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The horizontal scale of rotating convection in the
geostrophic regime

By S A T O S H I S A K A I
School of Earth Sciences, IHS, Kyoto University, Kyoto 606-01, Japan

(Received 7 September 1995 and in revised form 18 September 1996)

The horizontal scale of rotating convection with rigid boundary conditions is studied.
The range of Rayleigh number concerned is moderate, i.e. large enough to induce a
finite-amplitude convection but small enough so that the geostrophic processes are
significant.

On considering an experimental law of the Nusselt number and some constraints
of elemental geostrophic processes, the horizontal scale of the convection can be
estimated. This estimation strongly depends on the ratio between the thicknesses of
the Ekman layer and the thermal boundary layer, and does not depend monotonically
on the Rayleigh number. This dependency is compatible with the experimental results
of Rossby (1969).

The estimated horizontal scale was checked by laboratory experiments. The hor-
izontal temperature distribution was visualized by thermal liquid-crystal capsules
dispersed in the working fluid. The horizontal scale was measured by counting vor-
tices. The experimental results agree fairly well with the estimated scale.

1. Introduction
Recently a number of experimental studies (Fernando, Chen & Boyer 1991; Jones

& Marshall 1993; Maxworthy & Narimousa 1994; Klinger & Marshall 1995) have
been carried out on rotating turbulent convection. In these studies, experiments
were done at high Rayleigh numbers so that the results could be compared with
geophysical flows such as deep ocean convection. The dynamics at high Rayleigh
numbers, however, were very complicated and difficult to understand. Even in the
range of moderate Rayleigh numbers and Taylor numbers, we know very little about
rotating convection other than the critical curve and critical mode.

Rotating convection was first studied by Jeffereys (1928), but since then only a few
studies had been done until recent studies of turbulent convection. Chandrasekhar
(1953) obtained the stability curve and the horizontal scale of the critical mode for
stress-free boundaries and rigid boundaries, using a linear theory. It gives the critical
Rayleigh number as

Rac ∼ 8.7× Ta2/3, (1.1)

for sufficiently large Taylor numbers. This critical curve was checked experimentally
by Nakagawa & Frenzen (1955).

Rossby (1969) performed extensive laboratory experiments at relatively low Rayleigh
numbers and low Taylor numbers with rigid boundary conditions for water, silicone
oil and mercury. He obtained horizontal scales of the convection in silicone oil, which
showed a maximum value at a Rayleigh number larger than the critical value by an
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order. He also obtained Nusselt numbers for the rotating convection. Boubnov &
Golitsyn (1986) performed many experiments for distilled water with a free surface,
at a different parameter range. They measured the horizontal scale of the convection
by counting the number of vortices, and found an empirical law for the scale, which
shows a monotonic dependency on the parameters.

These experiments were done in a range of moderate values of parameters just
above the critical Rayleigh numbers, which are large enough to induce finite-amplitude
convection, but small enough that the geostrophic processes are significant. In these
conditions, the convective flows are more reproducible than the recent studies of
turbulent convection, and therefore, theoretical approaches are expected to be easier.
Even in this range, however, we have insufficient knowledge to understand the dynam-
ics. For example, the experimental information we have are two different experimental
results (Rossby 1969; Boubnov & Golitsyn 1986) for different boundary condition at
different parameters, and we have no theoretical prediction for the horizontal scale.

The present study deals with rotating convection in a parameter range studied by
Boubnov & Golitsyn (1986), and with a rigid-lid boundary condition similar to Rossby
(1969) to complement these studies. A theoretical estimation of the horizontal scale
of the convection for the rigid boundary condition is presented in the next section.
Although it uses an empirical law for the Nusselt number, it is the first theoretical
estimation for the horizontal scale of finite-amplitude convection in the rotating frame.
This estimation was checked by laboratory experiments in §3. In the experiments,
thermotropic liquid-crystal capsules were used to visualize the distribution of the
horizontal temperature. The horizontal scale was measured by counting the number
of cold or hot vortices in the fluid.

