplan-Meier survival function with the survival function
predicted using the Cox regression.

This graph shows clear evidence that the Cox regression model estimates
claim termination rates which are significantly higher than the Kaplan-Meier
estimate between durations six months and two years.

A useful way to compare the fits of various models, given that the aim of
the modelling is premium rating, is to compare the predicted expected
present value of an annuity payable to a disability annuitant throughout
his/her period of disability. We consider a disability income insurance policy
with a four-year benefit period. The annuity is assumed to be payable
continuously, with the valuation performed at a force of interest of 5% per
annum. Mortality is ignored, which is a reasonable assumption at this stage,
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Figure 10. Comparison of Kaplan-Meier and Cox regression claim
duration models

Policyholders using Parametric Mixture Models 21

https://doi.org/10.1017/S1748499500000233 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499500000233


given that we are considering lives aged between 35 and 40, and also that
our aim is to assess the relative merits of the Cox regression model and the
generalised F mixture model in describing claim durations. Table 7 gives the
expected present value of an annual annuity of one dollar payable
throughout the period of disability under each model. It is clear that the
generalised F mixture model is preferable in this case to the Cox regression
model, as evidenced by a much closer estimate of the annuity value to the
underlying annuity value. The results for the same policy with a two-year
and one-year benefit period provide a similar message, and are also shown
in Table 7.

å. Conclusion

One of the most noteworthy features of this analysis is the difference in
statistically significant regressor variables between the accelerated failure
time part of the model and the logistic regression for the immune probability
component of the model. Comparison with the results from the CMI for
claim longevity indicates a close alignment at short claim durations, although
some deviation at longer claim durations. The Kaplan-Meier curves shown
in Section 3 broadly match claim survival curves generated based on the CMI
findings in CMIR12 (CMIB, 1991). Further research conducted by the
author extends this investigation to quantile regression, where the significance
of rating variables is assessed at various quantiles of the distribution of claim
durations, rather than just at the conditional mean.
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Table 7. Annuity value comparison for three model fitting procedures

Deferred period Kaplan-Meier
survival function

Cox regression
model

Generalised F
mixture model

4 weeks 0.6163 0.4739 0.5837
2 weeks 0.5176 0.3851 0.4977
1 week 0.3674 0.3092 0.3123
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APPENDIX A

Field Description Variables
(S-plus names)

Duration Duration of the claim (recorded in days),
which is the number of days from when the
sickness began until recovery (or censoring),
less the deferment period

durn2

Age Age at the date of claim commencement age
Terminate An indicator of whether the claim was

observed to terminate or was censored
terminate

Disability
definition

Own occupation for which the insured
person is reasonably suited by education,
training or experience, or any occupation
after an initial period (indicator variable for
any occupation after initial period)

poldesnew3

Sex Indicator variable for gender; Male¼ 1 sex1
Occupation
class

Occupation is grouped into four levels: A,
B, C or D as described in IAAust Disability
Reports

occupA,
occupB,
occupC,
occupD

Frequency of
benefit
payment

Classified as (1) weekly, (2) monthly or (3)
annually

benhp1,
benhp2

Benefit rate Monthly benefit rate in dollars benrate
Benefit type Level or Increasing Benefits (indicator

variable for increasing benefits)
bentypnew2

Medical
evidence

Medical exam required or automatic
acceptance (indicator for medical exam
required)

medevid1

Contract type Level premiums or stepped premiums
(indicator variable for level premiums)

conttypenew1

Smoker status Smoker or non-smoker (indicator variable
for smoker)

smokernew

Sickness or
accident

Sickness claim or accident related claim
(indicator is for sickness)

sick

Deferred
period

Classified according to defpd0 (zero day),
defpd1 (base level and deferment period
between one and 27 days), defpd2 (28 to 89
day deferment period) and defpd3
(deferment period in excess of 90 days)

defpd0
defpd1
defpd2
defpd3
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