2. Theoretical estimation for the horizontal scale
Suppose a convecting layer in a rotating system is bounded by horizontal rigid

plates at constant temperature. The governing non-dimensional parameters are the
Rayleigh number

Ra =
αg∆TH3

νκ
, (2.1)

and the Taylor number

Ta =
f2H4

ν2
, (2.2)

where α is the thermal expansion coefficient of the fluid, g the gravitational acceler-
ation, f the Coriolis parameter, ∆T the temperature difference between the top and
bottom boundaries, H the depth of the fluid, and ν and κ are the kinematic viscosity
and the thermodiffusivity, respectively.

When the Rayleigh number is large enough to induce a finite-amplitude convection,
and small enough so that the effect of rotation is significant, up-welling and down-
welling of the rotating convection are restricted to narrow columns, as pointed
out by Boubnov & Golitsyn (1986), because the rotation of the fluid tends to
inhibit the convective motion. The rest of the interior region is expected to be in
geostrophic balance. This structure can be seen also in the experiments by Nakagawa
& Frenzen (1955). Such a convective regime is called the geostrophic regime hereafter.
Considering the symmetry of the boundary conditions, the geostrophic vortices around
the columns should circulate in opposite directions in the upper and lower parts.
The up-welling and down-welling flow should be connected horizontally at the top
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The horizontal scale of rotating convection 87

Figure 1. Schematic figure of rotating convection in the geostrophic regime. Narrow columns of
up-welling and down-welling are enclosed by geostrophic circulation.

and bottom boundary layers to form closed cells as shown in figure 1. Based on this
structure we can estimate the horizontal scale of the convection from some constraints
due to elemental processes, as follows.

Suppose the temperatures of the hot and cold columns are vertically uniform
and differ by ∆Tc, and these columns are separated by a distance L. Assuming the
geostrophic balance in the interior region, we can obtain the typical geostrophic
velocity V0 at the upper or lower part of the interior region by vertical integration of
the geostrophic equation,

V0 =
αg∆TcH

2fL
(2.3a)

=
κ

2L

(
∆Tc
∆T

)
RaTa−1/2. (2.3b)

Assuming a checker-board pattern in the up-welling and the down-welling regions,
the Ekman transport Q which flows into the columns is estimated at

Q = 4L
V0δe

2
(2.4a)

=
√

2κH

(
∆Tc
∆T

)
RaTa−3/4, (2.4b)

where

δe ≡
(

2ν

f

)1/2

=
√

2HTa−1/4. (2.5)

The temperature difference between up-welling and down-welling columns, ∆Tc,
is not necessarily equal to the imposed temperature difference ∆T , because the
temperature in the Ekman layer is not uniform. If we assume that the temperature
is well mixed when the Ekman transport turns into the vertical columns, it can be
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estimated by the weighted average of the temperature in the Ekman layer. Assuming
an exponential profile of the temperature in the thermal boundary layer, we get

∆Tc
∆T

=

∫ ∞
0

(T − T0)vedz∫ ∞
0

vedz

(2.6a)

=

∫ ∞
0

exp(−z/δt) exp(−z/δe) sin(z/δe)dz∫ ∞
0

exp(−z/δe) sin(z/δe)dz

(2.6b)

=

∫ ∞
0

exp(−η/D) sin(η)dη∫ ∞
0

exp(−η) sin(η)dη

(2.6c)

= 2
D2

1 + D2
, (2.6d)

where T0 is the average temperature, ve is the Ekman velocity towards a column, δt
is the thickness of the thermal boundary layer, η ≡ z/δe, and D ≡ δt/(δe + δt).

Obviously the vertical temperature gradient is negative in the Ekman layer, but
this negative stratification is expected to have no significant effect on the dynamics
of the Ekman layer because the Rayleigh number defined by thickness of the Ekman
layer or thermal boundary layer is always small, and therefore small-scale convective
motion in the Ekman layer is impossible.

Using (2.4) and (2.6) we can calculate the heat transport by a pair of a up-welling
and down-welling columns. This heat transport should be same as that through the
thermal boundary layer over the area of the pair,

Q∆Tc = 2L2 ∆Tκ

2δt
. (2.7)

To estimate the right-hand side of (2.7), we have to know the thickness of the
thermal boundary layer δt. Rossby (1969) showed that the Nusselt number of the
rotating convection is independent of the Taylor number except near the critical
curve. The Nusselt number dependence of the non-rotating convection has been
measured experimentally to vary as Ra1/3, which indicates that the thickness of the
thermal boundary layer is independent of the total depth of the fluid. Considering
these experimental results, the thickness of the thermal boundary layer is assumed to
be

δt = 3.8HRa−1/3, (2.8)

where the constant is chosen from Rossby (1969).
Substituting (2.4), (2.6) and (2.8) into (2.7), we get

L

H
= 2.3

(
∆Tc
∆T

)
Ra1/3Ta−3/8 (2.9a)

= 4.6
D2

1 + D2
Ra1/3Ta−3/8. (2.9b)

Figure 2 shows the horizontal scale given by (2.9). It is clear that the normalized
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Figure 2. Normalized horizontal scale (L/H) of rotating convection. The dotted line indicates
critical stability curve. Dot-dash-lines are the transition curves with Ro = 1 for Pr = 7 (water) and
Pr = 100.

horizontal scale (L/H) does not depend monotonically on the Rayleigh number, but
has a maximum value along the critical line. This is due to the strong dependency
of D on Ta and Ra. While D is almost constant near the critical line, it approaches
D ∼ δt/δe = 2.7Ta1/4Ra−1/3 when Ra� Ta. This totally changes the dependency of
the horizontal scale on Ra and Ta to

L

H
∼ 33Ra−1/3Ta1/8, (2.10)

for Ra� Ta. Slopes corresponding to contour lines for Ra1/3Ta−3/8 (D =const.) and
for (2.10) are also shown in figure 2.

This dependency of the horizontal scale can be physically interpreted as follows. As
the Rayleigh number increases, the thermal boundary layer becomes thinner and the
‘effective temperature difference’ ∆Tc is reduced. (Note that the fluid in the interior
region feels only ∆Tc rather than the imposed temperature ∆T .) This effect also
weakens the volume flux Q given by (2.4b) and, therefore, the heat transport by a
unit convective cell (left-hand side of (2.7)) is reduced. To transport heat flux given
by the thermal boundary layer, the horizontal scale of the convective cells (L) must
be reduced to increase the total number of cells.

The maximum of the horizontal scale is also seen in the experiments with silicone
oil by Rossby (1969). Although his experiments were done with low Taylor numbers
where the Ekman layers occupy the whole fluid layer while (2.9) can be applied at
higher Taylor numbers, the present results seem to be consistent with his results.

Since the discussion above is mainly based on the linear theory of geostrophic flow,
we should check the self-consistency of the discussion by checking the nonlinearity of
the flow. A possible measure of the nonlinearity is the Rossby number, the importance
of which was pointed out by Griffiths (1987). He defined it as an external parameter,
but for the present purpose, it is appropriate to define it as an internal parameter
using the predicted velocity and scale, because we want to know the nonlinearity of
the predicted flow field.
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Using the typical horizontal velocity (2.3) and the horizontal scale (2.9), the Rossby
number can be determined as follows:

Ro ≡ V0

fL
(2.11a)

= 4.7× 10−2Pr−1Ra1/3Ta−1/4 1 + D2

D2
, (2.11b)

where Pr is the Prandtl number. Again for Ra� Ta, (2.11) reduces to

Ro ∼ 6.5× 10−3Pr−1RaTa−3/4. (2.12)

The critical lines defined by Ro = 1 for some Prandtl numbers are also shown in
figure 2. The present study concerns the flow under these lines (Ro < 1).

Because the length scale L used in the Rossby number is the average scale of
the convection, nonlinearity of some small-scale dynamics may emerge at smaller
Rossby numbers. For example, in the convective column at the centre of convection,
it is natural that some nonlinear aspects are significant even when Ro � 1, because
the scale of the column is small and both the horizontal and vertical velocities are
maximum. The present theory, however, relies on the dynamics of the interior region,
which has the scale of L, and the dynamics of the boundary layers, and it does not
depend on the dynamics of the small-scale columns. Therefore, the Rossby number
defined here should be a good indicator of the nonlinearity of the convection as a
whole.

3. Experiment
Laboratory experiments were done using an apparatus shown schematically in

figure 3. The apparatus consisted of nested boxes so that the depth of the working
fluid was easily varied by changing the middle part of the box. Three boxes were
used to give different depths of working fluid: 3, 6 and 9 cm respectively. The
horizontal dimension of the working fluid was 20 cm × 20 cm. The boxes were
made of transparent acrylic resin except for the top and bottom boundaries. Pyrex
glass, 1 mm in thickness, was used for these boundaries to minimize heat loss. The
temperatures at the top and bottom boundaries were kept constant by chilled and
hot water, respectively. This apparatus was mounted on a rotating table 50 cm in
diameter. Electric power was supplied to the rotating system through slip rings, and
the chilled and hot water were circulated and controlled on the rotating table.

Distilled water is used for the working fluid in all cases to ensure the clarity of the
fluid for visualization. Small amounts of thermotropic liquid-crystal capsules (about
50 µm in diameter) were dispersed for visualization. This liquid crystal changes colour
from red to blue for temperature difference of about 2 ◦C. This colour, however, is very
sensitive to the viewing angle relative to the incoming light. Therefore, it is used only
for the visualization of temperature pattern, not for quantitative measurements. A
sheet of light was shone into the working fluid and the two-dimensional temperature
distribution was visualized. The visualized image was recorded by a video camera
mounted on the rotating table. This image was also transmitted to a television monitor
in the laboratory and seen in real time to confirm that the statistical steady state had
been achieved.

Although the temperatures of the hot and chilled water were controlled, the heat
losses at the top and bottom boundaries were not negligible, i.e. the temperature
difference that was given to the working fluid (∆T ) depended on to the heat flux
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A

B

C

Figure 3. Schematic figure of apparatus. Working fluid (B) is cooled at the top by circulated
chilled water (A) and heated at the bottom by circulated hot water (C).
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Figure 4. Parameters of experiments: ◦, H = 3 cm; 4, H = 6 cm ; ×, H = 9 cm. Dotted line
indicates critical stability curve. Dot-dash-line is the transition curve with Ro = 1 for water.

through the convective layer. To correct for the temperature difference ∆T , the heat
flux through the boundary was estimated by assuming the Nusselt number to be

Nu = 0.13Ra1/3. (3.1)

This assumption is consistent with (2.8).
Because Ra in (3.1) contains ∆T which is subject to correction, the corrective

processes were taken iteratively. The corrected temperature difference ∆T ranged
from 2.6 ◦C to 8.5 ◦C. The rotation speed was from 5 to 20 r.p.m. The corrected
non-dimensional parameters of the experiments are shown in figure 4. Unfortunately,
the parameter range of these experiments did not extend beyond the maximum of
the horizontal scale (cf. figure 2), because the rotating table did not operate stably at
low rotation rates.

Figure 5 shows top and side views of the typical image of rotating convection.
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(a)

(b)

Figure 5. Top view (a) and side view (b) of the rotating convection for H = 6 cm, ∆T = 2.6 ◦C,
14.3 r.p.m. The light sheet for (a) was shone at 10 mm under the top boundary.
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Figure 6. Observed horizontal scale (3.2) vs. estimated scale (2.9). The scales are normalized by the
total depth H . The symbols are the same as in figure 4.

Regions of high temperature are shown in blue and low temperature in red. In (a),
many up-welling and down-welling columns can be clearly seen. By changing the
level of the light sheet, it was confirmed that each up-welling or down-welling column
was enclosed by geostrophic vortices rotating in opposite directions at the upper and
lower levels, as in figure 1. It is clear from figure 5(b) that the vertical temperature
distribution is almost uniform.

In all cases, the columns were continuously moving around each other and no
steady state, in a strict sense, was observed.

By counting the number of descending columns (N), the average horizontal scale
was calculated by

L

H
=

L0

H(2N)1/2
(3.2)

where L0 is the horizontal scale of the observed area. Figure 6 shows the observed
horizontal scale and that estimated by (2.9). The experimental result agrees fairly well
with the estimated one.

From streak lines in figure 5(a), typical horizontal velocities at the observed level
are measured at 1–2 mm s−1. This agrees with the geostrophic velocity estimated by
(2.3) at this level ( 2

3
V0 = 1.3 mm s−1). Figure 5(b) shows that the vertical velocities are

observed to be of same order of magnitude as the horizontal velocity. This relatively
strong vertical velocity is necessary for the narrow vertical columns to connect the
top and bottom Ekman layers. In these columns, the flow cannot be geostrophic, but
this does not affect the discussion in the previous section.

4. Discussion
There are some previous studies that have obtained horizontal scales which might

be compared with the present result.
Chandrasekhar (1953) obtained a horizontal scale of rotating convection propor-

tional to Ta−1/6 using the linear theory. This horizontal scale, however, is for the
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Figure 7. Observed horizontal scale (3.2) vs. Boubnov & Golitsyn’s empirical law. The scales are
normalized by the total depth H . The symbols are the same as in figure 4.

critical mode, and not applicable for a wide range of parameters. On the other hand,
the present estimation (2.9) is not applicable for parameters near the critical curve
because the Nusselt number abruptly changes there, and (2.8) cannot be applied.
Therefore, (2.9) does not yield Ta−1/6 when the critical Rayleigh number (1.1) is
substituted.

Boubnov & Golitsyn (1986) found that the horizontal scale is proportional to
Ra1/9Ta−1/4 in the present notation of the Rayleigh number. This empirical law
is compared with the present experimental result in figure 7. Their empirical law
does not match well with the present results, especially at low Taylor numbers. A
possible reason is that their law was for convection with a free surface and present
estimation is for two rigid boundaries. Since the present estimation strongly depends
on the thickness of the boundary layers, the horizontal scale for the free surface
might be controlled by different dynamics. Because the present theory is based on
the convective structure consisting of the vertical columns and the horizontal Ekman
layer, it cannot be applied to convection with a free surface. It is difficult to close
the dynamical system only with linear geostrophic processes when the surface Ekman
layer does not exist.

Maxworthy & Narimousa (1994) obtained the horizontal scale of quasi-two-
dimensional vortices under the three-dimensional turbulent layer as

D

H
∝ (Ro∗)1/2 (4.1)

where D is the diameter of vortices and Ro∗ is a natural Rossby number based on the
buoyancy flux B0. The natural Rossby number can be written in the present notation
as

Ro∗ ≡
(

B0

H2f3

)1/2

(4.2a)

∝ Pr−1Ra2/3Ta−3/4, (4.2b)
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where (3.1) is used to convert the buoyancy flux. Substituting (4.2) into (4.1), we get

D

H
∝ Pr−1/2Ra1/3Ta−3/8. (4.3)

Although the dynamics considered in Maxworthy & and Narimousa (1994) is very dif-
ferent from the present one, (4.3) gives very similar form to (2.9) in the present theory.

5. Concluding remarks
The horizontal scale of rotating convection in the geostrophic regime with rigid

boundaries is studied. From the structure of the rotating convection, the horizontal
scale was estimated using some constraints of elemental processes and an experimental
law for the Nusselt number. This estimation strongly depends on the ratio between
the thicknesses of the Ekman layer and thermal boundary layer, and does not
depend monotonically on the Rayleigh number. This seems to be consistent with the
experimental results of Rossby (1969), at low Taylor numbers.

Laboratory experiments on a rotating table were done for three different depths of
working fluid. The horizontal temperature distribution was visualized by thermotropic
liquid-crystal capsules dispersed in the working fluid. By counting the number of
vortices in the working fluid, the horizontal scale of the convection was measured.
Although the parameter range of the experiment was rather limited, the results agree
fairly well with the present estimation.

Considering the strong dependency of the horizontal scale on the ratio of the Ekman
layer to the thermal boundary layer, the present results might not be applicable to
convection with a free surface where the surface Ekman layer does not exist.
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